航空发动机叶片CAD技术综述

合集下载

航空发动机涡轮叶片冷却技术综述

航空发动机涡轮叶片冷却技术综述

航空发动机涡轮叶片冷却技术一、引言航空发动机自诞生以来,对它的基本发展要求就是推力更大、推重比更高、耗油率更低、质量更轻、耐久性更好和费用更低等。

因此,航空发动机涡轮的发展趋势主要在以下两个方面:其一是不断提高涡轮前温度;其二就是不断增加涡轮气动负荷,采用跨音速涡轮设计方案,减少涡轮级数和叶片排数。

在现有技术条件下,并在保证尺寸小、质量轻的情况下,提高涡轮前温度,是获得大推力和高推重比的主要措施之一。

从理论上讲,涡轮进口温度每提高100℃,航空发动机的推重比能够提高10%左右。

当前,先进航空发动机涡轮前温度已经达到1900K 左右,这远远超过了涡轮叶片所用的高温合金材料的熔点温度。

为了保证涡轮叶片在高温燃气环境下安全可靠地工作,就必须对叶片采取冷却和热防护措施。

对于高温所带来的一系列问题,解决的办法主要有两个:一是提高材料的耐热性,发展高性能耐热合金,制造单晶叶片;二是采用先进的冷却技术,以少量的冷却空气获得更高的降温效果。

其中材料的改善占40%,冷却技术占60%。

对于军用航空发动机,第3代的涡轮进口温度为1680~1750K,涡轮叶片耐温能力主要通过第1代单晶合金或定向合金和气膜冷却技术保证;第4代的涡轮进口温度达到1850~1980K,涡轮叶片耐温能力主要通过第2代单晶合金和对流-冲击-气膜复合冷却技术来保证;未来一代的涡轮进口温度将高达2200K,预计涡轮叶片耐温能力通过第3代单晶合金或陶瓷基复合材料等耐高温材料和包括层板发散冷却在内的更加高效的冷却技术来保证。

二、航空发动机涡轮叶片冷却技术概述涡轮冷却技术研究始于上个世纪40年代,大约在1960年,气冷涡轮首次应用于商业航空发动机上。

经过多年的发展,目前基本上形成了由内部冷却和外部冷却构成的涡轮叶片冷却方案。

1.内部冷却其基本原理是冷气从叶片下部进入叶片内部,通过带肋壁的内流冷却通道,对叶片的内表面实施有效的冷却,一部分冷气通过冲击孔,以冲击冷却的形式对叶片前缘内表面进行冷却,剩下的一部分气体经过叶片尾部的扰流柱,被扰动强化换热以后从尾缘排出。

航空发动机叶片CAD、CAPP、CAM的思考

航空发动机叶片CAD、CAPP、CAM的思考

航空发动机叶片CAD/CAPP/CAM的思考郭文有1航空技术的发展需要CAD/CAPP/CAM叶片CAD/CAPP/CAM是一个统一完整的系统,在叶片设计和制造过程中,计算机辅助完成叶片设计(CAD)、毛坯制造和机械加工工艺文件的编制(CAPP)、工装设计(CAD)、工装和叶片的数控加工(CAM)等一系列工作。

当今世界航空技术飞速发展,先进的新机种不断出现,其研制周期由将近10年缩短为不到3年,技术寿命也由过去的几十年缩短为十几年甚至更短。

其中一个重要因素是得益于计算机技术的不断发展和应用,特别是CAD/CAPP/CAM的应用,大大提高了飞机设计和制造水平,缩短了研制和生产周期,降低了制造费用,从而加快了航空技术的发展。

发动机是飞机的关键,叶片是发动机的关键零件之一,其特点是结构复杂,品种、数量多,对发动机性能影响大,设计制造周期长,制造工作量约占整台发动机的三分之一。

因此,发动机叶片的设计、制造技术水平对提高发动机性能、缩短研制周期和降低制造费用起着重要的作用。

我国航空发动机叶片的设计、制造至今还没有采用CAD/CAPP/CAM技术。

叶片的研制周期长,水平低,质量差,且经常更改设计,重新制造,拖延了发动机试制周期。

积极开发和应用叶片CAD/CAPP/CAM技术对加速我国航空技术的发展有着十分重要的意义。

图1叶片CAD/CAPP/CAM的主要工作Fig.1Main work of CAD/CAPP/CAM for blade2叶片CAD/CAPP/CAM的主要工作结合我国实际情况,叶片CAD/CAPP/CAM技术开发的初始阶段,应当把由计算机完成叶片设计和制造技术文件编制的主要工作作为首选目标(见图1),对管理和一些非主要工作可暂不考虑。

2.1叶片CAD叶片CAD最终要设计出完整的叶片几何形状,提供制造用的图纸和计算机文件(软盘、联网数据资料等),以便在制造中直接查阅和供CAPP/CAM直接使用CAD数据。

CG与CAD_CAM技术在压气机叶片中的应用研究

CG与CAD_CAM技术在压气机叶片中的应用研究

1 CG、 CAD /CAM 技术概述
CG 技术是研究通过计算机将数据 转换为图形 , 并 在专用 显示设备上显 示的原 理、 方法 和技术 的一门 学科。计算机 图 形学包括图形数据结构、 图形算法与计 算机语言 , 图形 就是对 象的形象化表示。 CAD 技术采用计算机系统 完成资料整理分 析、 工程计算、 结 构模型 分析、 设 计优化、 经费 预决算、 绘制 图 形 , 它能提高产品的设 计质量 , 发挥 设计人 员的创 造性 , 缩 短 产品的设计周期 , 提高产品的 竞争能力。 CAM 是通过计 算机 直接控制加工 设备 , 使 它能够 自动地 加工产 品。它 的加工 过 程是由 CAD 技术和计算机图形软件产生一个完整的并符合加 工要求的数控语言 , 然后通过数控语言去控制加工设备。 CG 作为可视化图像表达的基础 , 为 CAD 的产生创造了条 件 ; 而 CAM 技术又是在 CAD 基础上产生的直接应用于生产的 技术 , 其加工过程 仿真中 的图形 又是 直接应 用 CG 的图像 表 达。在飞机制造工业中 , 美国波音公司已用有关的 CA D /CAM 技术实现了波音 777 飞机的整体设计和模拟 , 其中包括飞机外 形的曲线、 曲面拟合和建立外形数学模型等过程。
图 1 叶片截面图 利用 CG 技术改进设计方 案 , 可采 用反求 设计 对叶 片进 行数模建立。 反求 工程 ( R everse Eng ineering , R E) 也 称逆 向 工程、 反向工程等 , 是 指用一 定的 测量 手段 对实 物或 模型 进 行测量 , 根据测量 数据通 过三 维几 何建 模方 法 , 重构 实物 的 CAD 模型 , 从而实 现产品设计与制造的 过程。采用反 求工程 技术开发的产品往 往比较 复杂 , 通 常由 一些 复杂 曲面 构 成 , 精度要求也较高的产品 , 高压压 气机的叶 片设计 属于零 件反 求 , 实质上是零 件复制 [ 3] 。一 般针 对外 形设 计复 杂 , 无需 内 部结构的零件可采用最为简单易行的坐标测量 机 ( Coord inate M easuring M ach ine , CMM ) 的接触式 测量 , 该方 法采 用触 发探 头 , 当侧头的探针 接触到 样件 的表 面时 , 由 于探 针尖 受力 变 形触发采样器的开关 , 这样通过 数据采集 系统记 下探针 尖的

