高效液相色谱基础知识总结

合集下载

高效液相色谱分析复习知识点

高效液相色谱分析复习知识点

高效液相色谱分析复习知识点
1.P66页何为液相色谱法?P67页液相色谱法的适用对象。

2. P67页气相色谱法和液相色谱法的区别。

3. P67页影响液相色谱峰展宽的因素有三个,P69页与气相色谱的速率方程的相同点与不同点。

4. P70页高效液相色谱法的主要类型,其中重点掌握液-液分配色谱法的原理,明确何为正相色谱?何为反向色谱?以及在用上述两类色谱分离极性组分时的出峰顺序。

5. P76页排阻色谱的出峰顺序,与一般的色谱出峰顺序有何不同?
6. P77页液-液色谱和液-固色谱的固定相各是什么?
7. P81页溶剂极性顺序?选用流动相的极性有何基本原则?
8. P84页何为梯度洗脱?何为外梯度?何为内梯度?
9. P86页色谱柱的组成。

10. P86页常用的液相色谱检测器的特点。

11. P93页如何选择液相色谱分离类型(见表3-3)。

作业题:
P109页2、5。

高效液相色谱知识收藏

高效液相色谱知识收藏

高效液相色谱知识收藏1. 分离原理:HPLC利用固定在填料中的固定相和流动相(溶剂)之间的相互作用来分离混合物中的化合物。

固定相通常是多孔填料,而流动相则是溶解样品混合物的溶剂。

在流动相的作用下,样品中的化合物会以不同速率通过固定相,从而实现分离。

2. 设备组成:HPLC主要由溶剂输送系统、样品进样器、固定相柱和检测器组成。

溶剂输送系统用于向柱中输送流动相,样品进样器用于将样品注入HPLC系统,固定相柱用于实现化合物的分离,检测器用于检测分离出的化合物。

3. 应用领域:HPLC广泛应用于药物分析、环境监测、食品安全、生命科学研究等领域。

它可以用于分离和测定各种化合物,包括药物、天然产物、食品添加剂等。

4. 操作要点:在进行HPLC分析时,需要注意溶剂的选择、固定相柱的条件、检测器的调试等细节。

同时,样品的预处理和进样器的设定也会影响分析结果的准确性和稳定性。

5. 数据分析:HPLC分析通常会生成大量的数据,包括色谱图谱、保留时间、峰面积等。

对这些数据进行分析和解释是HPLC分析的关键步骤,可以借助数据处理软件进行数据分析和处理。

总的来说,HPLC是一种高效、准确的分析技术,可广泛应用于化学、生物和医药领域。

了解HPLC的基本原理和操作要点,可以有效提高样品分析的准确性和效率。

HPLC是一种高效、准确的分析技术,可广泛应用于化学、生物和医药领域。

了解HPLC的基本原理和操作要点,可以有效提高样品分析的准确性和效率。

在HPLC分析中,固定相柱是至关重要的部分,不同的固定相柱适用于不同的样品类型和分离要求。

以下是一些常见的固定相类型:1. 反相色谱柱:反相色谱利用极性差异来进行化合物的分离,通常用于水溶性化合物的分离。

反相色谱柱的填料通常是非极性的,比如碳链分子。

常见的反相色谱柱填料包括C18、C8、C4等,它们的碳链长度不同,可以实现对不同极性化合物的分离。

2. 正相色谱柱:正相色谱是基于化合物在极性填料上的分离,适用于非极性化合物的分离。

关于HPLC的基础知识(中文)

关于HPLC的基础知识(中文)
HPLC,即高效液相色谱,是一种使用色谱柱进行液态样品分析分离的高效技术。其基础构成包括脱气装置、泵、进样器、柱温箱、检测器及数据处理装置。脱气装置负责去除洗脱液中的氧气等气体,以确保泵的正常工作和检测器的灵敏度。泵是系统中的送液装置,能在高压下以恒定流速将洗脱液压送至色谱柱。进样器则将分析对象/样品导入色谱柱。柱温箱使色谱柱保持一定温度,以降低洗脱液粘度并稳定分离时间。检测器用于检测经柱分离后的各组分,根据样品性质可选择不同类型的检测器如紫外可见光检测器、差检测器等。最后,数据处理装置对检测器检测出的电信号进行计算和处理,生成色谱谱图供分析使用。

