幂函数图像与性质

合集下载

幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。

幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。

幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。

幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。

②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。

2.3.1幂函数的图像和性质

2.3.1幂函数的图像和性质
高中数学必修 ①人教版A
§2.3幂函数
问题引入
我们先看几个具体问题:
(1) 如果回收旧报纸每公斤1元,某班每年卖旧报 yx 纸x公斤,所得价钱y是关于x的函数 (2) 如果正方形的边长为x,面积y,这里y是关于 2 x的函数; yx (3) 如果正方体的边长为x, 正方体的体积为y, 3 这里y是关于x函数; yx (4)如果一个正方形场地的面积为x, 这个正方形的 1 边长为y,这里y是关于x的函数; y x2 (5)如果某人x秒内骑车行驶了1km,他骑车的平 1 均速度是y,这里y是关于x的函数. yx 1:以上各题目的函数关系分别是什么?
2、思想与方法
作业:
79页1 82页10
成功始于方法 巩固才能提高
y=x
定义域 值域 R R
y = x2
R [0,+∞) 偶函数
y=
R
x3
y x
[0,+∞) [0,+∞)
1 2
R
yx 0 U (0,+) , 0 U (0,+) ,
奇函数
1
奇偶性 奇函数
奇函数
非奇非偶 函数
在(-∞,0] 在( -∞,0), 在R上 上是减函数 在R上 在(0,+∞) (0, +∞)上是 是增函 单调性 ,在(0, +∞ 是增函 上是增函数 减函数 数 )上是增函 数 数 公共点
在{x x 0}上是奇函数 奇偶性:
单调性: 在(0,)上是减函数
在(,0)上是减函数
如何画y x 和y x 的图像呢?
3
1 2
x y=x3 y=x1/2
… … …
-2 -8 /
-1 -1 /

幂函数图像与性质

幂函数图像与性质

证明: 任取x1, x2 [0,),且x1 x2 ,则
f (x1) f (x2)
x1
x2
(
x1
x2 )(
x1
x2 )
x1 x2
x1 x2 x1 x2
因为0 x1 x2 ,所以x1 x2 0, x1 x2 0,
所以f ( x1 ) f ( x2 ) 即幂函数f ( x) x在[0,)上的增函数.
(4)
1
y x2
(5)
y x1 (6) y x2
函数 y x的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
函数 y x2 的图像
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数 在(,0]上是减函数
6 α <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、α为奇数时,幂函数为奇函
数,
-3
α为偶数时,幂函数为偶函
数.
-4
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8
(2)0.20.3-2与 0.30.3-2
(3) 2.5 5 与2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,∞)内是增函数
∵0.2<0.3∴ 0.20.3 <0.30.3
(3)y=x-2/5在(0,∞)内是减函数
∵2.5<2.7∴ 2.5-2/5>2.7-2/5

