博弈论的应用及案例
博弈论应用案例范文
博弈论应用案例范文
博弈论是一个非常实用的理论,它模拟现实世界中不同的博弈实例。
这些实例可以让我们在不同的地方看到它的应用情形。
下面是一些博弈论应用案例:
1、博弈论在经济学中的应用:在经济学中,人们正在探索如何使用博弈论来研究各类竞争情形,包括市场竞争、价格竞争、利润竞争、市场占有率竞争等。
这些应用可以帮助政策制定者和企业决策者更好地理解和应对不同类型的商业竞争。
2、博弈论在战略管理学中的应用:战略管理学将博弈论应用到现实中不同的博弈模式,比如双方博弈、多方博弈等,以帮助企业管理者以最有效的方式制定有效的策略。
在管理中,博弈论可以帮助管理者深入思考不同的竞争发展趋势,分析不同结果的可能性,并做出明智的决策。
3、博弈论在工业组织中的应用:在工业组织中,博弈论可帮助企业管理者更好地理解复杂的行业竞争环境,分析不同双方的利益和制定利益共享机制,更加有效地确定和实施有效的竞争策略。
4、博弈论在政治策略制定中的应用:博弈论也是政治策略制定的有价值的参考理论。
它可以帮助政治策略制定者更好地理解不同政党的竞争目标,以及各方可能做出的动作以及其所带来的后果。
博弈论经典案例
博弈论经典案例在我们的生活中,博弈论的应用无处不在。
从商业竞争到日常决策,从政治策略到体育比赛,博弈论为我们提供了一种理解和预测人类行为的有力工具。
接下来,让我们一起探讨几个经典的博弈论案例。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警方抓获,但警方没有足够的证据指控他们。
于是,警方将两人分别关押在不同的房间进行审讯,并向他们分别提出以下条件:如果 A 坦白而 B 抵赖,那么 A 将被判刑 1 年,B 将被判刑 10 年;如果 A 抵赖而 B 坦白,那么 A 将被判刑 10 年,B 将被判刑 1 年;如果 A 和 B 都坦白,那么两人都将被判刑 8 年;如果 A 和 B 都抵赖,那么两人都将被判刑 2 年。
对于 A 来说,如果 B 坦白,那么自己坦白将判刑 8 年,抵赖将判刑 10 年,所以坦白是更好的选择;如果 B 抵赖,那么自己坦白将判刑1 年,抵赖将判刑2 年,坦白仍然是更好的选择。
同样的逻辑对于 B也适用。
因此,最终两人都会选择坦白,结果都被判刑 8 年。
然而,从整体来看,如果两人都抵赖,那么两人的总刑期是 4 年,比都坦白的总刑期 16 年少。
这就是囚徒困境所展现的,个体看似理性的选择导致了集体的非理性结果。
在现实生活中,类似的情况也屡见不鲜。
比如企业之间的价格战,每个企业都想通过降价来吸引更多的客户,但如果所有企业都降价,那么大家的利润都会受到影响。
案例二:智猪博弈假设猪圈里有一头大猪和一头小猪,猪圈的一头有一个猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7 个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4 个单位。
那么,对于小猪来说,无论大猪是否按按钮,自己等待总是更好的选择。
因为如果大猪按按钮,小猪等待可以吃到 4 个单位;如果大猪等待,小猪等待也不会有损失。
博弈论经典案例
博弈论经典案例博弈论是研究决策者之间策略和利益的数学理论,它在经济学、政治学、生物学等领域有着广泛的应用。
在博弈论中,经典案例是帮助我们理解和应用博弈论理论的重要工具。
下面,我们将介绍几个经典的博弈论案例,帮助大家更好地理解博弈论的核心概念和应用。
第一个经典案例是囚徒困境。
囚徒困境是指两个犯罪嫌疑人被分开审讯,如果两人都沉默不发言,警方只能以轻罪定罪,每人判刑一年;如果其中一人选择认罪举证,而另一人沉默不发言,认罪者将免于刑事处罚,而另一人将被判十年重刑;如果两人都选择认罪举证,警方将以共同犯罪定罪,每人判刑八年。
在这个案例中,每个囚徒都面临着合作和背叛的选择,他们的最佳策略取决于对方的选择。
囚徒困境案例展示了合作和背叛之间的博弈,以及如何在利益最大化和风险最小化之间进行权衡。
第二个经典案例是孩子分糖果。
假设有两个孩子,他们要平分一袋糖果。
如果他们能够达成一致,那么每个人都会得到一半的糖果;但如果他们无法达成一致,糖果将被拿走。
在这个案例中,每个孩子都需要考虑对方的利益和策略,以及如何最大化自己的利益。
这个案例展示了博弈论在日常生活中的应用,以及如何在博弈中进行合作和谈判。
第三个经典案例是价格竞争。
假设有两家公司在同一个市场上销售相似的产品,它们需要决定产品的定价策略。
如果它们选择相同的价格,那么它们将平分市场份额;但如果它们选择不同的价格,价格较低的公司将获得更多的市场份额。
在这个案例中,每家公司都需要考虑对方的定价策略,以及如何最大化自己的利润。
这个案例展示了博弈论在市场竞争中的应用,以及如何在竞争中制定最佳策略。
以上三个经典案例展示了博弈论在不同领域的应用,以及博弈论理论对于理解和解决现实生活中的冲突和竞争问题的重要性。