航空发动机涡轮叶片精密成型技术分析

航空发动机涡轮叶片精密成型技术分析

航空发动机涡轮叶片精密成型技术分析摘要:航空发动机技术复杂且难以制造。

世界上只有几个国家可以完成航空发动机的设计和制造。

中国不断发展航空发动机的设计和制造,以提高自身的制造水平。

空心涡轮叶片是高性能航空发动机的主要部件之一,制造困难长期以来一直给中国的制造公司带来麻烦。

通过分析空心涡轮叶片的结构特性,分析和解释空心涡轮叶片的精密成型技术。

关键词:空心涡轮叶片;精密成型技术;精密铸造前言空心涡轮叶片是高性能航空发动机的关键组件,由于对精度的要求和制造困难,我们无法批量生产空心涡轮叶片。

为了提高空心涡轮叶片的制造合格率,我们将从叶片精密铸造的“形状控制”和“可控制性”两个方面出发分析空心涡轮叶片的精密铸造工艺,以提高叶片精密铸造的质量。

需要1空心涡轮叶片的精密铸造技术现代飞机发动机正朝着高推进力和低油耗的方向发展。

为了实现这一目标,当今世界上的主流方法是提高航空发动机涡轮的进气温度。

发动机涡轮的当前入口温度已经很高。

随着温度的不断升高,发动机涡轮叶片的温度达到1880℃±50℃,为了解决这个问题,目前的涡轮叶片主要用于复合膜冷却的单晶空心涡轮叶片(称为空心涡轮叶片)。

由于结构的复杂性和材料的特殊性,熔模铸造工艺主要用于制造空心涡轮叶片,但由于精度低,产量低,该工艺存在使空心涡轮叶片具有高性能的问题。

有。

通常,当今的空心涡轮叶片精密铸造的产率约为10%,其中约90%的废叶片的形状和尺寸偏差约为50%,而重结晶缺陷约占25%。

主要原因是铸造缺陷。

为了提高空心涡轮叶片的制造成品率,有必要解决“形状控制”和“铸造控制”两个问题:精密铸造后的尺寸精度和复合材料性能。

空心涡轮叶片的工艺复杂且难以制造:粗略的制造过程如下:首先,使用模芯来完成空心涡轮叶片精密铸造所需的陶瓷芯,并且陶瓷芯是空心的填充零件。

用来。

随后,使用蜡模工艺在芯的外层上制备涡轮叶片蜡模,然后通过烧结注射成型和其他工艺来制造空心涡轮叶片粗糙毛坯。

CG与CAD/CAM技术在压气机叶片中的应用研究

CG与CAD/CAM技术在压气机叶片中的应用研究
直 接控 制 加工 设 备 , 它 能 够 自动 地 加 工 产 品 。它 的 加 工 过 使
程是由 C D技术和计算机图形 软件产生一个完整的并符合加 A
工要 求 的数 控 语 言 , 通 过 数 控语 言 去 控 制加 工 设备 。 然后
C G作为可视化图像表达的基础 , C DD基础上产生 的直接应用于生产 的 而 A A 技术 , 其加工过程仿真 中的 图形 又是 直接应 用 C 的图像表 G 达 。在飞机制造工业 中, 美国波音公司已用有关的 C D C M A /A
的设 计 水 平 和 制 造 精 度 。
关键词 : 算机 图形 学; 算机辅助设计 ; 算机辅助制造 ; 计 计 计 压气机 叶片
中图 分 类 号 :P 9 . T 3 17 文 献标 识码 : A 文章 编 号 : 7 — 6 4 2 1 )2 0 8— 2 1 1 44 (0 10 —0 3 0 6 等一系列过程。 2 1 C 在 压气 机 叶 片设 计 中 的应 用 . G
每个 截面增 加 1 0个节 点 , 总数就 增加 大约 10个左 右 的节 5
点 , 4 0个坐标值 , 合 5 工作量较 大。在常规设 计条件 下 , 使用
1 CG、 A C M 技 术概 述 C D/ A
C G技术是研究通过计算机将数据转换 为图形 , 并在专用 显示设备上显示 的原 理 、 法和技术 的一 门学科 。计算 机图 方 形学包括图形数据结构、 图形算法与计算机语言 , 图形就是对 象的形象化表示 。C D技术采用计算机系统完成资料整理分 A
技 术 开 发 的产 品 往 往 比较 复 杂 , 常 由 一 些 复 杂 曲 面 构 成 , 通 精 度 要 求 也 较 高 的产 品 , 压压 气 机 的 叶 片 设 计 属 于 零 件 反 高 求 , 质 上是 零 件 复 制 。一 般 针 对 外 形 设 计 复 杂 , 需 内 实 无 部 结 构 的 零 件 可 采 用 最 为 简 单 易 行 的 坐标 测 量 机 ( oria C odnt e

航空发动机精锻叶片数字化数控加工技术

航空发动机精锻叶片数字化数控加工技术

航空发动机精锻叶片数字化数控加工技术随着航空业的发展,航空发动机的性能要求也越来越高,发动机的叶片作为航空发动机的核心部件之一,其生产制造技术也在不断的升级完善。

数字化数控加工技术在航空发动机精锻叶片的制造中发挥着重要作用,为了满足高性能、高可靠性和高效率的要求,航空发动机精锻叶片制造技术必须不断创新,数字化数控加工技术的应用为航空发动机的性能提升和制造质量保障提供了有力支持。

航空发动机精锻叶片的特点航空发动机精锻叶片是一种高强度、高温、高压的零件,其制造过程要求十分严格。

航空发动机叶片的组成结构复杂,叶片的形状和曲线也十分复杂,加工难度大,制造工艺要求高,需要具备精密加工能力和高精度的加工设备。

为了满足叶片的高性能和高可靠性要求,叶片的材料通常采用高温合金钢、镍基合金等高强度材料,这些材料不仅具有较高的强度和硬度,而且还具有良好的耐热性和耐腐蚀性,满足航空发动机在高温、高压环境下的工作要求。

叶片的实际工作条件严苛,要求叶片具有较高的动态稳定性和动态强度,因此对叶片的精度和表面质量要求非常高,而数字化数控加工技术正是能够满足这些要求的一种先进技术。

数字化数控加工技术的应用数字化数控加工技术是一种高效、灵活的加工技术,它将数控技术与数字化技术相结合,通过CAD/CAM技术实现产品的数字化设计和加工。

在航空发动机精锻叶片的制造过程中,数字化数控加工技术可以实现叶片的高精度加工和复杂曲线加工,大大提高了叶片的加工效率和加工精度。

数字化数控加工技术的应用,首先需要进行叶片的数字化设计,通过CAD软件对叶片进行三维建模和曲面设计,将叶片的设计数据导入CAM软件,生成数控加工程序。

然后通过数控机床进行零件的加工,在加工过程中,可以实现对叶片的多轴联动加工,能够满足叶片复杂曲线的加工需求,保证了叶片的加工精度和表面质量。

数字化数控加工技术的应用不仅提高了叶片的加工精度和表面质量,还可以实现叶片的批量生产和定制加工,提高了叶片的加工效率,降低了加工成本。

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析【摘要】航空发动机涡轮叶片是航空发动机中至关重要的部件,对发动机的性能和效率起着关键作用。