2.3 幂函数图像与性质

2.3 幂函数图像与性质
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6

2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2

幂函数图像及性质总结

幂函数图像及性质总结

幂函数图像及性质总结幂函数是高中数学中的一个重要概念,它是指形式为f(x)=ax^k的函数,其中a 为非零实数,k为实数。

幂函数在数学中具有广泛的应用,在图像的研究中,掌握幂函数的图像及其性质是非常重要的。

首先,我们来看幂函数的图像特点。

当k为正数时,幂函数的图像呈现出“增长”或“递减”的趋势。

当k>1时,曲线会明显上升,形成类似于指数函数的图像特征。

而当0<k<1时,曲线则会下降,但下降的速率逐渐减慢。

特别地,当k=1时,幂函数成为一次函数,即f(x)=ax,其图像为一条直线。

此外,当k为负数时,幂函数的图像则出现在第二、第四象限,并且具有对称轴。

接下来,我们来讨论幂函数的性质。

首先,我们来看函数的定义域和值域。

由于幂函数的底数a不能为零,函数的定义域为除以0的集合,即R-{0}。

而幂函数的值域则依赖于指数k的正负情况。

当k为正数时,函数的值域为正实数集(0,+∞)。

当k为负数时,函数的值域为(0, +∞)的实数集。

由于底数a的正负情况也会影响函数的关系,故在具体分析时需要考虑a的取值范围。

其次,我们来讨论幂函数的奇偶性。

当指数k为偶数时,幂函数f(x)=ax^k是一个偶函数,即满足f(x)=f(-x)。

这是因为对于任意x∈R,有(-x)^k=x^k,从而f(x)=ax^k=f(-x)。

相应地,当指数k为奇数时,幂函数f(x)=ax^k是一个奇函数,即满足f(x)=-f(-x)。

这是因为对于任意x∈R,有(-x)^k=-x^k,从而f(x)=ax^k=-ax^k=-f(-x)。

进一步地,我们来讨论幂函数的增减性和极值点。

当指数k为正数时,幂函数在定义域上是递增的。

当a>1时,函数的增长速度更快;当0<a<1时,函数的增长速度更慢。

而当指数k为负数时,幂函数在定义域上是递减的。

在图像上,幂函数具有一个最小值或最大值,该点称为极值点。

当k为偶数时,函数的极值点出现在定义域的最小值点,当k为奇数时,函数的极值点出现在定义域的最大值点。

4.1(2)幂函数的图像与性质

4.1(2)幂函数的图像与性质

归纳幂函数 y
x

的性质。
① 所有幂函数图象在 (0,) 都有定义,且都经过点 (1,1); ② 当 0 时,幂函数图象都过(0,0),并 且在是增函数;
0,

x ( 0 , 1 ), y x 1 特别,当 时, 的图象都在
y x 图象的下方,图象向下凸,
越大,下凸程度越大.
yx

当 0 1 时, x (0,1), y x 的图象都在 象的上方,图象向上凸, 越小,上凸程度越大;
③ 当 0 时,幂函数的图象在 (0,) 上是减函数.
④图像分布的象限: 为什么幂函数幂函数图像一定不在第四象限?
如果函数
f ( x) (m m 1) x
2
m 2 2 m 3
是幂函
数,且在区间( 0 , +∞ )内是减函数,求满足 条件的实数m的值。
4.1幂函数的图像与性质(2)
例1 、 1 1 x 1 , h( x) (1)研究函数 f ( x) , g ( x) x x2 x2 之间的关系; (2)在同一坐标中作上述函数的图像;
的图像

例2、作函数
1 y | x | 1
的大致图像.
x 变式:作函数 y | x | 1 的大致图像.
例2、作出下列函数的大致图像.
1y x
2 y
2
2x
x 2x
2
说明: 本系列课件,经多次使用,修改,其中有部分 来自网络,它山之石可以攻玉,希望谅解。 为了一个课件,我们仔细研磨; 为了一个习题,我们精挑细选; 为了一点进步,我们竭尽全力; 没有更好,只有更好! 制作水平有限,错误难免,请多指教: 28275061@

幂函数的图像和性质 纪福双【打印】

幂函数的图像和性质    纪福双【打印】
幂函数的图像和性质
(1)幂函数的定义: (2)幂函数的图象

纪福双
一般地,函数 y x 叫做幂函数,其中 x 为自变量, 是常数.
(3)幂函数的性质: ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图 象关于 y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第 一象限. ②过定点:所有的幂函数在 (0, ) 都有定义,并且图象都通过点 (1,1) . ③单调性:如果 0 ,则幂函数的图象过原点,并且在 [0, ) 上为增函数.如果 0 ,则幂函数的图象在 (0, ) 上为减函数,在第一象限内,图象无限接近 x 轴与 y 轴. ④奇偶性:当 为奇数时,幂函数为奇函数,
大行不倦呕心沥血传道授业解惑!大思行广打通大脑思维的任督二脉,大行无疆捍卫中国文化最后良心!第 1 页
q p q p
q p

⑤图象特征: 幂函数 y x , x (0, ) ,当 ,若 x 1 ,其图象在直线 y x 上方,当 1时,若 0 x 1 ,其

图象在直线 y x 上方,若 x 1 ,其图象在直线 y x 下方.
q (其 p 中 p, q 互质, p 和 q Z ) ,若 p 为奇数 q 为奇
当 为偶数时, 幂函数为偶函数. 当 数时,则 y x 是奇函数【简称:奇,奇,奇】 , 图像位于一三象限,关于原点对称。若 p 为奇 数 q 为偶数时, 则 y x 是偶函数, 【简称: 偶, 奇,偶】 ,图像位于一二象限,关于关于 y 轴对 称。 ; 若 p 为偶数 q 为奇数时, 则 y x 是非奇 非偶函数【简称:奇,偶,非】 ,图像只在第一 象限.

