模糊控制-7.2模糊逻辑与模糊推理
人工智能的模糊推理与模糊逻辑
![人工智能的模糊推理与模糊逻辑](https://img.taocdn.com/s3/m/bd54c2a6541810a6f524ccbff121dd36a32dc4f6.png)
人工智能的模糊推理与模糊逻辑人工智能的模糊推理与模糊逻辑在当今信息时代发展中扮演着重要的角色。
随着人工智能技术的不断进步,越来越多的领域开始应用模糊推理与模糊逻辑,以解决现实世界中存在的复杂问题。
模糊推理是指基于模糊集合理论的推理方法,能够应对模糊、不确定和不完全信息的推理和决策问题。
而模糊逻辑则是一种扩展了传统逻辑的形式,用于处理模糊概念和模糊语言的推理问题。
模糊推理与模糊逻辑的基础是模糊集合理论。
模糊集合理论是20世纪60年代由日本学者山下丰提出的,用来描述现实世界中存在的模糊、不确定性和不完全性现象。
在模糊集合理论中,每个元素都有一个隶属度,表示其属于该模糊集合的程度。
通过模糊集合的交集、并集和补集等运算,可以对模糊信息进行处理和推理,从而实现对不确定性问题的分析和决策。
在人工智能领域,模糊推理与模糊逻辑的应用范围非常广泛。
其中一个重要的应用领域是模糊控制系统。
在传统的控制系统中,输入和输出之间的关系通常是通过清晰明确的数学模型来描述的,但是现实世界中很多系统存在着模糊性和不确定性,这时就需要使用模糊推理和模糊逻辑来构建模糊控制系统。
通过模糊控制系统,可以有效地处理复杂系统的控制问题,提高系统的性能和稳定性。
另一个重要的应用领域是模糊信息检索和决策支持系统。
在信息爆炸的时代,人们需要从海量的数据中获取有用的信息,模糊推理和模糊逻辑可以帮助人们快速、准确地找到他们需要的信息。
通过模糊信息检索和决策支持系统,可以有效地处理模糊查询和不完全信息的检索问题,提高信息检索的效率和准确性。
除了以上两个应用领域外,模糊推理与模糊逻辑还可以应用于模式识别、专家系统、人工智能语音识别等领域。
在模式识别领域,模糊推理和模糊逻辑可以帮助系统更准确地识别复杂模式和特征,提高模式识别的准确性和鲁棒性。
在专家系统领域,模糊推理和模糊逻辑可以帮助系统模拟人类专家的知识和推理过程,实现对复杂问题的自动化处理和分析。
在人工智能语音识别领域,模糊推理和模糊逻辑可以帮助系统更好地理解和处理人类语音,提高语音识别的准确性和鲁棒性。
计算智能 模糊逻辑和模糊推理
![计算智能 模糊逻辑和模糊推理](https://img.taocdn.com/s3/m/f91715cc7f1922791688e827.png)
0 0 0.5 1 0 0.5 0.5 0.5 0.5 0.5 R = 1 1 1 1 1 小大 1 1 1 1 1 1 1 1 1 1
B1 A1 R
小大
0 0 0.5 1 0 0.5 0.5 0.5 0.5 0.5 = 1 0.4 0.2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
语言是人们进行思维和信息交流的重要工具,是一种 符号系统。 语言可分为两种:自然语言和形式语言,通常的计算 机语言是形式语言。 人们日常所用的语言属自然语言。自然语言的突出 特点在于它具有模糊性,如“ 今天是个好天”,“小 王很年轻”等。 在形式逻辑中,推理有直接推理,演绎推理、归纳 推理以及类比推理等形式。在科学研究工作中,最 常用的推理方法是演绎推理中的假言推理。 基本规则是如果已知命题A (即可以分辨真假的陈述 句)蕴含B,即A → B(或A 则B),如今确为A1,则可 得结论为B1。
0.1 0.5 0.5 0.1 1 0.6 0.1 0.1 0.1
0.1 0.4 0.4 0.1 C1 =( A1 B1 )T R 0.1 0.5 1 0.1 0.5 0.5 0.1 0.1 0.1 0.4 0.4 0.1 0.1 C1 0.4 0.5 0.1
(3)模糊条件语句" if A and B then C else D, 则模糊关系 R 为:
T T R = ( A B ) C ( A B ) D
合成:Ci ( Ai Bi )T R
模糊聚类分析
模糊控制简介
![模糊控制简介](https://img.taocdn.com/s3/m/6293873e0912a216147929fd.png)
R=(NBe × PBu ) + ( NSe × PSu ) + (0e × 0u ) + ( PSe × NSu ) + ( PBe × NSu )
NBe × PBu = (1, 0.5, 0, 0, 0, 0, 0) × (0, 0, 0, 0, 0, 0.5,1) NSe × PSu = (0, 0.5,1, 0, 0, 0, 0) × (0, 0, 0, 0,1, 0.5, 0) 0e × 0u = (0, 0, 0.5,1, 0.5, 0, 0) × (0, 0, 0.5,1, 0.5, 0, 0) PSe × NSu = (0, 0, 0, 0,1, 0.5, 0) × (0, 0.5,1, 0, 0, 0, 0) PBe × NSu = (0, 0, 0, 0, 0, 0.5,1) × (1, 0.5, 0, 0, 0, 0, 0) 0 0 0 0 0.5 1 0 0 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 1 0 0 R= 0 0 0.5 1 0.5 0 0 0 0.5 1 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0.5 0 0 0 0 0
学习功能
数据存储 单元
y
∗ k
e
r + —
∆
∆
k
e
e
k
c
2
e
k
Байду номын сангаас
r
模糊 控制 规则
k
∆
u
u
u
u
k −1
k
+ +
被 控 对 象
y
k
六.思考
矛盾对立统一规律: 矛盾对立统一规律:两面性 • 优点:模糊逻辑本身提供了由专家构造语 优点: 言信息并将其转化为控制策略的一种系统 的推理方法, 的推理方法,因而能够解决许多复杂而无 法建立精确数学模型系统的控制问题, 法建立精确数学模型系统的控制问题,所 以它是处理推理系统和控制系统中不精确 和不确定性的一种有效方法。从广义上讲, 和不确定性的一种有效方法。从广义上讲, 模糊控制是适于模糊推理, 模糊控制是适于模糊推理,模仿人的思维 方式, 方式,对难以建立精确数学模型的对象实 施的一种控制策略。 施的一种控制策略。它是模糊数学同控制 理论相结合的产物, 理论相结合的产物,同时也是智能控制的 重要组成部分。 重要组成部分。