涡轮叶片精密成形技术是一项关键技术,经历了多年的发展历程,逐步完善并应用于实际生产中。

本文从涡轮叶片的重要性入手,阐述了涡轮叶片精密成形技术的发展历程及关键步骤,探讨了该技术在航空领域的应用,并展望了未来的发展趋势。

通过本文的研究,有助于更深入地了解航空发动机涡轮叶片精密成形技术的重要性和发展现状,为相关领域的研究和应用提供参考和借鉴。

【关键词】航空发动机、涡轮叶片、精密成形技术、研究背景、研究意义、发展历程、关键步骤、应用、发展趋势、未来展望、总结1. 引言1.1 研究背景航空发动机涡轮叶片是航空发动机中的重要部件,直接影响着发动机的性能和效率。

随着航空业的发展和需求的提高,对于发动机的要求也越来越高,涡轮叶片的精密成形技术显得尤为重要。

在过去的几十年里,涡轮叶片的制造技术已经取得了长足的进步,包括材料的优化和加工工艺的改进。

随着飞行速度的提高和环保要求的增加,传统的涡轮叶片制造技术已经难以满足对高性能和高精度的要求。

研究涡轮叶片精密成形技术成为当前航空发动机领域的热点之一。

通过精密成形技术,可以实现涡轮叶片的高精度、高效率的制造,提高发动机的性能和可靠性。

涡轮叶片精密成形技术还可以减少材料浪费和能耗,降低制造成本,符合航空工业的可持续发展要求。

深入研究航空发动机涡轮叶片精密成形技术的背景意义重大,能够为航空领域的技术进步和发展提供重要支持和保障。

1.2 研究意义航空发动机涡轮叶片精密成形技术的研究意义在于提高航空发动机的性能和效率,进一步推动航空工业的发展。

随着航空业的快速发展,对涡轮叶片精密成形技术的要求也越来越高。

研究该技术能够提高航空发动机的性能和可靠性,减少能源消耗和碳排放,从而符合节能减排的国际趋势。

涡轮叶片是航空发动机的关键部件之一,其质量和制造工艺直接影响整个发动机的工作效率和安全性。

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析航空发动机涡轮叶片是发动机中非常关键的部件,其性能直接影响着发动机的工作效率和稳定性。

涡轮叶片的制造工艺和精密成形技术显得尤为重要。

本文将分析航空发动机涡轮叶片的精密成形技术,并介绍其制作工艺及相关的发展动态。

一、涡轮叶片制造工艺1.铸造工艺涡轮叶片的制造原料通常为高温合金,通过铸造工艺进行生产。

铸造工艺主要包括原料准备、模具制作、熔炼浇注、冷却固化等工序。

在具体的生产制造过程中,铸造工艺需要高度的精密度和专业的技术来保证叶片的质量和性能。

2.金属成形工艺金属成形工艺是将金属材料通过加热软化后,利用压力和模具进行成形。

这种工艺在涡轮叶片的制造中应用广泛,可分为锻造和压铸两种方式。

其中锻造工艺适用于生产较大型、较复杂结构的涡轮叶片,而压铸工艺则适用于生产批量较大、形状较为规则的叶片。

3.热等静压工艺热等静压工艺是通过将金属粉末装入模具后,进行高温高压处理,使得粉末颗粒在原子级别上发生结合。

这种工艺可以制作出具有优异超高温性能和抗疲劳性能的涡轮叶片。

二、涡轮叶片精密成形技术分析1.数控机床加工技术数控机床加工技术是目前涡轮叶片精密成形中应用较多的一种技术,其主要是通过电脑控制机床进行切削加工,能够实现高精度、高效率和高质量的加工。

