现代数字信号处理 姚天任 第二章答案
数字信号处理 答案 第二章
第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
( ) 685ππ+n ( ) )8(π-ne j ( )343ππ+n 解 对照正弦型序列的一般公式 ϕω+n ,得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于)5(16516取k k =。
( )对照复指数序列的一般公式 ωσj + 得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
( )对照正弦型序列的一般公式 ϕω+n ,又343ππ+n = -2π343ππ-n = 6143-n π ,得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于 )3(838取k k =在图 中, 和 分别是线性非移变系统的输入和单位取样响应。
计算并列的 和 的线性卷积以得到系统的输出 ,并画出 的图形。
(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算 的每一个取样值。
≥ δ δδ δ δδ δ δ∑∞-∞=--kkn knuku a)()( ∑∞-∞=-kknaaa n--+111计算线性线性卷积λn解: ∑∞-∞=-kknuku)()(∑∞=-)()(kknuku ≥ 即∑∞-∞=-kk knuku)()(λ∑∞=-)()(kk knukuλ λλ--+111n≥即 λλ--+111n图 所示的是单位取样响应分别为 1 和 2 的两个线性非移变系统的级联,已知1 δ δ2 n 求系统的输出解 ω 1∑∞-∞=k k u )( δ δω 2∑∞-∞=k k k u a )(∑∞-=3n k ka≥已知一个线性非移变系统的单位取样响应为 n- 用直接计算线性卷积的方法,求系统的单位阶跃响应。
数字信号处理答案第2章
6
N =2 0
(7)
k = m, k = N − m k ≠ m, k ≠ N − m
jω0 n
0≤k≤N-1
X 7 (k ) = ∑ e
n =0
N −1
W
kn N
= ∑e
n =0
N −1
j( ω0 −
2π k )n N
=
1− e
j(ω0 −
2π k)N N 2π k) N
k = 0, 1, L, N − 1
(8) 解法一 直接计算:
1 jω 0 n x8 (n) = sin(ω0 n) ⋅ RN (n) = [e − e − jω 0 n ] R N ( n ) 2j
X 8 ( n) =
∑
n =0
N −1 kn x8 (n)WN
1 = [ e jω 0 n − e − jω 0 n ] e 2 j n =0
2π mn +θ ) N 2π mn +θ ) N ]
1 = [e 2j
j(
−e
− j(
2π = sin mn + θ N
n=0, 1, …, N-1
18
3. 已知长度为N=10的两个有限长序列:
1 0 ≤ n ≤ 4 x1 (n) = 0 5 ≤ n ≤ 9
1 x2 ( n) = − 1
第3章 离散傅里叶变换(DFT) 及其快速算法(FFT)
1
1. 计算以下序列的N点DFT, 在变换区间0≤n≤N-1内, 序 列定义为 (1) x(n)=1 (2) x(n)=δ(n) (3) x(n)=δ(n-n0) 0<n0<N (4) x(n)=Rm(n) 0<m<N (5) (6)
数字信处理课后习题答案
数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1判断下列序列是否是周期序列。
若是,请确定它的最小周期(1)x(n)二Acos( 5 n86)(2)x(n )= e j(- 8 )(3) x(n )=Asi n(3 n4 3)解(1)对照正弦型序列的-般公式x(n)二 Acos( n ),得出5。
因此82 16是有理数,所以是周期序列。
5 最小周期等于N=^k 16(k取5)。
5(2)对照复指数序列的般公式x(n)二exp[ j ]n,得出1。
因此2168是无理数,所以不是周期序列。
(3)对照正弦型序列的般公式x(n)二 Acos( 3n ),又x(n)二Asin( n ) =Acos(— .门—)=Acos( —n 丄),得出3。
因此2 8是有理数,所以2 434 6 4 3是周期序列。
最小周期等于N=-k38(k 取3)2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解利用线性卷积公式y(n )= x(k)h( n k)k按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值(a) y(0)=x(0)h(0)=1y(l)=x(0)h(1)+x(1)h(0)=3y(n)=x(O)h( n)+x(1)h( n-1)+x(2)h( n-2)=4,n (b) x(n )=2 (n)- (n-1)h(n)=- (n)+2 (n-1)+ (n-2)y(n)=-2(n )+5(n-1)= (n-3)(c) y(n )=u(k)kn ka u(n k):n k 1 a n 1/ \=a = . a u(n)k i a2.3计算线性线性卷积(1) y(n )=u( n)*u( n)(2) y(n)= n u(n)*u(n)解:(1) y(n)二u(k)u(n k)ku(k)u(n k)=(n+1),n >0 k 0 即y(n)=(n+1)u(n)(2) y(n )=kku(k)u( n k)2.4图P2.4所示的是单位取样响应分别为 九(n)和h 2(n)的两个线性非移变系统的级联,已知 x(n)=u(n), h ^n)二(n)-(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出 y(n).解(n)=x( n)*h Jn)u(k)[(n-k)- (n-k-4)]k=u( n)-u( n-4)y(n)= (n)*h 2 (n)a k u(k)[u( n-k)-u( n-k-4)]k算线性卷积的方法,求系统的单位阶跃响应即 y(n)二ku(k)u(n1n 1——,n >n 1—u(n)2.5已知一个线性非移变系统的单位取样响应为h(n)二a n u(-n),0<a<1 用直接计2.6 试证明线性卷积满足交换率、结合率和加法分配率。