模糊逻辑与模糊控制的基本原理
![模糊逻辑与模糊控制的基本原理](https://img.taocdn.com/s3/m/e65bb268dc36a32d7375a417866fb84ae55cc37c.png)
模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。
模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。
而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。
本文主要介绍模糊逻辑和模糊控制的基本原理。
一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。
模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。
以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。
但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。
因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。
一个隶属函数是一个可数的、从0到1变化的单峰实函数。
它描述了一个物体与一类对象之间的相似程度。
对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。
这个隶属函数,可以用三角形或者梯形函数来表示。
模糊逻辑还引入了模糊关系和模糊推理的概念。
模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。
二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。
模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。
它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。
模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。
人工智能控制技术课件:模糊控制
![人工智能控制技术课件:模糊控制](https://img.taocdn.com/s3/m/c800c3996037ee06eff9aef8941ea76e58fa4a3f.png)
模糊集合
模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
)( /其中“” 和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|
模糊控制技术-第二章
![模糊控制技术-第二章](https://img.taocdn.com/s3/m/78af6e48c850ad02de804115.png)
上述定义表明:
①论域U中的元素是分明的,即U本身是普通 集合,只是U的子集是模糊集合,故称A为 U的模糊子集,简称模糊集。 ②隶属函数μA(u)是用来说明u隶属于A的程度 的,μA(u)的值越接近于1,表示u隶属于A 的程度越高;当μA(u)的值域变为{0,1}时, 隶属函数μA(u)蜕化为普通集合的特征函数, 模糊集合也就蜕化为普通集合。
' ~ ~ ~ ~ ~
~
0.1 0.1 0.6 0.5 0.7 0.9 0.9 1 C u1 u2 u3 u4
'
0.1 0.5 0.7 0.9 u1 u2 u3 u4
~
0.9 0.4 0.3 0.1 A u1 u2 u3 u4
18
台(support)集合
39
• 例:设X={1,2,3,4},Y={a,b, c},Z={α,β},Χ×Y以及Y×Z上的模糊关 系R与S如图所示。
2.2.2 模糊关系 (1)普通关系:客观世界存在的普遍现象,描 述了事物之间存在的某种联系。 1)集合的直积 • 由两个集合U和V的各自元素u与v组成的序 偶(u,v)的全体集合,称为U与V的直积,记 为U×V,即
U×V={(u,v)|u∈U,v∈V }
• 一般情况下,U×V≠V×U。 2)普通二元关系
A 和 A 分别称为模糊集合 A 的强 截集和弱
正则(normal)模糊集合
[0,) 1 (0, 1]
截集
如果:max A (u )
uU
1 ,则称A为正则模糊集合
凸(convex)模糊集合
A (u1 (1 )u2 ) min( A (u1 ), A (u2 )) u1,u2 U, [0, 1]
人工智能的模糊推理和模糊控制方法
![人工智能的模糊推理和模糊控制方法](https://img.taocdn.com/s3/m/9d24a30b2a160b4e767f5acfa1c7aa00b52a9d90.png)
人工智能的模糊推理和模糊控制方法人工智能(Artificial Intelligence, AI)是研究、开发用于模拟、扩展和扩展人类智能的理论、方法、技术及其应用系统的一门科学。
在人工智能领域,模糊推理和模糊控制是两个重要的方法,它们通过引入模糊集合和模糊逻辑,使计算机能够处理和推理不确定、模糊的信息,具有广泛的应用范围和潜力。
本文将对模糊推理和模糊控制的基本原理、应用领域以及发展趋势进行详细介绍。
首先,我们先来了解一下模糊推理和模糊控制的基本原理。
模糊推理是基于模糊集合和模糊逻辑的推理方法,它的核心思想是将不确定的信息和模糊的知识进行建模,通过适当的规则进行推理,从而得到模糊的结论。
模糊推理的核心步骤包括模糊化、规则匹配、推理和去模糊化。
具体来说,模糊化将现实世界中的事物或概念映射到模糊集合上,通过模糊集合来描述不确定性和模糊性;规则匹配将输入模糊集合与预定的规则集合进行匹配,确定需要使用的规则;推理根据已匹配的规则进行逻辑推理,得到模糊的结论;去模糊化将模糊的结论映射回到现实世界的具体数值上,得到人类可以理解的结果。