数控机床加工技术在提高涡轮叶片的精密度和表面质量方面起到了重要的作用。

2.激光成形技术激光成形技术是一种利用激光束对金属材料进行熔化和成形的技术,可实现对涡轮叶片的高精度成形和表面处理。

激光成形技术具有无污染、灵活性高、加工效率高等优点,是目前涡轮叶片精密成形技术中的一种新兴技术。

3.电火花加工技术电火花加工技术是利用电脉冲放电的原理,通过在工件表面产生高温高压的等离子体进行加工,可以实现对涡轮叶片的微细加工和表面处理。

电火花加工技术具有高精度、高表面质量和加工难度低的特点,适用于对涡轮叶片的精密加工。

以上介绍的技术只是涡轮叶片精密成形技术中的一部分,随着科技的不断发展,会有更多更先进的技术不断涌现,为涡轮叶片的精密成形提供更多可能。

航空发动机叶片关键技术发展现状分析

航空发动机叶片关键技术发展现状分析

航空发动机叶片关键技术发展现状分析航空发动机叶片是航空发动机的核心部件之一,其性能直接影响着飞机的动力性能和燃油效率。

随着航空工业的快速发展,航空发动机叶片的关键技术也在不断地推陈出新,取得了一系列重要进展。

本文将从材料、制造工艺和设计优化三个方面对航空发动机叶片关键技术的发展现状进行分析。

一、材料技术的发展航空发动机叶片的材料要求具有高温、高强度、抗腐蚀和轻质化等特性。

在过去,镍基合金一直是航空发动机叶片的主要材料,但是随着飞行速度和工作温度的不断提高,传统的镍基合金已经无法满足航空发动机叶片的要求。

为了满足新一代航空发动机叶片对材料性能的需求,近年来,高温合金、陶瓷基复合材料、纳米材料等新材料相继应用到航空发动机叶片中。

高温合金因其具有良好的高温强度和抗氧化性能,成为了航空发动机叶片的主要材料。

陶瓷基复合材料由于其轻质、高温强度和抗腐蚀性等优点,也在航空发动机叶片中得到了广泛的应用。

纳米材料的应用也为航空发动机叶片的材料技术带来了新的突破。

纳米材料具有优异的力学性能和热学性能,能够显著提高航空发动机叶片的综合性能,使航空发动机在高温和高速条件下获得更好的工作表现。

二、制造工艺的发展航空发动机叶片的制造工艺一直是航空制造业的重要研究方向之一。

在过去,航空发动机叶片的制造主要采用锻造、铸造和精密加工等传统工艺,但这些工艺在生产效率、质量控制和成本方面存在一些问题。

为了满足航空发动机叶片对制造工艺的要求,现代制造技术日趋成熟,包括数控加工、激光熔化成形、超声波成形等先进制造技术逐渐应用到航空发动机叶片的制造中。

激光熔化成形技术能够直接将金属粉末熔化成所需形状的叶片,无需模具,制造成本低、效率高,且能够生产出复杂形状的叶片结构,因此备受关注。

超声波成形技术也能够将金属板材通过超声波振动成形成叶片,其制造过程简单、成本低廉,且能够实现一次成形,提高了叶片的制造效率和质量。

三、设计优化的发展航空发动机叶片的设计优化对于提高叶片的性能、降低燃油消耗和延长使用寿命具有重要意义。

基于实例推理的叶片榫头CAD设计技术

基于实例推理的叶片榫头CAD设计技术
E ma :z6 3 y h o c r c . - i lz 0 @ a o . on n l .
第 2期
朱 胜 利 等 : 于 实 例 推 理 的 叶片 榫 头 C 基 AD设 计 技 术
17 2
特 征 匀f 划 象 属 集 A 歧 . 汁 参 数 集 儿 何 参 数 集 法 集 M 造 型 方 、 集 ‘ 力 法 集 般 ‘ 规 则集R 姚 则 名 产 j 殴 汁 式 规 则 表
例 推理 首先要根 据用户 设计要求 , 把实例 特征和设 计要 求进行 相似 匹配 , 从实 例 库 中检 索相 似 实例 ,
基 于设 计 和制造 知识对相 似实例 进行评价 , 而获 从
得相 似度最 大的实 例 ( 最优 解 )再 基于最相似 实例 ,
进行修 改 , 而得 到新 实 例 , 从 即符 合 用户 应用 需 求
基 于实例 推 理 的叶片榫 头 C AD设 计 技术
朱 胜 利 ,刘 红 军 ,范庆 明
(. 1 中航 第 一 飞 机 设计 研 究 院 , 良 70 8 ; 阎 1 09
2 西北工业大学 现代设计与集成制造技术教育部重点实验室 , . 西安 70 7 ) 10 2

ห้องสมุดไป่ตู้
要 : 叶 片榫 头具有 结构复 杂 、 品种 多 、 设计 制造 周 期 长等特 点 , 如何 高效 、 捷 地设 计 出 便
的新产 品. 设计 结束后 , 把新 实例存储 到实例库 中 , 使 实例库 得到 扩充. 着 实例 库 的扩 充 , 计 会更 随 设
快捷 .
* 收 稿 日期 :0 9l—1 20 一20
基金资助: 国家“ 6 ” 8 3 高技术项 目(0 6 20 AA0 Z 5 )航空科学基金( 5 3 8 ) 4 19 ; O H5 O O 作者简介: 朱胜利( 97) 男, 1 7一 , 中航第一飞机设计研究院结构所高级工程师 , 主要研究方 向为飞机结构设计

计算机辅助设计与制造实践案例解析

计算机辅助设计与制造实践案例解析

计算机辅助设计与制造实践案例解析计算机辅助设计与制造(Computer-Aided Design and Manufacturing,简称CAD/CAM)是一种利用计算机软件和硬件技术辅助进行产品设计与制造的方法。

它的出现极大地提高了生产效率和产品质量,广泛应用于各个行业。

本文将通过实践案例来解析CAD/CAM在实际应用中的优势和挑战。

案例一:汽车零部件设计与制造一家汽车零部件制造商面临市场竞争压力,急需提高产品设计和制造的效率。

采用传统的手工绘图和手工加工方式已经无法满足快速发展的市场需求。

为此,他们决定引入CAD/CAM技术来进行产品设计和制造。

首先,设计师利用CAD软件进行汽车零部件的三维建模。

通过CAD软件提供的各种功能,如实体建模、曲线建模和装配等,设计师可以快速创建产品的几何模型。

与传统手工绘图相比,CAD软件可以大大提高设计效率,减少错误和重复工作。

接下来,制造团队利用CAM软件将设计好的三维模型转化为机器指令,控制数控机床进行零部件的加工。

CAM软件可以根据设计要求自动生成加工路径,并快速优化路径以提高加工效率。

相比手工加工,CAM技术可以更好地控制加工质量,减少加工误差,并节省材料。

通过引入CAD/CAM技术,该汽车零部件制造商成功提高了产品设计和制造的效率。

他们能够更快速地响应市场需求,更精确地控制产品质量。

此外,CAD/CAM技术还为他们提供了更多创新的可能性,使他们能够设计出更复杂、更高性能的零部件。

然而,引入CAD/CAM技术也面临一些挑战。

首先,该制造商需要培训设计师和操作者掌握CAD/CAM软件的使用技巧。

这需要投入一定的时间和资源。

其次,CAD/CAM软件需要定期更新,以适应新的设计需求和制造技术。

这对公司而言也意味着额外的成本和人力投入。

案例二:航空发动机叶片制造一家航空发动机制造商采用CAD/CAM技术对发动机叶片进行设计和制造。

航空发动机叶片的设计和制造对产品性能和安全至关重要,因此需要高度精确和可靠的工艺。

航空发动机叶片的生产制造技术

航空发动机叶片的生产制造技术

航空发动机叶片的生产制造技术航空发动机叶片是航空发动机的重要组成部分,它在整个发动机运行过程中承受着极高的温度、压力和振动等力载荷。

因此,航空发动机叶片的生产制造技术对航空发动机的性能、可靠性和寿命都有着重要影响。

在这篇文章中,我们将详细介绍航空发动机叶片的生产制造技术。

1.材料选择与预处理在进行叶片制造之前,需要对材料进行预处理,以去除杂质、提高材料的均匀性和晶粒细化。

预处理方法包括热处理、化学处理和表面处理等。

2.叶片造型与设计叶片的造型与设计是叶片制造的关键环节。

叶片的形状、结构和轮毂之间的连接方式直接影响着叶片的性能和寿命。

通常情况下,叶片的内部结构是由空腔、腔板和护腔等组成的。

这些结构可以提高叶片的强度和刚度,在高速旋转过程中减小振动和压力损失。

叶片的形状通常采用空气动力学原理和结构力学原理进行设计,以提高发动机的效率和推力。

同时,还需要考虑到叶片的制造可行性和工艺性,确保叶片可以顺利制造出来。

3.叶片制造工艺铸造是叶片制造的主要工艺,通常采用真空熔模铸造或单晶铸造等方法。

真空熔模铸造是指将预熔的合金材料注入到陶瓷模具中,然后进行冷却凝固,最后得到具有复杂形状和精密尺寸的叶片。

单晶铸造则是通过在模具中形成单一晶体结构,去除晶界和晶粒边界,提高叶片的高温性能和抗腐蚀性能。

锻造是叶片制造的另一种常见工艺,通过对金属材料进行加热和塑性变形,使其达到所需的形状和尺寸。

复合材料制造是使用纤维增强树脂基体材料制造叶片的工艺。

这种工艺具有良好的抗腐蚀性和高温性能,适用于制造大型和复杂形状的叶片。

机加工是对叶片进行最后加工和整形的工艺。

这包括数控机床加工、电火花加工、冲压和磨削等方法,以保证叶片的几何尺寸和表面质量。

热处理是对叶片进行热处理,以改善材料的组织结构和性能。

常见的热处理方法包括固溶处理、时效处理和表面处理等。

4.质量控制与检测质量控制主要通过严格的制造工艺和生产流程来实现,确保叶片的尺寸和形状的精确性。

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析航空发动机涡轮叶片是发动机的关键部件,直接影响飞机的动力性能和燃油效率。

