《常微分方程》课程大纲

合集下载

常微分方程教学大纲

常微分方程教学大纲

常微分方程教学大纲1. 引言1.1 课程背景1.2 课程目标2. 基本概念与分类2.1 常微分方程的定义2.2 一阶常微分方程与高阶常微分方程2.3 线性与非线性常微分方程2.4 齐次与非齐次常微分方程3. 解常微分方程的基本方法3.1 可分离变量法3.2 齐次方程法3.3 线性方程法3.4 变量替换法3.5 常系数线性齐次方程法3.6 常系数线性非齐次方程法4. 常微分方程的应用领域4.1 数学建模与科学研究4.2 物理学中的应用4.3 生物学中的应用4.4 工程学中的应用5. 常微分方程的求解工具5.1 MATLAB在求解常微分方程中的应用5.2 WolframAlpha在求解常微分方程中的应用5.3 相关软件与工具的介绍6. 常微分方程的数值解法6.1 欧拉法6.2 改进的欧拉法6.3 龙格-库塔法6.4 迭代法6.5 数值解法的误差分析7. 常微分方程的稳定性与解的存在唯一性7.1 稳定性的定义与判定7.2 解的唯一性的定理与证明7.3 线性方程与非线性方程的稳定性比较8. 常微分方程教学的案例与实例8.1 简单案例的解析解与数值解比较8.2 复杂案例的数值解求解8.3 应用案例的数学建模与解决9. 课堂教学安排与评估方式9.1 教学活动与教学资源准备9.2 课堂教学流程设计9.3 学习目标与评估方式10. 总结与展望10.1 课程内容总结10.2 教学方法总结10.3 未来发展与深化的方向通过本门课程的学习,学生将了解常微分方程的基本概念与分类,掌握常微分方程的基本解法,并能够运用所学知识解决实际问题。

课程还将介绍常微分方程在数学建模、物理学、生物学和工程学中的应用,并通过案例与实例帮助学生更好地理解和掌握所学内容。

课程中将介绍常微分方程的基本解法,包括可分离变量法、齐次方程法、线性方程法、变量替换法、常系数线性齐次方程法和常系数线性非齐次方程法。

此外,还将介绍常微分方程的数值解法,如欧拉法、改进的欧拉法、龙格-库塔法和迭代法,并讨论数值解法的误差分析。

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲一、课程基本信息二、课程教学目标常微分方程是信息与计算科学专业的基础课程之一。

通过该课程的学习,使学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和主要方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的理解,培养学生计算能力、逻辑推理能力、空间想象能力及理论联系实际去分析问题、解决问题的能力,为学生学习后继课程打下基础。

1.学好基础知识。

理解和掌握课程中的基本概念和基本理论,知道它的思想方法、意义和用途,以及它与其它概念、规律之间的联系。

2.掌握基本技能。

能够根据法则、公式正确地进行运算。

能够根据问题的情景,寻求和设计合理简捷的运算途径。

3.培养思维能力。

能够对研究的对象进行观察、比较、抽象和概括。

能运用课程中的概念、定理及性质进行合乎逻辑的推理。

能对计算结果进行合乎实际的分析、归纳和类比。

4.提高解决实际问题的能力。

对于简单应用问题会列出定解问题求解,能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。

能够自觉地用所学知识去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。

三、教学学时分配《常微分方程》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第一章绪论(4学时)(一)教学要求1.了解微分方程的背景即某些物理过程的数学模型;2. 掌握由简单的物理、几何等问题建立简单微分方程;3. 理解微分方程的基本概念;4. 掌握如何由通解求特解。

(二)教学重点与难点教学重点:微分方程的基本概念;教学难点:建立微分方程模型的思想、方法和例子。

(三)教学内容 第一节 常微分方程模型第二节 基本概念和常微分方程的发展历史1.常微分方程基本概念本章习题要点:微分方程基本概念题;建立微分方程的题。

第二章 一阶微分方程的初等解法(14学时)(一)教学要求1. 掌握变量可分离方程、一阶线性方程以及恰当微分方程的求解方法; 2.掌握齐次方程、Bernoulli 方程的求解; 3. 掌握用变量代换的方法求解微分方程;4. 掌握从积分因子满足的充分必要条件导出某些特殊形式积分因子存在的条件及计算公式,并用于解相应的微分方程;5. 掌握已解出y 或x 的微分方程)',(),',(y y f x y x f y ==的计算方法;6. 了解微分方程0)',(,0)',(==y y F y x F 的求解;7. 掌握一阶微分方程的应用方法,能建立一些简单的模型进行简单分析。