模糊控制是一种基于模糊逻辑的控制方法,它通过将模糊集合和模糊推理应用于控制系统中,使控制系统能够处理模糊的输入和输出信号,从而实现对复杂系统的智能控制。
模糊控制的基本原理是将不确定的输入信号经过模糊化处理得到模糊的输入变量,然后通过一系列的模糊规则进行推理和逻辑运算,得到模糊的输出变量,最后将模糊的输出变量经过去模糊化处理得到具体的控制信号,用于调节系统的行为。
模糊控制系统的结构由模糊化模块、推理机制和去模糊化模块组成,其中模糊化模块用于将输入信号映射到模糊集合上,推理机制用于根据预定的模糊规则进行推理,去模糊化模块用于将模糊的输出信号映射回到具体的控制信号上。
模糊推理和模糊控制方法在各个领域都有广泛的应用。
在工业自动化领域,模糊控制方法可以用于汽车、航空、电力、化工等复杂系统的控制,能够有效地处理系统的非线性、模糊和不确定性问题,提高系统的稳定性和鲁棒性。
模糊逻辑及模糊控制
![模糊逻辑及模糊控制](https://img.taocdn.com/s3/m/29e1672a16fc700aba68fc01.png)
运算:
(1) (2) (3) (4) (5) 析取“∨” T(P∨Q)=T(P)∨T(Q) 合取“∧” T(P∧Q)=T(P)∧T(Q) 取非 “┓” T(┓P)=1-T(P) 蕴含“→” T(P→Q)=1∧[1-T(P)+T(Q)] 等值“ ” T(P Q)=1∧[1-T(P)+T(Q)]∧[1- T(Q)+T(P)]
模糊控制
Fuzzy Control
模糊命题:
概念:含有模糊概念或者具有模糊性的陈述句。 例如:模糊命题 P:“小明学习努力” 若小明“努力”的隶属度为0.8,则命题的真值为: T(P)=μA(x)=0.8 模糊命题的真值为1时表示 P 完全真,为0时为完全假, 模糊命题可看成是普通命题的推广,普通命题是模糊 命题的特例。
运算律:
1 幂等律 : x+x=x ; x· x=x 2 交换律 : x+y=y+x ; x· y=y· x 3 结合律 : (x+y)+z=x+(y+z) ; (x· y)· z=x· (y· z) 4 分配律 : x+(y· z)=(x+y)· (x+z) ; x· (y+z)=x· y+x· z 5 德摩根律 : (x+y)=x ·y ; (x ·y)= x + y 6 双重否定律 : x = x 7 常数运算法则 : 1+x=1 ; 0+x=x ; 1· x=x; 0· x=0 8 吸收律 : x+x· y=x ; x· (x+y)=x
互补率x x 1; x x 0不成立,因为 x x max( x ,1 x ) x x min( x ,1 x )
第七章 模糊控制技术第五节模糊推理
![第七章 模糊控制技术第五节模糊推理](https://img.taocdn.com/s3/m/b93a67a5d1d233d4b14e852458fb770bf78a3b8d.png)
• 对于实际的一个命题(事件),可以用“真”或“假”进行 判断。如果该命题非真即假,我们说这是精确命题(事件), 采用二值逻辑推理。如果命题不是绝对的“真”或“假”,而 是反映其以多大程度隶属于“真”,也就是带有模糊性,则该 命题为模糊命题,必须采用不确定性推理方法进行推理。
如果命题A、B为模糊命题,则需要采用不确定性推理方法。 不确定推理情况下的假言推理具有如下逻辑结构:
Hale Waihona Puke 五、模糊推理1.语言变量
设:H4代表“极”或者“非常非常”,其意义是对描述的 模糊值求4次方;
H2代表“很”或者“非常”,其意义是对描述的模糊值 求2次方;
H1/2代表“较”或者“相当”,其意义是对描述的模糊 值求1/2次方;
H1/4代表“稍”或者“略微”,其意义是对描述的模糊 值求1/4次方。
这样,集中化算子的幂乘运算的幂次大于1,幂次越高,语 气的强化程度越大;松散化算子的幂乘运算的幂次小于1, 幂次越高,语气的弱化程度越大。
关系生成规则:设A是X上的模糊集合,B是Y上的模糊集 合,是X到Y的模糊关系R(x,y)。则存在一种方法,也就是 关系生成规则,由A和B得到:
推理合成规则:即由模糊关系R(x,y)和小前提A′中的得 到Y上的模糊集B′的规则,即:
➢ 其中,算符“o”代表合成运算,通过解模糊关系程序获 得推理结果B′,这就是模糊推理过程。
五、模糊推理
2.模糊逻辑和模糊推理
一个单输入单输出模糊系统的模糊推理的模型如图所示:
更一般的模糊推理模型包含有多个大条件,构成多条规则模 糊推理模型,具有如下的逻辑结构:
其关系生成规则:根据Aij(i≤n,i≤m)和生成模糊关系R,R 就是X=X1×X2×…Xm×Y上的模糊关系。而推论合成规则
模糊逻辑中的模糊控制与模糊决策
![模糊逻辑中的模糊控制与模糊决策](https://img.taocdn.com/s3/m/003058526fdb6f1aff00bed5b9f3f90f76c64d13.png)
模糊逻辑中的模糊控制与模糊决策模糊逻辑作为一种重要的数学工具和推理方式,在控制理论和决策科学领域有着广泛的应用。
模糊控制和模糊决策正是基于模糊逻辑的特点,能够处理和解决现实世界中的不确定性和模糊性问题。
本文将详细介绍模糊逻辑中的模糊控制与模糊决策的基本原理、方法和应用,旨在帮助读者更好地理解和应用模糊逻辑。
一、模糊控制的基本原理模糊控制是一种基于模糊规则的控制方法,它能够处理输入和输出之间模糊的关系,并且能够根据给定的模糊规则进行推理和决策,实现对系统的控制。
在模糊控制中,输入量和输出量都可以是模糊的,而模糊规则是基于专家知识和经验建立的。
模糊控制的基本原理是将输入的模糊信息转化为清晰的操作指令,从而实现对系统的控制。
模糊控制系统通常由模糊化、模糊推理和去模糊化三个部分组成。
首先,模糊化将输入的实际数据转化为模糊的隶属度函数,以描述输入的不确定性和模糊性;然后,模糊推理根据事先设定好的模糊规则,对输入的模糊信息进行推理和决策,产生模糊的输出结果;最后,去模糊化将模糊的输出结果转化为清晰的操作指令,以实现对系统的控制。
二、模糊控制的应用领域模糊控制广泛应用于工业自动化、交通运输、医疗诊断等领域。
以工业自动化为例,模糊控制可以对复杂的工业流程进行控制和优化,提高生产效率和产品质量。
在交通运输领域,模糊控制可以对交通信号灯进行优化控制,减少交通拥堵和事故发生的可能性。