由于涡轮叶片受到高温、高速气流的作用,要求具有较高的耐热性和耐磨损性。

目前,随着航空工业的发展和技术进步,涡轮叶片的精密成形技术正在不断地得到改进和提高。

涡轮叶片的精密成形技术包括铸造、锻造和精密加工等多种工艺,并且国内外都在不断地进行技术创新和改进。

本文将重点分析涡轮叶片精密成形技术的发展现状和趋势,介绍其工艺流程和关键技术,以及面临的挑战和解决方案。

一、涡轮叶片精密成形技术发展现状涡轮叶片的精密成形技术经历了从传统手工制造到数控自动化生产的发展过程。

在20世纪初期,涡轮叶片的生产主要依靠手工锻造和加工,工艺简单,但精度和稳定性较低。

随着航空工业的发展和需求的增长,涡轮叶片的生产逐渐向自动化、数字化和精密化方向发展。

目前,国内外涡轮叶片的精密成形技术主要包括以下几种:1. 铸造技术:铸造是目前涡轮叶片生产的主流工艺之一。

通过模具和熔化金属的注入,可以实现复杂形状的叶片生产,具有成本低、生产效率高等优点。

但铸造工艺对原材料的要求较高,而且易产生气孔、夹渣等缺陷,影响叶片的性能和寿命。

2. 锻造技术:锻造是一种利用模具和高温高压使金属变形的工艺,可以实现叶片的精密成形。

锻造工艺具有成本低、材料利用率高等优点,但其工艺控制和模具设计较为复杂,难以实现复杂形状的叶片生产。

3. 精密加工技术:精密加工技术包括CNC加工、激光制造、电火花加工等,可以实现叶片的精确成形和表面处理。

这些技术在叶片成形的精度和表面质量上具有优势,但成本较高,适用于对叶片性能要求较高的航空发动机。

以上几种技术各有优劣,但目前主要的趋势是将这些技术进行有机结合,实现叶片生产的自动化、数字化和精密化。

涡轮叶片的精密成形技术涉及到多个关键工艺和技术,如材料选型、模具设计、热处理工艺、表面涂层等。

1. 材料选型:涡轮叶片所采用的材料通常为镍基合金或钛合金,具有高强度、高温性能和耐腐蚀性能。

《2024年航空发动机气冷涡轮叶片的气热耦合数值模拟研究》范文

《2024年航空发动机气冷涡轮叶片的气热耦合数值模拟研究》范文

《航空发动机气冷涡轮叶片的气热耦合数值模拟研究》篇一一、引言航空发动机是现代航空器的“心脏”,其性能直接影响飞行器的运行效率、安全性及使用寿命。

作为航空发动机关键部件之一,气冷涡轮叶片的工作环境极端复杂,涉及到高温、高压、高速度的气流冲击,因此其性能的优化和设计至关重要。

近年来,随着计算流体动力学(CFD)技术的不断发展,气热耦合数值模拟技术为航空发动机气冷涡轮叶片的设计和优化提供了新的方法和手段。

本文旨在研究航空发动机气冷涡轮叶片的气热耦合数值模拟技术,为航空发动机的研发和改进提供理论支持。

二、研究背景及意义随着航空技术的快速发展,航空发动机的性能要求越来越高,特别是在高温、高压、高速度的工作环境下,对气冷涡轮叶片的耐热性能和强度性能提出了更高的要求。

传统的试验方法在研发过程中耗时耗力,成本高昂,而气热耦合数值模拟技术能够在不进行实际试验的情况下,预测气冷涡轮叶片在极端工作环境下的性能表现,为设计优化提供理论支持。

因此,研究航空发动机气冷涡轮叶片的气热耦合数值模拟技术具有重要的理论意义和实际价值。

三、研究内容本研究采用气热耦合数值模拟方法,对航空发动机气冷涡轮叶片的流场、温度场及应力场进行综合分析。

具体研究内容包括:1. 几何建模与网格划分:根据实际气冷涡轮叶片的几何形状,建立精确的三维模型,并进行网格划分。

网格的质量直接影响到数值模拟的精度和计算效率,因此需要采用合适的网格划分方法。

2. 边界条件设定:根据实际工作情况,设定气冷涡轮叶片的进出口边界条件、热物理参数等。

3. 数值模拟方法:采用计算流体动力学(CFD)方法,对气冷涡轮叶片进行流场、温度场及应力场的数值模拟。

在流场分析中,考虑气体的可压缩性、湍流效应等因素;在温度场分析中,考虑气体与叶片之间的热交换过程;在应力场分析中,考虑温度梯度引起的热应力。

4. 气热耦合分析:将流场、温度场及应力场进行气热耦合分析,研究气冷涡轮叶片在高温、高压、高速度气流冲击下的性能表现。

航空发动机叶片用大尺寸复杂结构三维机织复合材料预制体的制备与应用方案(一)

航空发动机叶片用大尺寸复杂结构三维机织复合材料预制体的制备与应用方案(一)

