概率论与数理统计_第七章_参数估计_第四节_区间估计

合集下载

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论 第七章 参数估计

概率论  第七章 参数估计

L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数


参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本

概率第7章 参数估计

概率第7章   参数估计
然而,这个方法常归功于 英国统 计学家费歇 . 费歇在1922年重新发现了 这一方 法,并首先研究了这 种方法的一些质 .
Gauss
Fisher
基本思想
甲.乙两人比较射击技术,分别射击目标一次,甲中而乙未中, 可以认为:甲射击技术优于乙射击技术. 事件A发生的概率为0.1或0.9,观察一次,事件A发生了, 可以认为:事件A发生的概率为0.9. 实际问题(医生看病、公安人员破案、技术人员进行质量 检验等)尽管千差万别,但他们具有一个共同的规律,即在 获得了观察资料之后,给参数选取一个数值,使得前面的观 察结果出现的可能性最大. 最大似然估计就是通过样本值 x1 , , x n 等数求得总体的 分布参数,使得 X1 ,, X n 取值为 x1 , , x n 的概率最大.
i
L( ) L( x1 , , x n ; ) f ( x i ; ),
i 1
n
的最大值,这里 ( )称为样本的似然函数 L .
ˆ 若 L( x 1 , , x n ; ) max L( x 1 , , x n ; )

ˆ 则称 ( x1 , , xn )为 的极大似然估计值 .
i
xi
在得到观测值 x1 , x 2 , , x n 的前提下,自然 应当选取使得 n
f ( x ; )dx
i i 1
i
达到最大的 值作为未知参数 的估计值.
因为当未知参数 等于这个值时,出现给 定的那个 样本观测值的可能性最 大.
但 dxi 不随 而变,故只需考虑:
3.期望和方差的点估计 在实际中,常常以样本均值作为总体均值的 点估计,以样本方差作为总体方差的点估计. 期望的点估计: (1)无偏性 1 n 选择估计量 X X i n i 1 (2)样本容量越大,估计值 越有效 方差的点估计:

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

中国矿业大学周圣武概率论与数理统计_图文

中国矿业大学周圣武概率论与数理统计_图文

定义2 设 都是参数θ的无偏估计量,若有
则称
有效。
例:160页,例7、例8
定义3 设
为参数θ的估计量,
若对于任意θ∈Θ,当
则称
的一致估计量。
例:由大数定律知
一致性说明:对于大样本,由一次抽样得到的估 计量 的值可作θ的近似值
例5 设 X1, X2, …, Xn 是取自总体 X 的一个样本,
⑴ 验证
试求θ的极大似然估计值。 解
极大似然估计的不变性
练习
1.设总体X在
上服从均匀分布,
X1 , X 2 ,L X n是来自X的样本,试求 q 的矩估计量
和最大似然估计.
2.设X1,X2,…Xn是取自总体X的一个样本
其中 >0, 求 的极大似然估计.
课堂练习
P156:5,6
作业
P178:1,2,5,6
Fisher
最大似然法的基本思想:
问题:请推断兔子 是谁打中的?
例6 袋中放有白球和黑球共4个,今进行3次有放回 抽样,每次抽取1个,结果抽得2次白球1次黑球,试 估计袋中白球个数。 解 设袋中白球个数为m,
X为3次抽样中抽得的白球数,则
当袋中白球数m分别为1,2,3时, p对应的值分别为1/4,2/4,3/4, X对应的分布律见下表
中国矿业大学周圣武概率论与数理统计_图文 .ppt
第七章 参数估计
§7.1 点估计 §7.2 估计量的评选标准 §7.3 区间估计 §7.4 单个正态总体参数的区间估计 §7.4 两个正态总体参数的区间估计
统计推断
矩估计 点估计 最大似然估计
参数估计
最小二乘估计
区间估计
参数假设检验
假设检验 非参数假设检验