幂函数知识点

幂函数知识点

幂函数知识点1. 幂函数定义幂函数是形如 \(y = x^n\) 的函数,其中 \(n\) 是实数。

当 \(n\) 为正整数时,幂函数的图像是一系列经过原点的点,且随着 \(n\) 的增加,曲线逐渐趋于平坦。

2. 幂函数的图像特征- 当 \(n > 1\) 时,幂函数在 \(x > 0\) 区域内单调递增。

- 当 \(0 < n < 1\) 时,幂函数在 \(x > 0\) 区域内单调递减。

- 当 \(n\) 为负整数时,幂函数在 \(x > 0\) 区域内表现为周期函数,周期为 \(4\pi\)。

- 当 \(n = 0\) 时,函数退化为常数函数 \(y = 1\)。

3. 幂函数的性质- 奇次幂函数是奇函数,即 \(y(-x) = -y(x)\)。

- 偶次幂函数是偶函数,即 \(y(-x) = y(x)\)。

- 幂函数的导数是 \(y' = n \cdot x^{n-1}\)。

- 幂函数的积分是 \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\),其中 \(C\) 是积分常数。

4. 幂函数的应用- 在物理学中,幂函数常用于描述物体的速度与加速度的关系。

- 在经济学中,幂函数可以用来模拟市场需求与价格的关系。

- 在工程学中,幂函数用于描述材料的强度与应力的关系。

5. 特殊幂函数- 指数函数 \(y = a^x\) 是幂函数的一种特殊形式,其中 \(a\) 是正实数且 \(a \neq 1\)。

- 对数函数 \(y = \log_a x\) 也是幂函数的一种特殊形式,其中\(a\) 是正实数且 \(a \neq 1\)。

6. 幂函数的运算法则- 幂的乘法:\(x^m \cdot x^n = x^{m+n}\)- 幂的除法:\(x^m / x^n = x^{m-n}\)- 幂的幂:\((x^m)^n = x^{m \cdot n}\)7. 幂函数的极限- 当 \(x \to 0\) 时,\(x^n\) 的极限取决于 \(n\) 的值。

高中数学一轮复习课件幂函数的图像和性质

高中数学一轮复习课件幂函数的图像和性质

总结归纳
及时总结归纳学习过程中 的重点和难点,形成自己 的学习笔记和心得体会, 便于回顾和复习。
保持良好作息和心态,积极备战高考
合理安排时间
保证充足的睡眠和合理的饮食, 保持良好的身体状态和精神状态

调整心态
保持积极乐观的心态,相信自己 能够通过努力取得好成绩。遇到 困难时,及时调整情绪,寻求帮
助和支持。
高中数学一轮复习课件 幂函数的图像和性质
汇报人:XXX 2024-01-22
目录
• 幂函数基本概念与性质 • 幂函数图像特征与绘制方法 • 幂函数在解决实际问题中应用 • 幂函数与其他类型函数关系研究 • 高考真题回顾与解题技巧总结 • 复习策略与备考建议
幂函数基本概念与
01
性质
幂函数定义及表达式
加强练习和反思总结是提高解题能力的关键。通过大量的练习可以加深对知识点的 理解和记忆;通过反思总结可以发现自己的不足之处并加以改进。
复习策略与备考建
06

制定个性化复习计划,明确目标
分析自身情况
根据自己的数学基础、学习能力 和时间安排,制定适合自己的复
习计划。
明确复习目标
确定自己在幂函数的图像和性质方 面的学习目标,例如掌握基本概念 、理解图像特征、熟练运用性质等 。
03
幂函数与一次、二次函数的比较
虽然幂函数、一次函数和二次函数在形式上有所不同,但它们之间有着
密切的联系。在解决某些问题时,可以通过转化思想将它们相互转化,
从而简化问题的求解过程。
幂函数与指数、对数函数关系探讨
幂函数与指数函数
指数函数的底数a可以看作是幂函数的指数n,而指数函数的指数x则可以看作是幂函数的 自变量。因此,指数函数和幂函数在形式上具有一定的相似性。

幂函数的图像与性质

幂函数的图像与性质

提高训练
例3.若m 4

1 2
3 2m , 则求 m的取值范围 .