通过学习这些经典案例,我们可以更好地理解博弈论的核心概念和方法,为我们在实际问题中的决策和策略制定提供有益的启示。
希望大家能够通过这些案例,深入了解博弈论的精髓,为自己的决策和行为提供更加理性和有效的指导。
博弈论在经济中的应用
博弈论在经济中的应用博弈论是一门研究决策者之间相互影响的数学理论,在经济学领域中有着广泛的应用。
作为一种分析人类行为的工具,博弈论帮助经济学家解决了许多现实世界中的问题。
本文将探讨博弈论在经济中的具体应用,并分析其中的一些重要案例。
1. 市场竞争中的博弈在市场经济中,企业之间的竞争是常见的情况。
博弈论可以帮助我们研究企业之间的策略选择和行为模式。
例如,某一市场中有两家主要的公司A和B,它们都可以选择提供高质量的产品或低质量的产品。
如果A公司选择提供高质量的产品,B公司会面临选择,是提供高质量产品以争夺市场份额,还是提供低质量的产品以获取更高的利润。
这种竞争情况可以用博弈论中的策略博弈来分析和建模。
2. 合作与背叛的博弈在经济关系中,个人之间的合作与背叛也是常见的情况。
例如,两个公司可以选择合作开展某项业务,但同时也可以选择背叛对方,追求自己的利益。
这个情况可以用博弈论中的合作博弈来分析。
通过分析各种策略的收益和成本,我们可以确定最佳的合作策略,从而实现双方利益的最大化。
3. 拍卖机制设计在拍卖市场中,博弈论可以帮助我们设计有效的拍卖机制。
卖方可以通过选择不同的拍卖规则来影响买方的策略选择,从而提高自己的利润。
例如,卖方可以选择一种披露所有竞标者出价的平价拍卖,或者选择一种只披露最高竞标者出价的一价拍卖。
这些不同的机制设计会引导买方的策略选择,从而影响最后的交易结果。
4. 博弈论在战略决策中的应用博弈论也被广泛运用于军事和战略决策中。
不同国家之间的战略选择和行为模式可以通过博弈论进行分析和预测。
例如,两个国家之间的核武器竞赛可以用博弈论中的零和博弈来建模。
这种分析可以帮助决策者更好地了解他们的对手,并制定出最佳的应对策略。
5. 动态博弈与时间性在某些情况下,博弈论也需要考虑时间因素。
动态博弈模型可以帮助我们研究玩家之间在不同时间点上的策略选择和行为变化。
例如,在股票市场中,投资者的买卖决策会受到市场波动和其他参与者的行为影响。
博弈论经典案例
博弈论经典案例1. 囚徒困境:这是一种经典的博弈论案例,两名囚犯被关押在不同的牢房中,警方缺乏确凿的证据将他们定罪,决定让他们进行交涉。
如果两人都认罪,每人将会被判刑5年;如果一个人认罪而另一个人保持沉默,认罪的人将会被判刑1年,而保持沉默的人将被判无期徒刑;如果两人都保持沉默,每人将被判刑3年。
在这种情况下,每个囚犯都面临着是否信任对方合作的决策。
2. 麦氏定理:这是美国经济学家约翰·N·纳什于1950年提出的经典问题。
假设有两家咖啡店A和B,它们的位置一个在城市的北边,另一个在南边。
两家咖啡店需要决定每天早上的开门时间。
如果A咖啡店在北边开门,而B咖啡店在南边也同样开门,北部居民会去A店,南部居民会去B店,两家店的收入会平均分。
但是,如果A店在北边开门,而B店在南边关门,南部居民不得不去北边排队等待,这将导致北边的队伍变长,北部居民也会选择去B店。
麦氏定理指出,当两家店选择不同的开门时间时,总是有一种策略,使得两家店的收入之和最大。
3. 社交圈中的追逐游戏:在一个社交聚会上,一对情侣分手后,男方试图追回女方。
男方完成了一连串的行动,女方必须在每个行动之后做出回应。
游戏的目标是让女方接受男方的求爱。
这个案例涉及到博弈论中的策略选择和不确定性。
4. 价格竞争:在一场市场竞争中,两家公司决定销售产品的价格。
低价通常会吸引更多的消费者,但是公司也需要考虑到自己的成本和利润。
每家公司需要在出售产品的定价上权衡竞争和利润之间的平衡。
这个案例涉及到博弈论中的纳什均衡和即时反应策略。
5. 投标博弈:在一场拍卖中,多个竞争者竞相出价,以获得拍卖品。
每个竞争者必须决定自己的出价,以获得最大的利润。
这个案例涉及到博弈论中的最优出价和风险评估。
博弈论的经典案例五篇
博弈论的经典案例五篇博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
本站为大家整理的相关的博弈论的经典案例供大家参考选择。
博弈论的经典案例篇一囚徒困境学习管理学或经济学的人一定都了解一些博弈论方面的知识。
在博弈论中有一个经典案例囚徒困境,非常耐人回味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
十大博弈论经典案例
十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
精编博弈论经典案例资料
精编博弈论经典案例资料在我们的生活中,博弈论的身影无处不在。
从日常的购物决策到商业竞争,从国际关系到体育比赛,博弈论为我们提供了一种理解和预测人类行为的有力工具。