数字信号处理 答案 第二章(精编文档).doc
【最新整理,下载后即可编辑】第二章2.1 判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j (3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
(a)1111(b)(c)111110 0-1-1-1-1-1-1-1222222 3333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2) y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)= ∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()( =∑∞=-0)()(k k n u k u =(n+1),n ≥0 即y(n)=(n+1)u(n)(2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解ω(n)=x(n)*h1(n)=∑∞-∞=k ku)([δ(n-k)-δ(n-k-4)] =u(n)-u(n-4)y(n)=ω(n)*h2(n)=∑∞-∞=k k k ua)([u(n-k)-u(n-k-4)]=∑∞-=3nk ka,n≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=a n-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
数字信号处理答案第二章
数字信号处理答案第⼆章第⼆章2.1 判断下列序列是否是周期序列。
若是,请确定它的最⼩周期。
(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的⼀般公式x(n)=Acos(?ω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最⼩周期等于N=)5(16516取k k =。
(2)对照复指数序列的⼀般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是⽆理数,所以不是周期序列。
(3)对照正弦型序列的⼀般公式x(n)=Acos(?ω+n ),⼜x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最⼩周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性⾮移变系统的输⼊和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
(a)1111(b)-1-1-1-1-1-1222222 3333 3444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===2 2knhkx)()(按照折叠、移位、相乘、相加、的作图⽅法,计算y(n)的每⼀个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n≥2(b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3)(c) y(n)= ∑∞-∞=--kkn knuku a)()(=∑∞-∞=-aa n--+111u(n)2.3 计算线性线性卷积(1) y(n)=u(n)*u(n)(2) y(n)=λn u(n)*u(n)解:(1) y(n)= ∑∞-∞=-kknuku)(-)()(kknuku=(n+1),n≥0 即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-kk knuku)()(λ=∑∞=-0)()(k kk n u k u λ=λy(n)=λλ--+111n u(n)2.4 图P2.4所⽰的是单位取样响应分别为h 1(n)和h 2(n)的两个线性⾮移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知⼀个线性⾮移变系统的单位取样响应为h(n)=an-u(-n),0系统的单位阶跃响应。
数字信号处理课后习题答案完整版
数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
《数字信号处理》课后答案
数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理第2章答案
=
系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点,
不影响频率特性, 而惟一的极点在实轴的0.9处, 因此滤波 器的通带中心在ω=0处。 毫无疑问, 这是一个低通滤波器。
[例2.4.2]假设x(n)=xr(n)+jxi(n), xr(n)和xj(n)为实序列, X(z)=ZT[x(n)]在单位圆的下半部分为零。 已知
N 1
( z 1)
z
1
2 N 1
z 1 z 1
N