1 2
解: 幂函数f ( x) x 的定义域是(0,) 且在定义域上是减函数 , 0 3 2m m 4 1 3 m ,即为m的取值范围 . 3 2

1 2
重点三、幂函数性质应用:
a<0
a=0
a>1
(2)y=x0.3在(0,∞)内是增函数 ∵0.2<0.3∴ 0.20.3 <0.30.3 (3)y=x-2/5在(0,∞)内是减函数 ∵2.5<2.7∴ 2.5-2/5>2.7-2/5
a=1
0<a<1
a=0
2.3 幂函数(2)(77-78页)
y x ( R)

例4 用不等号填空:
> (1)5.1-2 ____ 5.9-2; > 1.73.5 ____ 1.73; ( 2) > 0。 (3)若3a>2a,则a ____ > (4)1.30.5 ____ 0.51.3;
0
1
=1
0 1
(1) 若能化为同指数,则用幂函数的单调性; (2) 若能化为同底数,则用指数函数的单调性; (3) 当不能直接进行比较时,可数形结合找一个 中间数, 比较大小.
m 2
从而有 f ( x) x +∞)内是减函数.
3
是幂函数,且在区间(0,
提高训练
已知函数 f ( x) m 3m 3x 是幂函 数,并且是偶函数,求m的值。
2 m2 2
解:因为f ( x) m 3m 3 x
2


m2 2
是幂函数

高中幂函数图像及性质

高中幂函数图像及性质

高中幂函数图像及性质
幂函数图像及性质总结:1.幂函数图像总结:α>0时,图像过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图像不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立。

1、幂函数的图像
2.幂函数性质总结:幂函数的图像一定在第一象限内,一定不在第四象限,至于是否在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点。

(1)正值性质:当α>0时,幂函数y=x有下列性质:
a、图像都经过点(1,1)(0,0)
b、函数的图像在区间[0,+∞)上是增函数
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0
(2)负值性质:当α<0时,幂函数y=x有下列性质:
a、图像都通过点(1,1)
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X易得到其为偶函数。

利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。

其余偶函数亦是如此)
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

幂函数的图像和性质

幂函数的图像和性质

幂函数的图像和性质(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!幂函数的图像和性质概念一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

5、幂函数图像与性质

5、幂函数图像与性质
单调性:在R上是增函数
函数 y x 的图像
2
定义域:
R
值 域:[0,) 奇偶性: 在R上是偶函数 单调性: 在[0,)上是增函数
在(,0]上是减函数
函数 y x
1
的图像
定义域:{x x 0} 值 域:{ y
y 0}
奇偶性:在{x x 0}上是奇函数
单调性: 在(0,)上是减函数
问题引入
我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需
要支付p= w 元 (2) 如果正方形的边长为a,那么正方形的面积
S
yx
2
a
2
yx
y x
1 2
(3) 如果立方体的边长为a,那么立方体的体积
V
a
3
3
(4)如果一个正方形场地的面积为S,那么这个正方形的 边长 a 度
幂函数的图象及性质
1 -1, 2 , 时的情形。
对于幂函数,我们只讨论 =1,2,3,
五个常用幂函数的图像和性质
3 2 y x y x (1) (2) y x (3)
(4) y x
1 2
(5) y x
1
函数 y x 的图像
定义域: 值 域:
R R
奇偶性:在R上是奇函数
单调性:在R上是增函数
函数 y x 的图像
1 2性:在[0,)上是增函数
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
y=x
定义域 值域 R R
y = x2
R [0,+∞) 偶函数
y=
x3
y x
[0,+∞) [0,+∞) 非奇非偶 函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇函数
在R上 单调性 是增函

在(-∞,0] 上是减函 数,在(0, +∞)上是 增函数
在R上 是增函 数
在(0,+∞) 上是增函数
在( -∞,0), (0, +∞)上是 减函数
公共点
(1,1)
y x2
(-2,4)
y x3
4
(2,4)
3
y=x
2
(-1,1) 1
(1,1)
-4
-2
2
4
6
y x 1 (-1,-1) -1
例3
若m
4
1 2
3
2m
1 2
,
则求m的取值范围.