《 常微分方程 》课程教学大纲

《 常微分方程 》课程教学大纲

《常微分方程》课程教学大纲一、课程基本信息课程代码:110044课程名称:常微分方程英文名称:Ordinary Differential Equation课程类别:专业必修课学时:45学 分:2.5适用对象: 信息与计算科学本科考核方式:考试先修课程:数学分析、高等代数二、课程简介本课程是信息与计算科学专业的专业必修课程。

常微分方程(ODE)涉及经济学、管理学、生物学、工程技术等很多学科,是各学科紧密相连综合交叉的一门新学科。

This course is information and the professional professional required course of calculation science. Often the differential calculus square distance(ODE) involve economics, management to learn, biology, engineering technique's etc. is a lot of academicses, is each academics is close and conjoint comprehensive cross of a new academics.三、课程性质与教学目的通过本课程的理论学习和实践训练,提高学生的常微分方程水平,加深微积分训练,加强与其他数学课、物理、化学、生态学等方面的横向联系,能够全面正确地分析常微分方程在几何、物理、化学等学科应用过程中所出现的问题。

培养学生初步建模的能力,为后续课程的学习打下良好的基础,将来能综合运用所学知识解决问题。

四、教学内容及要求第一章初等积分法(一)目的与要求介绍常微分方程的相关概念,阐述其基本功能、相应的解法和应用等。

1.掌握常微分方程的基本概念;2.掌握可分离变量方程、齐次方程的概念及它们的联系和解法;3.掌握一阶线性微分方程、伯努利方程的概念及它们的联系和解法;4. 掌握全微分方程与积分因子的概念和解法;5. 掌握可降阶的二阶微分方程的解法;6. 掌握微分方程的应用方法,能建立一些简单的模型。

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲(Ordinary Differential Equation)一、课程说明课程编码:07100090、课程总学时(理论总学时/实践总学时)60(45/15)、周学时(理论学时/实践学时)4(3/1)、学分4、开课学期四。

1.课程性质:学科公共必修课2.适用专业与学时分配:适用于数学与应用数学专业。

教学内容与时间安排表3.课程教学目的与要求:本课程是数学类专业一门学科专业必修课,授课对象为数学专业二年级本科生。

通过常微分方程的教学,要求学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和基本方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的理解。

开设此课程的目的是在学生学习与掌握常微分方程的基本理论与方法的基础上,培养学生逻辑推理能力、分析问题和解决问题的能力,为学生学习数学的其它课程和物理学等有关课程打下基础,从而有助于学生胜任中学数学教学,为实施素质教育提供建模思想方面的训练和准备。

4.本门课程与其它课程关系:先修课程为数学分析,高等代数。

学生应掌握数学分析,高等代数的基本理论和方法;并为数学物理方法奠定基础。

5.推荐教材及参考书:[1]东北师范大学微分方程教研室编,常微分方程。

北京,高等教育出版社,2005[2]周义仓等编,《常微分方程及其应用》,科学出版社,2003年。

[3]张晓梅等编,《常微分方程》,复旦大学出版社,2010年6.课程教学方法与手段:传统教学与现代多媒体技术相结合。

7.课程考试方法与要求:平时成绩与期末成绩相结合。

总成绩=平时成绩*20%+期末考试(闭卷)试卷成绩*80%。

平时成绩满分100(出勤60%+平时作业20%+平时测验20%)8.实践教学内容安排:学生分组讨论解决相关的课程内容及习题。

二、教学内容纲要第一章初等积分法(20学时)1.教学目的与要求熟练掌握变量分离方程、齐次方程及可化为齐次方程的方程、一阶线性方程、伯努利方程、全微分方程、几种特殊类型的一阶隐方程和可降阶的高阶方程的求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《常微分方程》课程大纲
一、课程简介
课程名称:常微分方程学时/学分:3/54
先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。

面向对象:本科二年级或以上学生
教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。

二、教学内容和要求
常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)
第一章基本概念(2,0)
(一)本章教学目的与要求:
要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方
向场),定解问题等基本概念。

本章教学重点解释常微分方程解的几何意义。

(二)教学内容:
1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。

2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。

3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。

4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2)
(一)本章教学目的与要求:
要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。

本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。

并通过习题课进行初步解题训练,提高解题技巧。

(二)教学内容:
1. 恰当方程(积分因子法); 2. 分离变量法
3. 一阶线性微分方程(常数变易法)
4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)
5.应用举例
第三章常微分方程基本定理(10,2)
(一)本章教学目的与要求:
要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。

本章教学重点是介绍常微分方程基本定理,给出几何含意,不追求定理条件的减弱,所涉及的方程至少是连续,使条件、结论及证明简洁,学生易于掌握,也为本学科的后续课程奠定基础。

