金属材料与热处理工艺

合集下载

金属材料热处理工艺与性能改进

金属材料热处理工艺与性能改进

金属材料热处理工艺与性能改进热处理是金属加工中必不可少的一种工艺,通过控制材料的加热和冷却过程,可以显著改善金属材料的性能。

在本文中,我们将讨论几种常见的热处理工艺,并介绍它们对金属材料性能的改进效果。

一、退火工艺退火是最常见的热处理工艺之一,通过控制金属材料的加热温度和冷却速度,从而改善其晶体结构和力学性能。

退火可以消除金属材料中的应力集中,提高其延展性和韧性,并减少内部缺陷。

常见的退火工艺有全退火、球化退火和应力退火等。

全退火是将金属材料加热至高温区域,并经过充分保温后,再逐渐冷却。

该工艺能够完全消除材料的应力,使其晶体结构得到良好的恢复和重排,从而提高金属材料的延展性、韧性和塑性。

球化退火是将金属材料加热至高温区域,并迅速冷却。

通过球化退火,可以使材料中的晶界和晶粒得到重新排列,消除晶粒的形状和方向性,从而提高材料的塑性和韧性。

应力退火是针对金属材料内部的应力问题而设计的工艺。

通过将材料加热至特定温度,并逐渐冷却,可以消除材料中的残余应力,提高其力学强度和韧性。

二、淬火工艺淬火是一种常用的热处理工艺,通过迅速冷却金属材料,使其从高温状态迅速转变为冷却状态,从而调整其组织结构,提高硬度和强度。

常见的淬火介质有水、油和气体。

水淬火是将金属材料迅速浸入水中进行冷却。

由于水的冷却速度非常快,可以使金属材料的晶体结构形成较细小的组织,从而提高硬度和强度。

油淬火相较于水淬火,则冷却速度较慢。

通过油的冷却作用,可以使金属材料的晶格排列更加均匀,提高其机械性能。

气体淬火是将金属材料置于惰性气体中进行冷却,以实现更为平缓的冷却速率。

这种淬火方法通常用于一些质量较大的金属材料,以减少冷却过程中的变形和内部应力。

三、时效处理时效处理是指将金属材料在较低温度下保持一定时间,并进行适当的再次热处理,从而提高其硬度、强度和耐腐蚀性。

常见的时效处理方法有自然时效和人工时效两种。

自然时效是将金属材料放置在常温条件下,经过较长时间的自然老化,以改善其组织结构和性能。

金属材料的热处理

金属材料的热处理

金属材料的热处理金属材料的热处理是指通过加热、保温和冷却等一系列工艺,改变金属材料的组织结构和性能的方法。

热处理可以使金属材料获得理想的组织和性能,从而满足不同工程需求。

在工程实践中,热处理是非常重要的一环,下面我们来详细了解一下金属材料的热处理过程。

首先,我们来谈谈金属材料的热处理工艺。

热处理工艺包括退火、正火、淬火、回火等几种主要方法。

其中,退火是指将金属材料加热到一定温度,然后通过控制冷却速度,使其组织发生改变,消除应力和提高塑性。

正火是指将金属材料加热到一定温度,然后保温一段时间,再进行适当冷却,以改善其硬度和强度。

淬火是指将金属材料加热到临界温度以上,然后迅速冷却,使其获得高硬度和高强度。

回火是指在淬火后,将金属材料重新加热到一定温度,然后进行适当冷却,以减轻淬火所产生的脆性。

其次,我们来讨论金属材料热处理的影响因素。

热处理的效果受到许多因素的影响,如加热温度、保温时间、冷却速度等。

加热温度是影响热处理效果的关键因素之一,不同金属材料对应的加热温度也不同。

保温时间是指金属材料在一定温度下的停留时间,它决定了金属材料的组织结构和性能。

冷却速度也是影响热处理效果的重要因素,不同冷却速度会导致金属材料组织结构和性能的差异。

最后,我们来总结一下金属材料热处理的应用。

金属材料的热处理广泛应用于航空航天、汽车制造、机械制造等领域。

通过热处理,可以改善金属材料的力学性能、耐磨性能、耐蚀性能等,提高其使用寿命和可靠性。

因此,热处理在工程实践中具有非常重要的意义。

综上所述,金属材料的热处理是一项非常重要的工艺,通过合理的热处理工艺,可以使金属材料获得理想的组织和性能。

在实际应用中,我们需要根据不同金属材料的特点和工程需求,选择合适的热处理工艺,以获得最佳的效果。

希望本文能够对大家了解金属材料的热处理有所帮助。

金属材料热处理工艺与技术分析

金属材料热处理工艺与技术分析

金属材料热处理工艺与技术分析
一、金属材料热处理工艺
金属材料热处理工艺是指将金属材料经过一定的温度和时间,在液体或气体中进行热处理,以改变其组织结构和性能的工艺。

金属材料热处理的目的是改变金属材料的组织结构,改变材料的物理性能和机械性能,使之更适合制造要求。

金属材料热处理的常见工艺有火花加工工艺、硬化工艺、回火工艺、正火工艺、淬火工艺、淬火回火工艺、渗碳工艺、淬火渗碳工艺、渗硅工艺、淬火渗硅工艺、淬火渗碳硅工艺、氮化工艺、等离子体氮化工艺、氧化工艺、等离子体氧化工艺、渗磷工艺等。

二、金属材料热处理技术分析
1、火花加工工艺
火花加工工艺是指将金属材料经过电弧加热,使金属材料表面形成均匀的熔池,然后冷却,以改变金属材料的表面组织结构的一种工艺。

火花加工工艺可以改变金属材料的硬度,抗腐蚀性能和耐磨性能,并可以改善金属材料的表面结构,使金属材料的外观更加美观。

2、硬化工艺
硬化工艺是指将金属材料经过加热,使其内部结构发生变化,从而改变材料的硬度和强度的一种工艺。

硬化工艺可以改变金属材料的硬度,抗冲击性能,抗腐蚀性能,耐磨性能和耐高温性能。

金属材料热处理工艺(详细工序及操作手法)

金属材料热处理工艺(详细工序及操作手法)

金属材料热处理工艺(详细工序及操作手法)一、热处理的定义热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得所需性能的一种工艺过程。

热处理的三大要素:①加热( Heating)目的是获得均匀细小的奥氏体组织。

②保温(Holding)目的是保证工件烧透,并防止脱碳和氧化等。

③冷却(Cooling)目的是使奥氏体转变为不同的组织。

热处理后的组织加热、保温后的奥氏体在随后的冷却过程中,根据冷却速度的不同将转变成不同的组织。

不同的组织具有不同的性能。

二、热处理工艺1.退火操作方法:将钢件加热到Ac3+30-50度或Ac1+30-50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。