《概率论与数理统计》第七章

《概率论与数理统计》第七章
i 1
n
n
ln xi
(4)的极大似然估计量为:ˆ
n
n2 i1
lnX
i
2
i1
第七章 参数估计 ‹#›
例 9 设X~b(1,p), X1,X2,…,Xn是来自X的一个样本, 试求参数p的最大似然估计量
解: 设x1, x2,, xn,是相应于样本X1,X2,…,Xn 的一个样本值,X
的分布律为:
(3)以样本各阶矩A1, ,Ak代替总体各阶矩1,
得各参数的矩估计
ˆi gi(A1, ,Ak ), i 1, , k
, k,
第七章 参数估计 ‹#›
注意:
在实际应用时,为求解方便,也可以用
中心矩 i 代替原点矩i,相应地以样本中心矩Bi 估计 i.
(二)最大似然估计法
最(极)大似然估计的原理介绍
第七章
参数估计
目录/Contents
第1章 随机事件与 2 概率
§ 1 点估计
§3
估计量的评选标准
第七章 参数估计 ‹#›
问题的提出:
在实际进行统计时,有不少总体的(我们关心的某 确定指标)概率分布是已知的。比如
例 1 产品寿命服从的分布
X~
f
(
x)
1
x
e
x0
0
其他
但其中有参数是未知的: θ
n
似然函数 L f xi , 。 i 1
, xn ,
极大似然原理:L(ˆ( x1 ,
,
xn
))
max
L(
).
计算简化方法:
在求L 的最大值时,通常转换为求:lnL 的最大值,
lnL 称为对数似然函数.
利用

概率论与数理统计(第4版)浙江大学 盛聚编

概率论与数理统计(第4版)浙江大学 盛聚编
置信区间也不是唯一的.
对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.

参数估计

参数估计

根据“概率越大的事件越可能发生”的实际推断原理,应选3/4作为p的估计值。
若p的可供选择的估计值有许多,仍应选择发生概率最大的 就是极大似然估计的思想。
作为p的估计,这p
Exceltek Electronics (HK) Ltd Confidential
极大似然估计的原理(教材p180-181)
设总体X的概率密度函数族为f(x; ) (或概率分布函数族为P(X=x)=p(x ; ) ), 。
矩估计的缺陷:当总体分布类型已知时,未能充分利用总体分布提供的信息。
Exceltek Electronics (HK) Ltd Confidential
二、极大似然估计
引例:罐中有许多白球和黑球,已知两色球的比例为3:1,但不知哪种颜色的球多。 今有放回连抽两球均取出黑球,问:罐中黑球多还是白球多?
第七章 参数估计
引言 参数估计:当总体的某些参数未知(一般要求分布类型已知)时,从样本出发构造适当 的统计量,作为未知参数的估计量。当取得一组观察值后,以相应的统计量的观察 值作为未知参数的估计值,并讨论估计值对真值进行估计的可靠性。
参数估计方法是处理实际问题时最常用的方法。
预备概念:当总体X中含有未知参数 (可以是向量)时,可用 F(x; )来表示X的分布函数,当取不同的值,就会得到不同的分布函数。我们 称所有可能取值的集合为参数空间,记为。把{F(x; ), }称为X的分布 函数族。
的极大似然估计。
便是
D(X )
Exceltek Electronics (HK) Ltd Confidential
第三节 点估计量的评选标准 问题:1. 哪种估计是最好的估计?
2. 评价“好”的标准是什么? 建立评价标准的原则:估计量在某种意义下与待估参数的真值最接近。

张厚粲 第七章 参数估计

张厚粲 第七章 参数估计

间。

解:12名学生阅读能力的得分假定是从正态总体
中抽出的随机样本,而总体标准差σ未知,样本的容量 较小(n=12<30),在此条件下,样本平均数与总体 平均数离差统计量服从呈t分布。