接下来,让我们一起走进几个经典的博弈论案例,感受其中的智慧与策略。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警方抓获,但警方没有足够的证据指控他们。
于是,警方将两人分别关押,并分别告知他们以下政策:如果 A 和 B 都保持沉默(不坦白),那么两人都将被判刑 1 年;如果 A 坦白而 B 沉默,那么 A 将被释放,B 将被判刑 5 年;如果 B 坦白而 A 沉默,那么 B 将被释放,A 将被判刑 5 年;如果 A 和 B 都坦白,那么两人都将被判刑 3 年。
从理性的角度来看,对于 A 来说,如果 B 坦白,那么自己坦白会被判 3 年,沉默会被判 5 年,所以坦白更好;如果 B 沉默,那么自己坦白会被释放,沉默会被判 1 年,还是坦白更好。
同样的逻辑对于 B也适用。
最终的结果往往是A 和B 都选择坦白,两人都被判刑3 年。
然而,从整体的最优结果来看,如果两人都保持沉默,总共只需要判刑2 年。
这个案例反映了个体理性与集体理性之间的冲突。
在现实生活中,类似的情况也经常出现。
比如在商业竞争中,企业之间为了争夺市场份额,可能会采取过度降价的策略,最终导致双方的利润都受到损失。
案例二:智猪博弈猪圈里有一头大猪和一头小猪。
猪圈的一头有一个饲料槽,另一头安装着控制饲料供应的按钮。
按一下按钮会有 10 个单位的饲料进槽,但谁按按钮就需要先付出 2 个单位的成本。
而且,大猪吃的速度快,如果小猪去按按钮,大猪会在小猪跑回来之前吃掉大部分饲料;如果大猪去按按钮,小猪也能吃到一部分饲料。
如果小猪按按钮,大猪等待,那么大猪能吃到 9 个单位的饲料,小猪只能吃到 1 个单位的饲料(扣除成本后净收益为-1);如果大猪按按钮,小猪等待,那么大猪能吃到 6 个单位的饲料,小猪能吃到 4 个单位的饲料;如果大猪小猪都去按按钮,那么大猪能吃到 7 个单位的饲料,小猪能吃到 3 个单位的饲料(扣除成本后净收益为 1);如果大猪小猪都等待,那么双方都吃不到饲料。
经济学中的博弈论及应用案例研究
经济学中的博弈论及应用案例研究博弈论是经济学中最有启发性的工具之一。
它是一种分析人与人之间互动效应的方法,它可以帮助我们更好地理解组织与市场中的决策行为,并使我们更好地预测市场变化的方向。
本文将探讨博弈论在经济学中的应用及相关案例。
案例一:《感知差异与歧视的实验研究》前不久,有一位银行职员在一则广告中看到房子的照片,照片上的房子很漂亮,于是他立刻想买了下来。
但当他实地走访时,却发现房子与照片并不一样,他也变得十分生气。
这种现象在中介行业中很常见,这种“美化”的宣传导致顾客与实际不符,造成了很多不愉快的体验。
这种“美化”的宣传看起来对经纪人很有益处,但实际上,这种行为可能导致不满意的客户,从而破坏了信任关系。
如果一个经纪人能够制定一种更诚实的宣传策略,例如,提供更多的事实证明或真实照片,那么他们就能建立一份更健康的业务关系。
这个案例就涉及到了博弈论中的一个基本概念——信息不对称。
信息不对称是指在协商过程中一方所获得的信息多于另一方。
在经纪人和客户之间,信息不对称指经纪人销售产品时,会美化实际情况以吸引客人。
这种行为会导致客人“被坑”,从而不愿意再次信任经纪人。
如果经纪人选择诚实的销售策略,则他们将建立起一个基于互信的业务关系,这对他们在市场上的长期稳定发展至关重要。
案例二:《通过纳什均衡来解决电视购物在竞争市场中的问题》在电视购物中,有时我们会看到一款产品同时在几个销售商那里出现,如果一个销售商降价,那么其他销售商也会纷纷降价,这种竞争状况会导致品牌价值的下降,并且销售商也随之面临利润下降的风险。
乔纳森·利文斯顿等人在他们的论文《电视购物在竞争市场中纳什均衡的寻求门槛成本》中探讨了一种新的解决方法。
根据纳什均衡理论,如果所有销售商采取相同的销售策略,则不会相互干扰,这就是纳什均衡的概念。
利文斯顿等人提出,在电视购物市场中,销售商可以通过添加“门槛成本”以达成纳什均衡。
门槛成本可以是所有销售商必须支付的额外费用,如广告或特殊促销。
妙趣横生博弈论案例
妙趣横生博弈论案例一、海盗分金。
话说有五个海盗,抢到了100枚金币,他们打算分赃。
这可不是简单的平分哦,他们有一套奇特的规则。
那1号海盗要怎么分配才能既保命又拿到最多的金币呢?这可就涉及到博弈论了。
我们从最后一个海盗5号的想法开始倒推。
如果前面的海盗都被扔到海里了,只剩下4号和5号,那4号只要把100枚金币都给自己(100,0),因为他自己一票就占了半数,5号什么都得不到。
所以5号肯定不想让这种情况发生,他得在前面有人提出能给他金币的方案时就同意。
再看3号海盗,他知道4号的想法,也知道5号的担心。
所以他就会提出(99,0,1)的方案,给5号1枚金币,自己拿99枚,4号不给。
因为5号如果不同意,等4号分配的时候他就什么都没有了,所以5号只能同意3号的这个方案。
