《等腰三角形的性质》优秀课件
等腰三角形的性质(八下优质课件)
等边对等角 三线合一
注意是指同一个三角形中
注意是指顶角的平分线,底 边上的高和中线才有这一性 质.而腰上高和中线与底角 的平分线不具有这一性质.
∵AB=AC, ∠1=∠2(已知),
12
∴BD=CD,AD⊥BC(等腰三角形三线合一). B D C
∵AB=AC, BD=CD (已知),
∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
∵AB=AC, AD⊥BC(已知), ∴BD=CD, ∠1=∠2(等腰三角形三线合一).
典例精析
例1 如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
角∠BAC的角平分线、底边BC上的高线 .
总结归纳
定理:等腰三角形的两个底角相等(等边对等角).
如图,在△ABC中, ∵AB=AC(已知), ∴∠B=∠C(等边对等角).
A
B
C
推论:等腰三角形顶角的平分线、底边上的中线及 底边上的高线互相重合(三线合一).
证明后的结论,以后可以直接运用.
A 综上可得:如图,在△ABC中,
(1)若AD=AE,求证:BD=CE;
(2)若BD=CE,F为DE的中点,如图②,求证:
AF⊥BC.
A
A
B
D GE
B C
DF E
C
图①
图②
解析:(1)过A作AG⊥BC于G,根据等腰三角形的性质
得出BG=CG,DG=EG即可证明;(2)先证BF=CF,
再根据等腰三角形的性质证明.
A
A
B
D GE
B C
1.两点确定一条直线;
2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线
《等腰三角形的性质》ppt课件
C ∵ ∠A= ∠ B= ∠ C ∴△ABC是等边三角形
3 . 有一个角是60°的等腰 三角形是等边三角形.
∵ ∠B=600 , AB=BC ∴△ABC是等边三角 形
怎样判断三角形ABC是等边三角形?
1.三边都相等的三角形是等边三角形.(定义)
A ∵AB=BC=AC
∴△ABC是等边三角形 一般三角形 B
B
D
C
底
A
归纳:等腰三角形的性质
从边看:等腰三角形的两腰相等 AB=AC
B
从角看: 等腰三角形的两底角相等 ∠B=∠C
D
C
从重要线段看: 等腰三角形顶角的平分线、底边上 的中线和底边上的高线互相重合
从对称性看:
等腰三角形是轴对称图形
等腰三角形性质: (简写成“等边对等角”); 性质1 等腰三角形的两个底角相等。
与底边上的高互相重合). ∴∠BAD=∠CAD=50°
A
三边都相等的三角形叫等边三角形。
AB=BC=CA
等边三角形是特殊的等腰三 角形也叫正三角形。
B
C
提出问题:等边三角形有哪些性质呢?
根据等腰三角形的性质去探讨等边三角形的性质:
①从边看 ③从对称性看
②从角看
④从重要线段看
等边三角形的性质
1 .三条边相等。 2.等边三角形的内角都相等,且等于60 °
等腰三角形的定义
有两条边相等的三角形叫做等腰三角形。
相等的两条边叫做腰 另一条边叫做底边
两腰所夹的角叫做顶角
腰与底边的夹角叫底角
注:等腰三角形中顶角可以是锐角、 直角、钝角;但底角只能是锐角
等腰三角形是轴对称图形,顶角平 分线(底边上的高、底边上的中线) 所在的直线是它的对称轴
《等腰三角形的性质》ppt课件
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
《等腰三角形的性质》优秀课件
全等识别
若两个三角形三边及三角分别相等,则这两个三角形全等。在等腰三角形中, 若两个等腰三角形的底边和腰长分别相等,则这两个等腰三角形全等。
2024/1/26
21
对后续知识点(如圆、三角函数)的铺垫作用
对圆的知识点铺垫
等腰三角形的性质与圆的性质有密切联系。例如,在等腰三角形中,底边上的中垂线同时也是底边所 在圆的直径;此外,在等腰三角形中引入外接圆和内切圆的概念,可以进一步探讨三角形的性质。
SAS全等判定
若两个三角形两边和夹角分别相等,则这两个三 角形全等。
3
HL全等判定(直角三角形)
在直角三角形中,若斜边和一条直角边分别相等 ,则这两个三角形全等。