于是需用t分布来估计该校三年级学生阅读能力总
体平均数95%和99%的置信区间。
由原始数据计算出样本统计量为
X 29.917
性的指标。
平均数区间估计的基本原理
通过样本的平均数估计总体的平均数,首先假定该样本 是随机取自一个正态分布的母总体(或非正态总体中的n> 30的样本),而计算出来的实际平均数是无数容量为n的
样本平均数中的一个。
根据样本平均数的分布理论,可以对总体平均数进行估 计,并以概率说明其正确的可能性。
一.总体平均数区间估计的基本步骤 ①.根据样本的数据,计算样本的平均数和标准差; ②.计算平均数抽样分布的标准误;
例:已知某样本的分散程度
标准差与方差分别计算)。
解1(标准差):
,样本
容量40,问该样本之总体的分散程度如何。(用
,样本标准差的分布接近正态分布,用Z分布。
(1) 0.95或0.05
10-1.96×1.12<σ<10+1.96×1.12
7.8 <σ<12.2 (2)0.99或0.01 10-2.58×1.12<σ<10+2.58×1.12 7.11<σ<12.89
第二节 总体平均数的估计
平均数抽样分布的几个定理

⑴.从总体中随机抽出容量为n的一切可
能样本的平均数之平均数等于总体的平均数。
E( X )
⑵.容量为n的平均数在抽样分布上的标准差 (即平均数的标准误),等于总体标准差除以n的平 方根。

统计学 第七章 参数估计

统计学 第七章 参数估计

[
]
2 χα (n) (n)的α 分位数,记为k≜ n k≜
抽样分布
(3)性质 • 若X服从χ2 (n),则均值E(X)=n ,方差 D(X) =2n 。 • χ2分布具有可加性。若 X1,X2相互独立,
X1~ χ2(n1) ,X2~χ2(n2)
则(X1+X2)~χ2(n1+n2) • 当n→∞时,χ2分布渐进于正态分布
σ
2
~ χ (n −1)
2
第三节两个总体参数的区 间估计(112页)
• • • • • • • 一、两个总体均值之差的区间估计 (一)两个总体均值之差的估计:独立样本 大样本:近似于正态分布 小样本: (1)两个总体的方差均已知,近似于正态分布 (2)两个总体的方差均未知但相等,近似于t分布 (3)两个服从正态分布的总体的方差均未知且不等, 但样本容量相等,近似于t分布 • (4)两个总体的方差均未知且不等,样本容量也不 等,近似于t分布,自由度为V
• 解:求(3)的计算步骤: • ①求样本指标:
x =1000小时
σ=50 (小时)
µ x=
σ
n

50 100
=(小时) 5
• ②根据给定的F(t)=95%,查概率表得t=1.96。 • ③根据∆x=t×µx=1.96×5=9.8,计算总体平均耐 用时间的上、下限: x − ∆ x=1000-9.8=990.(小时) 2 • 下限 x +∆ x=1000+9.8=1009 .(小时) 8 • 上限 • 所以,以95%的概率保证程度估计该批产品的平均耐 用时间在990.2~1009.8小时之间。
f (x;θ ) 其中 θ
或概率密度为
是未知参数。 是未知参数。
如何求极大似然估 计量呢? 计量呢?

概率论与数理统计课件第7章参数估计

概率论与数理统计课件第7章参数估计

一、矩估计
4
A B
一、矩估计 例1
5
01
OPTION
02
OPTION
一、矩估计 解
6
一、矩估计
7
一、矩估计
8
解(1)
一、矩估计
9
解(2)
一、矩估计 例3
10
一、矩估计 解
11
一、矩估计
12
关于矩估计量有下列结论:
一、矩估计
13
例4

一、矩估计
14
01
OPTION
02
OPTION
一、无偏性 定义1
51
ˆ lim E θ 如果 n+ X1 ,
, X n θ
一、无偏性
52
例1
试求 1 3 2

(1)由矩估计定义可知
一、无偏性
53

一、无偏性
54
一、无偏性 例2
55
一、无偏性
56

一、无偏性 定理 1
57
则有
因此, 样本均值是总体均值的无偏估计, 样本
二、极大似然估计
48
极大似然估计求解
似然函数 对数似然求导法
直接法
49
目录/Contents
7.1 7.2
点估计 点估计的优良性评判标 准 置信区间 单正态总体下未知参数的置信区间 两个正态总体下未知参数的置信区间
7.3
7.4 7.5
50
目录/Contents
7.2
点估计的优良性评判标准 一、无偏性 二、有效性 三、相合性
置信区间
69
置信区间
70
置信区间