液相色谱知识总结

液相色谱知识总结
佳留有半米旳距离以便人员检验仪器背面 板。
• :电源电压为220±10V,频率为
50±0.5Hz·最佳配置稳压器(2kw以上)
• 最佳 试验室有专线,同一线路上不可有大
旳用电机械干扰
• 电源为三相电源,接地必须良好(此条非常
主要),泵,检测器,工作站,电
• 脑接在同一种合格旳接线板上 (温分每台
仪器带一专用接线板)
示差折光检测器
• 示差折光检测器是根据不同物质具有不同折射率
来进行组分检测旳。但凡具有与流动相折射率不 同旳组分,均能够使用这种 检测器。假如流动相 选择合适,能够检测全部旳样品组分。示差折光 检测器旳优点是通用性强,操作简便;缺陷是敏 捷度低,最小检出限约为10-7g/ml,不能做痕量 分析。另外,因为洗脱液构成旳变化会使折射率 变化很大,所以,这种检测器也不合用于梯度洗 脱。
常见问题及处理
• 1 压力 • 2 基线不稳 • 3 谱图重现性不好 • 4 凝胶负峰旳产生
液相色谱知识总结
液相色谱旳工作原理
• 高效液相色谱(high performance liquid
chromatography )是色谱法旳一种分 支, 分离原理是:溶于流动相(mobile phase)中旳各组分经过固定相时,因为与 固定相(stationary phase)发生作用(吸附、 分配、离子吸引、排阻、亲和)旳大小、 强弱不同,在固定相中滞留时间不同,从 而先后从固定相中流出。
荧光检测器
• 在其他条件一定旳情况下,荧光强度与物质旳浓度成正比。
许多有机化合物具有天然荧光活性,另外,有些化合物能 够利用柱后反应法或柱前反应法加入荧光化试剂,使其转 化为具有荧光活性旳衍生物。在紫外光激发下,荧光活性 物质产生荧光,由光电倍增管转变为电信号。荧光检测器 是一种选择性检测器,它适合于稠环芳烃、氨基酸、胺类、 维生素、蛋白质等荧光物质旳测定。这种检测器敏捷度非 常高,检出限达10-12—10-13g/ml,比紫外检测器高2—3 个数量级,适合于痕量分析。而且能够用于梯度洗脱。其 缺陷是合用范围有一定旳不足。

(干货)液相色谱基础知识大全

(干货)液相色谱基础知识大全

一、基本原理高效液相色谱(HPLC)法是以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。

高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。

在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。

高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。

二、高效液相色谱分析原理(1)、高效液相色谱分析的流程:由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。

被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。

废液流入废液瓶。

遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。

这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。

(2)、高效液相色谱的分离过程:同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。

它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。

开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。

分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。

分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。

组分B的分配系数介于A,C之间,第二个流出色谱柱。

若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。

不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。

其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。

分享高效液相色谱基础知识详解!

分享高效液相色谱基础知识详解!

分享高效液相色谱基础知识详解!食品实验室服务♚高效液相色谱法概述高效液相色谱法(HPLC)是上个世纪七十年代迅速发展起来的一项高效、快速的分析分离技术,是现代分离测试的重要手段。

色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(station phase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

HPLC是在经典的液相色谱法基础上发展起来的,其以液体作为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。

其分离机制与常规柱色谱相同,但填料更加精细,需高压泵推动,柱效高,分析速度快。

与气相色谱不同的是液相色谱中流动相亦参与组分的分离过程,其组成、比例和pH值可灵活调节,分离模式多样。

在实际操作中主要通过改变流动相的组成来调节样品在色谱柱的保留值和选择性,从而使不同样品得到分离。

高效液相色谱法自20世纪60年代问世以来,由于使用了高压输液泵、全多孔微粒填充柱和高灵敏度检测器,实现了对样品的高速、高效和高灵敏度的分离测定。

高效液相色谱由于吸取了经典液相色谱的研制经验,并引入微处理机技术,极大的提高了仪器的自动化水平和分析精度。

现在用微处理机控制的高效液相色谱仪,其自动化程度很高,既能控制仪器的操作参数(如溶剂梯度洗脱、流动相流量、柱温、自动进样、洗脱液收集、检测器功能等),又能对获得的色谱图进行收缩、放大、叠加,以及对保留数据和峰高、峰面积进行处理等,为色谱分析工作者提供了高效率、功能齐全的分析工具。

高效液相色谱法的应用范围十分广泛,对样品的适用性广,不受分析对象挥发性和热稳定性的限制,几乎所有的化合物包括高沸点、极性、离子型化合物和大分子物质均可用高效液相色谱法分析测定,因而弥补了气相色谱法的不足。