在习题课中,可介绍这些基本定理的应用,如证明初等函数恒等式,及推导欧拉公式。

(二)教学内容:
1. 皮卡存在和唯一性定理,用构造毕卡序列,并有它的一致收敛性来证明此定理;
2. 佩亚若存在定理;
3.解的延拓(几何含意);用两个例子说明延拓到边界的含义:时间的边界或状态空间的边界。

4. 解的全局存在唯一性定理,为动力系统理论奠定基础。

5. 比较定理(几何含意);
6.解对初值和参数的连续依赖性(几何含意);
7.解对初值和参数的连续可微性(几何含意)。

第四章奇解(2,1)
(一)本章教学目的与要求:
要求学生正确掌握微分方程奇解的定义,并对几类一阶隐式方程会求奇解。

本章教学重点是给出奇解的几何含意:不满足微分方程解的存在唯一性定理。

(二)教学内容:
1. 一阶隐式方程; 2. 奇解;
3.包络
第五章高阶微分方程与线性微分方程组(12,4)(一)本章教学目的与要求:
要求学生掌握高阶微分方程转化为微分方程组的方法,准确掌握向量函数线性无关,基础解阵等基本概念和常数变易法,待定系数法,叠加原理,刘维尔公式等;熟记线性齐次方程组解空间的结构和通解表示;熟练掌握exp(At)和基本解阵的计算,以及初值问题的求解。

本章教学重点是线性齐次方程组解空间的结构和线性非齐次微分方程组通解表示,在习题课上加强求常系数线性微分方程组通解的训练,并介绍用计算机符号运算系统软件包计算exp(At)。

(二)教学内容:
1.高阶微分方程
(高阶微分方程与方程组关系,一般理论,高阶常系数线性微分方程的解法)
2.线性微分方程组(线性方程组的矩阵记法; 定解问题和向量,矩阵的模;
初值问题解的存在唯一性,齐次方程组解空间的结构; 非齐次线性微分方程组和常数变易公式);
3. 常系数线性微分方程组(e xp(At)的定义,性质和计算; 齐次方程组的基本解阵和初值问题;非齐次方程组及其初值问题)
4. 周期系数的线性微分方程组
第六章首次积分(6,2)
(一)本章教学目的与要求:
要求学生正确掌握首次积分的定义,性质和求首次积分的基本方法。

本章教学重点是首次积分的性质和意义,它可看作线性微分方程组的一般理论在非线性微分方程组中的推广。

习题课上加强首次积分求法的训练,和保守系统判定。

(二)教学内容:
1.首次积分的定义;
2. 首次积分的性质(首次积分存在的充要条件,通过首次积分可降阶,
通积分);
3.首次积分的存在性,保守系统,梯度系统。

第七章定性理论与分支理论初步(6,1)
(一)本章教学目的与要求:
要求学生正确掌握动力系统的基本概念,奇点及其分类,李雅普诺夫函数,稳定和渐近稳定等概念;
熟练掌握判别二阶线性系统奇点分类及其稳定性;掌握用线性近似判别奇点的稳定性,以及初步掌握李雅普诺夫第二方法。

本章教学重点是奇点及其分类,李雅普诺夫函数,稳定和渐近稳定等概念;以及用线性近似判别奇点的稳定性和初步掌握李雅普诺夫第二方法使用。

(二)教学内容:
1. 动力系统、相空间与轨线(相空间、轨线、平衡点(奇点)、动力系统等);
2. 解的稳定性(李雅普偌夫稳定性定义, 线性近似判别稳定性, 李雅普偌夫
第二方法)
3. 结构稳定与分支
4. 平面动力系统的奇点与极限环(以Van der Pol 方程为例介绍概念)。

三、课程考核及说明
最终成绩由平时作业、课堂表现、小组大作业、结业考试成绩组合而成。

各部分所占比例如下:
平时作业和上课参与程度:10%。

主要考核对知识点的掌握程度、口头及文字表达能力。

小组大作业及报告讨论:20%。

主要考核应用所学知识分析解决问题、创造性工作及文字表达等方面的能力。

结业考试:70%,主要考核对常微的基本概念和基本理论,以及求解的技巧和方法的掌握程度和应用能力。

四、教材与参考资料
丁同仁,李承治《常微分方程》,高等教育出版社,2004
Morris W. Hirsch, Stephen Smale and Robert L. Devaney, “Differential Equa-
tions, Dynamical System & An Introduction to Chaos“, Elsevier. 2007
Weinan E,“Introduction to Ordinary Differential Equations
and Dynamical Systems“,2009。

相关文档
最新文档