概率论与数理统计PDF版课件7-2

概率论与数理统计PDF版课件7-2
即有%的概率包含的真实值. 这就是置信水平 − =
. 的一个合理解释. 但注意,并不要求包含真实值的区
间正好%,只要是大约%就是合理地,比如也可以.
第七章参数估计 §7.2 区间估计
求置信区间的步骤
෡=
෡ , ⋯ , ,
(1)找一个与未知参数有关的统计量
11 0.248

3.816
第七章参数估计 §7.2 区间估计
注1 上述求解或 的置信区间时,我们选取的点估计
都是矩估计量或者最大似然估计量. 事实上,我们也可以用
贝叶斯估计量来构造置信区间.详细内容参考本章“重要补
充及扩展问题”的第五节(见教材P220)
注2 上述利用枢轴量进行区间估计的时候都要求总体服
从正态分布. 但实际中,我们考虑的总体经常不服从正态分
布. 这种情况下的区间估计采用的是大样本区间估计. 详细
内容参考本章“重要补充及扩展问题”的第六节(见教材
P220)
第七章参数估计 §7.2 区间估计
三、两个正态总体的区间估计
设 , ⋯ , 为来自正态总体 ∼ , 的简单随机
1. 当 和 已知时,求 − 的置信区间
ഥ−
ഥ 作为总体均值差 − 的点估计;
(1)选取样本均值差
X − Y − ( 1 − 2 )
(2)构造枢轴量
~ N ( 0,1) ;
2
2
(
)
1
n1
(3)选取 = − = Τ ;
+
2
n2
(4) − 的 − 的置信区间
.
n
n
2
2
第七章参数估计 §7.2 区间估计
例3( 见教材P213) 假设 轮胎的寿 命服从正 态分布

概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程

概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程
注:由于 θ ( x1 ,L, xn ) 是实数域上的一个点,现用它来
估计 θ ,故称这种估计为点估计.
5 6
,σ 2未知,
… 随机抽查100个婴儿 得100个体重数据 10,7,6,6.5,5,5.2, …
而全部信息就由这100个数组成. 据此,我们应如何估计 和 σ 呢?
我们知道,服从正态分布N ( , σ 2 )的r.v. X , E ( X ) = , 由大数定律, 样本体重的平均值 1 → ∑ X i P n i =1 自然想到把样本体重的平均值作为总体平均 体重的一个估计. X= 用样本体重的均值 X估计 , 类似地,用样本体重的方差 S 2估计 σ 2 . 1 n 1 n 2 X = ∑ Xi, S = ∑ ( X i X )2 n 1 i =1 n i =1
(一)矩估计法
基本思想:用样本矩估计总体矩
(二)最大似然估计法
基本思想:
15
16
最大似然估计法 (最大似然法)
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费希尔(Fisher) . 费希尔在1922年重新发现了 这一方法,并首先研究了这 种 方法的一些性质 . Fisher
1. 矩估计法 2. 最大似然法 3. 最小二乘法 4. 贝叶斯方法 ……
(一) 矩估计法(简称"矩法")
它是基于一种简单的"替换"思想 建立起来的一种估计方法 . 英国统计学家 K. 皮尔逊 最早提出的 . 基本思想: 用样本矩估计总体矩 . 理论依据: 大数定律
Ak = 1 n k P ∑ X i → k = E ( X k ) n i =1
4
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