2024/1/26
5
与其他特殊三角形关系
与等边三角形的关系
等边三角形是特殊的等腰三角形,三 边都相等。
与相似三角形的关系
若两个等腰三角形的顶角和底角分别 相等,则这两个三角形相似。
8
边角关系
等腰三角形中,两个等腰边所 对的两个底角相等,即等边对 等角。
2024/1/26
等腰三角形的顶角平分线、底 边上的中线、底边上的高相互 重合,即“三线合一”。
等腰三角形中,若有一个角是 60度,则这个三角形是等边三 角形。
9
面积计算公式
等腰三角形的面积可以通过以下公式计算
面积 = (底边长度 × 高) / 2。其中,底边长度是两个等腰边所夹的底边的长度, 高是从顶点到底边的垂直距离。
《等腰三角形的性质》 优秀课件
2024/1/26
1
目录
2024/1/26
• 等腰三角形基本概念 • 等腰三角形性质探究 • 等腰三角形在生活中的应用 • 等腰三角形相关定理证明 • 等腰三角形在几何变换中的地位和作用 • 典型例题解析与课堂互动环节
等腰三角形性质公开课课件
等腰三角形性质公开课课件一、等腰三角形的定义•等腰三角形是指两条边的长度相等的三角形。
•等腰三角形的两个底角(底边的两个对角)也是相等的。
二、等腰三角形的性质1.等腰三角形的底边中点与顶点连线的垂直平分线重合。
2.等腰三角形的高也是中线、角平分线和垂直平分线。
3.等腰三角形的高也是底边的中线。
4.等腰三角形的对角也是顶角的平分线。
三、等腰三角形的性质证明1. 等腰三角形的底边中点与顶点连线的垂直平分线重合证明:设等腰三角形 ABC 的底边为 AC,顶点为 B,底边中点为 M,顶点到底边的垂直平分线为 BM。
因为 AM = CM(等腰三角形的性质),且 BM 也是 AM 的垂直平分线,所以BM = AM = CM。
又因为 BM 的定义是顶点到底边的垂直平分线,所以 BM 也是 AC 的垂直平分线。
所以,等腰三角形的底边中点与顶点连线的垂直平分线重合。
2. 等腰三角形的高也是中线、角平分线和垂直平分线证明:设等腰三角形 ABC 的底边为 AC,顶点为 B,高为 BH,中点为 M,角平分线为BK。
由于等腰三角形的底边中点与顶点连线的垂直平分线重合(性质1),所以BH 是 AC 的垂直平分线。
又因为 BM 是 AC 的中线(三角形中线的性质),所以 BH 也是 BM 的垂直平分线。
又因为 BK 是角 B 的平分线,所以 BH 也是 BK 的垂直平分线。
综上所述,等腰三角形的高 BH 同时是 AC 的中线、角平分线和垂直平分线。
3. 等腰三角形的高也是底边的中线证明:设等腰三角形 ABC 的底边为 AC,顶点为 B,高为 BH,底边的中点为 M。
由等腰三角形的性质可知,等腰三角形的底边中点与顶点连线的垂直平分线重合。
所以,BH 是 AC 的垂直平分线,而 M 是 AC 的中点,所以 BH 也是 AM 的垂直平分线。
所以,BH 也是所有从顶点到底边的线段的垂直平分线。
又因为 BH 与 AC 重合(等腰三角形的性质),所以 BH 也是 AC 的中线。
等腰三角形的判定课件(共21张PPT)
等腰三角形的性质定理
1、从边看:等腰三角形的两腰相等。 (定义)
2、从角看:等腰三角形的两底角相等。 (性质定理1)
3、从重要线段看:等腰三角形的顶角平分线、 底边上的中线和底边上的高三线合一。 (性质定理2)
如何判定一个三角形是等腰三角形?
定义:有两边相等的三角形是等腰三角形。
还有其他方法吗?
A
B
D C
例2:已知:AD交BC于点O,AB∥CD,OA=OB
求证:OC=OD
问题:
1、若已知AB∥ CD,OC=OD,能
A
否证明OA=OB?
2、若已知OA=OB,OC=OD,能否
证明AB ∥ CD?
C
B O
D
规律:
AB ∥ CD,OA=OB,OC=OD中已知任两 个可推出第三个。
例3、如图,在Rt△ABC和Rt△A’B’C’中,
已知:△ABC中,∠B=∠CBAC的平分线AD
A
在△ BAD和△ CAD中, 1 2
∠B=∠C,
∠1=∠2,
B
AD=AD
C
D
∴ △ BAD≌ △ CAD(AAS)
∴AB=AC(全等三角形的对应边相等)
思考:作底边上的高可以吗?作底边中线呢?