2
[例2.4.4]
时域离散线性非移变系统的系统函数H(z)为
1 ( z a )( z b )
H (z)
,
a 和 b 为常数
第2章
时域离散信号和系统的频域分析
(1) 要求系统稳定, 确定a和b的取值域。
第2章
时域离散信号和系统的频域分析
2.3 分析信号和系统的频率特性
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、
零点分布完全决定了系统的频率特性, 因此可以用分析极、
零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
Re[X(ejω)]=X(ejω) Im[X(ejω)]=0 [例2.4.3] 已知 0≤n≤N N+1≤n≤2N n<0, 2N<n
n x(n) 2 N n 0
求x(n)的Z变换。
第2章
时域离散信号和系统的频域分析
解: 题中x(n)是一个三角序列, 可以看做两个相同的矩
现代数字信号处理 课后答案(姚天任 著) 华中科技大学出版社
Q
显然,若g(z)的所有零点在单位圆 内,则c(z)为最小单位序列,否 则不是。
1 1 1 1 1 1 举例( z )( z ) z 2 ( 5 z 1)其中( z )( z )为最小相位序列, 且z 2 , ( 5 z 1)亦为最小 2 3 6 2 3 6 相位序列。
a 22 e0 a 22 E[ y 0 y1 ]E[ y1 y1 ] 1 y1 a 21 y1 e2 E[ y 2 y1 ]E[ y1 y1 ] 1 y1
T T T T
2 y1 , 故有
E[ 2 y1 ] a 22 E[ y 0 y1 ] a 21 E[ y1 y1 ] E[ y 2 y1 ] 0
x(n) 为最小相位序列,则有 z i 1,i 1, 2, 3, M。
z 由Z变换的性质Y(z) X( ),要使Y(z)为最小相位序列,即使 a
* Y(z)的所有零点 z k
zk z 1成立,即 k 1 a a
即 a max z k z M
k{1, 2 ,M }
原式 y 3
R12 R32 R22 R31) R32 R11 R21 R31 y2 y1 R22 R11 R21 R12 R22 R11 R21 R12
y 3 R31
R R32 11 R21
R12 y1 R22 y2
1、 12:解 设x(n)、y(n) 为最小相位序列,则其Z变换X(z)、Y(z)对应的所有的零点
i i Zx ,Z y 都在单位圆内,其中 i 1, 2, N,k 1, 2, M。
令 z ( n) x(n) * y(n),有Z(z) X(z)Y(z),其零点的集合
数字信号处理 课后习题答案 第2章.docx
习题1.设X(e"。
)和r(e JC0)分别是印7)和)仞的傅里叶变换,试求下面序列的傅里叶变换:(1) x("-"o) (3) x(-n) (5) x(")y(")(7) x(2n)⑵ x*(〃)(4) x(") * v(«) (6) nx(n) (8) /(〃)解:⑴00 FT[X(/7-Z70)] = £x(〃一〃o)e—S令n r = n-n0,即〃=n' + n Q,贝!J00FT[x(n-n o y\=工》(〃')以"''*""="初。
乂(烈)00 00(2)FT[x («)] = £ x* (n)e*= [ £ 戏〃)攻以]* = X* (e「W=—00 w=—00(3)00FT[x(—")]= 〃)e*"令=一〃,则00FT[x(—”)]= Zx(〃')e" =X(e—〃")”'=—00(4)00 x(〃) *'(〃)= ^\x(jrT)y(n -m)W=-0000 00FT[x(n) * v(w)] = Z【Z x("y("-初)]e""' n=-<x> w=-oo k = n-m,贝U00 00FT[x(ri)*y(ri)]= £[ £x(初) k=—CD W=-0000 00k=-<x> m=—cc= X(e5(em)_00 00 1时[x(M)贝〃)]= Z》(〃)贝〃)e「9 = Zx(〃)[-Lf/(em'"'"d 渺]e-加""=—00 〃=—00 2l "1 00=—£ Y(e j0)')2l " n=—<x>1 伙=一L "口")*?®"、技或者FT[x{n)y{ny\ = —「171 »兀oo(6)因为X(e,")= »("初,对该式两边口求导,得到叫、)=-J £仗"如=-jFT[nx(n)]因此矶孙(〃)]=j至@3)dco00⑺ FT\x(2ri)\=加n=-(x)令n' = 2n ,则FT[X(2W)]= £x(z/)e 7 %W--00,且取偶数00 1 r r・l 八1°0 . 1 00 . 1£?kO + (T)“x(")厂=| 广伽+£ef ("广伽〃=—oo 匕匕〃=—oo 〃=—00=L「xa*+x(/*E)F7[x(2z?)] = | X(e‘2") + X(—e'尸)(8) F7[X2(»)]= J X2(77)6^»=-OO利用(5)题结果,令x{n) = y{n),则F巾2(”)] = _£x(em)*X(eS) = —「X®。
《现代数字信号处理》第2章习题答案
∞
∞
1 1− z
1 2 −1
+
1 3 1 −1 = ⋅ 1 1 −1 1− 2 z 4 (1 − 2 z )(1 − 1 2 z)
−1 1 (1 − 1 3 1 3 1 2 z ) (1 − 2 z ) = ⋅ ⋅ ⋅ = ⋅ −1 1 −1 1 1 −1 1 1 4 (1 − 2 z )(1 − 2 z ) (1 − 3 z ) (1 − 3 z ) 4 (1 − 3 z )(1 − 1 3 z )
1 1− ∑ a (k ) z
k =1 2 v p
−k
2 2 , Px ( z ) =H ( z ) H * (1/ z * ) σ w =σw
1 1− ∑ a (k ) e
k =1 p
2
