电磁场二章习题解答

合集下载

电磁学第二章习题答案

电磁学第二章习题答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载电磁学第二章习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容习题五(第二章静电场中的导体和电介质)B1、在带电量为Q的金属球壳内部,放入一个带电量为q的带电体,则金属球壳内表面所带的电量为 q ,外表面所带电量为 q+Q 。

·QR2、带电量Q的导体A置于外半径为R的导体AO·r球壳B内,则球壳外离球心r处的电场强度大小,球壳的电势。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R和r的两个球导体(R>r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U0,则两球表面的电荷面密度之比σR/σr为( B )(A) R/r (B) r/R (C) R2/r2 (D) 16、有一电荷q及金属导体A,且A处在静电平衡状态,则( C )(A)导体内E=0,q不在导体内产生场强;(B)导体内E≠0,q在导体内产生场强;(C)导体内E=0,q在导体内产生场强;(D)导体内E≠0,q不在导体内产生场强。

Q7、如图所示,一内半径为a,外半径为b的金属球壳,带有电量Q,在球壳空腔内距离球心为r处有一点电荷q,设无限远ar·处为电势零点。

试求:Obq·(1)球壳外表面上的电荷;(2)球心O点处由球壳内表面上电荷产生的电势;(3)球心O点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q1 , q2,以O为球心作一半径为R(a<R<b)的高斯球面S,由高斯定理,根据导体静电平衡条件, 当a<R<b时,。

电磁学试题库电磁学第二章试题(含答案)

电磁学试题库电磁学第二章试题(含答案)

一、填空题1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d的导体板,则其电容为 ;答案内容:;20d Sε2、导体静电平衡必要条件是 ,此时电荷只分布在 。

答案内容:内部电场处处为零,外表面;3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。

在这个过程中,电场能量的增量是 ;答案内容:202ULsr εε4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r qE e ∧=204περ;5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ;答案内容:d q04πε;6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。

答案内容:⎪⎭⎫ ⎝⎛++-πεb q Q a q r q 041 7、导体静电平衡的特征是 ,必要条件是 。

答案内容:电荷宏观运动停止,内部电场处处为零;8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。

答案内容:并联,串联;9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。

答案内容:2014qr πε ;10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。

然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。

答案内容:0W εε; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。

答案内容:/r R ;12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波理论基础 第二章 课后答案

电磁场与电磁波理论基础 第二章 课后答案

1 q1 q2 u (r ) = + 4πε 0 R1 R2
式中
+q
Z
P ( x, y,z )
R1
r
r2
o
R2
R1 = r - r1 = ( x + a ) e x + ye y + e z R1 = ( x + a ) + y 2 + z 2 R 2 = r - r2 = ( x - a ) e x + ye y + e z R2 = ( x - a ) + y 2 + z 2
②当 a <
ρ < b ,此时 Q = 2π al ρ S1 ,由高斯定理可得
D ⋅ dS = 2π l ρ Dρ = Q = 2π al ρ
(S )
S1
Dρ =
a ρS1
ρ
D =
a ρS1
ρ

E =
a ρS1
ε0ρ

③当 ρ > b ,此时高斯面内的 Q = 2π al ρ S 1 + 2π bl ρ S 2 ,由高斯定理可得
代入得到
2 2
2
2
é ù 1 ê 8 (4e x - 4e z ) 4 (4e x - 4e y ) ú ê ú E (r ) = 3 3 ú 4pe 0 ê 4 2 4 2 êë úû 1 ée x + e y - 2e z ù = ê ûú 32 2pe 0 ë
(
)
(
)
2-7.一个点电荷+q 位于(-a, 0, 0)处,另一点电荷-2q 位于(a, 0, 0)处,求电位等于零的 面;空间有电场强度等于零的点吗? 解 根据点电荷电位叠加原理,有

电磁场习题解2(上)

电磁场习题解2(上)