2号海盗呢,他也不傻,他能猜到3号的方案。
于是他就会提出(99,0,1,0)的方案,给3号0枚,给4号1枚,自己拿99枚。
因为4号如果不同意,等3号分配的时候他只能得到0枚,所以4号会同意2号的方案。
最后到了1号海盗,他可是把这一切都看透了。
他提出(98,0,1,0,1)的方案,给3号1枚,给5号1枚,自己拿98枚。
因为3号和5号如果不同意,等2号分配的时候他们得到的更少,所以他们就会同意1号的这个方案。
这就是1号海盗在这场博弈中的最优策略。
二、囚徒困境。
有两个小偷,甲和乙,一起偷东西被警察抓住了。
警察把他们分别关在不同的审讯室里,然后跟他们说:“如果你们两个都不坦白,那就各判1年;如果你们都坦白,那就各判8年;要是一个坦白一个不坦白,坦白的那个就当场释放,不坦白的那个判10年。
”这时候甲就开始想了:“如果乙坦白了,我不坦白我就得判10年,我坦白就判8年;要是乙不坦白,我不坦白判1年,我坦白就当场释放。
不管乙怎么选,我坦白对我来说都是更好的选择。
”乙呢,他也在自己的审讯室里这么琢磨,最后得出了同样的结论。
所以这两个小偷都会选择坦白,结果就是各判8年。
十大博弈论经典案例
十大博弈论经典案例博弈论是研究冲突和合作行为的数学理论,主要研究各方在一定规则下作出决策的过程。
在现实生活中,博弈论可以帮助我们分析各种决策情境,揭示行为背后的逻辑。
下面介绍十大博弈论经典案例,展示不同情境下的决策策略及其结果。
1. 囚徒困境囚徒困境是博弈论中最著名的案例之一。
两名囚徒被单独关押,检察官给每人下达选择“合作”或“背叛”的指令。
如果两人都合作,各自判刑较轻;如果其中一人背叛而另一人合作,则背叛者判刑为0,而合作者将被重判;如果两人都背叛,两者皆受重刑。
在这种情况下,每名囚徒都会选择背叛,因为无论另一人选择什么,背叛都是最优选择。
2. 霍巴和鲍勃游戏霍巴和鲍勃游戏是研究博弈过程中的信任和合作的实例。
霍巴拥有100美元,可以选择分享给鲍勃一部分;鲍勃可以选择保留所有款项或回馈一部分给霍巴。
如果鲍勃选择合作并分享款项,那么霍巴会获得更多回报;反之,如果鲍勃保留所有款项,霍巴就会损失。
通过这一博弈,可以观察到信任和合作如何影响双方的回报。
3. 石头剪刀布石头剪刀布是一种简单的博弈,展示了不完全信息博弈的情形。
两名玩家同时出示石头、剪刀或布中的一种手势,胜利者根据规则确定。
在这个博弈中,玩家需要考虑对手可能的策略,选择最佳的手势进行应对。
4. 抢手织物抢手织物是关于资源分配的博弈。
多位玩家竞相争夺一种有限资源,但资源数量不足以满足所有玩家的需求。
玩家需要权衡合作和竞争的策略,以最大化自己的利益。
这个案例揭示了在资源有限的情况下,合作和竞争之间的平衡。
5. 拍卖博弈拍卖博弈是在资源分配中常见的情景。
卖家将物品提供给潜在买家,买家通过出价来竞争物品,最高出价者将得到物品。
在这种情况下,买家需要权衡自己对物品的价值以及出价策略,以获得最大的利益。
6. 鸿门宴鸿门宴是中国古代著名的博弈案例之一。
项羽与刘邦在鸿门相会,项羽有机会消灭刘邦,但最终刘邦却逆袭成功。
这个案例揭示了在战略选择上的巧妙和胜负的关键。
生活中的博弈实例
领头企业与小企业(麦当劳与小快餐店);公 共设施或基础设施投资:富人与穷人的博弈。
其他经典案例还有: 1 囚徒困境; 2 各种价格大战; 3 斗鸡博弈; 4 市场进入博弈,等等。
经济学博弈论 生活中的博弈实例
博弈论(game theory)是研究决策主体的行为发 生直接相互作用时候的决策以及这种决策的均衡问
题
人生是永不停歇的博弈过程,博弈意在达到合意的结果。 作为博弈者,最佳策略是最大限度地利用游戏规则,最 大化自己的利益; 作为社会最佳策略,是通过规则使社会整体福利增加。
海沙与河沙的博弈过程
海沙
河沙
海
沙 2,2 2,3
河 沙3,2 3,3 Nhomakorabea二、博弈论之智猪博弈
在博弈论(Game Theory)经济学中, “智猪博弈”是一个著名的纳什均衡的例 子。假设猪圈里有一头大猪、一头小猪。 猪圈的一头有猪食槽,另一头安装着控制 猪食供应的按钮,按一下按钮会有10个单 位的猪食进槽,但是谁按按钮就会首先付 出2个单位的成本,若大猪先到槽边,大小 猪吃到食物的收益比是9∶1;同时到槽边, 收益比是7∶3;小猪先到槽边,收益比是 6∶4。那么,在两头猪都有智慧的前提下, 最终结果是小猪选择等待。
当大猪选择行动的时候,小猪如果行动,其收益是1, 而小猪等待的话,收益是4,所以小猪选择等待;当大猪 选择等待的时候,小猪如果行动的话,其收益是-1,而小 猪等待的话,收益是0,所以小猪也选择等待。综合来看, 无论大猪是选择行动还是等待,小猪的选择都将是等待, 即等待是小猪的占优策略。
在小企业经营中,学会如何“搭便车”是一个精明的 职业经理人最为基本的素质。在某些时候,如果能够注意 等待,让其他大的企业首先开发市场,是一种明智的选择。 这时候有所不为才能有所为!