− jkω
(b) Pz ( z ) = Px ( z ) + σ
2.4 设给定一个线性移不变系统,其系统函数为 H ( z ) = (1 −
σ ∑⎢ ⎣
i =1
N
⎡
2 x
−
2 2 1 2⎤ σx + σx ⎥ N N ⎦
=
N −1 2 σx N
(b) E
{(σ
2
x
− E {σ x }
2
)}
2
⎧⎛ 2 N − 1 2 ⎞ 2 ⎪ ⎫ ⎧ N − 1 2 2 ( N − 1) 2 4 ⎫ ⎪ ˆx − = E ⎨⎜ σ σ x ⎟ ⎬ = E ⎨σ x4 − 2 σ xσ x + σx ⎬ 2 N N N ⎝ ⎠ ⎩ ⎭ ⎪ ⎪ ⎩ ⎭
{ }
N
( N − 1) 2 4 σx N2
− x)
(I)
数字信号处理课后习题答案
数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1 判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k = 2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
数字信号处理答案第二章习题解答
————第二章————教材第二章习题解答1. 设()jw X e 和()jw Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。
解:(1)00[()]()jwnn FT x n n x n n e∞-=-∞-=-∑令''00,n n n n n n =-=+,则'00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞-+-=-∞-==∑(2)****[()]()[()]()jwnjwn jw n n FT x n x n ex n e X e -∞∞-=-∞=-∞===∑∑(3)[()]()jwnn FT x n x n e∞-=-∞-=-∑令'n n =-,则'''[()]()()jwn jw n FT x n x n eX e ∞-=-∞-==∑(4) [()*()]()()jwjwFT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞=-∞=-∑[()*()][()()]jwnn m FT x n y n x m y n m e ∞∞-=-∞=-∞=-∑∑令k=n-m ,则[()*()][()()] ()() ()()jwk jwnk m jwkjwnk m jw jw FT x n y n x m y k eey k e x m eX e Y e ∞∞--=-∞=-∞∞∞--=-∞=-∞===∑∑∑∑2. 已知001,()0,jww w X e w w π⎧<⎪=⎨<≤⎪⎩求()jw X e 的傅里叶反变换()x n 。
解: 00sin 1()2w jwn w w nx n e dw nππ-==⎰3. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e eθ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ϕ=+的稳态响应为00()()cos[()]jw y n A H e w n w ϕθ=++。
数字信号处理第二章习题答案
2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。
数字信号处理答案第二章习题解答
————第二章————教材第二章习题解答1. 设()jw X e 和()jw Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。
解:(1)00[()]()jwnn FT x n n x n n e∞-=-∞-=-∑令''00,n n n n n n =-=+,则'00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞-+-=-∞-==∑(2)****[()]()[()]()jwnjwn jw n n FT x n x n ex n e X e -∞∞-=-∞=-∞===∑∑(3)[()]()jwnn FT x n x n e∞-=-∞-=-∑令'n n =-,则'''[()]()()jwn jw n FT x n x n eX e ∞-=-∞-==∑(4) [()*()]()()jwjwFT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞=-∞=-∑[()*()][()()]jwnn m FT x n y n x m y n m e ∞∞-=-∞=-∞=-∑∑令k=n-m ,则[()*()][()()] ()() ()()jwk jwnk m jwkjwnk m jw jw FT x n y n x m y k eey k e x m eX e Y e ∞∞--=-∞=-∞∞∞--=-∞=-∞===∑∑∑∑2. 已知001,()0,jww w X e w w π⎧<⎪=⎨<≤⎪⎩求()jw X e 的傅里叶反变换()x n 。
解: 00sin 1()2w jwn w w nx n e dw nππ-==⎰3. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e eθ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ϕ=+的稳态响应为00()()cos[()]jw y n A H e w n w ϕθ=++。
数字信号处理第二章习题答案
2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。