目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。

应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。

2.正火操作方法:将钢件加热到Ac3或Acm 以上30-50度,保温后以稍大于退火的冷却速度冷却。

目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。

应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。

对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。

对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。

3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。

目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。

应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。

热处理工艺对金属材料性能的影响

热处理工艺对金属材料性能的影响

热处理工艺对金属材料性能的影响热处理工艺是一种常用于改变金属材料性能的方法,通过对金属材料进行加热和冷却处理,可以显著提升其物理、化学和机械性能。

本文将探讨热处理工艺对金属材料性能的具体影响。

1. 调变材料强度和硬度热处理工艺可以改变金属材料的强度和硬度。

通过调控加热温度和冷却速率,可以使金属材料的晶体结构发生变化。

例如,调节热处理过程中的淬火介质和淬火温度,可以将宏观组织转变为细小的马氏体组织,从而提高金属材料的硬度和强度。

2. 提高金属的耐磨性金属材料在使用过程中往往需要具备良好的耐磨性能,以防止表面受到磨损损坏。

热处理工艺可以通过改变金属材料的晶体结构,提高其耐磨性。

例如,采用淬火过程可以在金属表面形成增加硬度的马氏体,从而提高其抗磨损性能。

3. 提升金属的韧性和塑性金属材料的韧性和塑性是衡量其可塑性和断裂抗性的重要指标。

通过适当的热处理工艺,可以显著提升金属材料的韧性和塑性。

例如,采用固溶处理和时效处理可以改变金属材料的析出相行为,使其具备更好的延展性和抗断裂性能。

4. 改善金属的耐腐蚀性能金属材料在暴露于潮湿空气或特定环境中时容易发生腐蚀,进而影响其使用寿命。

热处理工艺可以通过形成致密的氧化膜或化合物膜,提高金属的耐腐蚀性能。

例如,通过淬火和回火处理可以降低铁素体不锈钢中的碳和铬元素的溶解度,从而增加其耐腐蚀性。

5. 调节材料的尺寸稳定性金属材料在受热和冷却过程中容易发生尺寸变化,这对一些精密零部件的制造和装配造成困扰。

热处理工艺可以通过控制加热和冷却过程来调节材料的尺寸稳定性。

例如,应用固溶处理和冷却过程中的时效处理可以减轻金属材料的变形和残余应力,提高其尺寸稳定性。

综上所述,热处理工艺对金属材料性能的影响是多方面的。

通过适当的热处理工艺,可以调变材料的强度、硬度、耐磨性、韧性、塑性、耐腐蚀性和尺寸稳定性。

对于不同的金属材料和应用需求,选择合适的热处理工艺是提升金属材料性能的重要手段。

金属材料热处理工艺流程

金属材料热处理工艺流程

金属材料热处理工艺流程金属材料热处理工艺流程是通过将金属材料加热至一定温度,保持一段时间后进行冷却,以改变金属材料的组织结构和性能的一种工艺。

它可以改变金属材料的硬度、强度、韧性、耐磨性等性能,提高金属材料的使用寿命和适应性。

下面是一篇关于金属材料热处理工艺流程的具体介绍。

首先,对于金属材料的热处理工艺流程的选择,需要根据具体的材料类型和要求进行判断。

一般来说,常见的金属材料热处理工艺流程包括退火、正火、淬火、回火等。

退火是将金属材料加热到一定温度,然后缓慢冷却,以减弱金属材料的内应力,改善材料的可加工性和机械性能。

退火的温度和冷却速率需要根据具体的材料来确定。

正火是将金属材料加热到适当的温度,然后进行适当的保温时间,最后以适当速率冷却,以获得所需的组织和性能。

正火可以提高金属材料的硬度和强度。

淬火是将金属材料加热到适当的温度,然后迅速冷却,使金属材料迅速固化。

淬火可以使金属材料获得高硬度和高强度,但也会造成材料脆性增加。

因此,淬火后一般需要进行回火处理。

回火是将淬火后的金属材料加热到适当的温度,然后进行适当的保温时间,最后冷却。

回火可以减轻淬火后金属材料的脆性,提高其韧性和抗冲击性能。

具体的金属材料热处理工艺流程如下:1. 金属材料的准备:需要对原材料进行切割、锯切或裁剪,以得到所需形状和尺寸的工件。

2. 加热:将金属工件放入炉中,进行加热。

加热的温度和时间需要根据具体的材料和要求来确定。

3. 保温:将金属工件在加热温度下保持一段时间,以达到所需的组织和性能。

4. 冷却:根据具体的要求,选择合适的冷却速率和方法对金属工件进行冷却。

一般来说,可以选择空冷、水冷、油冷等不同的冷却方式。

5. 检测:对热处理后的金属材料进行检测,包括金相检查、硬度检测、力学性能测试等。

6. 处理:根据检测结果对金属材料进行必要的修整和处理,以满足使用要求。

以上是金属材料热处理工艺流程的一般步骤。

在实际应用中,需要根据具体材料和要求进行相应的调整和改进。

金属材料热处理工艺精选全文

金属材料热处理工艺精选全文
预备热处理:调质或正火
适用于中碳钢0.4~0.5%C
表面:M回
心部:S回(调质)或F+S(正火)
渗碳
向钢表面渗入碳原子的过程
提高表面含碳量,获得表硬里韧的性能
渗碳温度:900~950℃
适用于低碳钢0.1~0.25%C
淬火温度:
心部Ac3+30~50℃
表面Ac1+30~50℃
渗碳缓冷后组织:表层P+网状Fe3CⅡ;心部F+P;中间为过渡区
心部:M回+F(渗透时)
表面:M回+A’(少)+颗粒状Fe3C
获得马氏体组织
亚共析钢Ac3+(30~50)℃
共析钢Ac1+(30~50)℃
过共析钢Ac1+(30~50)℃
≦0.5%C, M
>0.5%C, M+A’
Ac1~Ac3,M+F
M+A’
M细+A’+粒状Fe3C
回火
将淬火钢加热到A1以下某温度后再冷却的热处理工艺
可编辑修改精选全文完整版
热处理方法
概念
目的
加热温度
组织
退火
将钢加热至适当温度保温,然后缓慢冷却(炉冷)
1.调整硬度,便于切削加工。
2.消除残余内应力
3.细化晶粒,为最终热处理作组织准备
亚共析钢Ac3+(30~50)℃
共析钢Ac1+(30~50)℃
过共析钢Ac1+(30~50)℃
F+P
P
P球
正火
将亚共析钢加热到Ac3+(30~80)℃,共析钢加热到Ac1+(30~80)℃,