博弈论经典案例
博弈论经典案例博弈论是研究决策者之间相互作用的数学理论,它涉及到策略的制定、收益的分配以及决策者之间的互动关系。
在现实生活中,博弈论可以被应用到各种各样的情境中,从商业竞争到国际政治。
下面我们将介绍一些博弈论的经典案例,帮助大家更好地理解这一理论。
1. 囚徒困境。
囚徒困境是博弈论中最经典的案例之一。
在这个案例中,两名犯罪嫌疑人被捕,然后被单独审讯。
如果两人都保持沉默,那么他们将会被判处较轻的刑罚;如果其中一人选择交代另一人,而另一人保持沉默,那么交代的人将会被免罪,而另一人将被判处重刑;如果两人都选择交代对方,那么他们将会被判处较重的刑罚。
在这种情况下,每个人都会选择最大化自己的利益,最终导致了一个对双方都不利的结果。
2. 霍夫丁格-普雷兹勒模型。
霍夫丁格-普雷兹勒模型是用来解释两个公司之间的价格竞争的经典案例。
在这个模型中,两家公司同时决定它们的价格,然后根据对方的价格来调整自己的价格。
最终,这种竞争会导致价格不断下降,最终使得两家公司的利润都减少。
这个案例表明,即使在追求自身利益的情况下,双方最终都会受到损害。
3. 博弈论在国际政治中的应用。
博弈论在国际政治中也有着广泛的应用。
例如,在两个国家之间的军备竞赛中,双方都会不断增加军备以保持自己的安全。
然而,这种竞赛最终会导致双方都陷入困境,因为军备竞赛会对双方的经济造成负担,最终对双方都不利。
4. 超市定价竞争。
在超市的定价竞争中,每家超市都会根据对手的价格来调整自己的价格。
这种竞争往往会导致价格战,最终使得双方都陷入亏损。
这个案例表明,即使在追求市场份额的情况下,双方最终都会受到损害。
5. 博弈论在合作与冲突中的应用。
博弈论不仅可以解释竞争的情况,也可以解释合作与冲突的情况。
例如,在合作博弈中,参与者可以通过制定合适的策略来最大化整体利益;而在冲突博弈中,参与者则会通过制定对抗性的策略来争夺有限的资源。
总结。
博弈论作为一种研究决策者之间相互作用的数学理论,可以被广泛应用到各种情境中。
博弈论的经典案例6篇
博弈论的经典案例6篇篇一:博弈论与经典案例赏析如何运用博弈的思想约会女孩如何和自己喜欢的女孩约会,对男孩来说是个很困难的事。
电影中,主人公纳什在酒吧碰见一位美丽的女孩,于是想要与之约会,却发现他的同伴也喜欢那位女孩,于是,他需要想到一种方法,让自己能够和那位女孩约会,当然,他做到了。
显然,在这样一个约会的空间里,有这样几方博弈者:女孩方,纳什,纳什的同伴。
如果纳什和他的同伴们同时去追求这样一位女孩,那么,女孩便处于优势方,她就具有更高的选择权,选择和谁约会。
而这,假使该女孩对纳什及其同伴的选择概率一样,均为q〔0篇二:周樾关于博弈论的一个精彩案例周樾:关于博弈论的一个精彩案例(海盗与金币)在读MBA时,数据模型与决策课堂上教师讲了一个博弈论的案例有点意思,我在推理之后感觉收获很多。
所以整理如下:有五个海盗分别是ABCDE,都非常理性、聪明。
他们找到了100个金币,需要想方法分配金币。
海盗有严格的等级制度,A>B>C>D>E。
海盗有分配原那么:等级最高的海盗提出一种分配方案。
所有的海盗投票决定是否承受分配,包括提议的这个海盗。
方案如果有≥1/2的人同意,那么通过。
假设没通过,那么提议者将被扔进海里,然后由下一个最高职位的海盗提出新的分配方案。
直到最后。
假设你是A,你如何分配?你首先是活命,其次是获得最多的金币。
课堂上很多同学给出了答案,但教师都摇头。
有的说平均分配原那么,每人20金币,但这显然不行,后面4个海盗会投反对票干掉你。
有的说自己少一点,给别人多一点。
这很好理解,A给自己分配的少,以防止被扔进海里,毕竟保命要紧。
但这也不行,一那么没有完成获得最多金币的任务,二那么后面的人都是“海盗〞,不会因为你的一点低调就放过你,仍然会被干掉。
还有的说自己说服另外其中两个海盗干掉另外两个然后平分金币,但这还是不行,因为有前提海盗都是理性的。
越是想不出答案,越有点意思了。
应该如何设计分配方案,保证自己既活命、又收获最多金币呢?教师继续引导我们,如果正向思维经过努力想不通,或者非常复杂,尝试逆向思维,相当于从未来的世界返回到现实的世界。
十大博弈论经典案例
十大博弈论经典案例1. 约翰·冯·诺伊曼的合作博弈。
约翰·冯·诺伊曼提出了合作博弈的概念,这是一种让参与者通过合作来达成共同利益的博弈形式。
最经典的案例就是囚徒困境,两名犯人被捕,如果他们都保持沉默,那么警察就没有足够的证据定罪,但如果其中一个人选择交待另一个人,那么他可以减轻自己的刑罚,而另一个人将面临更严重的处罚。
这个案例展示了合作博弈中的困境和冲突。
2. 纳什均衡。
约翰·纳什提出了纳什均衡的概念,这是一种在博弈中参与者通过最优化自己的策略来达到一种平衡状态。
经典案例是《美丽心灵》中的情景,两个人面对同一个女孩的选择,他们的最优策略是不知道对方的选择的情况下做出自己的选择,这样才能达到最优的结果。
3. 最优反应原则。
最优反应原则是博弈论中的一个重要概念,它指的是在博弈中参与者根据对手的策略选择自己的最优反应。
一个经典案例是企业之间的价格竞争,如果一家企业降低价格,另一家企业的最优反应可能是跟随降价,但如果两家企业都降价,最终可能会导致双方利润下降。
4. 博弈中的信息不对称。
信息不对称是博弈论中一个重要的概念,它指的是在博弈中参与者拥有不同的信息,这可能会导致不公平的结果。
一个经典案例是二手车市场,卖家通常比买家更了解车辆的情况,这就造成了信息不对称,导致买家很难做出理性的决策。
5. 博弈中的策略与信任。
在博弈中,策略和信任是非常重要的因素。