在目前已知的有机化合物中,可用气相色谱分析的约占20% ,而80% 则需用高效液相色谱来分析。

高效液相色谱法知识汇总(全面详细)

高效液相色谱法知识汇总(全面详细)

高效液相色谱法知识汇总(全面详细)1.与气相色谱相比液相色谱的优点与气相色谱法相比,液相色谱法不受样品挥发性和热稳定性及相对分子质量的限制,只要求把样品制成溶液即可,非常适合于分离生物大分子、离子型化合物,不稳定的天然产物以及其他各种高分子化合物等。

此外,液相色谱的流动相不仅起到使样品沿色谱柱移动的作用,而且与固定相一样,与样品分子发生选择性的相互作用,这就为控制和改善分离条件提供了一个额外的可变因素。

而气相色谱法采用的流动相是惰性气体,对组分没有亲和力,仅起运载作用。

2.液相色谱特点高压、高速、高效、高灵敏度、高沸点、热不稳定有机及生化试样的高效分离分析方法。

3.高效液相相色谱仪的组成高压输液系统、进样系统、分离系统、检测系统、数据处理系统。

4.流动相使用前必须脱气常用的脱气方法有:低压脱气法(电磁搅拌、水泵抽空,可同时加热或向溶剂吹氮气)、吹氦气脱气法和超声波脱气法等。

5.梯度洗脱用两种(或多种)不同极性的溶剂,在分离过程中按一定程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的分离因素,以提高分离效果。

6.高压梯度(内梯度):特点是先加压后混合,将溶剂用高压泵增压以后输入色谱系统的梯度混合室,加以混合后送入色谱柱。

低压梯度(外梯度):特点是先混合后加压。

在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱。

7.进样系统要求良好的密封性,最小的死体积,最好的稳定性,进样时对色谱系统压力、流量影响较小。

8.分离系统色谱柱是实现分离的核心部件。

由柱管和固定相组成。

柱管为直型不锈钢管。

一般色谱柱长5~30cm,内径4~5mm,凝胶色谱柱内径3~12mm,而制备色谱柱内径则可达25mm。

一般淋洗溶剂在进入色谱分离柱之前,先通过前置柱。

HPLC 柱的填料颗粒粒径一般约为3~10m,填充常采用匀浆法,色谱柱的发展趋势是减小填料粒度和柱径以提高柱效。

9.检测系统用来连续监测经色谱柱分离后的流出物的组成和含量变化的装置。

高效液相色谱知识大全

高效液相色谱知识大全

高效液相色谱I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。

它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。

又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。

也称现代液相色谱。

二、HPLC的特点和优点HPLC有以下特点:高压——压力可达150~300 Kg/cm2。

色谱柱每米降压为75 Kg/cm2以上。

高速——流速为0.1~10.0 ml/min。

高效——可达5000塔板每米。

在一根柱中同时分离成份可达100种。

高灵敏度——紫外检测器灵敏度可达0.01ng。

同时消耗样品少。

HPLC与经典液相色谱相比有以下优点:速度快——通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成。

分辨率高——可选择固定相和流动相以达到最佳分离效果。

高效液相色谱法知识汇总大全集.总结

高效液相色谱法知识汇总大全集.总结

高效液相色谱法知识汇总大全集(最新最值得收藏的资料整理)HPLC应用一、样品测定1.流动相比例调整:由于我国药品标准中没有规定柱的长度及填料的粒度,因此每次新开检新品种时几乎都须调整流动相(按经验,主峰一般应调至保留时间为6~15分钟为宜)。

所以建议第一次检验时请少配流动相,以免浪费。

弱电解质的流动相其重现性更不容易达到,请注意充分平衡柱。

2.样品配制:①溶剂;②容器:塑料容器常含有高沸点的增塑剂,可能释放到样品液中造成污染,而且还会吸留某些药物,引起分析误差。

某些药物特别是碱性药物会被玻璃容器表面吸附,影响样品中药物的定量回收,因此必要时应将玻璃容器进行硅烷化处理。

3.记录时间:第一次测定时,应先将空白溶剂、对照品溶液及供试品溶液各进一针,并尽量收集较长时间的图谱(如30分钟以上),以便确定样品中被分析组分峰的位置、分离度、理论板数及是否还有杂质峰在较长时间内才洗脱出来,确定是否会影响主峰的测定。