第二章习题解2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:设z r ˆ=,y r x r y r xr ˆ',ˆ',ˆ',ˆ'2321-=-=== z y r r R z x r r R z y r r R z xr r R ˆˆ';ˆˆ';ˆˆ';ˆˆ'44332211+=-=+=-=+-=-=+-=-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y x R R q R R q R R q R R q E ++=+++=2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。

(a) (b) (c)题2-2图解:(a) 由对称性04321=+++=E E E E E(b) 由对称性0321=++=E E E E(c) 两条半无限长线电荷产生的电场为ya y x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=--+-=+= 半径为a 的半圆环线电荷产生的电场为y a E lb ˆ20περ=总电场为0=+=b a E E E2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为ϕad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为yd x yad r a E s ss ˆ)ˆc o s ˆs i n (22ˆ0000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

电磁学习题第二章答案

电磁学习题第二章答案

电磁学习题第二章答案电磁学习题第二章答案电磁学是物理学中的重要分支,研究电荷和电流所产生的电场和磁场以及它们之间的相互作用。

在电磁学的学习过程中,我们经常会遇到一些习题,通过解答这些习题可以更好地理解电磁学的原理和应用。

本文将针对电磁学习题第二章的答案进行探讨和解析。

第二章主要涉及电场的基本概念和性质,包括电场的定义、电场强度、电势、电场线等。

下面我们将逐个习题进行解答。

1. 一个点电荷Q在真空中产生的电场强度E与距离r的关系是什么?根据库仑定律,点电荷Q产生的电场强度E与距离r的关系为E = kQ/r^2,其中k为库仑常数。

2. 两个相同大小的正电荷相距一定距离,它们之间的电场强度是多少?由于两个正电荷的电场强度方向相同,根据叠加原理,它们之间的电场强度等于每个电荷单独产生的电场强度的矢量和。

所以,两个相同大小的正电荷之间的电场强度是2倍每个电荷单独产生的电场强度。

3. 一个带电粒子在电场中沿电场线运动,它的电势能是增加还是减少?当带电粒子沿电场线方向运动时,电场力对其做功,使得粒子的电势能增加。

因此,带电粒子在电场中沿电场线运动时,它的电势能是增加的。

4. 两个带电粒子之间的电势差与它们的电势能有什么关系?两个带电粒子之间的电势差等于其中一个粒子的电势能减去另一个粒子的电势能。

所以,两个带电粒子之间的电势差与它们的电势能有直接的关系。

5. 一个电荷在电场中沿闭合路径运动,它的电势能是否发生变化?当一个电荷在电场中沿闭合路径运动时,它的电势能不发生变化。

这是因为电势能是与位置有关的,而沿闭合路径运动的电荷回到起始位置时,位置没有发生改变,所以电势能也不发生变化。

通过以上习题的解答,我们对电场的基本概念和性质有了更深入的理解。

电场是电荷所产生的一种物理场,它可以通过电场强度和电势来描述。

电场强度是电场在某一点的力的大小,而电势则是电场在某一点的能量。

了解电场的性质和特点对于理解电磁学的其他内容非常重要。

练习题(第二章 电磁场的基本规律)

练习题(第二章 电磁场的基本规律)

c
d
x
B • 2.27 解: (1)由麦克斯韦方程组 E t B H 0 B ( E )dt B H (2) H H D E D 0 E D t D H k 1/ 3 t (3)将内导体视为理想导体 ,利用边界条件 1 8 J S en H ez 265.3 cos(10 t z ) a 3 1 D dS e 2 dz (4) J d id J d dS J d 2dz 0 t
E
l a
Hale Waihona Puke 40 2a 2 2 (ez ex cos 'ey sin ' )d '
2 2

l ez 'ex sin 'ey cos ' 2 8 2 0 a 2 l ( ex 2 ez ) 8 2 0 a
l ,求垂直于圆平面 2.10 一个半圆环上均匀分布线电荷 的轴线z=a处的电场强度,设半圆环的半径也为a. 解: 柱坐标系: 1 l ad ' dE z dE eR 2 p e 4 0 2a r a 1 1 eR eZ ( e ) y 2 2 er 1 (ex cos 'e y sin ' ez ) dl 2 x
• 2.31
y 媒质1 理想导体 x
1
1
1
r1 e r1 正电荷在空腔内产生的电场为 E1 3 0
单位向量 e r 1 e r 2 分别以大、小球体的球心为球面坐标 的原点。考虑到
负电荷在空腔内产生的电场为 E 2 r 2 e r2 3 0