一个经典案例是国际贸易谈判,各国之间需要通过博弈来确定最优的贸易政策,同时也需要建立信任关系,否则很难达成协议。
6. 零和博弈与非零和博弈。
零和博弈是指参与者的利益完全对立,一方的利益损失就是另一方的利益增加,而非零和博弈则是指参与者的利益可以同时增加。
经典案例是资源的分配,如果资源有限,那么参与者之间的博弈就是零和博弈,但如果资源可以通过合作来增加,那么就可以转变为非零和博弈。
7. 演化博弈论。
演化博弈论是一种研究博弈中策略演化和稳定状态的理论,经典案例是动物群体中的合作行为,通过博弈来解释为什么动物会选择合作而不是竞争,以及合作行为是如何在群体中传播和演化的。
十大博弈论经典案例
十大博弈论经典案例博弈论是一门研究决策制定和互动行为的学科,它通过分析参与者之间的策略选择和结果影响来研究决策的最优解。
在博弈论中,经典案例可以帮助我们理解博弈论的基本概念和原理。
下面将介绍十大博弈论经典案例。
1. 战略井字棋战略井字棋是一种基于井字棋游戏的扩展形式,其中每个玩家都可以选择放置一个标记或阻止对手放置标记。
这个案例展示了零和博弈的情况,即一方的收益等于另一方的损失。
这种情况下,每个玩家都会采取最佳策略,因此博弈结果是可预测的。
2. 牛市与熊市的博弈股票市场中牛市和熊市的交替是博弈论的典型应用场景。
在牛市中,投资者倾向于买入股票以获取更高的回报;而在熊市中,投资者倾向于卖出股票以避免损失。
这种情况下,每个投资者都要权衡风险与收益,并根据市场走势调整策略。
3. 囚徒困境囚徒困境是博弈论中的经典案例,用于研究自利个体之间的合作问题。
两名犯人被抓获,检察官分别与他们单独交谈,给他们提供选择:合作或背叛对方。
根据他们的选择不同,将得到不同的判决。
这个案例展示了合作和背叛之间的博弈以及结果的影响。
4. 社交网络中的网络效应社交网络中的网络效应也是博弈论的研究领域之一。
人们在社交网络中的决策往往受到他人决策的影响。
例如,在社交媒体上,用户参与与否、跟随与否都会受到其他用户的决策影响。
这种情况下,每个个体的策略选择会受到网络效应的影响。
5. 价格竞争价格竞争是博弈论中的常见案例,特别是在市场竞争中。
公司之间的价格竞争会影响到市场份额和利润。
根据博弈论的原理,公司会在选择价格时考虑对手的策略,并权衡自身利益和市场需求。
在价格竞争中,涉及到策略的选择和博弈结果的分析。
6. 拍卖拍卖是博弈论中的经典案例之一,也是交易理论的重要组成部分。
在拍卖中,买方和卖方之间进行价格竞争,竞拍者的策略选择和出价会影响最终交易结果。
拍卖中涉及到的博弈与策略选择有助于了解经济交易中的决策制定。
7. 博弈与金融市场博弈论在金融市场中的应用也非常广泛。
博弈论案例分析
博弈论案例分析在经济学、政治学、社会学以及商业策略中,博弈论是一个重要的分析工具。
它研究在具有相互依赖关系的决策者之间如何做出最优决策。
以下是几个典型的博弈论案例分析:1. 囚徒困境囚徒困境是博弈论中最著名的例子之一。
它描述了两个被捕的罪犯面临的决策问题。
每个囚犯可以选择合作(保持沉默)或背叛(供出对方)。
如果两人都合作,他们都会被轻判;如果两人都背叛,他们都会被重判;如果一个合作而另一个背叛,背叛者将被释放,而合作者将受到最重的惩罚。
在这种情况下,尽管两人都合作是最优的集体结果,但个体理性导致他们最终选择背叛对方。
2. 纳什均衡纳什均衡是博弈论中的一个核心概念,由数学家约翰·纳什提出。
它指的是在一个非合作博弈中,每个参与者都选择了自己的最优策略,前提是其他参与者的策略是已知的。
在囚徒困境中,纳什均衡就是两人都选择背叛,因为无论对方如何选择,背叛都是每个囚犯的最优策略。
3. 公共物品的提供公共物品的提供是博弈论在现实世界中的一个应用。
公共物品具有非排他性和非竞争性,即一个人使用公共物品不会减少其他人的使用,且无法阻止未付费者使用。
这导致了一个“搭便车”的问题,即个体可能倾向于不支付公共物品的成本,而是依赖其他人的支付。
博弈论可以用来分析如何通过激励机制来解决这个问题,比如通过征税或罚款。
4. 拍卖理论拍卖理论是博弈论在经济活动中的一个应用。
它研究在不同拍卖规则下,买家和卖家如何制定策略以达到最优结果。
例如,在英式拍卖中,价格逐步上升,直到只剩下一个出价者;而在荷兰式拍卖中,价格从高到低下降,直到有人接受当前价格。
博弈论可以帮助分析在不同拍卖形式下,参与者如何制定出价策略以最大化自己的利益。
5. 冷战时期的核威慑冷战时期,美国和苏联之间的核威慑是一个典型的博弈论案例。
双方都拥有能够摧毁对方的核武器,但任何一方首先使用核武器都会导致灾难性的后果。
这种情况下,双方都有动机保持克制,以避免触发全面的核战争。
博弈论的经典案例
博弈论的经典案例
博弈论是一种应用数学,研究决策制定和策略执行的科学。
它通
过分析参与者之间的决策和互动,来预测他们可能的行为和结果。
以下是几个经典的博弈论案例:
1.囚徒困境
囚徒困境是一个经典的博弈论案例,指两名罪犯之间的博弈,在
这个博弈中,两人都被指控犯有某个罪行,但没有足够的证据来定罪。
如果两人都认罪,每个人都将受到较重的惩罚;如果一人认罪,而另
一人不认罪,认罪者将获得更轻的惩罚,而不认罪者将受到较重的惩罚。
如果两人都不认罪,双方将受到较轻的惩罚。
这个案例是研究合
作和背叛的标准案例。
2.拍卖
拍卖是博弈论的另一种重要应用场景。
在拍卖中,卖家出售商品,并邀请买家进行竞价。
买家之间的竞争可能导致卖家得到更好的价格,但是买家也可能会在竞争中付出更高的价格。
不同的拍卖机制和规则
可以产生非常不同的结果和效率。
3.企业竞争