4.进样量:药品标准中常标明注入10ml,而目前多数HPLC系统采用定量环(10ml、20ml 和50ml),因此应注意进样量是否一致。

(可改变样液浓度)5.计算:由于有些对照品标示含量的方式与样品标示量不同,有些是复合盐、有些含水量不同、有些是盐基不同或有些是采用有效部位标示,检验时请注意。

6.仪器的使用:①流动相滤过后,注意观察有无肉眼能看到的微粒、纤维。

有请重新滤过。

②柱在线时,增加流速应以0.1ml/min的增量逐步进行,一般不超过1ml/min,反之亦然。

否则会使柱床下塌,叉峰。

柱不线时,要加快流速也需以每次0.5ml/min的速率递增上去(或下来),勿急升(降),以免泵损坏。

③安装柱时,请注意流向,接口处不要留有空隙。

④样品液请注意滤过(注射液可不需滤过)后进样,注意样品溶剂的挥发性。

⑤测定完毕请用水冲柱1小时,甲醇30分钟。

如果第二天仍使用,可用水以低流速(0.1~0.3ml/min)冲洗过夜(注意水要够量),不须冲洗甲醇。

中国药典2020 高效液相色谱

中国药典2020 高效液相色谱

中国药典2020 高效液相色谱第一部分:高效液相色谱的概述高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种分离和分析化合物的重要技术。

它通过液相色谱柱将混合物中的化合物分离出来,然后利用不同化合物在柱中的分配和吸附作用,采用不同的流动相来实现化合物的分离和分析。

HPLC已成为分析化学中不可或缺的技术手段,广泛应用于药物分析、环境监测、食品安全等领域。

第二部分:高效液相色谱的原理高效液相色谱的分离原理是基于样品与固定相的相互作用来实现的。

样品经过柱子时,不同的成分会在固定相和流动相的作用下以不同的速率迁移,从而实现分离。

常用的固定相有反相、离子交换、凝胶等。

流动相通常是有机溶剂和水的混合物,也可以根据样品的性质来选择适当的流动相。

在分离过程中,通过调节柱温、流速、流动相和检测器参数等因素,可实现对目标物的选择性提取和分离。

第三部分:高效液相色谱的仪器设备高效液相色谱仪主要包括进样器、色谱柱、泵、检测器和数据处理系统等组成。

进样器用于将样品引入色谱柱,色谱柱是色谱分离的关键部分,泵用于推动流动相,检测器用于监测样品的出峰情况并进行定量分析,数据处理系统用于处理和分析所得的色谱数据。

现代高效液相色谱仪通常还配备有自动进样和自动数据处理功能,提高了分析效率和准确性。

第四部分:高效液相色谱的应用HPLC技术在药物分析中有着广泛的应用,可以用于药物的纯度检测、含量测定、稳定性研究等。

它还可以用于分析环境中的有机污染物和重金属离子、食品中的添加剂和残留物、植物中的活性成分等。

此外,HPLC还可以用于生物分析,如蛋白质和肽类的纯度和组成分析、核酸和小分子的分析等。

第五部分:高效液相色谱的发展趋势随着科学技术的不断进步,高效液相色谱仪的性能和分析能力不断提升,包括色谱柱材料的改进、检测器的灵敏度和分辨率的提高、数据处理系统的智能化等。

同时,绿色分析、微型化、高通量分析等也成为研究热点。

高效液相色谱知识收藏

高效液相色谱知识收藏

高效液相色谱知识收藏Agilent1100高压液相色谱仪基本操作步骤Agilent1100液相基本操作步骤Agilent1100高压液相色谱仪维护保养知识保养事项:高压液相色谱HPLC常见故障及排除方法液相色谱柱使用及保养高压液相色谱HPLC培训教程(一)高压液相色谱HPLC培训教程(七)高效液相色谱仪中反相HPLC柱子的清洁和再生HPLC对流动相的基本要求高效液相色谱Waters 600E-2487 HPLC系统SOPWaters高效液相色谱系统操作规程高效液相色谱仪(Agilent 1100)操作注意事项色谱扫盲班Agilent1100高压液相色谱仪基本操作步骤Agilent1100液相基本操作步骤(一)、开机:1、打开计算机,进入Windows NT (或Windows 2000)画面,并运行Bootp Server 程序。