航空发动机叶片用大尺寸复杂结构三维机织复合材料预制体的制备与应用方案一、背景随着航空工业的持续发展,对航空发动机的性能要求日益提高。

作为发动机的关键部件,叶片的品质和性能直接影响到整个发动机的性能。

传统上,航空发动机叶片采用金属材料制造,但随着复合材料的快速发展,其逐渐成为航空发动机叶片的首选材料。

大尺寸复杂结构三维机织复合材料预制体作为其中的一种,因其优异的力学性能和轻量化特性,受到业界的广泛关注。

二、工作原理大尺寸复杂结构三维机织复合材料预制体的制备主要依赖于先进的纺织技术和复合材料成型工艺。

首先,使用特制的织机,将玻璃纤维、碳纤维等高性能纤维按照特定的三维编织结构进行编织。

编织过程中,纤维的取向和分布可以精确控制,以形成满足设计要求的三维结构。

然后,将编织好的三维结构进行热压成型,过程中施加高温高压,使得纤维与树脂充分渗透,形成高强度、高刚度的复合材料。

最后,将得到的复合材料进行进一步的加工和修饰,以满足航空发动机叶片的特定需求。

三、实施计划步骤1.材料准备:选择适当的玻璃纤维、碳纤维以及其他增强纤维,同时选择合适的树脂作为基体。

2.织机准备:根据设计要求,调整织机的参数,确保编织过程中纤维的取向和分布可以精确控制。

3.编织:将纤维按照设计的三维结构进行编织,形成预制体。

4.热压成型:将编织好的预制体进行热压成型,过程中施加高温高压,使得纤维与树脂充分渗透。

5.加工和修饰:将得到的复合材料进行进一步的加工和修饰,以满足航空发动机叶片的特定需求。

6.性能测试:对制备好的航空发动机叶片进行性能测试,包括力学性能、热稳定性、耐腐蚀性等。

四、适用范围此制备方法主要适用于航空发动机叶片的制造,也可应用于其他需要大尺寸复杂结构复合材料的领域,如汽车、船舶等。

五、创新要点1.三维编织技术:通过先进的纺织技术,实现纤维的三维编织,形成满足设计要求的三维结构。

2.热压成型工艺:采用高温高压的工艺条件,使得纤维与树脂充分渗透,提高复合材料的性能。

试论航空发动机叶片检测技术

试论航空发动机叶片检测技术

试论航空发动机叶片检测技术
◎王琦
机械手无损检测技术是一种新型的 检测技术方法,与传统应用的检测技术相 比不会对设备结构造成影响,能够根据设 备的具体情况提前设置好程序,机械手会 按照一定的轨迹进行检查,这种检测技术 不但能够减轻工作人员的压力而且检测 精度比较高。将其应用到航空发动机叶片 检测中也具有良好的应用效果,能够最大 限度的满足叶片的检测要求,而且检测工 作的自动化水平也得到了进一步提升。
技术协作信息
技术探讨与推广
航空发动机叶片作为发动机系统中的重要组成部分,叶片质量和使用情况也会直接影响发动机的运行效果。叶片 在生产和使用期间容易受到多方面因素的影响而产生一定的缺陷,出现裂纹问题,从而影响叶片的应用效果和使用年 限。要想保证航空发动机叶片能够正常工作,则需要通过检测技术及无损检测具有一定的必要性,基于此,本文对航空发动机叶片机械手无损检测技术进行了探究。
机械手搭建系统,试验仪器还包括 SIUI 超 的运动轨迹来确定超声波的入射方式和
声探伤仪、水浸聚焦超声换能器等。该系 具体位置,及时发现其内部存在的故障问
统主要技术指标:超声采集卡采集频率为 题,并利用斜射入法进行叶片的边缘部位
250MHz;机 械 手 运 动 位 置 触 发 间 隔 为 和根部的检测工作。
无损检的重要组成。
陷检测可靠性更高。
超声换能器是检测系统硬件部分的
对于超声检测仿叶片曲面厚度试块方
总要构成之一,主要进行超声波的发射与 法是采用 CAD 模型在每个阶梯厚度上随
接收工作,超声波的频率速度等可以结合 机选择 2 个点,并通过三坐标测量机对所
具体需要进行针对性调整,以此保证检测 选点厚度值进行标定测量;然后采用标准
持叶片和超声换能器固定的方法,按照一 型表面设计仿叶片曲面厚度阶梯试块,厚

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析Key words : hollow turbine;blade;precision forming technologyiprecision casting1空心涡轮叶片精铸技术高性能航空燃气涡轮发动机是精密器件,在飞机当中具有非常重要的作用,是飞机的心脏,也是导致我国航空业发展停滞不前的瓶颈之一。

伴随当前飞机设计指标逐步提升,航空发动机也需要逐步向低油耗、高推重比、大推力的方向发展,让涡轮前进口温度提高是保证推动力的一个重要方式,预计在推重比15 —级的航空发动机当中,涡轮前温度可能在1830〜1930摄氏度之间,因此一定要重视加强涡轮叶片的耐高温能力。

为了将这一问题解决。

当前的涡轮叶片主要使用的是复合气膜冷却单晶空心涡轮叶片,因为该设计材料较为特殊, 而且结构非常复杂。

在制备空心涡轮叶片的过程中,使用的工艺主要为熔模精铸工艺,但是这一工艺,具有成品率低、要求精度差等问题,造成我国在空心涡轮叶片生产方而出现了很多问题。

通常而言当前的空心涡轮叶片精铸成品率只有10%,而90%的废品叶片主要出现的问题是形位尺寸超差,另外一些是结晶缺陷。

为了让空心涡轮叶片的制造成品率提高,有效的解决。

形控”和'性控”两个问题,需要重视控制尺寸的精度,并且在完成精铸之后提高复合材料的性能。

空心涡轮叶片制造难度大,而且工序非常复杂,具体如下,首先需要注意合理的对模具成型工艺进行应用,将空心涡轮叶片精铸所需要的陶瓷型芯设计出来。

该陶瓷型芯是空心结构的重要填充物,接着通过蜡模工艺在型芯外层进行涡轮叶片蜡模的制备,而后进行烧结、浇铸、脱模等一系列工序,将空心涡轮叶片粗坯制备完成。

在完成粗坯的条件下进行后续操作,直到制备完整个空心涡轮叶片。

在传统空心涡轮叶片制备的时候使用的主要为复合材料,这种材料是等轴晶组织。

这种组织在高温条件下很容易受到损坏,而影响整个叶片制备的成品率。

伴随当前材料技术快速发展,叶片所使用的复合材料逐步以单晶为主。

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析1. 引言1.1 研究背景研究背景:航空发动机涡轮叶片精密成形技术是航空制造领域中极为重要的一项技术,涡轮叶片作为发动机中的一个重要部件,其质量和性能直接影响着整个发动机的运行效率和安全性。