而在医疗诊断领域,模糊控制可以对医疗设备进行控制和调节,辅助医生进行诊断和治疗。
三、模糊决策的基本原理模糊决策是一种基于模糊集合和模糊规则的决策方法,它能够处理决策问题中存在的不确定性和模糊性。
与传统的决策方法相比,模糊决策能够更好地应对模糊信息和不完备信息的情况,提高决策的准确性和可靠性。
在模糊决策中,问题的输入和输出都可以是模糊的,而决策的依据是基于一组事先设定好的模糊规则。
通过对输入的模糊信息进行模糊推理和决策,可以得到模糊的输出结果,再通过适当的方法进行去模糊化,得到最终的决策结果。
模糊控制_精品文档
![模糊控制_精品文档](https://img.taocdn.com/s3/m/a2a412bbbb0d4a7302768e9951e79b89680268c6.png)
1
0
x0-σ x0 x0+σ
x
模糊控制的基本原理
清晰化计算 Defuzzification
120
X Years
“年轻”的隶属函数曲线
模糊控制的基本原理
模糊隶属度函数
隶属度函数是模糊集合论的基础,实质上反映的是事物的 渐变性。
规则
✓表示隶属度函数的模糊集合必须是凸模糊集合。
一个模糊集合是凸的,当且仅当任何 x1, x2 X
和任何 0,1 ,满足:
A ( x1 (1 )x2 ) min{A (x1), 2 (x2 )}
模糊控制的基本原理
模糊系统发展的历程
1965年,美国系统论专家Zadeh教授创立了模糊集合理论,提供了处 理模糊信息的工具
1974年,英国学者Mamdani首次将模糊理论应用于工业控制(蒸气 机的压力和速度控制)
近30年来,模糊控制在理论、方法和应用都取得了巨大的进展
模糊控制的基本原理
模糊控制理论出现的必然性
人类的控制规则 如果水温比期望值高,就把燃气阀关小; 如果水温比期望值低,就把燃气阀开大。
描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增量 u) 之间的模糊关系R
模糊控制的基本原理
模糊控制的基本结构
模糊化 知识库 模糊推理 反模糊化
给定值
FC 模糊化
知识库 模糊推理
解模糊
模糊控制器
作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。 包括:
人工智能的模糊推理和模糊控制方法
![人工智能的模糊推理和模糊控制方法](https://img.taocdn.com/s3/m/c808372259fafab069dc5022aaea998fcc224033.png)
人工智能的模糊推理和模糊控制方法近年来,随着人工智能技术的快速发展,模糊推理和模糊控制方法逐渐成为人工智能领域的重要技术之一。
模糊推理技术是一种基于模糊逻辑的推理方法,能够处理信息不确定、模糊的问题;而模糊控制方法是一种可以处理模糊输入的控制方法,可用于模糊系统的设计和应用。
在人工智能领域,模糊推理和模糊控制方法被广泛应用于各种领域,如机器人控制、工业自动化、智能交通系统等。
这些领域都面临着信息不确定、模糊性强的问题,传统的精确逻辑和控制方法难以满足需求,而模糊推理和模糊控制方法则能够有效处理这些问题。
模糊推理技术主要包括模糊集合论、模糊逻辑、模糊推理规则等内容。
模糊集合论是模糊推理的基础,它将集合的隶属度从二元逻辑扩展到连续的范围内,能够更好地描述真实世界中的不确定性和模糊性。
模糊逻辑是一种用于处理模糊概念的数学逻辑,将传统的真假二元逻辑扩展到了连续的隶属度范围,能够更好地描述人类语言和思维中的模糊性。
模糊推理规则是一种将模糊逻辑运用于推理过程中的方法,能够通过一系列规则将模糊输入映射为模糊输出,实现对模糊问题的推理。
在模糊控制方法中,模糊逻辑控制是一种常用的方法。
它将模糊逻辑引入控制系统中,通过一系列的模糊规则将模糊输入映射为模糊输出,从而实现对模糊系统的控制。
模糊逻辑控制方法具有较好的鲁棒性和容错性,能够有效处理传统控制方法难以解决的非线性、不确定性和模糊性问题。
在工业自动化领域,模糊逻辑控制方法已经被广泛应用于控制系统的设计和实现,取得了良好的效果。
除了模糊推理和模糊控制方法之外,还有一些其他的人工智能技术也能够处理模糊性和不确定性问题。
例如,基于概率模型的方法,如贝叶斯网络、马尔科夫链等,能够通过概率推理和统计学方法处理不确定性问题;深度学习方法,如神经网络、卷积神经网络等,能够通过大量数据的学习来解决复杂的模糊问题。
这些技术在不同的领域中都有着广泛的应用,能够为人工智能系统提供更加强大和灵活的推理和控制能力。
模糊控制_精品文档
![模糊控制_精品文档](https://img.taocdn.com/s3/m/390cc2cbd5d8d15abe23482fb4daa58da0111c08.png)
模糊控制摘要:模糊控制是一种针对非线性系统的控制方法,通过使用模糊集合和模糊逻辑对系统进行建模和控制。
本文将介绍模糊控制的基本原理、应用领域以及设计步骤。
通过深入了解模糊控制,读者可以更好地理解和应用这一控制方法。
1. 导言在传统的控制理论中,线性系统是最常见和最容易处理的一类系统。
然而,许多实际系统都是非线性的,对于这些系统,传统的控制方法往往无法取得良好的效果。
模糊控制方法由于其对于非线性系统的适应性,广泛用于工业控制、机器人控制、汽车控制等领域。
2. 模糊控制的基本原理模糊控制的基本原理是建立模糊集合和模糊逻辑,通过模糊化输入和输出,进行模糊推理和解模糊处理,完成对非线性系统的控制。
模糊集合是实数域上的一种扩展,它允许元素具有模糊隶属度,即一个元素可以属于多个集合。
模糊逻辑则描述了这些模糊集合之间的关系,通过模糊逻辑运算,可以从模糊输入推导出模糊输出。
3. 模糊控制的应用领域模糊控制方法在许多领域中都有着广泛的应用。
其中最常见的应用领域之一是工业控制。
由于工业系统往往具有非线性和复杂性,传统的控制方法往往无法满足要求,而模糊控制方法能够灵活地处理这些问题,提高系统的控制性能。
另外,模糊控制方法还广泛应用于机器人控制、汽车控制、航空控制等领域。
4. 模糊控制的设计步骤模糊控制的设计步骤一般包括五个阶段:模糊化、建立模糊规则、进行模糊推理、解模糊处理和性能评估。
首先,需要将输入和输出模糊化,即将实际的输入输出转换成模糊集合。
然后,根据经验和知识,建立模糊规则库,描述输入与输出之间的关系。
接下来,进行模糊推理,根据输入和模糊规则,通过模糊逻辑运算得到模糊的输出。