2、打开 1100 LC 各模块电源。

3、待各模块自检完成后,双击Instrument 1 Online图标,化学工作站自动与1100LC通讯,进入的工作站画面。

4、从“View”菜单中选择“Method and Run control”画面, 单击”View”菜单中的“Show Top Toolbar”,“Show status toolbar”,“System diagram”,”Sampling diagram”,使其命令前有“√”标志,来调用所需的界面。

5、把流动相放入溶剂瓶中。

6、打开Purge阀。

7、单击Pump图标,出现参数设定菜单,单击Setup pump选项,进入泵编辑画面。

8 、设Flow:5ml/min,单击OK。

9、单击Pump图标,出现参数设定菜单,单击Pump control选项,选中On,单击OK,则系统开始Purge,直到管线内(由溶剂瓶到泵入口)无气泡为止,切换信道继续Purge,直到所有要用信道无气泡为止。

10、单击Pump图标,出现参数设定菜单,单击Pump Control选项,选中Off,单击Ok关泵,关闭Purge valve。

HPLC(液相色谱)常识及疑难详解(附实际操作图解)

HPLC(液相色谱)常识及疑难详解(附实际操作图解)

1 液相色谱基础知识1.1 液相色谱名词术语Mobile phase:流动相,在色谱柱中存在着相对运动的两相,一相为固定相,一相为流动相。

流动相是指在色谱过程中载带样品(组分)向前移动的那一相。

Stationary phase:固定相,柱色谱或平板色谱中既起分离作用又不移动的那一相。

Gradient elution: 梯度洗脱,一个分析周期中,按一定程序不断改变流动相的浓度配比, 使一个复杂样品中的性质差异较大的组分能按各自适宜的容量因子k达到良好的分离目的。

Detection wavelength:检测波长,retention time:保留时间,被分离样品组分从进样开始到柱后出现该组分浓度极大值时的时间Peak:峰Peak Base:峰基线,经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。

一般应平行于时间轴Peak Height:峰高,色谱峰顶点至峰底的距离。

Peak Width:峰宽,色谱峰两侧拐点处所作切线与峰底相交两点间的距离Peak Width at Half Height:半峰高宽Peak Area:峰面积Tailing Peak: 后沿较前沿平缓的不对称峰Leading Peak:前沿较后沿平缓的不对称峰Ghost Peak: 假峰,并非由试样所产生的峰Baseline Drift:基线漂移Baseline Noise:基线噪音Band Broadening:组分在色谱柱内移动过程中谱带宽度增加的现象. 1.2 流动相1.2.1 流动相类型正相液相色谱流动相:一般正相色谱固定相极性大于流动相极性,采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。

常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等),极性小的组分先出柱。

反相液相色谱流动相:一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。

高效液相色谱基本常识

高效液相色谱基本常识

被分离组分在柱中的洗脱原理Ⅱ基本概念和理论一、基本概念和术语1.色谱图和峰参数⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。