企业竞争是博弈论的又一个重要应用。
企业之间的竞争不仅仅基
于产品差异和价格,在决策制定和市场营销策略上也需要考虑对手的
行为和策略。
企业之间的竞争还涉及到潜在的谈判和合作机会。
博弈论的经典案例不仅帮助我们了解现实生活中的决策制定和行为模式,而且还提供了解决方案的方法。
随着科技的发展,博弈论在金融、政治、军事、环境等领域的应用正在不断扩展。
举例说明博弈论在经济管理领域的应用或现象。
举例说明博弈论在经济管理领域的应用或现象。
博弈论是一门研究决策策略的学科,它在经济管理领域的应用广泛,尤其在市场竞争、价格战、投资战略等方面,都占有重要的地位。
下面,我们将举例说明博弈论在经济管理领域的应用或现象。
首先,让我们来看一个经典的案例:麦当劳和肯德基的竞争。
麦当劳和肯德基是全球知名的快餐品牌,而两家公司之间的竞争一直很激烈。
在这个过程中,博弈论的思想得到了广泛的应用。
例如,如果麦当劳在某个城市的价格相对较高,肯德基很可能会开始推出促销和打折等活动来吸引顾客。
而如果麦当劳回应肯德基的举动,价格战就会愈演愈烈,对两家公司的利润都会造成不利的影响。
因此,这种情况下,博弈论的应用可以帮助两家公司找到合适的竞争策略,避免因过度竞争而降低利润。
其次,博弈论在投资领域的应用也非常重要。
例如,假设某个企业计划投资一个新的项目,但是它需要融资。
然而,如果企业的融资市场不太活跃,那么它可能会被迫接受高利率的借款,这会增加它的融资成本。
在这种情况下,博弈论可以帮助企业找到合适的投资策略,例如通过筹集资金来降低融资风险,或者寻找合适的投资机会来增加收益等方式,从而实现效率最大化和利润最大化。
最后,博弈论的应用还可以帮助企业规划未来的市场战略。
例如,在一些具有垄断性质的市场,公司之间的竞争可能更加针对市场份额的争夺,而不是价格战。
在这种情况下,博弈论可以帮助企业理解各种竞争策略之间的关系,以确定自己的最佳行动方案,从而保持其领先地位,提高利润和市场份额。
总之,博弈论在经济管理领域的应用非常广泛,在市场竞争、投资策略、市场战略等方面都发挥了重要的作用。
企业需要了解和掌握博弈论的相关知识,以制定出合适的商业模式、投资策略、市场战略等,从而在市场上取得成功。
身边的博弈简介及应用案例
身边的博弈简介及应用案例博弈论是研究决策者在相互作用中做出决策的一门学科,它模拟了人们在面对冲突、竞争和合作等情景时做出的理性决策。
在现实生活中,博弈论被广泛应用于经济学、政治学、社会学等领域,用于分析和解决各种决策问题。
下面将介绍一些身边的博弈以及应用案例。
1. 集体行动博弈:集体行动博弈是指涉及多个参与者共同决策和行动的情况。
一个典型的案例是环保行为。
在城市的环境保护中,每个个体都面临着“我一个人的行动对环境几乎没有直接影响”的困境,因此容易出现不积极的行为。
博弈论提供了一种分析和解决这种问题的思路。
例如,一些城市推出了称为“碳排放权交易”的政策,通过引入市场机制,给予个人或企业减排的经济激励,从而实现了环境保护的集体行动。
2. 价格竞争博弈:价格竞争是企业常常面临的问题。
在市场中,多个企业同时决定其产品的定价,然后根据定价决策获得竞争优势。
这是一个典型的博弈情景。
博弈论对于分析多个企业之间的价格竞争以及制定定价策略非常有帮助。
例如,奢侈品市场常常面临价格竞争的问题。
一个企业的定价策略会直接影响其他竞争对手的市场地位,因此企业需要仔细分析市场格局和竞争对手的行为才能做出最优的定价决策。
3. 合作博弈:合作博弈是指参与者通过合作实现共同利益的博弈情景。
例如,在企业的合作与合并中,不同企业或部门可能需要协商成本分摊、资源共享、合作项目等。
博弈论提供了一种分析和解决合作博弈的方法。
例如,在合作项目的谈判中,各方可以运用博弈论的思想确定最有利的合作方式和利益分配方案,使各方在合作中获得最大化的利益。
4. 社交网络博弈:社交网络中的决策问题也可以用博弈论来处理。
在社交网络中,人们常常需要在与朋友交往、社交活动等之间做出选择,并且这些选择会受到其他人的选择的影响。
例如,在微信朋友圈中,每个人都需要决定在朋友圈中发布什么内容,这既可以是个人兴趣的表达,也可以是为了获得他人的认同或者得到更高的社交地位。
博弈论可以用于分析人们在社交网络中的决策行为,以及这些行为对个体之间的关系和网络结构的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
0
0.7 行参与人踢向左方的概率
1 p
最优反应曲线:图中显示的是行参与人的最优反应曲线,它们 分别是p和q的函数,其中,p是行参与人踢向左方的概率, q是列参与人扑向左方的概率。
q 1 列参与人的 最优反应曲线 0.6
行参与人的 最优反应曲线 1 p
0
0.7
共存博弈
有关动物互动的一个著名的例子是鹰-鸽 博弈。 它并不是指老鹰和鸽子之间的博弈, 而是指涉及显示两种行为的单一物种的博 弈。 例如,当两只豺狗同时遇到一块食物时, 它们必须决定是争斗还是分享食物。
EES就是一个纳什均衡。 ESS则是用来模型化进化动力下的动物行为 的,这里,具有较高适应收益的策略的复 制速度较快一些。 ESS均衡也是纳什均衡的事实,为博弈论中 的这个特殊概念为何如此引人注目提供了 另一个注解。
同时行动
合作博弈和竞争博弈的例子关注的都是同 时行动的博弈。 事实上,在合作博弈和竞争博弈中,如果 一方知道一方的选择,博弈就会变得毫无 价值。
储蓄和社会保障 两代人之间有关储蓄的冲突
年轻人 不善养
赡养
-1
储蓄 老年人 挥霍
1 1 -2 -2
3 -1 2
时间结构