随着航空产业的快速发展,对发动机性能和效率的要求越来越高,涡轮叶片的精密成形技术也日益受到重视。

传统的叶片制造技术存在着成本高、周期长、效率低等问题,而涡轮叶片精密成形技术能够有效提高叶片的精度、表面质量和性能,为发动机的性能优化和效率提升提供了重要支撑。

深入研究航空发动机涡轮叶片精密成形技术,探讨其工艺流程、材料选择、成形参数优化和质量控制技术具有重要的理论和实践意义。

【字数:200】1.2 研究目的航空发动机涡轮叶片是发动机中的关键部件,其性能直接影响到发动机的运行效率和安全性。

随着航空业的快速发展,对航空发动机涡轮叶片的要求也越来越高。

研究和应用精密成形技术是提高叶片制造质量和效率的重要途径。

本文旨在分析航空发动机涡轮叶片精密成形技术的现状和发展趋势,探讨成形工艺流程、材料选择与性能要求、成形工艺参数优化以及质量控制技术的关键问题。

通过对相关技术的深入研究和分析,旨在揭示精密成形技术在航空发动机涡轮叶片制造领域的重要性,并为未来的发展提供参考和借鉴。

在探讨研究目的的过程中,希望能够全面了解航空发动机涡轮叶片精密成形技术的关键问题,为提高叶片制造质量、减少生产成本和优化生产效率提供理论指导和技术支持。

通过该研究,为航空发动机涡轮叶片制造技术的进一步发展和提升质量水平提供理论基础和实践经验。

2. 正文2.1 叶片精密成形技术概述叶片精密成形技术是航空发动机制造中关键的工艺之一,它直接影响着发动机的性能和可靠性。

叶片是发动机中的重要部件,起着承受高温、高压气流的作用。

叶片的精密成形技术至关重要。

叶片精密成形技术是指利用精密模具和高精度设备对叶片进行成形加工的技术。

这种技术可以确保叶片的几何形状和表面质量达到设计要求,从而提高发动机的性能和寿命。

航空发动机叶片测量新技术

航空发动机叶片测量新技术

工具展望2019No.1 航空发动机叶片测量新技术 叶片作为发动机的重要部件之一,其在航空发动机制造中所占比重约为30%㊂由于叶片形状复杂㊁尺寸跨度大(长度20-800mm)㊁受力恶劣㊁承载最大,且在高温㊁高压和高转速的工况下运转,使得发动机的性能在很大程度上取决于叶片型面的设计制造水平㊂目前,航空发动机的叶片制造方法主要有电解加工㊁铣削加工㊁精密锻造㊁精密铸造等㊂由于叶片零件壁薄㊁叶身扭曲大㊁型面复杂,容易产生变形,严重影响了叶片的加工精度和表面质量㊂如何严格控制叶片的加工误差,保证良好的型面精度,成为检测工作关注的重点㊂叶片型面是基于叶型按照一定积累叠加规律形成的空间曲面,由于叶片形状复杂特殊㊁尺寸众多㊁公差要求严格,所以叶片型线的参数没有固定的规律,叶片型面的复杂性和多样性使叶片的测量变得较为困难㊂在叶片检测过程中,传统的标准样板测量手段效率低下㊁发展缓慢,严重制约着设计㊁制造和检测的一体化进程㊂由于航空发动机叶片的数量大㊁检测项目多,三坐标检测技术的引入很大程度地改善了叶片制造过程中检测周期长㊁检测结果不准确等问题㊂三坐标检测适用性强㊁适用面广㊁检测快速㊁结果准确,随着我国航空工业的发展,三坐标测量机在叶片生产主机厂家逐渐得到普及㊂但由于叶片型面复杂㊁精度要求高,不同厂家的测量方式㊁测量流程和数据处理方式不同,导致叶片的测量结果不一致,测量工作反复,严重制约着叶型检测效率的提高㊂叶型检测难点具体表现为:(1)测量精度和效率要求高㊂叶片型面的测量精度直接反映制造精度,通常要求测量精度达到10μm,甚至1μm㊂因此对测量环境要求严格苛刻,通常需要专门的测量室㊂叶片是批量生产零件,数量成千上万,应尽可能提高测量速度和效率㊂生产车间和测量室之间的反复运输和等待,使得检测效率低下㊂(2)测量可靠性要求高㊂叶片测量和数据处理结果应反映叶片的实际加工状态,以此保证叶片的制造质量㊂(3)数据处理过程复杂㊂叶片图纸上不但有叶型㊁弦长㊁前缘后缘半径等尺寸误差要求,还有叶片的形状轮廓㊁弯曲㊁扭转㊁偏移等形位误差要求㊂利用三坐标测量机获取的测量数据存在噪点,通常需要对原始的测量点集进一步简化,提取不同的尺寸和特征参数;还需进行复杂的配准运算,迭代求解叶片的形位误差㊂其中算法选用不同得到的误差评定结果各有差异,导致整个处理过程复杂㊂叶片测量新技术:(1)基于数字样板叶型检测方法标准样板是根据叶片的理论型线设计制造的与叶型截面对应的母模量具,使用叶片固定座(即型面测具)把叶片固定后,用处于理想位置的叶盆标准样板和叶背标准样板检查叶盆㊁叶背型面间隙,并反复调整叶片空间位置,以型线的吻合度作为衡量其是否合格的依据㊂叶型设计图多以透光度或相对误差来表示,如±0.15mm㊂这个比对误差实际上并不是单纯的形状误差,而是形状误差㊁尺寸误差㊁位置误差三者的综合体㊂针对标准样板法的特点和存在的缺点,西北工业大学研究了基于数字样板的检测方法㊂数字样板检测方法是基于标准样板法的原理,利用数字化测量手段获61工具展望2019No.1 取测量数据,然后利用虚拟的数字样板,与实测的数据进行匹配,在公差约束条件下达到最佳匹配㊂最后在该最佳姿态下,求解叶型各项形位误差㊂数字样板检测方法可归纳为三个主要过程:实物样板数字化㊁匹配过程模型化㊁误差评定过程自动化㊂实物样板数字化是将传统的实物样板转换为CAD模型,以数字模型的方式进行样板比对和误差评定㊂由叶片设计模型构造的三维CAD模型,它包括了加工叶片完整的截面几何信息㊁基准信息,是数字样板法误差评定的模型基础,可以进行表面轮廓度分析㊁叶型特征参数和形位误差的分析和评定㊂对于数字样板法的原始测量点集,主要通过CMM测量获得㊂在数字样板构造的基础上,通过匹配过程的模型化对测量数据和数字样板自动进行调整㊂针对数字样板法中的原始测量数据,通常需要进行数据预处理,获取真实有效的型面测量数据参与数字样板检测㊂其中,数据预处理包括测量点去噪㊁测头半径补偿㊁坐标变换㊁测量点与曲面的配准㊁测量点排序等㊂其中,数据处理的第一步,就是对得到的型面测量点进行去噪,筛选有效的测量数据㊂其次,CMM测量得到的数据是测头球心数据,必须进行测头半径补偿㊂对于叶片测量时的装夹引起的系统误差,在样板匹配前必须进行坐标系对齐来消除㊂基于数字样板的叶片检测模块功能结构(2)叶片高速连续扫描技术为提高整体叶盘叶片的检测效率,雷尼绍公司近年来开发了SPRINT高速扫描系统㊂与传统的机内测量技术相比,SPRINT叶片测量系统可以显著缩短测量循环时间,对叶片前边缘也能提供精确出色的测量结果,可以为叶片自适应加工㊁工序间检测等提供很好的检测数据㊂叶片测量分析软件可通过数控机床控制器上的Productivity+CNC plug-in直接运行,因此测量数据可通过宏变量自动提供给数控机床,也可以自动提供给连接的计算机进行下游数据处理㊂SPRINT系统配备的OSP60SPRINT测头每秒可采集1000个3D数据点,从而满足叶片在机快速检测的要求㊂利用SPRINT系统进行测量时,在CNC机床上分别从四个方向对叶片进行测量,从而避免在测量过程中发生测头与工件之间的碰撞干涉㊂在测量之后,四部分的测量数据将被拼合成一个完整的叶片测量数据集㊂SPRINT系统可以用于加工过程中工序间的检测,以确保产品的加工过程正确㊂同时,还可以作为加工完成后的质量检测使用㊂加工过程中以及加工后的型面误差检测是确保叶片加工质量符合公差要求的必要手段㊂随着测量技术的不断发展,逐渐出现快速㊁简易㊁高效的叶片测量与数据处理技术㊂同时,随着智能加工技术的发展,在机快速检测技术将推动叶片加工质量与成品率的提升㊂在这一发展过程中,需要重视和建立叶片在机测量和加工质量的评估标准,从而为这类技术的推广使用奠定基础㊂71。