电磁场与电磁波第四版第二章部分答案

电磁场与电磁波第四版第二章部分答案

电磁场与电磁波第四版第二章部分答案习题二无限长线电荷通过点且平行于z轴,线电荷密度为ρ?,试求点P(x,y,x)处的电场强度E。

解:线电荷沿z方向为无限长,故电场分布与z无关,设P位于z=0的平面上。

则R=ex x?6 +ey y?8 , R = (x?6)2+(y?8)2ex x?6 +ey y?8 ReR== R (x?6)2+(y?8)2则P点的E为ρ?ρ?ex x?6 +ey y?8 RE=eR=?=? 222πε0RR2πε0R2πε0(x?6)+(y?8)2.10半径为a的一个半圆环上均匀分布着线电荷ρ?,如图所示。

试求垂直于半圆环所在轴线的平面上z=a处的电场强度E(0,0,a)。

解:′P(0,0,a)的位置矢量是 =eza,电荷元ρ?dl=ρ?ad?, =eacos?+x′rrρ?eyasin?′′′ ? =ea?eacos??easin? zxy′rr= a2+ acos?′ 2+ asin?′ 2= 2aez? exacos?′+eyasin?′ dE=d?=d?4πε0 2a 3a8 2 πε0ρ?E 0,0,a = dE = =ρ?8 2 aπε0? ρ?a rr′ez? exacos?′+eyasin?′ d? π2π?2ρ?(ezπ?ex2)8 2 aπε0一个很薄的无限大导体带电平面,其上的面电荷密度为ρs。

试证明:垂直于平面的z轴上z=z0处的电场强度中,有一半是平面上半径为 3z0的圆内的电荷产生的。

解:取面积元ds′=r′d?′dr′,dq=ρsds′=ρsr′d?′dr′,电荷元在z=z0处产生的电场强度dE=ρsr′d?′dr′4πε0ezz0+err′ z0322+r′ 2 d?′整个平面在z=z0处的电场强度为E=ρsz0=?ez2ε0当r ∞时,E=exρs2ε0ρs4πε0r2πezz0+err′′′rdr 3002z02+r′ 21 z02+r2ρs1+ez2ε02,当r= 3z0时,E′=ezρs4ε0=E21半径为a的导体球形体积内充满密度为ρ r 的体电荷。

电磁场与电磁兼容习题答案与详解-第2章

电磁场与电磁兼容习题答案与详解-第2章

电磁场与电磁兼容习题答案与详解第二章麦克斯韦方程组:2.1.在均匀的非导电媒质(b = 0, = 1 )中,已知时变电磁场为E =a : 300;rcos[期一扌y) (\7m), H =“」Ocos]期一扌)](A/m),利用麦克斯韦方程 组求岀0和解:将E 和H 用复数表示:.4E (j)= e z 300^e'Jj ' (1)4H (y)= e x 10e'(2) 由复数形式的麦克斯韦方程,有:W ' 1 K7 " 1 迟 40 -命 心、——―乞——=冬一e 3<3) JG )£ ]G)e cy比较(1)与(3), (2)与(4),得:-------------- =3 0 0 ” 30 " °HO”…Q “ o由此得:0 = 10" rad /ss r = 162.2.已知无源空间中的电场为E=a^.\sin(lO^)cos (6^x 109/-A )(V/m),利用麦克斯 韦方程求H 及常数0。

解:E 复数形式:E(x, z) = ^0.1 sin(l O/rx) &汹H(y)丄VxE 匕亠翌勺帔冷 际' W ㊈.呱由复数形式麦克斯韦方程D l ・ 2TT ・ 3、伍=Pi 即D }20“ _ 10〃 I K ・3、伍 3尽Vx£ =- --------J W O[-纟』・ 1 & $m(l 0开兀)+ 多打0.1 x 1 O^cos(lO^Tx) ] e~J/zVxH = jcoc Q E 7s =—i-VxZZ j 叫 1 7^o L y & 0.1 「 务 — 3 %0 1-将上式与题给的电场E 相比较,即可得:彳 一了(】0, ):: F 二 /“血二(6和】。