热处理工艺对金属材料性能的影响

热处理工艺对金属材料性能的影响

热处理工艺对金属材料性能的影响一、前言金属材料在制造和加工过程中会遭受各种不同程度的变形和应力,从而导致它们的性能发生变化。

为了保持金属材料的稳定性并提高其性能,需要采取热处理工艺来改变其晶体结构和组织状态。

在本文中,我们将对热处理工艺对金属材料性能的影响进行详细介绍。

二、热处理工艺的定义热处理工艺是通过对金属材料进行高温处理或加热冷却处理的技术,以改变其组织结构和化学性质的方法。

常用的热处理工艺包括退火、正火、淬火、回火等方法。

三、热处理工艺对性能的影响1.组织结构金属材料的晶体结构直接影响其性能,如硬度、强度和韧性等。

通过热处理工艺可以改变金属材料的晶体结构,进而影响其性能。

例如,经过正火处理的金属材料晶体结构更加凝练,从而增强了其硬度和强度;而经过退火处理的金属材料则相对更加柔软,但韧性更高。

2.性能指标通过热处理工艺可以改变金属材料的性能指标,如硬度、强度、韧性和延展性等。

淬火可以提高金属材料的硬度和韧性,但会对其延展性和韧性造成一定的影响;而回火可以使金属材料的硬度趋于稳定,从而提高其韧性和延展性。

3.其他性能除了上述常规性能指标外,热处理工艺还可以对金属材料的其他性能产生影响。

例如,经过淬火处理的钢铁表面可能形成极硬的表层,从而提高抗磨损性能;而通过回火处理可以使钢铁具有更好的耐腐蚀性能。

四、热处理工艺的应用范围热处理工艺广泛应用于钢铁、铜、铝、镁等各种金属材料的制造和加工过程中。

其中,热处理工艺对钢铁材料的影响最为显著。

钢铁经过淬火和回火处理后,其性能指标可以大幅提升,从而能够满足各种不同的工业应用需求。

五、结论通过本文的介绍可以看出,热处理工艺对金属材料的性能有着重要的影响。

正确选择和应用热处理工艺可以改善金属材料的性能,并提高其在各种工业领域中的应用价值。

因此,对于从事金属材料加工和制造的企业和个人而言,认真掌握和应用热处理工艺,是提高金属材料质量和提高生产效率的必要手段之一。

金属材料的常用热处理工艺

金属材料的常用热处理工艺

金属材料的常用热处理工艺热处理是指通过加热和冷却等过程对金属材料进行加工和改性的一种方法。

通过热处理,可以改变金属材料的组织结构、物理性能和力学性能,从而提高其使用性能。

下面将介绍几种常用的金属材料热处理工艺。

1. 淬火淬火是通过快速冷却金属材料,使其迅速从高温状态转变为室温状态的热处理工艺。

淬火可以增强金属材料的硬度和强度,改善其耐磨性和耐腐蚀性。

淬火一般分为两个步骤:加热和冷却。

加热过程中,金属材料被加热到临界温度以上,以使石墨化和蓝晶质的形成,然后迅速冷却以形成马氏体。

2. 回火回火是将已经淬火的金属材料加热到较低的温度,然后进行慢速冷却的热处理工艺。

回火可以降低金属材料的硬度和脆性,提高其韧性和塑性。

回火过程中,金属材料的晶粒尺寸会增大,同时还会发生析出硬化。

3. 钝化钝化是一种通过在金属材料表面生成一层致密和稳定的氧化物膜来提高其耐腐蚀性能的热处理工艺。

主要适用于不锈钢和铝合金等材料。

钝化可以通过两种方法实现:化学钝化和电化学钝化。

化学钝化是将金属材料浸泡在酸性或碱性溶液中,使其表面生成一层氧化物膜;而电化学钝化则是通过在电解液中进行电化学处理,使材料表面生成一层致密的氧化膜。

4. 固溶处理固溶处理是指将固溶体或合金加热到高温,使其中的溶质原子溶解在基体中,然后迅速冷却以形成固溶体的一种热处理工艺。

固溶处理可以改变金属材料的组织结构和物理性能,提高其强度、硬度和耐腐蚀性。

常见的固溶处理方法包括固溶退火和固溶析出。

5. 淬硬与回火淬硬与回火是淬火和回火两种热处理工艺的组合。

淬硬与回火通常应用于高碳钢和合金钢等材料。

首先,将材料加热并进行淬火,然后通过回火来调整其硬度和韧性。

这种处理方法可以同时提高材料的硬度和韧性,以获得最佳的力学性能。

以上介绍了几种金属材料常用的热处理工艺,包括淬火、回火、钝化、固溶处理和淬硬与回火。

这些工艺可以根据需要,通过改变加热温度、保温时间和冷却速度等参数进行调控,以达到最好的材料性能。

金属材料的热处理技术

金属材料的热处理技术

金属材料的热处理技术热处理是金属加工中的一项重要工艺,通过控制材料的温度和冷却速率,可以改善材料的机械性能和耐腐蚀性能。

本文将介绍几种常见的金属材料热处理技术及其应用。

1. 固溶处理固溶处理是指将金属材料加热至其固溶温度,使固态溶质原子溶解于晶格中,随后迅速冷却固定溶质原子的位置。

固溶处理可以提高金属的韧性和延展性,并改善材料的热稳定性。

常见的固溶处理方法包括快速淬火和退火。

2. 淬火处理淬火是将金属材料加热至其临界温度以上,并迅速冷却至室温,以获得高硬度和高强度的材料。

常用的淬火介质包括水、油和空气。

淬火处理能够增强金属的硬度和强度,但会降低其韧性。

因此,在实际应用中,需要根据具体要求进行适当的回火处理,以平衡硬度和韧性。

3. 回火处理回火是将淬火材料加热至较低的温度,并保持一段时间后冷却。

回火处理可以消除淬火过程中产生的内应力,并提高材料的塑性和韧性。