一般应平行于时间轴。

⊕噪音(noise)――基线信号的波动。

通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。

⊕漂移(drift)基线随时间的缓缓变化。

主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。

⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。

流出曲线上的突起部分。

正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。

不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。

⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。

也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。

T<0.95为前延峰,T>1.05为拖尾峰。

⊕峰底――基线上峰的起点至终点的距离。

⊕峰高(Peak height,h)――峰的最高点至峰底的距离。

⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。

W=4σ。

⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。

W h/2=2.355σ。

⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。

正常峰宽的拐点在峰高的0.607倍处。

标准偏差的大小说明组分在流出色谱柱过程中的分散程度。

高效液相色谱柱基础知识

高效液相色谱柱基础知识
烷化技术键合上各种配基,制成正相、反相、离 子交换、分子排阻色谱用填料。 适用于广泛的极性和非极性溶剂。 缺点是在碱性水溶性流动相中不稳定,易溶解。
色谱柱的种类
➢ 高分子聚合物 • 常用的是以高交联度的苯乙烯-二乙烯苯或聚甲基丙
烯酸酯为基质的球形填料。 • 压力限度比无机填料低; • 在整个pH范围内稳定,可以用NaOH或强碱来清洗
分离有机酸、碱、盐这些离子型化合物。 ➢ 样品容量随烷基链长增加而增大,且长链烷基可
使溶质的保留值增大,并常常可改善分离的选择 性;短链烷基键合相具有较高的覆盖度,分离极 性化合物时可得到对称性较好的色谱峰。苯基键 合相与短链烷基键合相的性质相似。
反相键合相色谱
流动相为极性的水或缓冲液,常加入甲醇、 乙腈、异丙醇、丙酮、四氢呋喃等与水互溶 的有机溶剂以调节保留时间。
ZORBAX Extend-C18,pH9~12, ➢ 基质的颗粒度 颗粒度越小:柱效越高(传质好,涡流扩散小),分离度越好,柱压
越高(渗透性差),常用5μ。 ➢ 基质的颗粒分布 颗粒分布越宽:柱效低(渗透性差) ➢ 基质的颗粒形状 球型:柱效高、重现性好、柱床结构均匀 无定型(不规则形状):柱床结构不均匀,流动相线性速度不均匀,
色谱柱 ; • 聚合物基质在流动相发生变化时会出现膨胀或收缩,
对于小分子化合物柱效低; • 主要用于大分子化合物,常制成凝胶柱或离子交换
柱。
化学键合相色谱柱
➢ 定义:将有机官能团通过化学反应共价键合到硅胶 表面的游离羟基上而形成的固定相称为化学键合相。
➢ 种类 非极性键合相(反相):键合相表面基团为非极性
高效液相色谱柱基础知识
张润平
色谱柱的构造
✓ 色谱柱由柱管、填料压帽、卡套(密封环)、筛板(滤片)、 于70 kg/cm2 时,也可采用 厚壁玻璃或石英管。为提高柱效,减小管壁效应,管内壁要求 有很高的光洁度,不锈钢柱内壁多经过抛光。

液相色谱法基本知识

液相色谱法基本知识
4
第一节 概 述
等,作为分析时选择余地大;而气相色谱并不可能的。 ③ 液相色谱通常在室温下操作,较低的温度,一般有利
于色谱分离条件的选择。 (3)由于液体的扩散性比气体的小105倍,因此,溶质在液
相中的传质速率慢,柱外效应就显得特别重要;而在 气相色谱中,柱外区域扩张可以忽略不计。 (4)液相色谱中制备样品简单,回收样品也比较容易,而 且回收是定量的,适合于大量制备。但液相色谱尚缺 乏通用的检测器,仪器比较复杂,价格昂贵。在实际 应用中,这两种色谱技术是互相补充的。
组分的差速迁移,从而实现分离。分配系数(K)或分配比
(k)小的组分,保留值小,先流出柱。然而与气相色谱法 不同的是,流动相的种类对分配系数有较大的影响。
21
第四节 液—固色谱法
(4)应与所用检测器相匹配。例如利用紫外检测器时,溶 剂要不吸收紫外光。
(5)容易精制、纯化、毒性小,不易着火、价格尽量便宜 等。
在液-固色谱中,选择流动相的基本原则是 极性大的试 样用极性较强的流动相,极性小的则用低极性流动相。
为了获得合适的溶剂极性,常采用两种、三种或更多种 不同极性的溶剂混合起来使用,如果样品组分的分配比k值 范围很广则使用梯度洗脱。
3
第一节 概 述
的70 ~ 80%。 (2)液相色谱能完成难度较高的分离工作
因为: ①气相色谱的流动相载气是色谱惰性的,不参与分配平衡
过程,与样品分子无亲和作用,样品分子只与固定相相 互作用。而在液相色谱中流动相液体也与固定相争夺样 品分子,为提高选择性增加了一个因素。也可选用不同 比例的两种或两种以上的液体作流动相,增大分离的选 择性。 ②液相色谱固定相类型多,如离子交换色谱和排阻色谱。
8
第二节 高效液相色谱仪

高效液相色谱法(HPLC)的概述

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC主要内容包括:1.高效液相色谱法(HPLC)的概述2. 高效液相色谱基础知识介绍(1——13楼)3. 高压液相色谱HPLC发展概况、特点与分类4. 液相色谱的适用性5.应用高效液相色谱法(HPLC)的概述以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。

其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。

由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用X围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有50种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。

高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。

目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。

将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。

C18(ODS)为最常使用的化学键合相。

根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。

在中药制剂分析中,大多采用反相键合相色谱法。

系统组成:(一)高压输液系统由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。

1.贮液罐由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。

贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。

高效液相总结

高效液相总结

高效液相色谱中的速率理论范氏方程:H =A +CuA = 2λdp 在 HPLC 中为了降低涡流扩散的影响:采用了3-10um 的小颗粒球形固定相 采用高压匀浆Cd -为常数Cs -常数 Ds -为组分在固定相中的扩散系数df_ -为固定液涂层厚度 在HPLC 中,流动相是液体其粘度比气体大得多,而且是在室温下进行操作。