然后,对模糊输出进行解模糊处理,得到实际的控制量。
最后,需要对控制系统的性能进行评估,以便进行调整和优化。
5. 模糊控制的优缺点模糊控制方法具有一定的优点和缺点。
其优点包括:对于非线性、时变和不确定系统具有较好的适应性;模糊规则的建立比较直观和简单,无需精确的数学模型;能够考虑因素的模糊性和不确定性。
模糊控制的定义
![模糊控制的定义](https://img.taocdn.com/s3/m/dc447bec4128915f804d2b160b4e767f5acf80fc.png)
模糊控制的定义一、引言模糊控制是现代控制理论中的一种方法,它能够有效地解决一些传统控制方法难以处理的问题,例如非线性系统、不确定性、模型不精确等。
本文将从定义、基本概念、模糊控制系统的结构和应用等四个方面,介绍模糊控制的基本知识。
二、定义模糊控制是一种基于模糊集理论的控制方法。
与传统的精确数学控制方法不同,模糊控制使用来自现实世界的不确定性知识。
具体来说,模糊控制的本质就是利用人类专家系统内建的经验知识,将经验知识应用到控制问题上,不需要完全精确的数学模型,根据不精确的输入输出数据做出判断和决策。
相对于传统控制方法,模糊控制的表现更加稳定,更加鲁棒。
三、基本概念1、模糊集合:模糊集合是指一组具有模糊不确定性的元素。
与传统的集合不同,模糊集合没有明确的界限,元素之间的归属度也不是二元的关系,而是一个连续的值域。
2、模糊逻辑:模糊逻辑是针对模糊事物而设计的一种逻辑方法。
其中最基本的是模糊量词(例如“非常”、“有点”、“不”、“比较”等),模糊运算(例如“模糊合取”、“模糊析取”、“模糊最小值”等)。
模糊逻辑使得模糊集合的综合运算与精确数学中的逻辑方法类似。
3、模糊控制器:模糊控制器包括模糊化、模糊推理和去模糊化三个过程。
模糊化将输入量转化为模糊集合,模糊推理利用模糊逻辑和控制规则的知识对模糊集进行逻辑推理和决策,去模糊化则将模糊输出转化为确定性输出。
四、模糊控制系统的结构模糊控制系统包括模糊控制器、模糊输入、模糊输出和模糊规则库等组成部分。
其中,模糊输入和输出是指输入量和输出量分别通过模糊化和去模糊化转化为模糊集合和确定性输出。
模糊规则库是由专家产生的一些基本规则库,其中每个规则由条件部分和结论部分组成。
五、应用模糊控制在工业自动化、交通控制、机器人控制、金融预测等领域都有广泛应用。
例如在温度控制中,传统PID控制器需要通过精确的数学模型计算开环控制和闭环控制需要的参数,而模糊控制则可以直接利用专家经验,根据当前温度输出控制信号,大大简化了控制过程。
模糊逻辑控制的原理和方法
![模糊逻辑控制的原理和方法](https://img.taocdn.com/s3/m/aee62f986e1aff00bed5b9f3f90f76c660374c66.png)
模糊逻辑控制的原理和方法模糊逻辑控制(Fuzzy Logic Control,简称FLC)是一种基于模糊逻辑原理的控制方法,旨在解决传统逻辑控制难以处理模糊信息的问题。
模糊逻辑控制通过引入模糊集合、模糊运算和模糊推理等概念和技术,使控制系统能够处理非精确、不确定和模糊的输入信息,以实现更加灵活、鲁棒和自适应的控制。
模糊逻辑控制的核心理论是模糊集合理论。
模糊集合是相对于传统集合(如二值集合)而言的一种扩展,它允许元素具有一定的隶属度,代表了元素与集合的隶属关系的程度。
模糊逻辑控制通过将输入、输出和规则等信息用模糊集合的形式表示,实现对不确定性和模糊性的建模和处理。
模糊逻辑控制的基本流程包括模糊化、模糊推理和去模糊化三个步骤。
首先,将模糊化输入信息转化为隶属度函数,描述输入变量对应各个模糊集合的隶属度。
其次,通过模糊推理机制根据预设的模糊规则,对模糊输入进行处理,得出模糊输出。
最后,对模糊输出进行去模糊化处理,将其转化为真实的控制信号。
模糊逻辑控制中的模糊推理是实现模糊逻辑功能的关键环节。
常用的模糊推理方法包括模糊关系矩阵、模糊规则库和模糊推理机。
模糊关系矩阵描述了输入变量和输出变量之间的关系,通过定义模糊关系和相应的隶属函数,实现输入与输出之间的模糊映射。
模糊规则库是一系列模糊规则的集合,定义了输入模糊集合与输出模糊集合之间的对应关系。
模糊推理机是根据模糊规则库和输入模糊集合,通过模糊推理运算得出模糊输出的计算模型。
模糊逻辑控制相较于传统控制方法具有以下优势:1. 能够处理非精确和模糊的输入信息,具有较强的鲁棒性和适应性,能够适应不同的工作环境和工况变化。
2. 能够利用专家经验和知识进行建模和控制,减少对系统数学模型的要求,降低了建模的复杂度和系统识别的难度。
3. 模糊逻辑控制采用自然语言和图形化的方式表达模糊规则,易于人类理解和调试,提高了控制系统的可解释性和可操作性。
4. 模糊逻辑控制方法是一种直接的控制方法,不需要精确的数学模型和大量的计算,能够实现实时性较强的控制。
模糊控制数学基础2—模糊逻辑与推理(2)
![模糊控制数学基础2—模糊逻辑与推理(2)](https://img.taocdn.com/s3/m/0e4d5f02de80d4d8d15a4f1b.png)
F F
隐含隶属函数表达式 pq ( x, y) 1 pq ( x, y) 1 min[ p ( x), (1 q ( y))] 或
pq ( x, y) pq ( x, y) max[ p ( x), q ( y)]
max[( p ( x)), q ( y)] 1
x y
(1 2 ) c ( z )
3) 多前提多规则
前提(事实) 1 前提 2 (规则1 ) 前提 (规则2 3 ) 结果(结论) x是A, y是B if x 是A1和 y是B1 , then Z是C1 if x 是A2和 y是B2 , then Z是C2 z是C
称为工程隐含
工程隐含
• (1) A B 解释为A与B相关,常用的两种三角范 式算子得到模糊关系 Rm A B A ( x) B ( y ) /( x, y )
X Y
或
A B ( x, y ) min{ A ( x), B ( y )}
Rp A B 或
p q,
“if then”
4) 逆操作 Inversion
5) q”。
~p 等效关系 Equivalence p q ,“p即
一个隐含是“真”,必须满足三个条件之一: 1) 前提是真,结论是真; 在教书,是教师;成立
2) 前提是假,结论是假;不教书,不是教师;成立