2014年自考 概率论与数理统计串讲讲义 第七章 参数估计

2014年自考 概率论与数理统计串讲讲义 第七章  参数估计
2
则 µ 的置信度 (1 − α ) 的区间估计为 (1) σ 已知时; x −
2

σ σ uα / 2 , x + uα / 2 n n
(2) σ 未知时; x −
2

s s t α (n − 1), x + t α (n − 1) n 2 n 2
(见书中 P.162 表) 设总体 X ~ N ( µ , σ ) ,且 σ = 4,
P < 1 ,未知 x1 , x2 ,", xn 为其样本,求 P 的矩估计
解:由 EX =
ˆ=x P ,故 P 的矩估计 P
2.极大似然估计
设总体 X,具有概率密度函数 f ( x;θ ) , θ ∈ ○ H 其中 θ 为未知参数,其变化范围为○ H , x1 , x2 , " , xn 为其样本, 则似然X =
ˆ=x µ ,故 µ
ˆ 2 = Sn 2 DX = σ 2 ,故 σ
设总体 X ~ U (0, θ ) , θ > 0 未知,求 θ 的矩估计
例2
解:因为 EX =
θ
2
,故
θ
2
ˆ = 2 x ,即为 θ 的矩估计 ,由此解得 θ = x (矩法方程)
例3
设总体 X ~ B(1, P ) ,其中 0 <
ln f ( xi ;θ ) ∑ i
=1
n
*
③求导并令其等于 0,建立似然方程
d ln L(θ ) = 0 * dθ
ˆ ④解之即得 θ 的极大似然估计 θ 2
(θ +1) , x >1 θx − , 0 , 其他
例 4 设 x1 , x2 , " , xn 是总体 X 的样本,总体概率密度为 f ( x;θ ) = 求

概率论与数理统计第七章参数估计

概率论与数理统计第七章参数估计
则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而 称hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ,
σ2 ,求μ , σ2的矩估计量。
E(X )
E( X 2 ) D( X ) [EX ]2 2 2
(3) 写出方程 ln L 0
i1
若方程有解,
求出L(θ)的最大值点 ˆ(x1,x2,..x.n,)
于 是 ˆ ˆ ( X 1 , X 2 , . . . , X n ) 即 为 的 极 大 似 然 估 计 量
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
ˆ(x1,x2,..x.n,),使得
L (ˆ) m a x L (), (或 L (ˆ) s u p L ())
则 称 ˆ ( x 1 ,x 2 , . . . ,x n ) 为 的 极 大 似 然 估 计 值
称 ˆ ( X 1 ,X 2 ,...,X n ) 为 极 大 似 然 估 计 量
第7章 参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息
来估计总体的某些参数. 估计新生儿的体重
估计废品率
估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 (可以是向量) .

概率论与数理统计第七章

概率论与数理统计第七章
组成 . 设这5个数是: 1.65 1.67 1.68 1.78 1.69
估计 为1.68,这是点估计.
估计在区间[1.57, 1.84]内,这是区间估计.
一、点估计概念及讨论的问题
例1 已知某地区新生婴儿的体重X~ N(,2),
, 2未知,

