【精品课件】太阳能电池的效率和

合集下载

太阳能电池ppt-PPT课件

太阳能电池ppt-PPT课件
太阳能电池
启明物理0901班 庞贵明
导读
★太阳能电池的产生背景 ★太阳能电池的发展历程及现状 ★太阳能电池的原理 ★太阳能电池的分类 ★结束语
太阳能电池的产生背景
自从两次工业革命以后,煤、石油、天然气等化石燃 料相继被广泛地应用到生产生活的各个方面。随着社会经 济的不断发展和人类文明的不断进步,人类对能源的需求 量不断飞速增长。 然而,这些曾经被人们广泛应用并且现在还在被使用 的基本都是不可再生能源。其有限的储量与人类无限的需 求之间构成了不可调和的矛盾。 其次,煤、石油、天然气等化石燃料燃烧后会产生大 量的二氧化碳气体,造成温室效应,加速全球气候变暖, 给人类及其他动植物的生存构成巨大挑战。
太阳能电池的产生背景
再者,这些不可再生能源的大量使用,还会产生环境 污染、生态破坏等严重问题。 因此,开发一种储量巨大、清洁、无污染的可再生能 源已经成为当今社会的广泛共识。 与常规能源相比,太阳能具有三大优势: 其一,它是人类可以利用的最丰富的能源。据统计, 在过去的漫长的十几亿年中,太阳只消耗了它本身能量的 2%。按照这种速度计算,太阳足以供给人类使用几十亿 年,可谓取之不尽、用之不竭。
太阳能电池的发展历程及现状
1839年,法国物理学家贝克勒尔(E.Becquerel)发现液 体的光生伏特效应 【光生伏特效应:半导体受到光照时产生电动势的现象】 1877年,亚当斯(W.G.Adams)研究了硒的光伏效应, 并制作了第一片硒太阳能电池 1883年,美国发明家查尔斯描述了第一块硒太阳能电池的 原理 1918年,波兰科学家Czochralski发展了生长单晶硅的提 拉法工艺 1941年 奥尔在硅上发现光伏效应
太阳能电池的产生背景
其二,在地球上,只要有光照的地方都有太阳能,这 样我们就可以就地开发利用,不存在运输问题,尤其对于 交通不发达的农村、海岛和边远地区更具有实用价值。 其三,太阳能是一种十分清洁的能源。在开发和利用 太阳能时,不会产生废渣、废水和废气;也没有噪音,更 不会产生大气污染、影响生态平衡等环境问题。 因此,太阳能是一种非常合适的新能源,研究和开发 太阳能,对于我们人类今后的生产生活乃至生存发展历程及现状

太阳能电池介绍课件PPT演示文稿

太阳能电池介绍课件PPT演示文稿
图3-3 单原子的电子能级对应的固体能带
3.1 太阳能光伏发电原理
4. 禁带、价带和导带 电子只能在各能带内运动 ,能带之间的区域没有电子态, 这个区域叫做“禁带”,用Eg 表示。 完全被电子填满的能带称为“满带”,最高的满带容纳 价电子,称为“价带”,价带上面完全没有电子的称为“空 带”。 有的能带只有部分能级上有电子,一部分能级是空的。 这种部分填充的能带,在外电场的作用下,可以产生电流。
3.1 太阳能光伏发电原理
2.硅的晶体结构 (1)硅的原子结构 硅(Si)原子,原子序数14,原子核外14个电子,绕核运 动,分层排列:内层2个电子(满),第二层8个电子(满),第 三层4个电子(不满),如图3-1所示。
图3-1 硅的原子结构 及其原子能级
3.1 太阳能光伏发电原理
(2) 硅的晶体结构
3.1 太阳能光伏发电原理
5.电子和空穴 电子从价带跃迁到导带(自由电子)后,在价带中留下 一个空位,称为空穴,空穴移动也可形成电流。电子的这 种跃迁形成电子-空穴对。电子和空穴都称为载流子。 电子-空穴对不断产生, 又不断复合。
图3-5 具有一个断键的硅晶体
3.1 太阳能光伏发电原理
6. 掺杂半导体
太阳能电池介绍课件PPT演示文稿
第3章 太阳能光伏电池
太阳能光伏电池——太阳能 电能
3.1 太阳能光伏发电原理
3.1.1半导体基础知识
1.导体、绝缘体和半导体 (1)自由电子与自由电子浓度 物质由原子组成,原子由原子核和核外电子组成 ,电子 受原子核的作用,按一定的轨道绕核高速运动。能在晶体 中自由运动的电子,称为“自由电子”,它是导体导电的 电荷粒子。 自由电子浓度:单位体积中自由电子的数量,称为自由 电子浓度,用n表示,它是决定物体导电能力的主要因素之 一。

太阳能电池工作原理及效率

太阳能电池工作原理及效率

N型半导体: 在纯净的
硅晶体中掺入五价元
自由
电子
素(如磷),使之取
代晶格中硅原子的位
置,就形成了N型半导
施主 原子
体。
2、杂质半导 体
由于杂质原子的最外层有五个价电子,所以除了与其 周围硅原子形成共价键外,还多出一个电子。多出的 电子不受共价键的束缚,成为自由电子。 N型半导体中,自由电子的浓度大于空穴的浓度,故 称自由电子为多数载流子,空穴为少数载流子。 由于杂质原子可以提供电子,故称之为施主原子。
的能级; • 禁带之上则为导带,导带中的能级就是价电子挣脱共
价键束缚而成为自由电子所能占据的能级; • 禁带宽度用Eg表示,其值与半导体的材料及其所处的
温度等因素有关。(ev电子伏特)
T=300K时,硅的Eg=1.1eV;锗的Eg=0.72eV。
能带理论:P4
晶体中大量电子能级分布组成密集的能级带,称为能带。 其中“价带”能级最低,“导带”能级最高。处于导电状态的 能级区域称为导带。导带与价带之间区域称为禁带。
3、PN结
1、本征半导体
本征激发: 半导体在 光照或热辐射激发 下产生自由电子和 空穴对的现象称为 本导体
复合: 自由电子在运动的过程中如果与空穴相遇就会 填补空穴,使两者同时消失,这种现象称为复合。 动态平衡: 在一定的温度下,本征激发所产生的自由 电子与空穴对,与复合的自由电子和空穴对数目相等, 故达到动态平衡。
基本原理
基本原理
• 制造太阳电池的半导体材料已知的有十几种,因 此太阳电池的种类也很多。
• 目前,技术最成熟,并具有商业价值的太阳电池 要算硅太阳电池。下面我们以硅太阳能电池为例, 详细介绍太阳能电池的工作原理。
一、太阳能电池的物理基础

第五讲 太阳能电池效率极限课件

第五讲 太阳能电池效率极限课件
• 然而,能量比带隙能量大的光子(Egh>Eg)会与形成共 价键的电子相作用,用它自身所具有的能量去破坏共 价键,形成可以自有流动的电子-空穴对。
导带
Eg (禁带宽)
价带
光照时电子-空穴对的产生
• 光子的能量越高,被吸收的位置就越接近半导体表面, 较低能量的光子则在距半导体表面较深处被吸收。
光的能量与电子-空穴对产生的位置间的联系
1.2 光照的影响
• 在无光照的情况下,描述二极管电流I和电压V间 函数关系的特征曲线(I-V曲线)为:
I I0[exp(nqkVT)1]
• 光线的照射对太阳电池的作用,可以认为是在原 有的二极管暗电流基础之上叠加了一个电流增量, 于是二极管公式变为:
II0[exp(nqkVT)1]IL
电压电流 方向?
voltage axis.
• 用于衡量在一定照射强度、工作温度以及面积条件 下,太阳能电池电力输出的两个主要制约参数为:
• 短路电流(Isc, Short circuit current ) 当电压为零时电池输出的最大电流,Isc=IL。Isc与 所接受到的光照强度成正比。
• 开路电压(Voc, Open circuit voltage ) 电流为零时,电池输出的最大电压。Voc的值随辐 照强度的增加成对数方式增长。
Cell
Equivalent circuit for a solar cell with load. Internal resistances RS and RSH represent
power loss mechanisms inside the cell.
RS = 0 ISC
does the energy originate?

太阳能电池PPT课件

太阳能电池PPT课件

.
9
太阳能电池的发展历程及现状
我国对太阳能电池的研发工作十分重视。国家发改委 制定的“ 光明工程 ”将筹资100亿元用于推进太阳能发电 技术的应用,计划到2015年全国太阳能发电系统总装机容 量达到300兆瓦。
目前,我国已有10条太阳能电池生产线,年生产能力 约为4.5MW,其中8条生产线是从国外引进的。在这8条 生产线中,有6条单晶硅太阳能电池生产线,2条非单晶硅 太阳能电池生产线。
.
11
太阳能电池的原理
当P型和N型半导体结合在一起时 , 在两种半导体的 交界面区域里会形成一个特殊的薄层 ,界面的P型一侧带 负电,N型一侧带正电。这是由于P型半导体多空穴,N型 半导体多自由电子,出现了浓度差。N区的电子会扩散到 P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由 N指向P的“内电场”,从而阻止扩散进行。达到平衡后, 就形成了这样一个特殊的薄层形成电势差,这就是PN结。
.
7
太阳能电池的发展历程及现状
.
8
太阳能电池的发展历程及现状
根据Dataquest的统计资料显示,目前全世界共有136 个国家投入普及应用太阳能电池的热潮中。其中有95个国 家正在大规模地进行太阳能电池的研究开发,积极生产各 种相关的节能新产品。
目前,许多国家正在制定中长期太阳能开发计划,准 备在21世纪大规模开发太阳能:美国能源部推出了“ 国 家光伏计划”和“太阳能路灯计划” ;日本提出了“阳 光计划” ;日本、韩国以及欧洲地区总共8个国家决定携 手合作,在亚洲内陆和非洲沙漠地区建设世界上规模最大 的太阳能发电站。
因此,开发一种储量巨大、清洁、无污染的可再生能 源已经成为当今社会的广泛共识。
与常规能源相比,太阳能具有三大优势: 其一,它是人类可以利用的最丰富的能源。据统计, 在过去的漫长的十几亿年中,太阳只消耗了它本身能量的 2%。按照这种速度计算,太阳足以供给人类使用几十亿 年,可谓取之不尽、用之不竭。

太阳能电池优秀课件

太阳能电池优秀课件

2 、光电导效应
电子能量
在光线作用下,电子吸收光
子能量从束缚状态过渡到自由
hv
状态,而引起材料电导率的变
导带 Eg
价带
化,这种现象被称为光电导效
应。
当光照射到半导体光电导材料上时,若光辐
射能量足够强,材料价带上的电子将被激发到导
带,从而使材料中的自由载流子增加,致使材料
的电导变大。
光电导产生的条件
6、温度效应
太阳能电池用半导体的禁带 宽度的温度系数为负,随温度 上升带隙变窄,会使短路电流 略有上升,但同时会使I0增加, Voc下降。
综合所有参数,转换效率随 温度上升而下降。
7、辐照效应 作为卫星和飞船的电源,太阳电池必然暴露
在外层空间的高能粒子的辐照下。高能粒子 辐照时通过与晶格原子的碰撞,将能量传给 晶格,当传递的能量大于某一阈值时,便使 晶格原子发生位移,产生晶格缺陷。这些缺 陷将起复合中心的作用,从而降低少子寿命。 大量研究工作表明,寿命参数对辐照缺陷最 为灵敏,也正因为辐照影响了寿命值,从而 使太阳电池性能下降。
理想情况下的效率
舍弃太阳光中波长大于长波限的光 谱,在理想情况下,能量大于禁带宽 度的光子全部被材料吸收形成光电流, 显然,最大短路电流Isc仅与材料的带隙 有关。
理想情况下Voc为:
Voc
kT q
ln
I ph I0
1
式中Iph为光生电流,I0为二 极管饱和电流:
I0
A
qDn
n2 i
LN nA
图一
将表面制成金字塔型的组织结构,以减少光的反射 量。
将金属电极埋入基板中,以减少串联电阻。(图二)
图二
减少背电极与硅的接触面积,以减少因金属与硅的 接合处引入的缺陷, (图三)

太阳能电池课件完整版

太阳能电池课件完整版

太阳能汽车
太阳能路灯
PV APPLICATION
五、太阳能电池遇到的挑战
• 接受太阳辐射的面积; • 气候的影响; • 硅片的价格及硅片的加工技术。
谢谢!Biblioteka 太阳能电池发电的原理太阳能电池发电的原理主要是半导体的光电效应,一般 的半导体主要结构如下:
• 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边 的四个电子。
硅晶体中掺入其他的杂质,如硼、磷等,当掺入 硼时,硅晶体中就会存在着一个空穴,它的形成可以 参照下图:
图中,正电荷表示硅原子,负电荷表示围绕在硅原子 旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子 周围只有3个电子,所以就会产生入图所示的蓝色的空穴, 这个空穴因为没有电子而变得很不稳定,容易吸收电子而中 和,形成P(positive)型半导体。
太阳能电池的分类
• (1)硅太阳能电池 • 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非 晶硅薄膜太阳能电池三种。 • 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最 高的转换效率为24.7%,规模生产时的效率为15%。在大规模应用和 工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其 成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜单晶硅 太阳能电池的替代产品。 • 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅 薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为 10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地 位。 • 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模 生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定 性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提 高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池主要发展产 品之一。

太阳能电池的参数精选PPT

太阳能电池的参数精选PPT
在直角坐标图上,以纵坐标代表电流, 横坐标代表电压,测得各点的连线,即为该 电池在此辐照度和温度下的伏安特性曲线, 如图所示。
二、太阳能电池的主要技术参数
(2) 开路电压
在一定的温度和辐照度条件下, 太阳电池在空载(开路)情况下的 端电压,也就是伏安特性曲线与横 坐标的交点所对应的电压,通常用 Uoc来表示。
太阳能电池的参数
. 提纲 一、太阳能电池的等效电路 二、太阳能电池的主要技术参数
一、太阳能电池的等效电路
(1) .理想的太阳电池等效电路 理想的太阳电池等效电路如图所示。 当连接负载的太阳电池受到光照射时,
太阳电池可看做是产生光生电流Iph的恒 流源。
与之并联的有一个处于正偏置下的二 极管,通过二极管P-N结的漏电流ID称为 暗电流,是在无光照时,由于外电压作用 下P-N结内流过的电流,其方向与光生电 流方向相反,会抵消部分光生电流。
的极限输出功率值;
AkT I AkT I 理想的太阳电池等效电路
ph
U ln( 1) ln 实Im际Um的—o 太c —阳最电大池输等出效功电率路。如图所示。
q I q I 有些光伏系统采用“最大功率跟踪器”,可0在一定程度上增加输出的电能。
ph 0
实际的太阳电池等效电路如图所示。
二、太阳能电池的主要技术参数
一、太阳能电池的等效电路
(1) .理想的太阳电池等效电路
暗电流ID表达式为: IDI0(eqU/(AkT)1)
式中 I0——反向饱和电流,在黑暗中通 过P-N结的少数载流子的空穴电流和电子电 流的代数和; U——等效二极管的端电压; q——电子电量; T——绝对温度; A——二极管曲线因子,取值在1~2之间。
因此,流过负载两端的工作电流为: I Ip h ID Ip h I0 (e q U /(A k T ) 1 )

太阳能光伏电池转换效率计算 ppt课件

太阳能光伏电池转换效率计算  ppt课件
=156.25cm2 角面积(S2):看作三角形计算,即
弧度“l” 视为直线“l1” 根据勾股定律 a2+b2=c2
a c2 b2 752 62.52 41.46
PPT课件
7
通过功率计算转换效率
S2=1/2*d*f=1/2*(62.5-41.46)2=221.34mm2 S=S1-4S2=15625-4-221.34=14739.64mm2=147.4cm2
=90-67.1146=22.8854。
PPT课件
12
三、求S1,S2
• S1=1/2*a*h=1/2*82.9156*62.5
=2591.1125mm2
• S2=β/360*3.14159*b2
=22.8854/360*3.14159*752 =1123.3835mm2
PPT课件
13
四、求总面积S
• S=S1*4+S2*4=2591.1125*4+1123.3835*4
=14857.984mm2
PPT课件
14
THE END
THANKS
PPT课件
yu15ruo
Pin=147.4*100=14740mW Pm=2.5*1000=2500mW η=Pm/Pin=2500/14740=16.96%
PPT课件
8
通过转换效率求功率
• 例3
有一电池片转换效率14%,单片面积 24336mm2 ,求最大功率Pm。
解析:
S=24336mm2=243.36cm2 Pin=243.36cm2 *100mW/cm2=24336 mW Pm=Pin*η=24336*14%=3407.04 mW
太阳电池培训
转换效率的计算

太阳电池量子效率 ppt课件

太阳电池量子效率 ppt课件
太阳电池量子效率
单晶硅对光的吸收过程
反射光
透射光成为反 射光的一部分
Si
太阳电池量子效率
没有透射光谱
量子效率的定性分析
有透射光谱
在175um厚度电池
Ø波长小于1000nm的光 基本没有透射,IQE和 EQE 的差别反映的是前 表面减反射膜和硅表面 陷光结构状况
Ø波长大于1000nm的光 有透射,IQE和EQE 的 差别反映的是前表面减 反射膜,硅表面陷光结 构状况,电池背表面的 钝化情况
单晶硅对光的吸收特性太阳电池量子效率si单晶硅对光的吸收过程透射光成为反射光的一部分反射光太阳电池量子效率在在175um厚度电池?波长小于1000nm的光基本没有透射iqe和和eqe的差别反映的是前表面减反射膜和硅表面陷光结构状况?波长大于1000nm的光有透射iqe和eqe的的差别反映的是前表面减反射膜硅表面陷光结构状况电池背表面的钝化情况没有透射光谱有透射光谱尾巴翘曲程度反映背表面的钝化和增反射情况量子效率的定性分析太阳电池量子效率外量子效率和电池短路电流密度短路电流密度?????deqeevjph???电流与qe的关系公式太阳电池量子效率qe应用实例分析figure5
单晶硅对光的吸收特性
Penetration Depth (m)
300 250 200
Silicon Thickness 175um 150 100
50
Wavelength 1um
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
m
Ø波长小于400nm的光在厚度0.01um 的硅中,就被全部吸收; Ø波长大于1000nm的光在175um的硅中没有被完全吸收;
不同种类的太阳电池光谱响
主要不同: Ø光谱响应波段 Ø相同波段利用率

太阳能电池ppt课件

太阳能电池ppt课件

18
太阳能电池的结构
精选ppt课件2021
19
太阳能电池发电原理
精选ppt课件2021
20
太阳电池的表征参数
太阳电池的工作原理是基于光伏效应。当光照 射太阳电池时,将产生一个由n区到p区的光
生电流Iph。同时,由于pn结二极管的特性,存 在正向二极管电流ID ,此电流方向从p区到n区 ,与光生电流相反。因此,实际获得的电流I为
25
❖ 太阳电池的转换效率η定义为太阳电池的最大 输出功率与照射到太阳电池的总辐射能Pin之
比,即
Pm 100%
Pi n
精选ppt课件2021
26
6.太阳能电池的应用
上世纪60年代,科学家们就已经将太阳电池应用于空间技
术——通信卫星供电,上世纪末,在人类不断自我反省的过
程中,对于光伏发电这种如此清洁和直接的能源形式已愈加
提高效率,大面积重复性
❖ 有机电池 -高效电子受体 和给体以及材料,提高 效率 3.新型概念电池:量子点、量子阱电池,中间带
光伏电池,带隙递变迭层电池等,尚处在理论探索、 概念研究和验证阶段。
精选ppt课件2021
14
3.太阳能电池定义和分类
太阳能电池,又称光伏器件,是一种利用光生 伏特效应把光能转变为电能的器件。它是太 阳能光伏发电的基础和核心。
scocscoc25太阳电池的转换效率定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能p26上世纪60年代科学家们就已经将太阳电池应用于空间技术通信卫星供电上世纪末在人类不断自我反省的过程中对于光伏发电这种如此清洁和直接的能源形式已愈加亲切不仅在空间应用在众多领域中也大显身手
太阳能电池原理及 表征参数
8.62-5.5 80年代初