3) 前提是假,结论是真。
1单点模糊化max乘积复合运算乘积推理高度去模糊化2单点模糊化maxmin复合运算乘积推理高度去模糊化3非单点模糊化max乘积复合运算乘积推理高度去模糊化去下标上面几式可简化为单点模糊化
模糊逻辑与模糊推理
• 对模糊现象的机理进行分析、抽象,进 而用用模糊数学表达
模糊控制的基本原理
![模糊控制的基本原理](https://img.taocdn.com/s3/m/2760c18464ce0508763231126edb6f1aff00711c.png)
模糊控制的基本原理
模糊控制是一种基于模糊逻辑的控制方法,它的基本原理是利用模糊集合与模糊规则来进行控制决策,从而实现系统的稳定控制。
在模糊控制中,控制器的输入和输出都是模糊集合,而不是精确的数值,这使得模糊控制具有更强的鲁棒性和适应性,能够适应系统模型的不确定性和复杂性。
模糊控制的基本原理可以概括为以下几个步骤:
1. 设计模糊集合:根据控制对象的特性,设计输入和输出变量的模糊集合,并确定它们之间的关系。
2. 建立模糊规则:利用经验和专家知识,建立模糊规则库,将输入变量与输出变量之间的关系表示成一系列模糊规则。
3. 模糊推理:根据输入变量的值,使用模糊规则库进行模糊推理,得到输出变量的模糊集合。
4. 解模糊:将输出变量的模糊集合转化为实际控制信号,通常使用模糊平均法或模糊最大化法进行解模糊。
5. 反馈控制:根据输出变量的实际值,进行反馈控制,调节输入变量,使系统达到稳定的控制状态。
模糊控制的基本原理可以应用于各种控制对象,例如机器人、汽车、电机等,具有广泛的应用前景。
同时,随着计算机技术的发展,模糊控制已经成为一种有效的控制方法,为实现自动化、智能化的控制系统提供了重要的技术支持。
- 1 -。
模糊逻辑中的模糊集合与模糊推理的概念与原理
![模糊逻辑中的模糊集合与模糊推理的概念与原理](https://img.taocdn.com/s3/m/7bbd4d852dc58bd63186bceb19e8b8f67d1cef44.png)
模糊逻辑中的模糊集合与模糊推理的概念与原理模糊逻辑是一种基于模糊集合和模糊推理的数学理论,用于处理存在不确定性和模糊性的问题。
在许多实际应用中,我们常常遇到一些无法精确描述或者没有明确边界的问题,这时候,传统的二值逻辑就显得力不从心了。
模糊逻辑的提出正是为了解决这类模糊和不确定性问题,使我们能够更好地进行推理和决策。
一、模糊集合的概念与原理模糊集合是模糊逻辑的基础,它是一种用来描述模糊性的数学工具。
与传统的集合不同,模糊集合中的元素并不只有两种可能,而是存在程度上的模糊和不确定性。
模糊集合使用隶属度函数来表示每个元素与集合的关系强弱程度。
隶属度函数取值范围在[0,1]之间,表示该元素与集合的隶属度。
隶属度为0表示该元素不属于集合,隶属度为1表示该元素完全属于集合。
模糊集合的运算包括模糊交、模糊并、模糊补等。
模糊交运算是指两个模糊集合相交后得到的模糊集合,其隶属度函数取两个模糊集合对应元素隶属度函数的最小值。
模糊并运算是指两个模糊集合并集后得到的模糊集合,其隶属度函数取两个模糊集合对应元素隶属度函数的最大值。
模糊补运算是指对一个模糊集合中的每个元素的隶属度进行取反,得到的新模糊集合。
二、模糊推理的概念与原理模糊推理是模糊逻辑的关键部分,它是通过模糊集合的运算和推理规则来推导出模糊结论的过程。
模糊推理的基本框架是模糊推理机,它由模糊集合和模糊规则库组成。
模糊规则库是一组由若干种模糊条件和结论组成的规则集合。
每条规则包含一个或多个模糊条件和一个模糊结论。
通过对输入的模糊条件进行匹配,模糊推理机可以得出一组模糊结论,然后通过模糊集合的运算来合并这些模糊结论,最终得到一个模糊输出。
模糊推理的主要方法有模糊推理法则和模糊推理网络。
模糊推理法则是一种基于模糊规则的推理方法,通过将输入的模糊条件与规则库中的规则进行匹配,得到一组模糊结论,然后通过运算得到最终的输出。
模糊推理网络是一种基于神经网络的推理方法,通过对输入信号的加权求和和激活函数的处理,得到最终的模糊输出。
模糊控制-7.2模糊逻辑与模糊推理
![模糊控制-7.2模糊逻辑与模糊推理](https://img.taocdn.com/s3/m/5f07c8f804a1b0717fd5ddf7.png)
• 有两种形式的模糊命题: 原子模糊命题与复合模糊
命题。
• 原子模糊命题是简单句“N is A”, 其中N为语言变 量, A为N的语言值, A用X论域上的模糊集来表示。
• 如:P:该设备的温度太高。 Q:该设备误差的变化率很小。
• 复合模糊命题是原子模糊命题利用连接词“and”、
• “真值”变量的值可取“比 较真”、“真”、“非常 真”、“假”、“比较 假”、“非常假”, 而 Baldwin将这些词语表示为 [0, 1]上的模糊集:
比较假
比较真
1
非 常 假
假
真
0
非常真
1
x
• 模糊系统是基于知识或基于规则的系统, 模糊系统的核心 是包括模糊“IF-THEN”规则的知识库。
“or”及“not”连接而成的命题, 这些联结词可分别 用模糊交、模糊并、模糊补来表示。
• 常见的命题联结词有五个: • (1)析取 “∨”
• (2)合取“∧”
• (3)否定“-”
• (4)蕴涵“”
• (5)互蕴涵或等价“”
• 模糊控制是建立在一系列控制规则基础上的,而这些控制 规则由专家或有现场经验的操作人员提供。 • 模糊“IF-THEN”规则可以表示为如下形式的模糊条件语句: • 简单模糊条件语句“若P,则Q”,记为if P then Q • 如:若温度偏低,则增加燃料量 • 多重简单模糊条件语句“若P,则Q,否则R”,记为if P then Q, else R • 如:若温度偏高,则减少燃料量,否则增加燃料量 • 双维模糊条件语句“若P且Q,则R”,记为if P and Q then R • 如:若温度偏高,且温度具有增加趋势,则减少燃料量 最常用的是双维模糊控制语句。 对于复杂过程,还可用更复杂的类型表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 令 A 为 论 域 U 上 的 一 个 词 语 ( 模 糊 集 ), 则 “ 非 常 A”(记为B)也是U上的模糊集, 其隶属函数定义为 B(x)=[A(x)]2, xU.