航空发动机中叶片的一般工艺流程

航空发动机中叶片的一般工艺流程

航空发动机中叶片的一般工艺流程航空发动机的叶片是发动机中的重要部件,它直接影响着飞机的性能和安全。

因此,叶片的制造工艺非常重要,需要经过严格的流程来保证叶片的质量和性能。

下面就来详细介绍航空发动机中叶片的一般工艺流程。

第一步,设计与建模叶片的制造首先需要经过设计与建模的阶段。

在这一阶段,工程师们会根据发动机的设计参数和性能要求,利用CAD软件进行叶片的三维模型设计。

在设计完成后,还需要进行有限元分析,确保叶片在飞行时能够承受各种外部力和温度变化。

这个阶段的工作需要高度的技术水平和经验积累,以确保叶片的设计能够满足各种工作条件下的要求。

第二步,材料选取与准备叶片的制造材料通常使用高温合金,这种材料具有良好的耐高温性能和高强度,非常适合用于发动机叶片的制造。

在这一阶段,制造厂家需要根据设计要求和材料特性选择合适的高温合金材料,并进行原材料的采购和准备工作。

由于高温合金材料的成本较高,制造厂家需要确保原材料的质量和规格符合要求。

第三步,精密铸造叶片的制造通常采用精密铸造的工艺。

在这一阶段,制造厂家将选取好的高温合金材料进行加热熔融,然后通过精密铸造工艺将熔融金属注入到预先制作好的叶片模具中。

精密铸造能够保证叶片的内部结构和外部形状的精度,确保叶片在空气动力学性能和稳定性上具有较好的表现。

第四步,热处理与表面处理在精密铸造完成后,叶片还需要经过热处理和表面处理的工艺。

热处理能够调整叶片的微观组织和提高其强度和硬度,以确保在高温和高速飞行状态下仍能保持稳定的性能。

同时,叶片的表面还需要进行特殊的涂层处理,以提高其抗氧化和抗腐蚀能力,延长叶片的使用寿命。

第五步,精密加工与组装在经过热处理和表面处理后,叶片还需要进行精密加工工艺。

这一阶段主要包括CNC加工、抛光和平衡等工序,以确保叶片的精度和平衡性。

同时,叶片还需要与其他部件进行组装,形成完整的叶片装配组件。

第六步,质量检测与试验叶片的制造流程完成后,还需要经过严格的质量检测与试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 PW公司
早在1965年即着手研究将CAD/CAM技术应用于航空燃气涡轮发动机的设计/制造中。1968年开发涡轮叶型设计系统TADSYS,使工程分析时间缩短了5/6,提高了设计质量,增强了工程师的判断能力。1974年进一步发展为包括气动设计在内的交互式涡轮设计系统。陆续开发出压气机设计系统CAMD,发动机结构处理系统STAEBC,后来又启动了以用户满意度为核心的Q+(Qulity Plus)工程,并开始采用团队(Team)的形式来管理发动机全生命周期内的一切经济技术活动,目前已经发展成为以并行工程为核心的集成产品开发(Integrated Product Development,IPD),即运用并行工程思想,以信息集成为基础,把设计制造、用户支持等产品开发的各个环节集成到一个团队中,通过不同专业间持续不断的交流来减少重复设计,提高设计质量。
2.2 RR公司
20世纪60年代中期,开始在叶片的设计中应用CAD技术,完成了气动分析、应力分析、振动分析和造型设计,并将几何模型存储在数据库中用于加工检验。80年代中期,建成了关键零件的设计计算系统,将CAD技术扩展到了详细设计部门和制造部门,以CADDS为CAD三维建模软件,开发了RADIAL数据库作为CAD/CAM和技术系统的中心几何图档系统。80年代末期,实施发动机的并行工程,基于产品定义、设计过程定义和产品信息支持,建立了协同的计算机工作环境,具体进行了3-D离心压缩机叶轮优化。
航空发动叶片CAD技术综述
pressure and high load conditions, but also with high efficiency, small size and low weight characteristics.
This paper introduces the major aero-engine blades CAD technology.
的产品,既要工作在高温、高压和高负荷的条件下,又要具有高效率、小体积和低重量的特点。因此,航空发动机叶片设计问题受到行业内的重点关注。
2.国外航空发动机CAD技术简介
2.1 GE公司
20世纪60年代后期开始了CAD技术在航空发动机研发中的应用,1980年建立了飞机发动机部门的CIMS,使生产率提高、成本降低。1985年,在发动机设计优化技术基础上,着手开发了一个用于设计优化、自动化集成优化的软件平台Engineous,将Engineous与自主研发的涡轮设计软件和非设计状态分析系统TDOD、压气机设计软件CUS等集成,在压气机和涡轮的国内已开始有关这方面的研究开发工作,但没形成系列化产品。2000年海尔集团与哈尔滨工业大学,共同组建机器人技术有限公司。2002年哈尔滨工业大学机器人研究所成功研制出智能吸尘机器人。浙江大学早在1996年之前就开始了智能吸尘机器人的研究,在路径规划算法、多传感器信息融合等技术领域取得了一定的成果。其他一些国内知名大学和自动化研究所等科研单位也陆续涉足吸尘机器人领域并先后制造出了自己的试验样机。
3.2 我国的APTD计划
在吸取美国IHPTET计划的成功经验的基础上,我国推出了APTD(Advanced Propulsion Technologies Demonstration,航空推进技术验证)计划。APTD是国家为发展先进航空发动机而推动的一项综合的系统性工程,是一项不针对具体型号的发动机技术推进计划。希望通过APTD计划能形成一套完整的以现代信息化手段作为平台的体系标准,然后在整个航空发动机设计发展过程中不断地运用。在APTD计划中,将航空发动机看作整个飞机的子系统,即将其作为飞机的部件来综合考虑,进行发动机先进航空推进技术的研究。
3.航空发动机叶片CAD技术发展及问题分析
我国的航空发动机研制能力亟需提高。当前,我国航空发动机在研制水平上与国外发达国家尚有明显差距。西方国家的公司3年就可以研制出发动机,即从确定一个型号立项到发动机整机出来,而国内搞的两型发动机都是用时18年,花了西方国家6倍的时间,差距巨大。美国在涡轮发动机的CAD技术研究方面走在了世界前列。
3.3 航发叶片CAD技术问题分析
我国航空发动机叶片的设计,在产品结构建模方面经历了从二维手工制图到二维计算机制图,再到三维实体建模的转变;在性能分析和验证上经历了从物理样机验证分析到与计算机辅助工程相结合的数字样机的转变。航空发动机叶片的设计,是航空发动机的虚拟样机的关键部分之一,是典型的多环节、多学科、多部门协作的功能和结构都比较复杂的产品。以涡轮叶片为例,其结构的方案设计流程如图1所示。
Key Words:Aero-engine, Blades, CAD
1.引言
航空发动机是飞机的“心脏”。航空发动机研制技术复杂,投资巨大,周期长。各国航空发动机行业在突破航空发动机设计技术、材料科学技术和制造技术的同时,广泛采用CAD技术,大力推进产品的信息化。航空发动机叶片是航空燃气涡轮发动机中的关键零件,其中的高压涡轮叶片更是被誉为“现代制造业皇冠上的明珠”,不仅因为其单个产品上万美元的价值,更因其集中体现了各项性能设计要求之间的矛盾。航空发动机叶片属于功能和结构都比较复杂
3.1 美国的IHPTET计划
1988年美国制定并实施了IHPTET(The Integrated HighPerformance Turbine EngineTechnology,综合高性能涡轮发动机技术)计划,其中一个很重要的任务就是开展推进系统数值仿真计划(Numerical Propulsion System Simulation, NPSS),该计划的主要目标是通过高度可靠的多学科综合计算机仿真达到高度的系统分析能力,以提高发动机设计质量,降低研制成本。该计划在1997年实现了发动机的一维仿真,1999年实现发动机的二维仿真,计划在2010年实现三维动态多学科仿真,并最终实现飞机/发动机综合仿真。据称,这一计划一旦实现,美国航空发动机的设计水平将实现一个新的飞跃,预计可使发动机的研制成本再降低40%。
相关文档
最新文档