:Q
幂函数f
(
x)
x
1
2的定义域是(0,
)
且在定义域上是减函数,
0 3 2m m 4
1 m 3 ,即为m的取值范围.
3
2
小结: 幂函数的性质:
幂函数的定义域、值域、奇偶性和单调性, 随常数α取值的不同而不同.
1.所有幂函数的图象都通过点(1,1);
问题引入 我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需
要支付p= w 元
(2) 如果正方形的边长为a,那么正方形的面积
a2
(3) 如果立方体的边长为a,那么立方体的体积
a3
(4)如果一个正方形场地的面积为S,那么这个正方形的
1
边长 a S 2
(5)如果人t s内骑车行进了1 km,那么他骑车的平均速
… -8 -1 0 1 8 27 64 …
… / / 0 1 2 3 2…
y 8
y=x3
6
4
1
2
y=x 2
-3 -2 -1 0 1 2 3 4
x
-2
-4 -6 -8
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
(2)0.20.3 与 0.30.3
(3)
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,∞)内是增函数
∵0.2<0.3∴ 0.20.3 <0.30.3
(3)y=x-2/5在(0,∞)内是减函数
∵2.5<2.7∴ 2.5-2/5>2.7-2/5
对于幂函数,我们只讨论 =1,2,3, ,
-1时1 的情形。
2
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
函数 y x 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
函数 y x2 的图像
-2 -3
1、所有幂函数在(0,+∞) 上都有定义,并且图象 都通过点(1,1).
2、在第一象限内, α >0,在(0,+∞)上为增函数; α <0,在(0,+∞)上为减函数.
3、α为奇数时,幂函数为奇函 数, α为偶数时,幂函数为偶函 数.
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8
度 V t 1 km / s
幂函数的定义:
一般地,函数 y x 叫做幂函数
(power function) ,其中x为自变量, 为
常数。
注意:
(1)幂函数的解析式必须是 y x 的形式,
前的系数必须是1,没有其它项。
(2)定义域与 的值有关系.
幂函数与指数函数的对比

名称
式子
常数
x
y
指数函数: y=a x
例2:
证明 : 任取x1 , x2 [0,),且x1 x2 ,则
f (x1) f (x2)
x1
x2
(
x1
x2 )( x1
ห้องสมุดไป่ตู้
x2 )
x1 x2
x1 x2 x1 x2
因为0 x1 x2 , 所以x1 x2 0, x1 x2 0,
所以f ( x1 ) f ( x2 ) 即幂函数f ( x) x在[0,)上的增函数.
(a>0且a≠1)
幂函数: y= xα
a为底数 α为指数
指数 底数
幂值 幂值
判断一个函数是幂函数还是指数函数切入点
看未知数x是指数还是底数
指数函数
幂函数
快速反应
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
2.当α为奇数时,幂函数为奇函数,
当α为偶数时,幂函数为偶函数.
3.如果α>0,则幂函数
α>1 a=1
0<α<1
在(0,+∞)上为增函数;
如果α<0,则幂函数
α<0
在(0,+∞)上为减函数。
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数 在(,0]上是减函数
函数 y x1 的图像
定义域:{x x 0} 值 域:{y y 0}
奇偶性:在{x x 0}上是奇函数
单调性:在(0,)上是减函数
在(,0)上是减函数
x y=x3
y=x1/2
… -2 -1 0 1 2 3 4 …
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
1
y = x y = x2 y= x3 y x 2
y x 1
定义域 R
R
R [0,+∞) ,0U(0,+)
值域 R
[0,+∞)
R
[0,+∞) ,0U(0,+)
奇偶性 奇函数 偶函数 奇函数 非奇非偶 函数
相关文档
最新文档