• 比如, 令U={1, 2, 3, 4, 5}, 则模糊集合“小”可定义为: 小=1/1+0.8/2+0.6/3+0.4/4+0.2/5. 从而 非常小=1/1+0.64/2+0.36/3+0.16/4+0.04/5. • 类似地, “稍微A”(记为C)、“差不多A”(记为D)可定义为:
• 在经典命题演算下, 条件句 “IF p THEN q” 写为pq, 而蕴涵词其真值由下表定义:
• 1. IF-THEN规则
• 任何一种推理都包含有前提(也称为前件)和结论 (也称为后件)这两个部分, 具有“如果…, 那么…” 的形式, 或称为IF-THEN规则。
• 如:
① 如果今天下雨,活动就改在礼堂举行;
② 如果锅炉的压力过高,就要立刻打开阀门。
• 模糊“IF-THEN”规则是“IF(如果) … THEN (那
• 其中,表示水位状态和控制阀门动作的概念都带有
模糊性。
• 这些规则的形式正是模糊条件语句的形式,可以用
模糊数学的方法来描述过程变量和控制作用的这些 模糊概念以及它们之间的关系,又可以根据这种模 糊关系及某时刻过程变量的检测值用模糊逻辑推理 的方法得出此刻的控制量。
• 这正是模糊控制的基本思路。
• 模糊控制器的模型不是由数学公式表达的数学模 型,而是由一组模糊条件语句构成的语言形式, 因此模糊控制器又称为模糊语言控制器。 • 总而言之,模糊控制是以人的控制经验作为控制 的知识模型,以模糊集合、模糊语言变量以及模 糊逻辑推理作为控制算法的数学工具,用计算机 来实现的一种智能控制。
• 传统的逻辑推理是基于二值逻辑的,它处理的信 息和推理的规则是精确的完备的。
• 如:小明是一个男生。 三角形的三个内角和等于180°。
三值逻辑、多值逻辑 • 不精确推理,或称近似推理,处理不精确、不确 定、不完备的信息,利用不精确、不完备的知识 和规则。
• 如:小明是个胖子。 干扰太大。
取值范围{0,1}扩大到[0,1]
• 语言值的运算方式如下: • (1)模糊逻辑运算
1 1 1 0.8 0.6 0.4 0.2 [不大](u ) 1 [大](u) 1 2 3 4 5 6 7 0.2 0.4 0.6 0.8 1 1 1 1 1 [不小] 1 [小](u) 2 3 4 5 6 7 8 9 10 0.2 0.4 0.6 0.6 0.4 0.2 [不大也不小] [不大] [不小] 2 3 4 5 6 7
• “真值”变量的值可取“比 较真”、“真”、“非常 真”、“假”、“比较 假”、“非常假”, 而 Baldwin将这些词语表示为 [0, 1]上的模糊集:
比较假
比较真
1
非 常 假
假
真
0
非常真
1
Байду номын сангаас
x
• 模糊系统是基于知识或基于规则的系统, 模糊系统的核心 是包括模糊“IF-THEN”规则的知识库。
• 模糊数学的方法较之传统的定量方法,可以较好
地描述具有模糊性的人类的自然语言,模拟人类
的思维过程。
§1 模糊语言
• 语言是一种符号系统,分为两大类——自然语言和人工语 言。 • 自然语言的突出特点是具有模糊性。例如:“今天是个好 天气”、“他跑得快”等。人们能够识别和理解具有模糊 性的自然语言,是因为人们对语言的理解也是具有模糊性 的。 • 具有模糊性的语言称为模糊语言。模糊语言虽然不够精确 和严格,但它并不影响人们表达自己的思想和相互间的信 息交流。 • 恰恰相反。正是这种模糊性才使得自然语言更加生动和有 表现力,也才显示出了人们判断和处理模糊现象的能力。
• 1. 语言变量
• 变量是数学中的一个基本概念 • 过去我们讨论的变量, 其取值是一个确切的数, 如描述气温的 变量可以取值为25(C)、19(C) • 然而, 日常生活中, 变量常用具有不确定性的词语来描述, 比 如昨天的气温“高”、今天的气温“相当高”, 这里的 “高”、“相当高”均是词语。 • 当一个变量取数值时, 已经有一个完善的数学体系对其描述; 而当一个变量取语言值时, 在经典数学理论中没有一个正式 的体系对其进行描述。为此, L.A.Zadeh于1974年提出了语言 变量的重要概念。
C(x)=[A(x)]1/2, D(x)=[A(x)]1/4, xU.
