几种网络RTK技术实现的比较【转】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种网络RTK技术实现的比较【转】
CORS系统现在在国内火的厉害,因为以前一直以为他与RTK差不了太多,所以没有留意过相关的文章与技术.最近发现我对RTK的原理一直有偏差,近而想到需要进一步了解一下CORS系统.最近一两日,查看了一些相关的文献和资料,也算对CORS系统的基本理论,不同的实现方法有了一个大概的了解.
以下是我个人关于这两个学习的一个小结:
由于传统的RTK技术需要有测区附的控制点的点位数据.针对当前项目需要架设基准站.以及考虑到初使化时间,改正模型等各方面的因素,CORS系统的建立对于大中城市的基础测绘来说是实用且经济的.
连续运行参考站系统可以定义为一个或若干个固定的、连续运行的GPS参考站,利用现代计算机、数据通信和互联网(LAN/WAN)技术组成的网络,实时地向不同类型、不同需求、不同层次的用户自动地提供经过检验的不同类型的GPS观测值(载波相位,伪距),各种改正数、状态信息,以及其他有关GPS服务项目的系统。
CORS系统的理论源于上世纪八十年代中期,加拿大提出的 “ 主动控制系统(Active Control System)”.该理论认为,GPS主要误差源来自于卫星星历.D .E .Wells等人提出利用一批永久性参考站点,为用户提供高精度的预报星历以提高测量精度.
之后基准站点(fiducial points)的概念的提出,使这一理论的实用化推进了许多.它的主要理论基础即在同一批测量的GPS点中选出一些点位可靠,对整个测区具有控制意义的测站,采取较长时间的连续跟踪观测,通过这些站点组成的网络解算,获取覆盖该地区和该时间段的“局域精密星历”及其他改正参数,用于测区内其它基线观测值的精密解算。当时实时GPS测量技术尚处于可行性讨论阶段,基准站点概念主要不是为了解决实时GPS测量的,而是为了提高静态基线的解算精度。
1995年瑞典与丹麦之间奥雷桑特海峡跨海工程中leica提出的台站网设计思想得到了工程方的认可.从而使台站网测量技术首次得到应用. 随后德国两位博士发表了关于虚拟参考站网的论文和案例,瑞士徕卡公司的研究人员在这些成果的基础上也提出了主辅站技术,并受国际组织的委托着手主持制定有关台站网的国际标准。
目前应用较广的台站网技术有VRS,FKP和LEICA的MAC技术.其各自的数学模型和定位方法有一定的差异,但在基准站架设和改正模型的建立方面基本原理我个人猜测是相同的(相关资料看的还是太少).
实现方法
下面我分别介绍一下三种方面的基本原理和优缺点.由于仅仅阅读的文献较少.我仅说明一下,我对该方法的理解而不详细展开,具体的数学模型请TX们查找相关文献.对于类似我这等门外汉,而且不需要深入了解其具体实现方案的TX,我会在文后列出几篇相关文献以供大家参考.
首先向大家介绍一下VRS.
与常规RTK不同,VRS网络中,各固定参考站不直接向移动用户发送任何改正信息,而是将所有的原始数据通过数据通讯线发给控制中心。同时,移动用户在工作前,先通过GSM的短信息功能向控制中心发送一个概略坐标,控制中心收到这个位置信息后,根据用户位置,由计算机自动选择最佳的一组固定基准站,根据这些站发来的信息,整体的改正 GPS的轨道误差,电离层,对流层和大气折射引起的误差,将高精度的差分信号发给移动站。这个差分信号的效果相当于在移动站旁边,生成一个虚拟的参考基站,从而解决了 RTK作业距离上的限制问题,并保证了用户的精度。
其实VRS技术就是利用各基准站的座标和实时观测数据解算该区域实时误差模型,然后对用一定的数学模型和流动站概略坐标,模拟出一个临近流动站的虚拟参考站的观测数据,然后建立观测方程解算,虚拟参考站到流动站间这一超短基线.虚拟参考站极有可能就是运用的概略坐标,这样的话,由于单点定位的精度,
虚拟参考站到流动站的距离一般为几米到几十米之间,如果将流动站发送给处理中心的观测值进行双差处理后建立虚拟参考站的话,这一基线长度可能只有数米.
对于临近的点,应该可以只设一个虚拟参考站.就我个人看来,应该是开一次机,用户和数据中心通讯初使化一次,确定一个虚拟参考站.
FKP
FKP方法更符合我的审美,还是先列出别人的定义,然后再讲讲我的个人理解.
GPS 区域改正数法FKP 是指利用GPS 基准站观测数据(相位观测值和伪距观测值等) 及基准站已知坐标等信息,计算得到基准网范围内与时间或空间相关的误差改正数模型,然后利用测量点的近似坐标内插出测量点的误差改正数,将它应用到观测值中,从而消除各种与时间和空间有关的误差,获得高精度的定位结果。
就我理解,FKP和VRS唯一的不同就是最后在定位方法上的不同,一个是利用虚拟观测值和流动站观测值做单基线解算,一个是利用改正后的观测值做单点定位解或加入各基准站做多基线解(后者的可能性更大),其实VRS在确定虚拟参考站的观测数据时就是一个FKP定位的反解.这种方法相对简单明了,而且免去了我对虚拟参考站误差源不完全是否会导致基线解算错误,进而引入更大的误差的怀疑.
MAC and i-MAX
MAC的具体定义暂时无法给出.
说实话,看完LEICA的说明书极度失望,完全看不懂,无法想像的出他的数学模型,看不出与FKP有什么大的区别.不过是在基准站播发基准点坐标信息和改正信息减少了一定的信息量,再有就是利用主基准站的选择以及群和节点单元上不像FKP那样用到全部的基准站信息,加入了双向通讯可以较好的选择所在的群.
不同方法的优缺点
我在这里引入两篇文章对评价,一个来自TRIMBLE一个代理商的论坛,一个是取自<< GPS台站网知识>>一文.
1.
虚拟参考站(VRS)具有的优势是:它允许服务器应用整个网络的信息来计算电离层和对流层的复杂模型,而相反,FKP在对电离层残差影响的模型化方面能力有限,它用于修正的模型非常简单(大多数情况下仅采用了线性内插,如SAPOS 中),在FKP中,流动站仅能获取两个站的数据来计算大气模型。采用RTCM 委员会正讨论的广播格式时,流动站将可以获取很多站的数据,但是仍然很有限,全部的计算都落在了流动站处理器上。在VRS定位中要求具有双向通讯链,而广播模式却不需要双向通讯链。但是,采用诸如GSM 和PRS的双向通讯链是完全可行的,因为蜂窝电话的网络比较完善,而且能够传送流动站接收机所发送(如警告)和接收(如位置特征码)的信息。采用 GSM 和GPRS时,服务的付费方式业也比广播方案容易得多。
VRS的另一个优势是消除了对流层误差,因为正如我们上面所显示的那样,在整个VRS生产步骤中对流层模型是一致的。而在 FKP模式中,则存在着服务器和流动站所用对流层模型不一致的危险。
VRS值得争论的一个劣势是:它在支持流动站进行动态应用方面有局限性,特别是在大型网络内在运动中进行拨号服务时段内。因为在VRS中,修正信息是在拨号时对初始的流动站位置进行优化而得到的,如果流动站在拨号后位置已经移动了,则这种修正对流动站的新位置不一定合适。虽然这种效果仅影响长距离运动的流动站(几公里),但通过采用附加的信息,流动站也能在这种情况下工作。天宝的GPSNet?