《太阳能电池》课件

《太阳能电池》课件

交通工具用电
太阳能汽车
利用太阳能电池板为电动汽车提供动力,减少对传统能源的依赖。
太阳能飞机
在飞机上安装太阳能电池板,为飞机提供辅助动力,减少燃油消耗。
04
太阳能电池的优缺点
优点
环保性
太阳能电池利用太阳能 进行发电,不产生任何 污染物,对环境友好。
可持续性
太阳能资源丰富,且可 再生,使用太阳能电池 有助于实现能源的可持
多元化应用
除了家庭和工业应用外,太阳 能电池在交通、航空航天等领
域的应用也将得到拓展。
05
太阳能电池的制造与维护
制造过程
制造流程
制造设备
从原材料的选取、加工、组装到成品 测试,太阳能电池的制造过程需要经 过多个环节。
制造太阳能电池需要一系列专业设备 ,包括晶体生长炉、表面处理设备、 电极制备设备等。
更换损坏组件
对于损坏或老化严重的组件,需要及时更换,以保证整个系统的 稳定性和效率。
使用注意事项
安装角度与方向
安装太阳能电池板时,应考虑当地的气候和太阳高度角,使电池 板与太阳光垂直,以获得最大的能量转换效率。
避免遮挡
确保太阳能电池板周围没有遮挡物,以免影响光线的照射和能量的 转换。
定期检查系统
定期检查整个太阳能发电系统,包括电池板、控制器和储能设备等 ,确保系统正常运行并延长使用寿命。
商业用电
商业屋顶光伏电站
大型商业建筑如商场、办公楼等可安 装太阳能电池板,满足部分电力需求 ,降低运营成本。
光伏照明系统
太阳能路灯、景观灯等为商业区提供 照明,节能环保且维护成本低。
公共设施用电
01
公共建筑如图书馆、博物馆等可 利用太阳能电池板提供部分电力 ,降低建筑运营成本。

太阳能电池的效率和59页PPT

太阳能电池的效率和59页PPT
太阳能电池的效率和
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。

《太阳能电池》PPT课件

《太阳能电池》PPT课件

精选ppt
6
太阳能电池的原理
• 最基本的原理——光伏效应(Photovoltaic Effect缩写PV)
• 太阳能电池(光伏)材料主要包括:产生光 伏 效应的半导体材料、薄膜衬底材料、减反 射膜材料、电极与导线材料、组件封装材 料等。
精选ppt
7
• 电池的分类 单晶硅太阳能电池 多晶硅太阳能电池 薄膜光伏电池
目前对于某一种光电池材料,只是与其对应的光 谱段。所以,对单晶硅能量转化的效率的理论极限为 27.8%。太阳光中有大量的低能长波光子,降低了太阳 能电池的效率。
提高转换效率和降低成本是太阳能电池制备中考 虑的两个因素,对于目前的硅系太能电池,要想再进 一步提高转换效率是比较困难的。
精选ppt
22
新型太阳能电池 ——铁电太阳能电池
精选ppt
8
单晶硅太阳能电池
• P型晶体硅经过掺杂磷可 得N型硅,形成P-N结。
• 当光线照射太阳电池 表面 时,一部分光子被硅材料 吸收;光子的能量传递给 了硅原子,使电子发生了 越迁,成为自由电子在PN结两侧集聚形成了电位 差,当外部接通电路时, 在该电压的作用下,将会 有电流流过外部电路产生 一定的输出功率。
精选ppt
12
在军事上的应用
精选ppt
13
在航空领域的应用
精选ppt
14
卫星上的太阳能电池
精选ppt
15
在生活中的应用
精选ppt
16
精选ppt
17
汽车上的太阳能电池
精选ppt
18
电动玩具上的太阳能电池
精选ppt
19
在公共设施上的应用
精选ppt
20
在工农业上的应用