• 例如:描述“年轻”的集合为:
• 以30岁为例,则有:
• 例如:设U={1,2,…,10},在论域U上定义:
0.2 0.4 0.6 0.8 1 1 1 [大] 4 5 6 7 8 9 10 1 0.8 0.6 0.4 0.2 [小] 1 2 3 4 5
模糊控制之—
模糊控制的基本思想:
• 模糊控制的基本思想:利用计算机来实现人的控制经 验。 • 人的控制经验一般用语言来表达,而语言表达的控制 规则又带有相当的模糊性。如人工控制水槽水位的经 验: • (1)若水槽无水或水较少时,则开大水阀; • (2)若水位和要求的水位相差不大,则把水阀关小; • (3)若水位快接近要求的水位,则把阀门关得很小; • ……
• 如:P : 小明是个胖子,T ( P) 0.8
• 有两种形式的模糊命题: 原子模糊命题与复合模糊
命题。
• 原子模糊命题是简单句“N is A”, 其中N为语言变 量, A为N的语言值, A用X论域上的模糊集来表示。
• 如:P:该设备的温度太高。 Q:该设备误差的变化率很小。
• 复合模糊命题是原子模糊命题利用连接词“and”、
么)…”的陈述句, 其中某些词用模糊集来刻画。
• 例如司机驾车一般采用以下规则:
• 如果速度慢, 则施加给油门较大的力; • 如果速度适中, 则施加给油门正常大小的力;
• 如果速度快, 则施加给油门较小的力。
• 可以根据这些规则 (可能需要更多的规则) 来构造
和设计一个自动控制汽车速度的控制器。
• 在汽车控制的“IF-THEN”规则里, 包含“慢” 、 “较大”、“适中”、“正常”、“快”、“较 小”等模糊概念, 自然可以用模糊集来描述。 • 含有模糊成分的命题称为“模糊命题”, 比如“汽 车速度慢”。模糊命题的判断结果常常是非真非 假, 处于真假之间的模棱两可的状态。 • 对模糊命题P, 用T(P)表示其真值, 则T(P)[0, 1]。
60
100
120
• 上面给出了语言变量的简单而直观的通俗描述 , 正式地, Zadeh把语言变量定义为一个五元组。 • 定义 一个语言变量是一个五元组(N, T(N), U, G, M), 其中: ♪ N是变量的名称,如年龄、颜色、速度等; ♪ T(N)(简称为T)表示X的词集, 即X的语言值的名称集; ♪ U是论域, N的实际取值区域; ♪ G是生成规则, 用于生成X的语言值的名称; ♪ M是语义规则, 对每个语言值tT 附上M(t), M(t)是U上的模糊 集。
推理是根据已知的一些命题,按照一定的 法则,去推断一个新的命题的思维过程和思维 方式。 模糊推理又称模糊逻辑推理,是以模糊判 断为前提,运用模糊语言规则,推出一个新的 近似的模糊判断结论的方法。
• 利用模糊概念进行的判断和推理是模糊判断和模
糊推理。
• 模糊语言和模糊逻辑推理引入模糊数学的方法对
人类的语言和思维进行定量分析和描述。
• 基于模糊逻辑方法处理由模糊性引起的不精确推 理称为模糊逻辑推理或简称模糊推理。
• 以模糊集为理论基础的模糊逻辑推理的基本形式 是推理的模糊化,前提和结论中包含的概念由明 确概念变为模糊概念,反映一般规律的大前提可 以由模糊关系来表示。
• 经典逻辑中, 一个命题要么为真, 要么为假。而对于含有 模糊对象的命题来说, 常常很难用真、假两个值来表达。 此时, “真值”可以看成是一个语言变量。
• 例如:某电加热炉模糊控制系统,把温度作为一 个语言变量。若以T(温度)为温度的所有语言值构 成的集合,则:
• T(温度)={超高,极高,很高,较高,中等,较低, 很低,极低,过低}
语言变量体系结构
• 2. 语言限定词(语言算子)
• 如前所述, 语言变量的值是词语。事实上, 语言值常用一个 单词以上的词语来表示, 比如汽车的速度这一语言变量, 其 值可能是“非常慢”、“不太快”, 它们分别是在词语“慢 速”、“快速”之上增加限定词“非常”、“不太”后形 成的。
1 2 1 2 1 2 1 2 1 2 1 2
§2 模糊逻辑
• 逻辑学:是研究概念、判断和推理形式特别是推 理形式的一门科学。 • 数理逻辑:采用一套符号代替人们的自然语言进 行表述,又称为符号逻辑。数理逻辑在逻辑上只 取真、假两个值,是一种二值逻辑。 • 数理逻辑主要研究演绎推理,演绎推理一般具有 三段论法的形式,即,从两个判断,得出第三个 判断。
• 如果一个变量取自然语言中的词语为值, 则称其为语言 变量。这里, 词语由定义在论域上的模糊集合来描述, 而 语言变量定义在一个词语集上。 • 例如, 汽车速度是一个语 言变量X, 可取“慢速”、1 “中速”、 “快速”为 值, 而其每一个取值都可 以用 [0, Vm] 上的模糊集 来表示(Vm 是最快速度), 如右图所示。 0 慢速 中速 快速
“or”及“not”连接而成的命题, 这些联结词可分别 用模糊交、模糊并、模糊补来表示。
• 常见的命题联结词有五个: • (1)析取 “∨”
• (2)合取“∧”
• (3)否定“-”
• (4)蕴涵“”
• (5)互蕴涵或等价“”
• 模糊控制是建立在一系列控制规则基础上的,而这些控制 规则由专家或有现场经验的操作人员提供。 • 模糊“IF-THEN”规则可以表示为如下形式的模糊条件语句: • 简单模糊条件语句“若P,则Q”,记为if P then Q • 如:若温度偏低,则增加燃料量 • 多重简单模糊条件语句“若P,则Q,否则R”,记为if P then Q, else R • 如:若温度偏高,则减少燃料量,否则增加燃料量 • 双维模糊条件语句“若P且Q,则R”,记为if P and Q then R • 如:若温度偏高,且温度具有增加趋势,则减少燃料量 最常用的是双维模糊控制语句。 对于复杂过程,还可用更复杂的类型表示。