丁 X 紹歹二 400”::p = J400宀 I 。

/ =]。

朽开=SA.AXradlm而磁场的瞬时表达式为:II(x,z;f) = -e 5 0.23x10 3 sin(l O TTX )COS (6^X 109/-54.41Z ) -e. 0.13x1 O'3 cos(l Q JCX ) sin(6 龙 xl09/-54.4lz)A ! m髙斯定理:2.7.两个相同的均匀线电荷沿x 轴和y 轴放置,电荷密度A = 20/zc/w ,求点(3, 3, 3) 处的电位移矢量ZK解:设x 轴上线电荷在P(3, 3, 3)点上产生的电位移矢量为Di, x 轴上线电荷在P(3, 3, 3)点上产生的电位移矢虽:为D2.D2的单位方向矢量是因为以x 轴为轴心,3血为半径作单位长度圆柱,根拯髙斯左理\D\ ・ds = p(同理D,=単- dll dm ——a —- ox(10龙)2 +/^]sin(101o:)e" D I 的单位方向矢量是1-3抵小小小10〃 1 1 卞5“ 5u10“D = D + D厂五(石冷+厉勺+ J%F心+頑勺 F代2.8.p,= 30“/加的均匀线电荷沿z轴放置,以z轴为轴心另有一半径为2m的无限长圆柱而,其上分布有密度为Q$= -1・%兀卩c/m2的电荷,利用高斯怎理求各区域的电位移矢量D。