随机抽查100个婴儿
得100个体重数据
9, 7, 6, 6.5, 5, 5.2, … 而全部信息就由这100个数组成.
求:两个参数a,b的矩估计
解: 写出方 V E 程 (X a(X )r组 ) ˆˆ2
其 中uˆˆ2Xn1in1(Xi X)2
但是
E
(
X
)
Var ( X )
a
b 2 (b a)2
12
即有
(ab2ba)2 12
X
ˆ
2
由方程组求解出a,b的矩估计:
a ˆX 3 ˆ b ˆX 3 ˆ
其中 ˆ:ˆ2 n 1i n1 ( XiX)2
(4) 在最大值点的表达式中, 用样本值代入 就得参数的极大似然估计值 .
两点说明:
1、求似然函数L( ) 的最大值点,可以应
用微积分中的技巧。由于ln(x)是x的增函
数,lnL( )与L( )在 的同一值处达到 它的最大值,假定是一实数,且lnL( ) 是 的一个可微函数。通过求解所谓“似 然方程”: dlnL() 0
E(X1m)=E(X2m)==E(Xnm)= E(Xm)=am . 根据大数定律,样本原点矩Am作为 X1m,X2m, ,Xnm的算术平均值依概率收敛到均 值am=E(Xm).即:
n 1i n1Xim pE(Xm)am
例1 设总体X的概率密度为
f(x)(1)x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、区间估计的基本概念
另外定义中的表达式 P{ ( X 1 , X 2 ,, X n ) ( X 1 , X 2 ,, X n )} 1 还可以描述为 :
若反复抽样多次(各次得到的样本容量相等,都是n)
每个样本值确定一个区 间( , ),
每个这样的区间或包含 的真值或不包含 的真值,
四、极大似然估计
它是在总体类型已知条件下使用的一种参数估 计方法 . 它首先是由德国数学家高斯在 1821年提出的 . 然而,这个方法常归 功于英国统计学家费歇 .
Gauss
费歇在1922年重新发现了这 一方法,并首先研究了这种方法 的一些性质 .
Fisher
四、极大似然估计
极大似然估计法的思想 极大似然估计法,是建立在最大似然原理 的基础上的求点估计量的方法。最大似然原理 的直观想法是:在试验中概率最大的事件最有 可能出现。因此,一个试验如有若干个可能的 结果A,B,C, …, 若在一次试验中,结果A出现, 则一般认为A出现的概率最大。
按伯努利大数定理, 在这样多的区间中,
包含真值的约占 100(1 )%, 不包含的约占 100 %.
一、区间估计的基本概念
例如 若 0.01, 反复抽样1000 次,
则得到的1000 个区间中不包含 真值的约为 10个.
一、区间估计的基本概念
2、置信区间的求法 在求置信区间时,要查表求分位点.
四、极大似然估计
极大似然估计定义:
设X1,X2,…Xn是取自总体X的一个样本,样本 的 联合密度(连续型)或联合分布律 (离散型)为
f ( x1 , x2 , xn ; θ )
当给定样本X1,X2,…Xn时,定义似然函数为:
L( )
f (x1, x2 ,…, xn;
)
这里 x1, x2 ,…, xn 是样本的观察值 .
三、矩估计法
的函数,记为:
μi μi (θ1 , θ2 ,, θk )
从这 k 个方程中解出
i=1,2, … ,k
θ j θ j ( μ1 , μ2 ,, μk )
j=1,2中的诸 μi ,
即可得诸 θ j 的矩估计量 :
ˆ θ ( A , A ,, A ) θ j j 1 2 k
四、极大似然估计
似然函数:
L( ) f (x1, x2 ,…, xn; )
L( )看作参数 的函数,它可作为 将以多大可 能产生样本值 x1, x2,… ,xn 的一种度量 .
极大似然估计法就是用使 L( )达到最大值的 ˆ去估计 . 即
ˆ为 的极大似然估计值 . 而相应的统计量 称 ( X ,, X ) θ 1 n 称为 θ 的极大似然估计量 .
查正态分布表得
使
一、区间估计的基本概念
由标准正态分布的上 分位点的定义知
X P z / 2 1 , / n
即 PX z / 2 X z / 2 1 , n n
一、区间估计的基本概念
关于定义的说明
被估计的参数虽然未知, 但它是一个常数 , 没有随机性, 而区间( , )是随机的.
因此定义中下表达式 P{ ( X 1 , X 2 ,, X n ) ( X 1 , X 2 ,, X n )} 1 的本质是 :
随机区间( , ) 以 1 的概率包含着参数 的真值, 而不能说参数以 1 的概率落入随机区间 ( , ).
参数估计
第四节 参数的区间估计
一、区间估计的基本概念
前面,我们讨论了参数点估计. 它是用样本算
得的一个值去估计未知参数. 但是,点估计值仅仅
是未知参数的一个近似值,它没有反映出这个近似 值的误差范围,使用起来把握不大. 区间估计正好 弥补了点估计的这个缺陷 .
一、区间估计的基本概念
1、 置信区间定义 设 是 一个待估参数,给定 X1,X2,…Xn确定的两个统计量 若由样本
)<b”作等价变形,得到如下形式
即 于是 就是 的100( 1 )%的置信区间.
一、区间估计的基本概念
可见,确定区间估计很关键的是要寻找一个
待估参数
和估计量T 的函数U(T,
), 且U(T, )
的分布为已知, 不依赖于任何未知参数 .
而这与总体分布有关,所以,总体分布的形式是
否已知,是怎样的类型,至关重要.
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
三、矩估计法
矩估计法是英国统计学家K.皮尔逊最早提出来 的 .由辛钦大数定理 , 若总体 的数学期望 有限, 则有
二、单正态总体的区间估计
统计量
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
二、单正态总体的区间估计
满足
P{θ θ θ} 1 α
则称区间 ( θ , θ ) 是 的置信水平(置信度 )为 1 的置信区间.
和 分别称为置信下限和置信上限.
一、区间估计的基本概念
可见, 对参数 作区间估计,就是要设法找出两个 只依赖于样本的界限(构造统计量).
一旦有了样本,就把
估计在区间
内.