太阳能电池的效率和

太阳能电池的效率和

05 结论
太阳能电池的重要性和意义
可持续能源
太阳能电池是一种可再生能源, 能够持续不断地提供清洁能源, 减少对化石燃料的依赖,有助于
保护环境。
经济效益
随着技术的进步和规模化生产,太 阳能电池的成本逐渐降低,使得太 阳能发电在经济上更具竞争力。
广泛应用
太阳能电池不仅可用于家庭和商业 用途,还可用于交通工具、航天器 等领域,具有广泛的应用前景。
不同材料的太阳能电池具有 不同的光谱响应特性和温度 特性,因此在选择电池材料 时需要综合考虑各种因素。
目前,单晶硅和多晶硅是应用 最广泛的太阳能电池材料,它 们的转换效率较高且技术成熟。
04 太阳能电池的未来发展
新型太阳能电池的研究进展
钙钛矿太阳能电池
利用钙钛矿材料作为吸光层,具有高光电转换效率和低制造成本 的优势,是目前研究的热点之一。
的太阳能电池进行组合安装。
表面污染的影响
太阳能电池表面的污染物质会 吸收太阳光,导致电池的转换 效率降低。
常见的污染物质包括灰尘、鸟 粪、油污等,它们会影响太阳 能电池的光吸收和反射性能。
为了保持太阳能电池的清洁和 高效,需要定期进行清洗和维 护。
电池材料的影响
电池材料的类型和质量对太阳 能电池的效率也有重要影响。
1
光照强度是影响太阳能电池效率的关键因素,光 照越强,太阳能电池的输出功率越高。
2
在标准测试条件下(STC),太阳能电池的转换 效率最高,此时的光照强度为1000W/m²。
3
随着光照强度的减小,太阳能电池的效率也会相 应降低。
温度的影响
温度对太阳能电池效率的影响较大,随着温度的升高,太阳能电池的效率会降低。 这是因为温度升高会导致电池内部的载流子复合增加,减少了有效的光生电流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳辐射经过日-地平均 距离(约1.5×108公里), 传播到地球大气层外面, 其辐射能面密度已大大 降低。
在这个距离上,垂直于太 阳辐射方向单位面积上 的辐射功率基本上是个 常数,称为太阳常数。 其数值是1.353kW/m2。
目前世界上许多国家把太阳常数作为计算 太空用太阳电池的入射光功率密度的依据, 又称AMO光谱条件。
式中(λ)为投射在电池上、波长为λ,单位带宽的光子数;ηi为量子产额,
即一个能量大于带隙Eg的光子产生一对光生电子空穴对的几率,通常可 令ηi=1;dx为距电池表面xt处厚度为dx的薄层;H为电池厚度;
G(λ、x)表示由波长为λ、单位带宽的光子射进材料在x处的产生率。
2.光生少子的收集几率fc
在太阳电池内,由于存在少子复合,所产生的每一个 光生少数载流子不可能百分之百地被收集起来。
硅折射率的实部n与虚 部k与光子能量的关系
电池厚度对Isc的影响
每种材料的n和k都与入射光之波长有关。对硅来说, 其关系曲线如图所示。把n、k的结果代入式中,发现 在感兴趣的太阳光谱中,超过30%的光能被裸露硅表 面反射掉了。
Pn结硅太阳电池的截面图
(2)栅指电极遮光损失c, 定义为栅指电极遮光面积在 太阳电池总面积中所占的百 分比。对一般电池来说,c 约为4%~15%。
qDpni2 LpND
太阳电池光电转换效率
与材料带隙Eg的关系
综合上述结果,作为带隙
Eg的函数所计算的最大光
电转换效率画于图中。
显 然 Io 取 决 于 Eg 、 Ln , Lp 、 NA 、 ND 和 绝 对 温 度 T 之 高 低 ,
也与光伏结构有关。
通过分析看出,为提高Voc,常 常采用Eg大,少子寿命长及低
考虑上述三种光学损失及材料吸收之后,光生电流可表示为:
I p h 0 H 0 q () 1 ( c ) 1 [ R ()i] () • e ( ) x d x 0 d H 0 q (,G x ) d
G (,x ) () 1 ( c ) 1 [ R ()i] () e ( ) x