电磁场与电磁波第三版 郭辉萍 第二章习题解答

电磁场与电磁波第三版 郭辉萍 第二章习题解答

D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a

电磁场与电磁兼容习题答案与详解第2章

电磁场与电磁兼容习题答案与详解第2章

电磁场与电磁兼容习题答案与详解-第2章第2章:电磁场基础知识1.题目:电场强度的方向与电荷正负有关吗?答案:是的,电场强度的方向与电荷的正负有关。

正电荷的电场强度方向指向远离电荷的方向,负电荷的电场强度方向指向靠近电荷的方向。

详解:电场强度的方向由正电荷指向负电荷,这是由于电荷之间存在相互作用力。

根据库仑定律,同性电荷之间的相互作用力是斥力,异性电荷之间的相互作用力是吸引力。

电场强度的方向就是这种相互作用力的方向。

2.题目:什么是电场线?答案:电场线是描述电场强度方向的线条。

在电场中,电场线的方向与电场强度的方向一致,电场线之间不会相交。

详解:电场线是静电场中电场强度方向的图形表示。

它可以用来表示电场强度的大小和方向。

电场线的方向由正电荷指向负电荷,线的密度表示电场强度的大小。

电场线之间不会相交,这是因为在相交点上电场强度有多个值,与实际不符。

3.题目:什么是电场强度?答案:电场强度是描述电场对单位正电荷施加的力的大小和方向。

详解:电场强度是电场的物理量,它表示电场对单位正电荷施加的力的大小和方向。

电场强度的单位是牛顿/库仑。

电场强度的方向由正电荷指向负电荷。

4.题目:电场强度与电场线之间的关系是什么?答案:电场强度和电场线是相互对应的。

电场强度的方向与电场线的方向一致,电场线的密度表示电场强度的大小。

详解:电场强度和电场线是相互对应的。

电场强度的方向由正电荷指向负电荷,电场线的方向也是由正电荷指向负电荷。

电场线的密度表示电场强度的大小,密度越大,表示电场强度越大。

5.题目:电场强度的大小与电荷量有关吗?答案:是的,电场强度的大小与电荷量有关。

在距离电荷越远的地方,电场强度越小;在距离电荷越近的地方,电场强度越大。

详解:电场强度的大小与电荷量有关。

根据库仑定律,电场强度与电荷量成正比,与距离的平方成反比。

在距离电荷越远的地方,电场强度越小;在距离电荷越近的地方,电场强度越大。

电磁学答案第2章

电磁学答案第2章

第二章 导体周围的静电场2.1.1 证明: 对于两个无限大带电平板导体来说:(1)相向的两面(附图中2和3)上,电荷的面密度总是大小相等而符号相反;(2)相背的两面(附图中1和4)上,电荷的面密度总是大小相等而符号相同;证:(1) 选一个侧面垂直于带电板,端面分别在A,B 板内的封闭圆柱形高斯面,由高斯定理得:S S E S E S d E S d E B A ∆+=∆+∆+•=•⎰⎰⎰⎰⎰⎰⎰⎰032εσσ)(内内侧侧ϖϖϖϖ 侧侧S d E ϖϖΘ⊥ 0==内内R A E E⎰⎰=•∴0S d E ϖϖ 023=+σσ23σσ-=即:(2)在导体内任取一点P ,0=p E ϖΘ0ˆ2ˆ2ˆ2ˆ2040302034321=-++=+++=∴n n n n E E E E E p εσεσεσεσϖϖϖϖϖ 41σσ=∴其中nˆ是垂直导体板向右的单位矢。

2.1.2两平行金属板分别带有等量的正负电荷,若两板的电位差为160伏特,两板的面积都是平方厘米,两板相距毫米,略去边缘效应,求两板间的电场强度和各板上所带的电量(设其中一板接地).解:设A 板带负电,其电量是-q ,B 板带正电,其电量是+q ,且A 板接地。

两板间的电场强度: 米)伏/(10106.116053=⨯==-d V E 又因为εσ=E )米库2751203/(1085.8101085.8--⨯=⨯⨯==∴E εσ根据上题结论:3241σσσσ-==; 又由于A 板接地,041==∴σσ)米(库2732/1085.8-⨯-=-=∴σσ库)板所带电量(102.3106.31085.8:10472---⨯-=⨯⨯⨯-==-∴S q A σB 板所带电量: 库)(102.3106.3.1085.810473---⨯=⨯⨯⨯==S q σ 2.1.3三块平行放置的金属板A,B,C 其面积均为S,AB 间距离为x,BC 间距离为d,设d 极小,金属板可视为无限大平面,忽略边缘效应与A 板的厚度,当B,C 接地(如图),且A 导体所带电荷为Q 时,试求: (1)B,C 板上的感应电荷; (2)空间的场强及电位分布. 解:(1)根据静电平衡时,导体中的场强为零,又由B,C 接地: ))((()(050243615432板的电位得由板的总电量得)由A x d x A Q S -==+==-=-=∴εσεσσσσσσσσσ 解以上方程组得出:Sd x d Q )(2--=σ Sd x d Q )(3-=σ Sd Qx =4σ SdQx-=5σ B 板上感应电荷:dx d Q S Q B )(2--==σ C 板上的感应电荷:dQx S Q c -==5σ (2)场强分布:0=ⅠE ϖ AB Ⅱr Sd x d Q E ˆ)(0ε-=ϖ AC Ⅲr Sd QxE ˆ0ε=ϖ 0=ⅣE ϖ 电位分布:;01=U 0=ⅣU )()(0r x Sd x d Q U Ⅱ--=ε)(r x d Sd Q U X--=︒εⅢ 其中r 是场点到板A 的距离。

电磁场原理习题与解答(第2章)

电磁场原理习题与解答(第2章)
因为,所以静电力沿z负方向,有将液体吸向空气的趋势。升 高液体的重力为

所以: 第二步 单独作用产生的电场强度为,如图(c)所示。
第三步 将和在空洞中产生的场进行叠加,即 注: 2-7半径为 a介电常数为ε的介质球内,已知极化强度 (k为常数)。 试求:(1)极化电荷体密度和面密度 ;
(2)自由电荷体密度 ; (3)介质球内、外的电场强度。 解:(1) ,
(2) 因为是均匀介质,有
的电场与方位角无关,这样处取的元电荷,它产生的电场与点电荷产生
的场相同,为:
z
y
l/2
图2-2长直线电荷周围的电场
l/2
P
其两个分量:
(1)
(2)