等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
∠ABC= ∠A’B’C’=90°,
AB=A’B’,AC=A’C’,
区别:条件和结论互换。
3、已知:ED ∥ OB,EO=ED
求证:Rt△ABC≌Rt△A’B’C’ 求证:OD平分 AOB。
例1 :已知:如图,∠CAE是△ABC的外角∠1=∠2,
等腰三角形的性质定理公开课获奖课件省赛课一等奖课件
目前请同学们把手中旳等腰三角形对折,使两腰 AB、AC重叠在一起,折痕为AD,你还能能找出那些线段相等?哪些角相等?
等腰三角形旳性质定理2 等腰三角形旳顶角平分线、底边上旳中线和高线相互重叠,简称等腰三角形三线合一
(1)假如AD是等腰三角形顶角旳平分线,那么AD也是 、 。
G
已知:如图,在D,E在BC上,AB=AC,AD=AE,则BD与CE相等吗?
E
A
B
C
D
H
练习5:
已知:在△ABC中,AB=AC, AD是BC边上旳中线, ∠ABC旳平分线BG交AD于点E,EF⊥AB,垂足为F.求证:EF=ED
A
E
F
G
D
C
B
练习6:
(2)假如AD是等腰三角形底边上旳中线,那么AD也是 、 。
(3)假如AD是等腰三角形底边上旳高线,那么AD也是 、 。
底边上旳高线
底边上旳中线
顶角旳平分线
底边上旳高线
底边上旳中线
顶角旳平分线
例1已知:如图,AD平分∠BAC,∠ADB=∠ADC 求证:AD⊥BC
等腰三角形旳性质
文字论述
几何语言
等腰三角形旳两底角相等(同一种三角形中,等边对等角)
∵AB=AC∴∠B=∠C
等腰三角形顶角旳平分线、底边上旳中线、高线相互重叠(简称等腰三角形三线合一)
∵AB=AC,∠1=∠2 ∴AD⊥BC,BD=CD
对称轴顶角平分线底边高线底边中线所在直线
轴对称
练习4:已知:在△ABC中,AB=AC,D为CA延长线上一点,DF⊥BC,交AB于点E,求证:∠D=∠AED
E
1、已知:在 △ ABC中AB=AC,OB=OC, AO旳延长线交BC于点D,求证:AD⊥BC.
等腰三角形的性质课件
A 12
B
D
C
证法2) 作△ ABC底边BC上的高AD ∠ ADB= ∠ ADC=90 ° AB=AC AD=AD △ ABD≌Rt△ ACD Rt ∠B=∠C 证法3) 作△ ABC的中线AD BD=CD AB=AC AD=AD ABD≌ △ ACD △ ∠B=∠C
A 12
1
B
D
C
课堂练习:
3 口答:
(1) 已知等腰三角形的一 个底角为70 °,那么此 等 腰三角形各内角的度数分 别是 ( ). (2) 已知等腰三角 形的顶角为70° ,那么 此 等腰三角形各内角的 度数分别是( )。
A
70 °
B
A 70 ° B
C
C
(3) 已知等腰三角形的一个内角为70°,那 么此 等腰三角形各内角的度数分别是( )。
剪一剪 想一想
• (1)、上面剪出的等腰三角形是轴对称 图形吗? • (2)、把剪出的等腰三角形ABC沿折痕 对折,找出其中重合的线段和角. • (3)由这些重合的线段和角,你能发现 等腰三角形的哪些性质呢
证法一:
作△ABC顶角的平分线AD
∠1= ∠ 2 AB=AC AD=AD △ ABD≌△ ACD ∠B= ∠C
有两边相等的三角形叫做等腰三角形。
三角形的三边有什么关系?