回火温度和时间的选择对于材料的性能具有重要影响,需要根据具体材料进行调整。

4. 热轧处理热轧是指将金属材料加热至较高温度,随后通过辊压等方式进行塑性变形。

热轧处理可以改变金属的晶粒结构和形状,提高材料的强度和塑性。

热轧处理通常用于生产板材、线材和型材等。

5. 等温处理等温处理是指将金属材料加热至其临界温度,在该温度下保持一段时间后冷却。

等温处理能够改善金属的晶格结构,提高材料的强度和韧性。

常见的等温处理方法包括时效处理和孪生处理。

6. 淬蓝处理淬蓝处理是指将金属材料经过淬火后,再进行加热,使其表面出现深蓝色的氧化膜。

淬蓝处理可以提高金属材料的表面硬度和耐磨性,常用于制造工具和刀具等。

7. 焊后热处理在金属焊接之后,常常需要对焊接区域进行热处理,以消除焊接过程中产生的应力和组织不均匀性。

常见的焊后热处理方法包括应力消除退火和再结晶退火。

总结起来,金属材料的热处理技术是一项关键的加工工艺,可以显著改善材料的性能,提高其在工程应用中的可靠性和耐久性。

金属材料的热处理工艺及性能改善技术

金属材料的热处理工艺及性能改善技术

金属材料的热处理工艺及性能改善技术随着工业技术的不断发展,金属材料在各个领域中扮演着重要的角色。

然而,金属材料的性能往往需要根据具体需求进行改善。

而其中一种常见的方法就是通过热处理工艺来实现。

本文将介绍金属材料的热处理工艺及性能改善技术。

1. 热处理工艺热处理是指通过加热和冷却等一系列工艺过程,使金属材料的结构及性能得到改善的工艺方法。

常见的热处理工艺包括退火、正火、淬火、回火等。

1.1 退火退火是将金属材料加热到一定温度,保持一段时间后缓慢冷却的工艺。

通过退火可使金属材料的晶粒细化、消除内应力以及改善塑性和韧性等性能。

1.2 正火正火是将金属材料加热到适当温度,然后在空气中自然冷却的工艺。

正火可以提高金属的强度和硬度,但相对于淬火而言变形较小。

1.3 淬火淬火是将金属材料加热到临界温度,然后迅速冷却的工艺。

淬火可以使金属材料的组织变为马氏体,从而提高硬度和强度,但会减小其塑性和韧性。

1.4 回火回火是将淬火后的金属材料再次加热到适当温度后冷却的工艺。

通过回火可以减轻淬火带来的脆性,提高金属材料的韧性和塑性。

2. 性能改善技术除了热处理工艺外,还有一些其他的技术可以用于金属材料的性能改善。

2.1 表面处理技术表面处理技术可以通过改变金属材料的表面结构和成分,来提升其耐磨性、耐腐蚀性以及表面光洁度等性能。

常见的表面处理技术包括电镀、喷涂和化学处理等。

2.2 合金化合金化是指将金属材料与其他元素进行混合,形成新的合金材料的过程。

通过合金化可以改变金属材料的组织结构和成分,从而改善其硬度、耐磨性、耐腐蚀性等性能。

2.3 疲劳寿命改善技术金属材料在长时间的使用过程中往往会出现疲劳破坏。

为了提高金属材料的疲劳寿命,可以采用表面强化、应力调控和表面涂覆等技术来改善材料的耐疲劳性能。

2.4 加工技术金属材料在加工过程中,其组织结构可能会发生变化,从而影响其性能。

因此,通过精确的加工技术可以使金属材料的性能得到改善。

金属材料与热处理总结

金属材料与热处理总结

金属材料与热处理总结金属材料是工程领域中最常用的材料之一,其性能和用途很大程度上取决于其热处理过程。

热处理是通过控制金属材料的温度、时间和冷却速率来改变其内部结构和性能的工艺。

本文将对金属材料的热处理方法和效果进行总结,以期为工程实践提供参考。

首先,我们来谈谈金属材料的热处理方法。

常见的热处理方法包括退火、正火、淬火和回火。

退火是将金属材料加热至一定温度,然后缓慢冷却至室温,以消除内部应力和改善塑性。

正火是将金属材料加热至适当温度,然后在空气中冷却,以提高硬度和强度。

淬火是将金属材料加热至临界温度,然后迅速冷却至室温,以获得高硬度和强度。

回火是将淬火后的金属材料重新加热至适当温度,然后进行缓慢冷却,以降低硬度和提高韧性。

其次,我们来探讨金属材料热处理的效果。

热处理可以显著改变金属材料的组织结构和性能。

通过退火,金属材料的晶粒得以细化,内部应力得以消除,从而提高其塑性和韧性。

通过正火,金属材料的碳化物颗粒得以析出,晶粒得以再结晶,从而提高其硬度和强度。

通过淬火,金属材料的组织得以马氏体化,从而获得极高的硬度和强度。

通过回火,金属材料的马氏体得以转变,内部应力得以释放,从而平衡硬度和韧性。

最后,我们需要注意的是金属材料的热处理过程中需要严格控制温度、时间和冷却速率。

温度过高或时间过长会导致晶粒长大,从而降低金属材料的性能;冷却速率过快会导致金属材料产生裂纹或变形。

因此,在实际工程中,需要根据金属材料的具体成分和要求,合理选择热处理方法和工艺参数,以获得最佳的性能和效果。

总之,金属材料的热处理是工程领域中不可或缺的工艺之一,通过合理的热处理方法和工艺参数,可以显著改善金属材料的性能和用途。

因此,在工程实践中,我们需要深入理解金属材料的热处理原理和方法,灵活运用于实际生产中,以满足不同工程需求。

金属材料热处理工艺(一)

金属材料热处理工艺(一)