上述分析忽略了博弈的时间结构: 老年人的优势之一是先采取行动。
扩展形式的储蓄博弈
老年人, 赡养 年轻人选择 年轻人 (2,-1)
老年人选择
挥霍
(-2,-2) 不善养
储蓄 赡养 (3,-1)
序贯博弈
这类博弈的一个重要的策略问题是承诺。 注意, 对于另一个参与人而言, 这个被承诺的选择必须同时是不可撤销的 和可观察的。
青蛙和蝎子(无承诺) 如果青蛙选择背蝎子过河,蝎子将选择蛰青蛙, 双方最终都会淹死。
青蛙, 蝎子 蝎子选择 背 青蛙选择 不蛰 (5,3) 蛰 (-10,5)
不背 (0,0)
行参与人 得分的 百分点数 100 90 80 62 50
20
0
0.7 行参与人踢向左方的概率
1 p
列参与人的战略: 这两条直线表示的是行参与人的期望收益,它是q的函数, 而q则是列参与人踢向左方的概率。无论列参与人选择怎样 的q值,行参与人将竭力使最大化自己的收益。
行参与人 得分的 百分点数 100 90 80 62 50
竞争博弈
与合作对应的另一个极端是竞争。 它就是有名的零和博弈。 是因为在这种博弈中,博弈一方的收益等 于另一方的损失。 实际上,大多数体育竞技项目都是零和博 弈。
足球赛中的罚点球得分
列参与人
扑向左方
扑向右方
-50
行参与人 扑向左方
-80 80 -20 20
50 -90 90
扑向右方
行参与人的战略: 这两条直线表示的是行参与人的期望收益,它是p的函数, 而p则是行参与人踢向左方的概率。无论行参与人选择怎样 的p值,列参与人将竭力使行参与人的收益最小化。
性别战
女孩
动作片
文艺片
1
男孩 动作片
0 0 2 1
2 0 0
文艺片
囚徒困境
参与人B
坦白
抵赖
-3
坦白 参与人A
-6 0 -1 -1
-3 0 -6
Байду номын сангаас抵赖
报证博弈 (军备竞赛)
苏联
不生产
生产
4
不生产 美国
3 1 2 2
4 1 3
生产
斗鸡博弈 (汽车博弈)
列参与人
转向
不转向
0
转向 行参与人
1 -1 -2 -2
博弈论的应用
合作问题、竞争问题、共存问题和承 诺问题——以搞清楚在各种策略互动 过程中,它们是如何发挥作用的。
最优反应曲线
考虑一个双人博弈,假定你是其中的一个 参与人。 对于另一个参与人的任何选择,你的最优 反应是使你的收益最大化。 如果最大化收益的选择不止一个,那么, 你的最优反应就是所有这些选择的集合。
0 -1 1
不转向
如何协调
如果你是协调博弈的一个参与人, 那么,你也许愿意与对方在双方都偏爱的均衡处 合作(保证博弈); 或者与对方在其中一方偏爱的均衡处合作(性别 战); 或者采取有别于均衡的策略(囚徒困境); 或者作出某种选择从而实现你所偏爱的结果(斗 鸡博弈)。 除序贯行动以外,声誉和缔结合同是“解决”囚徒 困境的主要方式。
一个简单的博弈
列参与人
左
右
1
行参与人 上
0 0 2 1
2 0 0
下
混合策略
(0,0) (2/3,1/3) (1,1) 两个纯策略均衡 混合策略均衡
合作博弈
即协调博弈,在这类博弈中,当参与人能 够协调他们之间的策略时,他们的收益就 会实现最大化。 实际中的问题是要创建一种能够实现这种 协调的机制。
最后通谍博弈
鲁宾斯坦讨价还价模型是如此优美,以至 于经济学家们急着在实验室对它作检验。 但是,优美并不意味着准确。 在实际的实验中,美国大学生给出的平均 报价是45美分,并且,在大多数情况下, 这个报价都能够被接受。 一个太少的报价违背了行为的社会准则。 事实上,经济学家已经在最后通谍博弈中 发现了非常重要的跨文化差异。
不揭露
(5,3)
(-3,-10)
当力量成为弱势时
动物世界的心里学。 我们发现, 猪群会迅速地建立起一种支配-从属关 系, 在这种关系下, 支配猪倾向于支配从属猪。
智猪博弈
支配猪
不按控制杆
按控制杆
0
不按控制杆 从属猪 按控制杆
1 4 3 2
0 5 0
支配猪也要面临一个承诺问题
如同善意绑匪的例子。 它只须作出不吃掉全部食物的承诺, 它的境况就会得到改善。
青蛙和蝎子(有承诺) 依据这些收益,如果青蛙选择背蝎子过河, 蝎子是不会蛰青蛙的,所以双方能够安全地渡过河。
青蛙, 蝎子 蝎子选择 背 青蛙选择 不蛰 (5,3) 蛰 (-10,2)
不背 (0,0)
善意的绑架 托马斯·谢林(Thomas Schelling)
绑匪, 揭露 人质 (-5,5)
人质选择 绑匪选择
讨价还价
经典的讨价还价问题是分配货币。 两个参与人共同拥有1美元,现在,他们想 分配这1美元,他们应该怎么做? 一种解决方案是纳什讨价还价模型,最终 的结果依赖于参与人厌恶风险的程度,以 及不存在讨价还价时将会发生的情况。 一个替代的方案是鲁宾斯坦讨价还价模 型,它考虑的是一系列选择,并求解子博 弈精炼均衡。
鹰-鸽博弈
列
鹰派
鸽派
-2
鹰派 行
0 4 2 2
-2 4 0
鸽派
鹰-鸽博弈的收益 当p>1/2时,鹰派的收益小于鸽派的收益, 反之亦然,这显示了均衡是稳定的。
4 3 2 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
进化稳定策略 (evolutionarily stable strategy)
年轻人选择
不善养
(1,1)
敲竹杠 承包商为改颜色索要一个较高的价格, 因为客户除了接受没有其他选择
承包商,客户 让步 客户选择 (1300,0)
承包商选择 找一个 油漆工
(0,-100)
(0,1300)
厂商如何解决敲竹杠问题呢?
基本的答案是缔结合同。 但是,合同不是唯一的解决方案。 解决这类问题的另一种方式是承诺。 另一个重要的因素是声誉。