因此组分在流动相中的扩散系数Dm 比GC 中的Dg 要小得多。

另外HPLC 流动相的流速快,所以纵向扩散项对谱带扩张的影响很小,可以忽略不計。

故在H -u 曲线中没极小值根据速率理论HPLC 的实验条件为:1.小粒度、均匀的球形化学鍵合相;2.低粘度流动相,流速不宜快;3.柱温适当流动相在高效液相色谱中所用的流动相也称洗脱剂,溶解样品用的溶剂最好就是洗脱剂。

由于高效液相色谱中流动相是液体,它对组分有亲和力,并参与固定相对组分的竞争。

因此流动相不仅起洗脱作用,还参与分离过程,在固定相一定时,HPLC 中,n 由色谱柱质量决定,α主要受溶剂种类的影响,κ受溶剂配比的影响。

若固定相一定,改变流动相的组成就可以r21使改变;改变流动相中各种溶剂的配比,就能有效地控制k 值。

用分离方程讨论流动相对分离的影响注意HPLC 与GC 不同在HPLC 中,当固定相一定时,流动相的种类影响选择因子,配比影响容因子。

因此,正确选择流动相直接影响组分的分离度。

在GC 中,流动相是惰性的,它对组分没有作用力,仅起运载作用,因此,α主要受固定相性质影响,κ主要受柱温影响,在GC 中,以选择固定相和改变柱温来改善分离度。

(1)不允许使用能引起柱效能损失或柱保留特性变化的溶剂。

(2)溶剂对于试样,必须具有适当的溶解度和良好的选择性。

3)溶剂要与检测器匹配。

对于紫外吸收检测器,应注意选择检测波长比溶剂的紫外截止波长要长。

对于折光率检测器,要求选择与组分折光率有较大差别的溶剂作流动相,以达最高灵敏度。

(4)溶剂的纯度要高,使用前应过滤、脱气(5)溶剂的化学稳定性好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱基础知识总结
(LC-MS),有效的弥补了色谱法定性分析特征性差的弱 点,成为最重要的分离分析方法之一, LC-MS在选择性、 灵敏度、分子量测定和提供结构信息方面具有明显的优 势,能够同时获得可靠的定性定量结果,因而被广泛应 用于药物的质量控制(杂质、副产物、降解产物等的鉴 定和测定)、药物在生物体内的吸收、分布和代谢研究 (包括代谢物的结构确定及定量)和临床医学研究(如 蛋白异常的研究)。 LC-MS已成为新药研究必不可少的 手段。20世纪70年代,高效液相色谱法崛起克服了
高效液相色谱基础知识总结
二、基本概念和术语
一、色谱图和峰参数 1、色谱图(chromatogram)--样品流经色谱柱和检测器, 所得到的信号-时间曲线,又称色谱流出曲线(elution profile)。 2、基线(base line)--经流动相冲洗,柱与流动相达到 平衡后,检测器测出一段时间的流出曲线。一般应平行 于时间轴。基线反映仪器及操作条件的恒定程度,主要 由流动相中的杂质等因素决定。
键合相色谱法是将类似于气相色谱中的固定液的液 体,通过化学反应键合到硅胶表面,从而形成固定相。
高效液相色谱基础知识总结
采用化学键合固定相的色谱法称为键合相色谱。若采用 极性键合相、非极性流动相,则称为正相色谱;采用非 极性键合相、极性流动相,则称为反相色谱。这种分离 的保留值大小,主要决定于组分分子与键合固定液分子 间作用力的大小。
高效液相色谱基础知识总结
气相色谱法不能直接用于分析难挥发、热不稳定及高分 子化合物等的弱点,大大扩大了色谱法的应用范围,把 色谱法推进到一个新水平。
高效液相色谱(high performance liquid chromatography, HPLC)是一种高效、快速的分离分析 技术,具有灵敏度高、选择性好的特点。HPLC具有的同 时分离和分析的功能对于体内药物分析和体内内源性物 质的分析及成分复杂的中药分析尤其重要。 HPLC的分离 功能还广泛用于药物的纯化和制备,如用制备色谱分离
高效液相色谱基础知识总结
天然药物的有效成分,或制备手性药物的单一对应体。 由于使用各种高灵敏度的检测器,如荧光、电化学和化 学发光检测器,再结合许多衍生化技术及样品富集技术, HPLC对许多药物的最低检测限都达到了pg级或更低水平, 非常适合于一些微量成分甚至痕量成分的分析。