(3)透射损失:如果电池厚度不足 够大,某些能量合适能被吸收的 光子可能从电池背面穿出。这决 定了半导体材料之最小厚度。
间接带隙半导体要求材料的厚度比 直接带隙的厚。对于硅和砷化镓的 计算结果示于图中。 光生载流子的定向运动形成光生电
流Iph最大光生电流值为:
Iphmax=qNph(Eg))
式中Nph(Eg)为每秒钟投射到电池上能量大于Eg的总光子数。
Isc最大值的计算考虑:舍去太阳光谱中大于长波限λmax这
部分的光谱。其中长波限满足:
m
ax
1.24 (m)
Eg(eV)
认为其余部分的光子,因其能量hv大于材料禁带宽度Eg, 被材料吸收而激发电子空穴对。
假设其量子产额为1,而且被激发出的光生少子在最理
想的情况下,百分之百地被收集起来。
在上述理想的假设下,最大短路电流值 显然仅与材料带隙Eg有关。其计算结果 如图所示。
在此条件下测试太空用太阳电池效率时, 光源应满足图AMO的光谱分布,总能量为 135.3mW/cm2,电池测试温度为25℃。
AMO光谱的太阳辐射经
过大气层中臭氧、氧
气、水汽、二氧化碳
及悬浮固体微粒(烟
尘、粉等)的吸收、
散射和反射,到达地
面时,光谱分布上出
在晴朗天气的理想条件下,决定 投射于地面的太阳辐射功率的最 重要参数是光穿过大气层通路的 长度。当太阳位于天顶,该长度
1.光生电流的光学损失
太阳电池效率损失中,有三种是属于“光学损 失”,其主要影响是降低了光生电流值。 (1)反射损失R(λ):从空气(或真空)垂直入射 到媒质(如半导体材料)的单色光的反射率:
R (n1)2 k2 (n1)2 k2
式中n为半导体材料复数折射率N之实部,即普通 折射率,k是其虚部,称为消光系数。
现了许多吸收谷,而 且总辐射能至少衰减 掉 30 % ( 如 图 7 所 示 ) 。
最短。
任一实际光通路长度与此最短长度
之比称为大气质量,符号记为
AM(Air Mass的缩写)。
太阳在天顶时,地面上 太阳辐射叫大气质量为 1的辐射,记为AMl。当 太阳偏离天顶θ角时, 大气质量由下式给出;
大气质量= 1/cos θ
电阻率(例如对硅单晶片选用 0.2Ω-cm)的材料,代入合适 的半导体参数的数值,给出硅
的最大Voc值约700mV左右。
Voc最大值确定之后,可计算 得到F.F.的最大值。
影响太阳电池效率的一些因素
太阳电池在光电能量转换过程中,由于存在各种 附加的能量损失,实际效率比上述的理论极限 效率低。 下面以pn结硅太阳电池为例, 来阐述各种能量损 失之机理,作为改进太阳电池的设计及工艺, 提高其效率的基础。
太阳电.5
太阳电池所利用的太阳能来源于太阳辐射。太阳中心 发生的核聚变反应,连续不断地释放出巨大能量,主 要以光辐射形式从太阳表面的发光层向太空辐射。 表面发光层温度约6000K,其辐射光谱与6000K绝对 黑体的连续辐射光谱类似(见图)。
这是许多国家使用高空气球、 高空飞机、人造卫星、宇宙 飞船等对太阳辐射进行大量 测试、综合而得到的公认数 据。与此同时,还确定了满 足太阳常数数值的太阳辐射 度按波长分布表。根据此表 可画出太阳光的光谱分布曲 线。
太阳电池Isc的上限值与材料Eg的关系
Voc最大值,在理想情况下由下式定:
VOC KqTlnIIp0h1
式中Iph是光生电流,在理想情况下即为图中所对应
的最大短路电流。Io是二极管饱和电流,用下式计算:
I0
A•qLnDN nnAi2
qDpni2 LpND
ni2 NcNv expKEgT
I0
A•qLnDN nnAi2
上图还给出AM 1.5的光谱分布,其积分能量为83.5mW/cm2。 作为地面太阳电池测试依据的AM 1.5光谱条件,其光源应 满足上图中AM1.5光谱分布。
太阳电池的理论效率
.. VmIpmpVOC •Isc•FF
Pin
Pin
太阳电池的理论效率由上式决定。当入射太阳光谱AM0或
AMl.5确定之后,其值取决于Isc、Voc和F.F.的最大值。
相关文档
最新文档