A
顶角 腰 腰
底角
底角
B
底边
C
试一试
• (1)等腰三角形一腰为3cm,底为4cm,则 它的周长是 ; • (2)等腰三角形的一边长为3cm,另一 边长为4cm,则它的周长是 ; • (3)等腰三角形的一边长为3cm,另一 边长为8cm,则它的周长是 。
(4) 已知等腰三角形的一个内角为120 °, 那么此 等腰三角形各内角的度数分别是( )。
等腰三角形的性质优质课市公开课一等奖省优质课获奖课件
BD=CE.另两种选法可由证三角形全等而得
第10页
16.如图,在等腰三角形ABC中,AB=AC,点D在BC上,且AD=AE. (1)若∠BAC=90°,∠BAD=30°,求∠EDC度数; (2)若∠BAC=α(α>30°),∠BAD=30°,求∠EDC度数; (3)猜测∠EDC与∠BAD数量关系.(无须证实)
第11页
解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=45 °,∴∠DAC=∠BAC-∠BAD=90°-30°=60°,∵AD=AE,∴∠
ADE=∠AED=12(180°-∠DAC)=60°,又∵∠ADC=∠B+∠BAD= 45°+30°=75°,∴∠EDC=∠ADC-∠ADE=75°-60°=15°,∴ ∠EDC 的度数是 15°
知识点1:等边对等角 1.若等腰三角形顶角为40°,则它底角度数为( ) D A.40° B.50° C.60° D.70° 2.(·南宁)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C 度数为( ) A A.35° B.40° C.45° D.50°
第2页
3.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB= AC,若∠1=20°,则∠2度数为( ) B A.25° B.65° C.70° D.75°
利用等腰三角形性质解题时,考虑不全方面而漏解.
第13页
第4页
知识点2:三线合一
6.等腰三角形是轴对称图形,它对称轴是( C)
A.过顶点直线
B.底边垂线
等腰三角形的性质 课件 公开课一等奖课件
C
底边上的中线,底边上的高互相重合 A 在△ABC中,AB =AC, 点 D在BC上
1、∵AD ⊥ BC 1 2 BD DC 。 ∴∠ 1 = ∠ ,____= 2、∵AD是中线, 1 1 2 2 AD BC 1 2 ∴ ⊥ ,∠ =∠ 。 3、∵AD是角平分线, B BD AD DC BC ∴ ⊥ , = 。 D 等腰三角形是轴对称图形.对称轴是底边上的 中线(顶角平分线,底边上的高)所在直线
• 活动2:探索等腰三角形性质
• 上面剪出的等腰三角形是轴对称图形吗? • 把剪出的等腰三角形ABC沿折痕AD对折,找出其中相等的线 段和角,填入下表
B
重合的线段
A C D
重合的角
AB 和 AC
∠B和 ∠C
和
和
和
和
你能发现等腰三角形有什么性质吗?说一
说你的猜想.
性质1:等腰三角形的 两底角相等。(简写成 “等边对等角” )
C
活动3:等腰三角形性质定理的证明
证明性质1:等腰三角形的两个底角相等 (等边对等角) 。
提问:这性质的条件和结论是什么?用数学符号如何 表达条件和结论?
已知:△ABC中,AB=AC 求证:∠B=C 分析:1.如何证明两个角相等? 2.如何构造两个全等的三角形? 证明:在△ABC中,AB=AC,作底边 BC的中线AD, 在 △ BAD 与△ CAD 中 ∵ AB=___ AC CD BD=___ AD AD=___ B ∴ △ BAD ≌△ CAD( SSS ) ∠C ∠B= ___
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
等腰三角形性质课件
在等腰三角形中,顶角与底角是互补 的。即如果顶角为α,则每个底角为 (180°-α)/2。
可以通过等腰三角形的对称性和三角 形内角和定理来推导角度关系。首先 ,由于等腰三角形具有对称性,我们 可以知道两个底角相等。然后,根据 三角形内角和定理(三角形三个内角 之和等于180°),我们可以推导出顶 角与底角之间的关系。
课后练习题布置
练习题1
已知等腰三角形的一个角为100° ,求其其他两个角的度数。
练习题2
已知等腰三角形的一边长为10cm ,且腰长是底边的2倍,求等腰三 角形的各边长。
感谢您的观看
THANKS
相似三角形法求解
识别相似三角形
01
在复杂图形
利用相似性质
02
根据相似三角形的性质,对应边成比例,从而可以推导出等腰
三角形的面积与其他相似三角形的面积关系。
求解面积
03
通过已知相似三角形的面积和比例关系,求解等腰三角形的面
积。
坐标平面内面积计算
建立坐标系
。此为等角对等边。
性质
等腰三角形的顶角平分线、底边 上的中线、底边上的高相互重合
,简称“三线合一”。
应用
在几何证明题中,可以通过证明 两个角相等来判定等腰三角形, 进而利用等腰三角形的性质进行
推导和计算。
综合运用判定
综合运用两边相等法和角度相等法进行判定。
在实际问题中,可能需要同时考虑多种因素,如边长、角度、面积等,进行综合判 断。
结构稳定性
等腰三角形的结构特点使其在建筑中具有较好的稳定性和承重能 力,如桥梁、塔吊等结构的设计。
光学应用
在建筑的光学设计中,等腰三角形可用于反射、折射等光学现象 的分析和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提出一个猜想
△ABC是等腰三角形
AB=AC
轴对称图形
折痕AD所在直线 A
重合的边,重合的角
找一找
12
相等的边,相等的角
∠B=∠C
B
D
C
猜想:等腰三角形的两个底角相等。
验证猜想
命题:等腰三角形的两个底角相等。
ቤተ መጻሕፍቲ ባይዱ
已知:△ABC 中,AB=AC。
求证:∠B=∠C .