数字信号处理答案第二章习题解答
————第二章————教材第二章习题解答1. 设()jw X e 和()jw Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。
解:(1)00[()]()jwnn FT x n n x n n e∞-=-∞-=-∑令''00,n n n n n n =-=+,则'00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞-+-=-∞-==∑(2)****[()]()[()]()jwnjwn jw n n FT x n x n ex n e X e -∞∞-=-∞=-∞===∑∑(3)[()]()jwnn FT x n x n e∞-=-∞-=-∑令'n n =-,则'''[()]()()jwn jw n FT x n x n eX e ∞-=-∞-==∑(4) [()*()]()()jwjwFT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞=-∞=-∑[()*()][()()]jwnn m FT x n y n x m y n m e ∞∞-=-∞=-∞=-∑∑令k=n-m ,则[()*()][()()] ()() ()()jwk jwnk m jwkjwnk m jw jw FT x n y n x m y k eey k e x m eX e Y e ∞∞--=-∞=-∞∞∞--=-∞=-∞===∑∑∑∑2. 已知001,()0,jww w X e w w π⎧<⎪=⎨<≤⎪⎩求()jw X e 的傅里叶反变换()x n 。
解: 00sin 1()2w jwn w w nx n e dw nππ-==⎰3. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e eθ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ϕ=+的稳态响应为00()()cos[()]jw y n A H e w n w ϕθ=++。
姚天任信号处理基础第二章答案.doc
姚天任信号处理基础第二章答案.doc2. 3设信号s(z?)的自相关序列为:氏(/〃) = 0.8也m = O,±l,…观测信号为:x(n) = s(n) + v(n),试中心)是方差为0.45的零均值白噪声,它与s(〃)统计独立。
设计一个长为N二3的777?滤波器来处理%(/?),使得其输出与的差的均方值最解:%(/?) = [x(n) x(n -1) x(〃 - h = [h(0) h(1)R = E\x(n)x (〃)] = E <s(〃)+ v(〃)S(/7 - 1) +心一1)(〃一[s(〃)+ v(n) s(n-1) + v(n 一1) s(〃一2) + 一2)"割)&⑴6(2)、(20 0、氏⑴&(0) R⑴+0 0 E⑵此⑴VC <°0,L —1s(〃)+心)、L s(n)s(n)■氏(0) ■< S(〃一l) + (〃一s(〃)>=E<s(n-\)s(n)、二K(T)s(n -2) + v(n -2)s(〃一2)s(〃)_K(-2).P = E[X(/?)A'(H)]W) = 0.8""=>&(0) = 1, R(l) = K(—1) = 0.8, R(2) = R s(-2) =0.64一1.45 0.8 -1 1 ■-0.5358-hOpt = R"*P =0.8 1.45 0.8 .0.8 0.2057 0.64 0.8 1.45 0.64 0.09142. 5已知一阶马尔可夫过程的信号模型为s(〃) = 0.6s(〃-l) +w(〃),式中,以>?)是方差为0.82的零均值白噪声。
对s(〃)进行观测,得到x(n) = s(n) + v(n),式中,心)是方差为1的零均值白噪声。
是设计一因果IIR维纳滤波器对心〃)进行处理以得到s(〃)的最佳估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.7解:由题意得:a=0.95 c=1
二次方程为Q= ( 取正解)
解得: =0.31225
:
2.10答案
由上述递推公式和初始条件,可得
n
0
1
2
P
G
n
3
4
5
p
G
题2.11
由于在实际中常需对非随机信号进行滤波,故采用互补型维纳滤波,其中有两个滤波器,一个为高通,另一个为低通。但这时由于输入的信号是非平稳的,故不能直接进行维纳滤波,这样就需对滤波模型进行改进。采用图中的模型后,维纳滤波器的输入就为平稳的随机信号,符合维纳滤波理论。
=
=
S
对 进行谱分解:
由
得
解得可行解
对 进行因果和逆因果分解:
因果部估计,则估计误差为
2.6解:已知卡尔曼滤波标准形式为:
由模型可知:a=0.6 c=1
G与f的关系为:f=a(1-cG)=0.3
将数值代入得:
物理解释:
(1)式中第一部分 是对 的预测
(2)式中第二部分 是在取得第n时刻的观测值,计算观测值和预测值的误差。
2.1已知 是一平稳随机信号,取1、0、-1三个值的概率相等。用 对载波 进行调制后在噪声信道中传输。接受信号为
式中 是方差为 的零均值白色高斯噪声,与 相互独立。上式用矢量表示为
(1)求条件概率函数 。
(2)由 求 的四种估计:最大后验概率估计 ,最大似然估计 ,最小均方误差估计 ,最小线性均方误差估计 。并用图形对它们进行比较。
解:
(1)先求 ,显然在这种情况下, 是一个 的正态随机矢量,
求 。
=
已知
简记
根据全概率公式,得:
记 ,则
由 的分布律,我们可以容易得到
(2)求最大似然估计
已知:
求最小均方误差估计
求线性均方误差最小估计
已知
① ,
②
③
将
④
题2。2
解:以知
设
取
题2.3
2.4答案:
设
2.5解:由信号模型可得系统传输函数: