前沿材料科学结课论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对前沿材料世界的认识及思考

摘要:上一个世纪,人类的认识向外延伸到了外层宇宙,向内深入到了物质结构的更微观层次,引发了物理学一场大革命。这场革命推动了包括化学、生命科学在内的整个自然科学和应用技术的伟大变革,为材料科学和技术进步提供了新的知识基础和活力。材料科学的根本任务是揭示材料组分、结构与性质的内在关系,设计、合成并制备出具有优良使用性能的材料。进入21世纪,回顾一下材料学的主要进展,估计未来的可能发展趋势,是非常必要和很有意义的。

关键词:材料科学现状发展趋势传统材料新材料挑战

一、传统材料的发展现状和地位

传统材料是生产工艺已经成熟而又大规模工业化生产的一类材料,如钢铁、铜、铝、橡胶、塑料、玻璃和水泥等金属、高分子和非金属无机化合物,这类材料量大面广,占材料生产总量的90%以上。在世界范围内,上个世纪末20~30年间传统材料的产量、生产技术水平和质量,超过以前数百年,成为人类经济生活的支柱。但能耗大,资源浪费严重,环境污染等问题已成为制约传统材料发展的瓶颈,因此改进传统材料的合成、加工技术,控制微观组织结构,提高使用性能,降低成本和环境污染的任务十分迫切、繁重。

二、新材料及其发展趋势

新材料又称先进材料。它不以生产规模,而以优异性能、高质量、高稳定性取胜的高知识、高技术密集形为特点。新材料有结构材料和功能材料之分,前者主要利用它的力学性能,而后者以其各种物理、化学效应为主。当前新材料的发展方向有高性能化、高功能化、高智能化和复合化、极限化、仿生化、环境友好化几方面。

1.金属材料:金属材料,特别是钢、铜、铝等,仍是21世纪的主要结构材料和电能传输材料。金属材料已有成熟的生产工艺,相当多的配套设施和工业规模生产,价格低廉、性能可靠,已成为涉及面广、市场需求大的基础材料。金属材料虽然今后会部分被高分子材料、陶瓷材料及复合材料所代替,由于它有比高分子材料高得多的弹性模量,比陶瓷高得多的韧性和良好的导电性能,在相当长的时期内改变不了它在材料中的主导地位,即使在高技术产业中也不例外。随着航天航空和其它尖端技术的飞跃的发展,在改善和提升传统材料品质的同时,金属功能材料、非平衡态金属,特别是高比强、高模量、耐高温、抗氧化,抗腐蚀、耐磨损合金和金属基复合材料会有快速的发展,如金属超导材料、钛及其合金、铝基增强复合材料,金属间化合物、形状记忆合金和纳米晶块体材料等。

2.先进陶瓷材料:陶瓷是人类最早使用的人造材料,质地坚硬、耐磨损、抗腐蚀、膨胀系数低,可经受1400—1600℃的高温,比金属间化合物有更高的比强度和比刚度,是很好的高温结构材料;部分陶瓷还具有压电、铁电,半导体、湿敏和气敏等特殊功能,广泛用于电子、计算机、激光、核反应、宇航等现代尖端科学技术领域。近20年来,通过多种增韧手段和原始粉末超细化、纳米化技术,在消除陶瓷本征脆性的研究方面取得了重大突破;传统的落后制备成型工艺已逐渐被先进的注射成型技术、高温热等静压和微波烧结等技术所替代;在反应动力学、表面特征、相平衡、烧结机理等基础研究方面也取得了相当的进展。主要趋势是根据使用性能要求对陶瓷结构作一定程度的剪裁和设计,实现陶瓷结构纳米化和组分的复相结构,包括纤维或晶须增韧和有机、无机复合等。

3.高分子材料:高分子材料是指分子量从几百到几万,由可加聚或缩聚链条状官能团构成的有机化合物。上世纪90年代,世界的高分子材料年产量超过1亿吨,其中塑料8000一9000万吨,合成橡胶700—800万吨,合成纤维1000万吨;仅塑料的产量以体积计算就相当于5.6亿吨钢的体积,是发展最为迅速的材料之一。这些材料品种繁多,并且正以每年10%的速率递增。高分子材料80%以上作为包装、建筑、交通运输和纺织行业的结构材料和原料。功能高分子材料所占比例相对较低,主要有离子交换树脂、催化剂、固化酶,用于印刷、电子工业、集成电路、微细加工的感光树脂,用于薄膜电磁、静电复印及全息记录的电功能