金属材料热处理工艺(一)金属材料热处理工艺简介•金属材料热处理是指通过加热和冷却工艺,改变金属材料的组织结构和性能的技术方法。

•热处理可以提高材料的硬度、强度、耐腐蚀性能等,也能改善材料的塑性和可加工性。

•本文将介绍金属材料热处理的一些常见工艺和应用。

热处理类型1.固溶处理–固溶处理是将材料加热至高温,使溶质原子溶解于晶格中,再通过快速冷却固定溶质原子在晶格中的位置。

–这种处理方式能够使材料的硬度、强度等性能得到提高。

2.淬火–淬火是将材料加热至临界温度,然后迅速冷却,使材料经历相变过程,从而获得高硬度和高强度。

–淬火的工艺过程需要通过选择合适的冷却介质和冷却速度来控制材料的性能。

3.回火–回火是将经过淬火处理的材料加热至一定温度,然后冷却至室温,以减轻淬火过程中产生的内部应力和脆性,提高材料的塑性。

–回火可以根据需要进行多次,通过调整回火温度和时间,可以获得不同强度和硬度的材料。

4.淬脆–淬脆是指淬火处理后,材料出现脆性断裂现象的问题。

–为避免淬脆,可以采用适当的复合热处理工艺,如退火和再淬火等。

热处理应用•钢材热处理:通过热处理可以调整钢材的组织结构,提高其硬度和强度,广泛应用于机械制造、汽车制造等行业。

•铝合金热处理:通过热处理可以改善铝合金的强度、耐腐蚀性能,并且提高其耐磨性,被广泛应用于航空、航天、汽车等领域。

•铜材热处理:通过热处理可以改善铜材的导电性和耐腐蚀性能,常用于电子器件、电缆等领域。

•钛合金热处理:通过热处理可以提高钛合金的强度、耐腐蚀性和疲劳寿命,被广泛应用于航空航天、医疗器械等领域。

总结•金属材料热处理是一种重要的加工工艺,可以改善材料的性能,满足不同行业的需求。

•各种热处理工艺都需要精确控制温度和时间,以确保材料可以获得期望的性能。

•在选择热处理工艺时,需要考虑材料的特性和应用环境,以便获得理想的效果。

以上是关于金属材料热处理工艺的简要介绍,希望对您有所帮助!很高兴您对金属材料热处理工艺感兴趣!接下来,我们将进一步介绍热处理过程中的一些关键点和注意事项。

金属材料与热处理工艺

金属材料与热处理工艺

一、金属材料性能:金属材料在冷、热加工过程中所表现的性能称为加工工艺性能,包括:铸造性能、锻造性能、焊接性能、热处理性能、切削加工性能。

金属材料在使用条件下所表现的性能称为使用性能,包括材料的物理、化学和机械性能。

强度:材料在静载荷的作用下抵抗塑性变形和断裂的能力。

看一个材料的强度高低,一般来说用屈服点和抗拉强度来衡量它的大小,和材料的强度成正比,即:(1)抗拉强度。

金属试样拉伸时,在拉断前所承受的最大应力,称为抗拉强度。

它表示金属材料在拉力作用下抵抗塑性变形的和破坏的能力。

σb=Fa/A0式中σb ——抗拉强度(MPa)Fa ——试样拉断前的最大载荷(N)A0 ——试样原截面积(mm2)(2)屈服强度。

当材料试样所受载荷增大到某一数值时,试样发生连续伸长的现象,叫屈服现象。

产生屈服现象时的应力称作屈服强度或屈服点,用σs表示,单位MPa。

对某些屈服现象不明显的金属材料,测定屈服点比较困难,常把0.2%永久变形的应力值定为屈服点,称为条件屈服强度。

用σ0.2表示,单位MPa。

一般机械零件和工程构件都不允许产生塑性变形,否则会失效而发生事故。

所以屈服强度σs也是机械设计和工程设计中的重要依据。

材料的许用应力[σ]=σs /SS ——安全系数抗拉强度和屈服强度是金属材料的重要强度指标。

二.金属热处理1.退火操作方法:将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度(500—600℃)后,一般随炉温缓慢冷却。

目的:1).降低硬度,提高塑性,改善切削加工与压力加工性能;2).细化晶粒,改善力学性能,为下一步工序做准备;3).消除冷、热加工所产生的内应力,防止工件变形和开裂。

应用要点:1).适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2).一般在毛坯状态进行退火。

2.正火操作方法:将钢件加热到Ac3或Acm 以上30~50度,保温后以稍大于退火的冷却速度冷却(空冷)。

浅谈金属材料与热处理工艺的关系

浅谈金属材料与热处理工艺的关系

浅谈金属材料与热处理工艺的关系随着我国经济的快速发展,工业生产技术得到很大提高,较高的机械性能能够发挥出金属材料最大的潜能。

为了满足生产需求,需要通过热处理工艺改变金属材料的机械性能,所以必须加强对热处理工艺的研究,处理好金属材料和热处理工艺之间的关系,获得最佳的生产效果。

作为设计人员需要根据金属材料的特性和组成成分,选择最佳的热处理工艺,实现二者之间的有机结合。

文章主要对当前热处理工艺和金属材料之间的关系进行分析,希望能够给相关人士提供一定的借鉴。

标签:金属材料;热处理;工艺;关系1 金属材料和热处理发展的历史早在四千年前我国就已经开始使用金属材料了,而且相比世界其他国家,我们很早就开始具有较高的热处理水平。

自从改革开放之后,我国社会经济得到了快速发展,金属材料的种类日益繁多,热处理技术也得到很大提升,为我国金属制造业、冶金业、钢铁业等工业做出了巨大贡献,进一步促进了我国经济快速发展。

当前金属材料和热处理工艺之间的关系越来越紧密,需要相关研究人员深入探讨二者之间的积极关系。

2 金属材料的基本组织和结构虽然铝、铜、铁等金属材料被广泛使用在生产工业中,但是由于单纯的某种金属材料存在一定的缺陷,所以当前这些金属材料的合金形式被使用的更加广泛。

当前合金内部结构主要分为两个方面,一个是内部空间原子之间的排列情况,另一个是原子和金属之间的结合方式。

空间原子之间排列方式的不同则会产生不同的金属性能,所以,空间原子排列情况和金属性能有直接关系,我们可以根据这一规律利用热处理技术来满足生产需求。

所谓金属材料热处理工艺指的是在一定的介质中加热金属达到特定的温度,并保持一段时间,在不同的介质下进行冷却,达到改变金属性能的一种工艺。

热处理工艺是一项十分复杂的加工工艺,其中任何一个因素受到外界影响而发生改变,都会影响到金属性能的改变,所以为了能够满足生产工业的需要,需要做好热处理工艺的控制,进一步提高机械性能。

3 分析热处理和金属材料的关系3.1 分析热处理预热和金属材料的切削性能所存在的关系为了能够保证生产出来的金属材料性能满足需要,就必须保证在加工过程中热处理工艺和切削性能之间保持相互配合的关系。

对金属材料与热处理工艺关系的研究

对金属材料与热处理工艺关系的研究

对金属材料与热处理工艺关系的研究为满足我国经济发展对工业生产的要求,金属材料加工方面的工艺不断改进,这其中热处理工艺不断完善,也使金属材料能够表现出更优越的性能。

基于此,本文简单介绍了金属材料性能与热处理工艺技术,并从热处理预热、热处理温度、热处理应力几方面详细分析了金属材料与热处理工艺的关系。

引言:相比世界其他国家,我国最早开始具备较高的热处理水平。

改革开放后,我国金属材料的种类不断增多使热处理技术也不断完善,这对我国的金属制造业、冶金业、钢铁业等工业作出巨大贡献,更推动了我国经济的快速发展。

1金属材料性能与热处理工艺技术1.1 金属材料性能金属材料存在耐久性、硬度和疲劳性三种性能。

耐久性与金属材料受到的腐蚀情况是对应的。

在实际运用过程中,金属材料都会受到应力、缝隙等不同程度的腐蚀。

金属材料受到的腐蚀程度越轻,证明其耐久性越好。

金属材料的硬度是金属材料众多特性中最关键的一种,主要表现为材料的抗击性。

一般来说,材料的硬度与抗击性成正比。

金属材料的疲劳性表现为其受到长时间的持续性应用作用后,是否会发生异常断裂的情况。

1.2热处理工艺技术热处理是指对固态的金属进行加热、恒定温度,并在加热过程后进行冷却使金属质量与性能都得到提升的一种工艺方式。

热处理相比于其它工艺,最显著的区别是其仅改变了金属材料表面的化学构成,而并未改变金属材料的内部化学构成。

2金属材料与热处理工艺的关系2.1热处理预热影响金属材料的切削性能在金属切削过程中,材料种类、切割工具及切割环境都会影响金属的变形情况,导致最终切割出的金属的光洁度也发生变化。

为消除各种零件模型及半成品在锻造过程或热处理过程中产生的缺陷,要对这些零件模型及半成品进行预热处理,从而保证材料的切削性能,使之后金属切削加工和热处理的条件充分,减少金属材料变形程度,提高这些零件模型及半成品的加工质量。

每一种材料的金相组织和硬度范围都不同,所以其具有的最佳切削性能也都不一致。

金属材料与热处理技术

金属材料与热处理技术

金属材料与热处理技术随着工业的发展,金属材料在我们的生活中扮演着越来越重要的角色。

金属材料的性质和用途不同,需要进行不同的热处理技术。

本文将介绍金属材料的分类和热处理技术的基本原理,以及热处理技术在金属材料的应用。

一、金属材料的分类金属材料的分类主要有以下几种:1. 铸造合金:是通过铸造工艺制造出来的金属材料,包括铜合金、铝合金、镁合金等。

铸造合金的特点是成本低,但强度和耐腐蚀性较差。

2. 锻造合金:是通过锻造工艺制造出来的金属材料,包括钢、铁、铜、铝等。

锻造合金的特点是强度高,但成本较高。

3. 粉末冶金材料:是通过粉末冶金工艺制造出来的金属材料,主要包括钨合金、钴合金、铁基合金等。

粉末冶金材料的特点是密度高、强度高、耐磨性好,但成本较高。

4. 金属复合材料:是将两种或两种以上的金属材料组合在一起制造出来的金属材料,主要包括钛合金复合材料、镍基复合材料等。

金属复合材料的特点是强度高、耐腐蚀性好,但成本较高。

二、热处理技术的基本原理热处理技术是指对金属材料进行加热、保温、冷却等处理,以改变其组织和性能的一种工艺。

热处理技术的基本原理是通过控制材料的加热、保温和冷却过程,使其达到理想的组织和性能。

热处理技术主要包括以下几种:1. 固溶处理:是将固溶体中的溶质加热到高温,使其溶解在基体中,然后快速冷却的一种处理方法。

固溶处理可以改善材料的强度、硬度和耐腐蚀性等性能。

2. 淬火处理:是将加热后的材料迅速冷却到室温以下的一种处理方法。

淬火处理可以提高材料的硬度和强度,但会降低其韧性。

3. 淬火回火处理:是将淬火处理后的材料进行加热和保温,然后再进行冷却的一种处理方法。

淬火回火处理可以提高材料的强度和韧性,但会降低其硬度。

4. 热处理强化:是通过加热和保温的方式,使材料的晶粒细化和分布均匀,从而提高其强度和硬度的一种处理方法。

三、热处理技术在金属材料中的应用热处理技术在金属材料中的应用非常广泛。

以下是热处理技术在不同金属材料中的应用:1. 钢材热处理:钢材的热处理主要包括淬火、回火和正火等处理方法。

金属材料与金属热处理工艺基本知识

金属材料与金属热处理工艺基本知识
增补章: 金属材料与金属热处理工艺基本知识
B 金属热处理工艺基本知识
热处理是指通过对工件的加热、保温和冷却,使
金属或合金的组织结构发生变化,从而获得预期的性 能(如机械性能、加工性能、物理性能和化学性能等) 的操作工艺称为热处理。
工件热处理的目的是通过热处理这一重要手段, 来改变(或改善)工件内部组织结构,从而获得所需要 的性能并提高工件的使用寿命。
目的:降低硬度,改善切削加工性能;形成球状
珠光体,为后面的淬火作组织准备。
● 扩散退火
将工件加热到略低于固相线温度,保温后缓慢冷 却的热处理工艺称为扩散退火。
目的:消除成份偏析。
●去应力退火 将工件加热到 Ac1以下某一温度,保温后随炉冷却
的热处理工艺称为去应力退火。
目的:消除铸、锻、焊的内应力。
温后●空正气火中是冷将却钢的加热热处到理工Ac3艺或。Accm以上30~50℃,保
淬火是将钢加热到临界点以上,保温后以大于
Vk的速度冷却的热处理工艺。
目的:为了获得马氏体,提高钢的力学性能。
●淬火温度
选择淬火温度的原则是 获得均匀细小的奥氏体。 如图所示,一般淬火温度 在临界点以上。
图4 碳钢的淬火温度范围
组●织对为亚马共氏析体钢,,如淬图火所温示度。为Ac3+30~50℃,淬火
度、保温时间和冷却速度。通常把加热速度、 最高加热温度、保温时间和冷却速度称为工件 热处理的四个要素,也称工艺参数。正确地确
定和保证实施好工艺,就能获得预期的效果, 并将得到满意的性能。
从数学的观点看,热处理的质量是温度和 时间的函数,所以工件的热处理工艺规范可用 时间一温度为坐标表示出来,任何工件的热处 理,都应包括:
● 测定钢的淬透