由于色谱条件的可控制性及进样技术和在线样品处理 技术的发展,HPLC分析的精密度完全能够满足医药分析 实验室的要求。 HPLC一般在数分钟至数十分钟内即可 完成一个样品分析,而且往往能够实现多组分的同时测
高效液相色谱基础知识总结
定,这一快速分析的特点使HPLC广泛应用于药物合成的 各部反应的监控和临床治疗药物的监测。HPLC的柱切换 技术是通过程序控制的切换阀改变流动相的流向和(或) 流动相系统的技术。这一技术在医药分析中的应用越来 越多,尤其在药物分析中的应用最为广泛。利用柱切换 技术可以实现样品的在线净化与富集、在线衍生化、在 多个色谱柱上进行分离。在复杂样品的分析方面有着巨 大的潜力。
高效液相色谱基础知识总结
正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种: 前延峰(leading peak)和拖尾峰(tailing peak)。前者 少见。 6、拖尾因子(tailing factor,T),用以衡量色谱峰的 对称性。也称为对称因子(symmetry factor)或不对称 因子(asymmetry factor)。《中国药典》规定T应为 0.95~1.05。T<0.95为前延峰,T>1.05为拖尾峰。 7、峰底 -基线上峰的起点至终点的距离。
高效液相色谱基础知识总结
高效液相色谱基础知识总结
一、简介
色谱学是现代分离分析的一个重要领域,也是一门 新兴学科,在化学、生物学等领域发挥着越来越重要的 地位。近几十年来,色谱学各分支,如气相色谱、液相 色谱、薄层色谱等研究方法都得到了深入的研究,20世 纪50年代创立了气相色谱法,它的出现把色谱法从分离 技术提高到分离与“在线”分析的新水平,为色谱法成为 现代分离-分析方法奠定了基础,1957年诞生了毛细管 色谱法。20世纪60年代推出了色谱-质谱联用技术
高效液相色谱基础知识总结
3、噪音(noise)--基线信号的波动。通常因电源接触不 良或瞬时过载、检测器不稳定、流动相含有气泡或色谱 柱被污染所致。 4、漂移(drift)--基线随时间的缓缓变化。主要由于操 作条件如电压、温度、流动相及流量的不稳定所引起, 柱内的污染物或固定相不断被洗脱下来也会产生漂移。 5、色谱峰(peak)--组分流经检测器时响应的连续信号 产生的曲线上的突起部分。正常色谱峰近似于对称形
大小排阻色谱法的固定相是一类孔径大小有一 定范围的多孔材料。被分离的分子大小不同,它们扩散 渗入多孔材料的容易程度不同。小分子最动
高效液相色谱基础知识总结
相很快流出,保留时间最短。 在以上四种分离方式中,反相键合相色谱应用最广,
因为它采用醇—水或腈—水体系作流动相。纯水易得廉 价,它的紫外吸收极小。在纯水中添加各种物质可改变 流动相选择性。使用最广的反相键合相是十八烷基键合 相,即让十八烷基(C18H37—)键合到硅胶表面。这种 键合相又称ODS (Octadecylsilyl)键合相,如国外的 partisil5-ODS、Zorbax-ODS、Shim-pack CLC-ODS,国 产的YWG-C18等。
目前,高效液相色谱已成为化学、生化、医学、工、
高效液相色谱基础知识总结
业、农业、环保、商检和法检等学科领域中重要的分离 分析技术,是分析化学家和生物化学家手中用以解决他 们面临的各种实际分析和分离课题必不可少的工具之一。
液相色谱根据固定相性质可分为离子交换色谱、吸附 色谱、键合相色谱和大小排阻色谱。
离子交换色谱法是流动相中的被分离离子,与作为 固定相的离子交换剂上的平衡离子进行可逆交换时,它 们对交换剂的基体离子亲和力的不同而达到分离的。
高效液相色谱基础知识总结
组分离子对交换剂基体离子亲和力越大,保留时间就越 长。
吸附色谱法是当组分分子流经固定相(吸附剂,如 硅胶或氧化铝)时,不同组分分子、流动相分子就要对 吸附剂表面的活性中心展开竞争。这种竞争能力的大小, 决定了保留值大小,即被活性中心吸附得越牢的分子, 保留值越大。
相关文档
最新文档