其中 为连续函数 .
三、矩估计法
这表明 , 当样本容量很大时 , 在统计上 , 可以用 用样本矩去估计总体矩 . 这一事实导出矩估计法.
定义 用样本原点矩估计相应的总体原点矩 , 又
用样本原点矩的连续函数估计相应的总体原点矩的 连续函数, 这种参数点估计法称为矩估计法 .
理论依据: 大数定律
矩估计法的具体做法如下: 设总体的分布函数中含有k个未知参数 θ1 , θ2 ,, θk, 那么它的前k阶矩 μ1 , μ2 ,, μk , 一般都是这 k 个参数
若 X 为连续型随机变量 , 则有
所求置信区间为
一、区间估计的基本概念
同样对于
所求置信区间为
由此可见,置 信水平为 的置信区间是 不唯一的。
一、区间估计的基本概念
例 设X1,…Xn是取自 的样本,
求参数 的置信度为
解 选 的点估计为
的置信区间.
,
明确问题,是求什么 参数的置信区间? 置信水平是多少?
2. 寻找参数
T(X1,X2,…Xn) 3. 寻找一个待估参数 和估计量 T 的函数
U(T, ),且其分布为已知.
一、区间估计的基本概念
4. 对于给定的置信水平 1 ,根据U(T, ) 的分布,确定常数a, b,使得 P(a <U(T, )<b) = 1
5. 对“a<S(T,
(4)最后得到最大似然估计量
ˆ ˆ X , X ,...,X i i 1 2 n
i 1,2,...,m
四、极大似然估计
四、极大似然估计
四、极大似然估计
四、极大似然估计
四、极大似然估计
求最大似然估计量的一般步骤为: (1)求似然函数 L (2)一般地,求出 ln L 及似然方程
ln L 0 i ˆ
i 1,2,...,m
i 1,2,...,m
(3)解似然方程得到最大似然估计值
ˆ ˆ x , x ,...,x i i 1 2 n
一、区间估计的基本概念
需要指出的是,给定样本,给定置信水平 , 置信区间也不是唯一的. 对同一个参数,我们可以构造许多置信区间. 1.在概率密度为单峰且对称的情形,当a =-b时 求得的置信区间的长度为最短. 2.即使在概率密度不对称的情形,如 2分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
这里有两个要求:
一、区间估计的基本概念
1. 要求 以很大的可能被包含在区间 要尽可能大 . 内,就是说,概率 即要求估计尽量可靠.
2. 估计的精度要尽可能的高. 如要求区间长度
尽可能短,或能体现该要求的其它准则.
可靠度与精度是一对矛盾,一般是 在保证可靠度的条件下尽可能提高 精度.
一、区间估计的基本概念
于是得 的一个置信水平为 1 的置信区间
z / 2 , X z / 2 . X n n
这样的置信区间常写成 X z / 2 . n
其置信区间的长度为 2

n
z / 2 .
一、区间估计的基本概念
从例1解题的过程,我们归纳出求置信区间 的一般步骤如下: 1. 明确问题, 是求什么参数的置信区间? 置信水平 是多少? 的一个良好的点估计
j=1,2,…,k
矩估计量的观察值称为矩估计值 .
三、矩估计法
三、矩估计法
三、矩估计法
三、矩估计法
三、矩估计法
三、矩估计法
三、矩估计法
三、矩估计法
矩法的优点是简单易行,并不需要事先知道总体 是什么分布 . 缺点是,当总体类型已知时,没有充分利用分 布提供的信息 . 一般场合下,矩估计量不具有唯一性 . 其主要原因在于建立矩法方程时,选取那些总体 矩用相应样本矩代替带有一定的随意性 .
~ N(0, 1)
寻找一个待估参数和 统计量的函数 ,要求 其分布为已知.
寻找未知参 数的一个良 好估计.
相关文档
最新文档