热处理工艺对金属材料性能的影响

热处理工艺对金属材料性能的影响

热处理工艺对金属材料性能的影响随着工业化进程的不断加速,金属材料的应用范围日益扩大,其质量和性能的需求也越来越高。

而热处理工艺作为一种重要的金属材料加工技术,既能够改善金属的力学性能,又能够提升金属的耐腐蚀和耐磨性能,已经成为了现代工业生产中不可或缺的一环。

本文主要探讨热处理工艺对金属材料性能的影响。

1. 热处理工艺的概述热处理工艺是通过对金属材料进行加热和冷却处理,改变其晶格结构和化学成分,从而达到改善其力学性能、耐腐蚀性能、耐磨性能等目的的一种工艺。

热处理工艺主要包括退火、正火、淬火、回火等几种类型。

这些工艺会影响到金属材料的硬度、强度、韧性等多方面的性能。

2. 热处理工艺对金属材料的性能影响2.1 热处理对金属材料硬度和强度的影响在硬度和强度方面,热处理工艺主要通过改变金属材料的晶格结构来实现。

比如在淬火工艺中,金属材料被急冷后,晶格结构变得更加紧密,原子结构得到了改善,从而提高了材料的硬度和强度。

其次,在回火工艺中,金属材料被加热后保温一定时间,再让其自然冷却,能够使得其晶格结构逐渐变得稳定,硬度和强度有所提高,同时韧性也得到了提升。

2.2 热处理对金属材料韧性和可塑性的影响硬度和强度作为金属材料性能的重要衡量指标,但是过于坚硬和脆弱却不利于实际的应用。

因此,韧性和可塑性也是金属材料性能中不可忽视的重要因素之一。

在热处理过程中,退火是常用的一种工艺。

通过退火,金属材料在高温下得以再结晶,晶界得以被分离,从而使得材料的韧性和可塑性得到了提高。

这些性质的提高,不仅使得金属材料更容易加工,而且也可以降低应力,提高其耐应力腐蚀性能。

2.3 热处理对金属材料耐腐蚀和耐磨性能的影响除了硬度、强度和韧性等力学性能之外,金属材料的耐腐蚀性能和耐磨性能也同样重要。

在热处理工艺中,有一种被称为氮化淬火的工艺,可以提高钢材的耐腐蚀性能。

此外,渗碳淬火、沉淀硬化等工艺也可以被用来提高金属材料的耐腐蚀性能。

而在提高金属材料的耐磨性能方面,高温淬火、高温回火、沉淀硬化等热处理工艺均有良好的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料与热处理工艺关系的探讨函数站株洲331函授站专业机电一体化班级姓名朱雪峰指导教师二○一一年三月目录1、前言…………………………………………………………………2、金属材料结构及基本组织………………………………………….3、金属材料的切削性能与热处理预热的关系………………………3.1金属材料的切削性能与热处理预热的关系……………………….3.2金属材料的切边横量与热处理温度的关系………………………3.3金属材料的断裂韧性与热处理温度的关系………………………3.4 金属材料抗应力腐蚀开裂与热处理应力的关系…………………4、零件材料结构及特点分析……………………………4.1零件的材料特点………………………………………….4.2零件的结构特点…………………………………………5、轴承盖真空热处理工艺路线………………………………6、产品质量与《经济法》的关系……………………………7、结论………………………………………………………………8、主要参考文献…………………………………………………第一章前言工业生产中,许多金属材料为最大限度地发挥材料潜力,需要提高其机械性能。

在设计工作中,正确制定热处理工艺可以改变某些金属材料的机械性能。

而不合理的热处理条件,不仅不会提高材料的机械性能,反而会破坏材料原有的性能。

因此,设计人员在根据金属材料成分及组织确定热处理的工艺要求时,应准确分析金属材料与热处理工艺的关系,合理安排工艺流程,才能得到理想的效果。

第二章金属材料结构及基本组织在工业生产中,广泛使用的金属有铁、铝、铜、铅、锌、镍、铬、锰等。

但用得更多的是它们的合金。

金属和合金的内部结构包含两个方面:其一是金属原子之间的结合方式;其二是原子在空间的排列方式。

金属的性能和原子在空间的排列配置情况有密切的关系,原子排列方式不同,金属的性能就出现差异。

金属材料热处理过程是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来改变其性能的一种工艺。

因此,对某些金属或合金来说,可以用热处理工艺来改变它的原子排列,进而改变其组织结构,控制其机械性能,以满足工程技术的需要。

不同的热处理条件会产生不同的材料性能改变效果,下面就金属的材料的某些性能来分析其与热处理工艺的关系,以便更好的提高材料的机械性能。

第三章金属材料与热处理工艺的关系3.1金属材料的切削性能与热处理预热的关系金属材料加工的整个工艺流程中,如果切削加7-7-艺与热处理工艺之间能相互沟通,密切配合,对提高产品质量将有很大好处。

在金属切削过程中,由于被加工材料、切削刀具和切削条件的不同,金属的变形程度也不同,从而产生不同程度的光洁度。

预先热处理主要是应用于各类铸、锻、焊工件的毛坯或半成品消除冶金及热加工过程产生的缺陷,并为以后切削加工及热处理准备良好的组织状态。

从而保证材料的切削性能、加工精度和减少变形。

提高零件的切削性能。

各种材料的最佳切削性能都对应有一定的硬度范围和金相组织。

齿坯材料在切削加工中,当齿柸硬度偏低时会产生粘刀现象,在前倾面上形成积屑瘤,使被加工零件的表面光洁度降低。

而对齿坯材料进行正火+不完全淬火处理,切屑容易碎裂,形成粘刀的倾向性减少。

并随着齿坯硬度的提高,切屑从带状向挤裂多渡,减少了粘刀现象,提高了切削性能。

经固溶处理和时效强化后的铝合金,比铸态或压力加工状态的切削性能好。

所以铝合金通常都是先经强化处理(固溶处理+时效;时效),再切削加工。

晶粒细小、均匀的组织,不仅改善了切削性能,提高了机械加工精度,而且为最终热处理(淬火十回火),保证获得良好的组织和陛能做好准备。

3.2金属材料的切边横量与热处理温度的关系切变模量是材料的力学性能指标之一,是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。

它表征材料抵抗切应变的能力,模量大,则表示材料的刚性强。

通过热处理,可以改变材料的性能,同时,材料本身的物理性质也发生改变,切边模量应该也随之变化。

从而导致了弹簧的实际伸长量与设计计算的伸长量存在着一定的误差。

笔者结合相关实验,分析了热处理与金属材料切边模量变化的关系。

工业生产中在选用弹簧钢进行弹簧设计计算时,要用到材料的切边模量和弹簧模量。

如果按传统设计资料中给出的切边模量取值,那么,通常计算的弹簧变形量和实际测得的弹簧变形量有较大的误差。

这是因为加工后的成品弹簧,特别是热绕成形的弹簧都需经过热处理。

而由于材料弹性模量的大小是由原子间的结合力决定的,所以凡是影响原子间结合力的因素都会影响弹性模量的大小。

合金成分和组织、温度、形变强化都会对原子间的结合力产生影响,所以经过热处理后材料温度发生了变化,即材料弹性模量发生变化。

同时,切边模量G与弹性模量E存在以下关系式:G=E/2(1+u),当其他因素不变时,E变化必然导致G的变化。

所以弹性模量的变化使弹簧的特性线早在设计时就已产生了先天性的的误差。

因此,笔者认为,在对特性线要求较高的弹簧进行设计计算时,不应按照传统资料的给定值进行设计,应根据弹簧的服役条件,如工作温度、载荷等等确定。

只要在相应的回火温度和硬度要求范围内选取切变模量即可。

而对于特性线要求不高的螺旋弹簧来说,可以不考虑弹簧经过热处理后的切变模量的变化。

3.3金属材料的断裂韧性与热处理温度的关系断裂力学的出发点是,任何材料实际都含有不同数量、不同尺寸的裂纹。

断裂韧性实际可以理解为含有裂纹的材料在外力作用下抵抗裂纹扩展的性能。

提高金属断裂韧性的关键是要减少金属晶体中位错,使金属材料中的位错密度下降,从而提高金属强度。

细晶强化是减少金属晶体中位错的一种重要方法,其原理是通过细化晶粒使晶界所占比例增高而阻碍位错滑移从而提高材料强韧性。

而金属组织的细化则主要通过热处理后再结晶获得。

当冷变形金属加热到足够高的温度以后,会在变形最剧烈的区域产生新的等轴晶粒来代替原来的变形晶粒,这个过程称为再结晶。

只有在一定的应力和变形温度的条件下,材料在变形过程中才会积累到足够高的局部位错密度级别,导致发生动态再结晶。

因此,不同温度对金属的再结晶效果好坏有明显的关系。

可以通过以下实验证明:在SY钢坯料上线切割适当的小圆柱,机加工后,选择在700℃,800℃,900℃、1000℃和1100℃在Cleeble-1500型热模拟试验机上以5×10-1的变形速率保温30s压缩变形50%,然后在空气中冷至室温,再进行680℃×6hAC(空冷)的退火处理,再将压缩后的试样沿轴向线切割剖开,研磨抛光后用化学物质显示晶粒形貌。

实验现象为:在700℃时,扁平的晶粒开始逐渐向等轴晶粒的形状变化。

800℃变形的晶粒中等轴晶粒已经有少量出现,但仍然以变形拉长的晶粒为主。

在900℃变形开始,晶粒突然变得细小,几乎全部为等轴晶粒,晶粒度达到YBl2级。

在900℃以上.晶粒开始长大。

因此,900℃左右温度,是钢的宏观性能变化最为剧烈的阶段。

再结晶晶核的形成与长大都需要原子的扩散,因此必须将变形金属加热到一定温度之上,足以激活原子,使其能进行迁移时,再结晶过程才能进行。

那么,我们就可以得出控制热处理的温度,可以提高金属材料的断裂韧性。

3.4金属材料抗应力腐蚀开裂与热处理应力的关系金属材料在拉伸应力和特定腐蚀环境共同作用下发生的脆性断裂破坏称为应力腐蚀开裂。

大部分引起应力腐蚀开裂的应力是由残余拉应力引起的。

残余应力是金属在焊接过程中产生的。

金属在加热时,以及加热后冷却处理时,改变了材料内部的组织和性能,同时伴随产生了金属热应力和相变应力。

这种应力对材料的影响有利也有弊,下面主要对金属热处理中的残余应力与形成裂纹间的关系进行分析。

金属材料在加热和冷却过程中,表层和心部的加热及冷却速度(或时间)不一致,由于温导致材料体积膨胀和收缩不均而产生应力,即热应力。

在热应力的作用下,由于冷却时金属表层温度低于心部,收缩表面大于心部而使心部受拉应力:另一方面材料在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随材料体积的膨胀,材料各部位先后相变,造成体积长大不一致而产生组织应力。

组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与拉应力相反。

金属热处理的热应力和相变应力叠加的结果就是材料中的残余应力。

金属热处理中淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。

通过相关实验,我们可以得出:1)淬火冷却速度加快,抑制纵裂效果增大。

为了达到淬火的目的,通常必须加速材料在高温段内的冷却速度,并使之超过材料的临界淬火冷却速度才能得到马氏体组织。

就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的;2)冷却后期缓冷的。

主要不是为了降低马氏体相变的膨胀速度和组织应力值,而在于尽量减小截面温差和截面中心部位金属的收缩速度,从而达到减小应力值和最终抑制淬裂的目的。

第四章零件材料结构及特点分析 4.1零件的材料特点AMS5613抗蚀耐热镍基合金,对应的国内牌号为GH984,其化学成分见表1:表1从表1 可知AMS5613镍的含量约为62%,而其中所含的铁、钴、铬、钼、铌、钽是强化镍基合金的元素。

4.2 零件的结构特点零件壁厚在44.5mm,外经为Φ168mm,内径为Φ95mm第五章轴承盖真空热处理工艺路线轴承盖为环行结构零件,材料为:AMS5613,属于难加工材料,所以真空热处理加工难度相当高。

以下为加工流程:1.检查a.零件的标识、材料牌号、外观、数量、是否符合工艺规程和流程卡的要求,以及是否存在质量问题。

b.检查热处理炉及仪器仪表是否处于有效使用期内。

2.清洗用清洗剂将零件清洗干净并晾干。

3. 装炉按图(2)装炉方法,每炉最多装32件。

4. 淬火以(15—18)℃/min的速率升至1010±14℃,保温129±7.5min,油冷,油温:20—60℃。

(图3)注:油冷后有清洗剂清洗干净,并在两小时内进行回火。

5.回火以(15—18)℃/min的速率升至600±14℃,保温217±7.5min,油冷,油温:20—60℃。

(图4)6.防护零件用清洗剂干净,干燥后涂上防锈油。

7.检验a.100%硬件零件HRC=26—32。

将零件和对应的硬度值记录在流程卡上,作为成品零件的原始记录。

第六章产品质量与《经济法》的关系产品质量是企业生存的血液,是企业在市场中的竞争力,只有占有了市场,产品才能产生效益,才能体现企业的价值。

产品质量包括两方面内容,即产品问题和质量问题。

作为一名生产者应对自己所生产的零件负责,产品质量应当符合下列要求:1.不存在危及人身、财产安全的不合理的危险,有保障人体健康,人生、财产安全的国家标准、行业标准的,应当符合该标准;2.具备产品应当具备的使用性能,但是,对产品存在使用性能的瑕疵作出说明的除外;3.符合在产品或其包装上注明采用的产品标准,符合以产品说明、实物样品等方式表明的质量状况。

相关文档
最新文档