离子材料和生物功能材料等。高分子合成理论与技术对于高分子材料的制取、改性、设计越来越重要,对发展高分子新材料有着不可忽视的开拓作用。接枝共聚、共混、缩合聚合、开环聚合和缩合,是合成高分子材料的主要手段。发展先进的树脂基、有机、无机和异质材料连接技术,研究高分子材料的老化、降鳃机制和控制技术,制备综合性能更好的新材料,是高分子材料发展的主要趋势。

4.光电信息功能材料:信息材料是指与信息获取、传输、存储、显示及处理有关的材料。目前光和电是信息的主要传递媒介,又称光电信息材料。这类材料有半导体材料,各种记录材料,信息传输、显示、激光、非线性光学、传感和压电、铁电材料,几乎包括了现代所有的先进功能材料。其中集成电路是信息技术的基础,从材料角度看,集成电路的主要材料仍然是单晶硅。上一世纪80年代出现的光导通讯系统的相对信息容量比同轴电缆、微波系统和卫星通讯都有数量级的提高,不但节省材料,而且保密性强、抗干扰、损耗小,主要材料是高纯石英;目前正在研究损耗仅为0.001~0.01分贝/公里的多组分玻璃信息功能材料,高品质传感器与敏感材料,激光材料、显示材料,它们均系一批金属氧化物陶瓷。信息技术是20世纪发展最为迅速的高技术领域,它打破了地域和种族的界限,使人类能够快速地分享共同的知识财富,极大地促进了社会迸步。

5.能源材料:能源是人类赖以生存和发展的重要条件。20世纪以来科学与工业的发展使能源消耗量大幅度上升,全球年耗量超过10¹²瓦。能源种类繁多,属于一次能源有核能、太阳能、地热能、风能及海洋能等。就大规模应用而言,一次能源利用还需要克服许多科学和技术难关,其中材料就是一个带共性的关键问题。太阳能是一种取之不尽最为洁净的天然能源,每年到达地球的太阳能达60亿亿度,比全球年耗能的总量还大一万倍。原理上所有的光电转换材料均可作为太阳能材料,但考虑到效率、价格比和使用寿命,GaAs之类的材料近期内发展前途不大,多晶硅效率虽低,但廉价、性能稳定,仍有发展前途。除了光、电转换之外,目前人们还在寻找其它太阳能转换机制。氢燃料电池的核心是储氢材料。这类材料包括钛、镍为基的含铁、铜、锰材料。这些过渡族金属、合金、金属间化合物,由于特殊的晶体结构,氢原子比较容易透入金属晶格的四面体或八面体间隙位中形成金属氢化物,储氢体积可比其体积大1000~1300倍。此外,正在开发中的核聚变能和磁流体发电机,可望在2l世纪投入实际应用。它们需要能在更高的温度、磁场和耐蚀条件下长期工作。

6.生物医学材料:生物医学材料是一类合成物质,或天然物质与合成物的组合体。它能作为一个系统的整体或部分,在一定时限内,治疗、增进或替代机体的组织、器官或功能的材料。生物医学材料的发展趋势是利用生物学原理,设计、制造真正仿生物的材料,并且注重可降解吸收、最终形成与生物体完全相容的材料;在加工技术方面发展在微米或纳米级尺寸上进行三维组织结构控制、设计与制造仿生材料。

7.纳米材料:纳米材料是由数百或几千个原子组成的超细微粒或由这些微粒组成的纳米晶块体材料的总称。纳米微粒是保留材料特性的最小单元,它既不同于常规材料,也不同于单个的原子和分子,具有许多与相同组分一般材料完全不同的奇异特性,研究表明,上述奇异特性与纳米材料特殊的内部电子结构和原子排序密切相关。这些特殊的物理效应和功能,为新材料的发展开辟了一条崭新的研究领域。很有可能使21世纪的信息产业发生革命性的在飞跃,极大地改变人类的生存质量。

8.超导材料:超导材料是20世纪人类最伟大的发现之一。超导体具有零电阻和完全抗磁性的特点,对电流传输无能量损耗,是一种理想的导体材料。超导材料有低温超导和高温超导材料之分。低温超导材料要在液氦温度(4.2K)才能显示超导性,目前已发现有近70种单质元素和5千多种合金、化合物具有超导性,其中NbTi合金和Nb3Sn化合物的超导性能最好,已经用于大型工程项目。高温超导材料是1986年才发现的一种新型超导体,在液氮温度(77K)就显现超导特性。液氮比液氦资源丰富,容易制取,因此高温超导材料比低温超导

相关文档
最新文档