A
∠B=∠C
两个三角形全等 构造两个三角形
作辅助线
B
D
C
折痕AD
折痕AD是等腰△ABC的什么线?
A
A
A
12
┌
B
D
CB
D
CB
D
C
如图,作△ABC 底边的中线AD
如图,作△ABC 底边的高AD
如图,作△ABC 顶角的平分线AD.
验证猜想
命题:等腰三角形的两个底角相等。
已知:△ABC 中,AB=AC,
求证:∠B=∠C .
A
B
D
C
证法一
证明:过A点作底边BC边上的中线AD.
A
⌒
x
2x B
D
2x 2x
C
谢谢观赏
AD=AD(公共边),
B
D
C
∴ Rt△ABD ≌ Rt△ACD(HL),
∴ ∠B=∠C.
证法三
证明:作顶角∠BAC的平分线AD,交BC于点D.
∵AD平分∠BAC ,
A
∴∠1=∠2.
在△ABD与△ACD中,
12
AB=AC(已知),
∠1=∠2(已证), AD=AD(公共边),
B
D
C
∴ △ABD ≌ △ACD(SAS),
∠B=∠C = 30°
2.(1)等腰三角形一个底角为75°,它的另外两个角为 _7_5_°_, 30°__;
(2)等腰三角形一个角为36°,它的另外两个角为 _7_2_°__,7_2_°_或__3_6_°__,1_0_8_°___;
(3)等腰三角形一个角为120°,它的另外两个角为_ _3_0_°,3_0_°.
等腰三角形性质
八年级上册(人教版)
温故知新
A
1.什么是等腰三角形?
顶 角
腰
腰
2.什么是它的腰和底?
3.什么是它的顶角? 4.什么是它的底角?
底 B角
底 角 底边
C
第一课时
目标呈现
壹 经历等腰三角形性质一的探究过程 难点
贰 理解掌握等腰三角形的性质一 , 并能初步运用性质解决有关问题 重点
实验探究
∴ ∠B=∠C.
性质总结
性质1 等腰三角形的两个底角相等(等边对等角).
A
已知:△ABC 中,AB=AC, 求证:∠B=∠C .
几何语言: ∵ AB=AC(已知) ∴ ∠B=∠C(等边对等角)
B
D
C
牛刀小试
1.如图,分别求出下列两个等腰三角形底角的度数.
A
A
36°
120°
B
C
B
C
∠B=∠C = 72°
在△ABD与△ACD中:
A
AB=AC(已知),
BD=DC(作图),
AD=AD(公共边),
∴ △ABD ≌ △ACD(SSS), ∴ ∠B=∠C.
B
D
C
证法二
证明:作底边BC的高AD,交BC于点D.
∵AD⊥BC,
A
∴ ∠ADB =∠ADC=90°.
在Rt△ABD与Rt△ACD中,
AB=AC(已知),
剪一剪 把一张长方形的纸按图中的 红线对折,并剪去阴影部分(一个直角 三角形),再把得到的直角三角形展开, 得到的△ABC有什么特点?
B
A
D
C
得出一个结论
A
A
展开
B
D
C
翻折
B
D
C
剪△出A的BC等是腰等三腰角三形角是形轴吗对?称为图什形么吗??
它对称轴是什么? 折痕AD所在的直线
结论:等腰三角形是轴对称图形.
课堂小结
等腰三角形是 轴对称图形
等腰三角 形的性质
等边对等角
注意是指同一个三角形中
发散思维
例1 如图,在△ABC中 ,AB=AC,点D在AC上,且
BD=BC=AD,求△ABC各角的度数.
解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC, ∠A=∠ABD. 设∠A=x,则∠BDC= ∠A+ ∠ABD=2x, 从而∠ABC= ∠C= ∠BDC=2x, 于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180 ° , 解得x=36 ° ,在△ABC中, ∠A=36°, ∠ABC=∠C=72°.