所以:
(3)
式(3)分别代入式(1)(2)得:

(4)

(5)
式(5)代入式(4)得:
由于对称性,在z方向 分量互相抵消,故有
(2)建立如图所示的坐标系
应用叠加原理计算电场强度时,要注意是矢量的叠加。
2-4 真空中的两电荷的量值以及它们的位置是已知的,如题图2-4所示, 试写出电位和电场的表达式。 解:为子午面场,对称轴为极轴,因此选球坐标系,由点电荷产生的电 位公式得:
又,
题图2-4
2-5解, (1) 由静电感应的性质和电荷守恒原理,充电到U0后将ቤተ መጻሕፍቲ ባይዱ源拆去,各极 板带电情况如图(1)所示
解:设导电平板的面积为S。两平行板间的间隔为d=1cm。显然, 绝缘导电片的厚度。平板间的电压为。
(1) 忽略边缘效应,未插入绝缘导电片时
插入导电片后
所以,导电片中吸收的能量为
这部分能量使绝缘导电片中的正、负电荷分离,在导电片进入极板间 时,做机械工。

2 电磁场与电磁波第二章习题答案

2 电磁场与电磁波第二章习题答案

第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。

解:以带电球体的球心为球心,以r 为半径,作一高斯面,由高斯定理S D dS ∙⎰ =Q ,及D E ε= 得,错误!未找到引用源。

r ≤a 时, 由S D dS ∙⎰ =224433Qr a ππ⨯,得34Qr D a π= 304Qr E a πε= 错误!未找到引用源。

r>a 时,由S D dS ∙⎰ =Q ,得34Qr D r π= 304Qr E rπε= 2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。

设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。

空间各处的电场强度;错误!未找到引用源。

两导体间的电压;错误!未找到引用源。

要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。

以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理S D dS ∙⎰ =q及D E ε= 得,当0<r<a 时,由S D dS ∙⎰ =q=0,得D =0,E =0当a ≤r ≤b 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯D =1S r e r ρ ,10S r aE e rρε= 当b<r 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a b e r ρρ+ ,E =120s s r a b e rρρε+ Equation.DSMT4 11ab 00ln b b s s a a a a a E dr dr r b ρρεε∅===⎰⎰ Equation.DSMT4 ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+ =0,得1S ρ=2s b a ρ- 2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a= ,计算: = 2 \* GB2 ⑵球的外表面的电荷分布;布;= 4 \* GB2 ⑷球心的电位。

南邮电磁场第2章习题解答

南邮电磁场第2章习题解答

1第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a r r r r =,()0a r ££。

试求总电量Q 。

解:2π200002d d d d π3laV VQ V z la ar rr r r j r ===òòòò2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。

当球以角速度w 绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。

解:面电荷密度为面电荷密度为 204πSQ R r =面电流密度为面电流密度为 00200sin sin sin 4π4πS S S Q QJ v R R R R w q r r w q w q =×=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J j =。

已知导线的直径为d ,导线中的电流为0I ,试求0S J 。

解:每根导线的体电流密度为每根导线的体电流密度为 00224π(/2)πI I J d d ==由于导线是均匀密绕,则根据定义面电流密度为由于导线是均匀密绕,则根据定义面电流密度为 04πSIJ Jd d == 因此,等效面电流密度为因此,等效面电流密度为 04πS I J e dj= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。

为使中间的点电荷处于平衡状态,试求其位置。

当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。

由库仑定律,实验电荷受02q 的排斥力为的排斥力为12214πq F x e =实验电荷受0q 的排斥力为的排斥力为2214π()q F d x e =-要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x e e =-,可以解得,可以解得 dd x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb

电磁学习题第二章答案

电磁学习题第二章答案

电磁学习题第二章答案电磁学习题第二章答案电磁学习题是电磁学课程中的重要组成部分,通过解答学习题,可以帮助我们巩固理论知识,加深对电磁学的理解。

本文将为大家提供电磁学习题第二章的答案,希望对大家的学习有所帮助。

第一题:一根长为L的直导线,通以电流I,求其产生的磁场强度H。

答案:根据安培环路定理,直导线产生的磁场强度与电流成正比,与导线的长度成反比。

因此,直导线产生的磁场强度H与电流I和导线的长度L满足以下关系式:H = I / (2πL)其中,H为磁场强度,I为电流,L为导线长度。

第二题:一根直导线上通有电流I,求距离导线d处的磁感应强度B。

答案:根据比奥萨伐尔定律,距离直导线d处的磁感应强度B与电流I和距离d成正比。

因此,距离导线d处的磁感应强度B与电流I和距离d满足以下关系式:B = μ0I / (2πd)其中,B为磁感应强度,I为电流,d为距离导线的距离,μ0为真空中的磁导率,其值为4π×10^-7 T·m/A。

第三题:一根长为L的直导线,通以电流I,求距离导线d处的磁场强度H。

答案:根据比奥萨伐尔定律,距离直导线d处的磁感应强度B与电流I和距离d成正比。

而磁场强度H与磁感应强度B成正比。

因此,距离导线d处的磁场强度H与电流I、导线长度L和距离d满足以下关系式:H = μ0I / (2πd)其中,H为磁场强度,I为电流,L为导线长度,d为距离导线的距离,μ0为真空中的磁导率,其值为4π×10^-7 T·m/A。

第四题:一根长为L的直导线,通以电流I,求距离导线d处的磁场强度H和磁感应强度B。

答案:根据比奥萨伐尔定律,距离直导线d处的磁感应强度B与电流I和距离d成正比。

而磁场强度H与磁感应强度B成正比。

因此,距离导线d处的磁场强度H和磁感应强度B与电流I、导线长度L和距离d满足以下关系式:H = μ0I / (2πd)B = μ0I / (2πd)其中,H为磁场强度,B为磁感应强度,I为电流,L为导线长度,d为距离导线的距离,μ0为真空中的磁导率,其值为4π×10^-7 T·m/A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为4230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2) 4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

解 电荷1q 在(4,0,0)处产生的电场为1113014q πε'-=='-r r E r r电荷2q 在(4,0,0)处产生的电场为222302444q πε-'-=='-e e r r E r r 故(4,0,0)处的电场为122+-=+=e e e E E E2.6 一个半圆环上均匀分布线电荷l ρ,求垂直于圆平面的轴线上z a =处的电场强度(0,0,)a E ,设半圆环的半径也为a ,如题2.6 图所示。

解 半圆环上的电荷元d d l l l a ρρφ''=在轴线上z a =处的电场强度为d φ'==E(cos sin )φφφ''-+'e e e在半圆环上对上式积分,得到轴线上z a =处的电场强度为(0,0,)d a ==⎰E E2[(cos sin )]d z x y ππφφφ'''-+=⎰e ee 2.7 三根长度均为L ,均匀带电荷密度分别为1l ρ、2l ρ和3l ρ地线电荷构成等边三角形。

设1l ρ=22l ρ=32l ρ,计算三角形中心处的电场强度。

解 建立题2.7图所示的坐标系。

三角形中心到各边的距离为tan 3026L d L ==o 则111003(cos30cos150)42l l yyd Lρρπεπε=-=E e e o o2120033(cos30sin 30)()28l l x y y L L ρρπεπε=-+=-E e e e e o o3130033(cos30sin 30)()28l l x y y L Lρρπεπε=-=E e e e e o o 故等边三角形中心处的电场强度为123=++=E E E E111000333()()288l l l yy y L L L ρρρπεπεπε-+=e e e e e 1034l yLρπεe题 2.6图1l题2.7图2.8 -点电荷q +位于(,0,0)a -处,另-点电荷2q -位于(,0,0)a 处,空间有没有电场强度0=E 的点?解 电荷q +在(,,)x y z 处产生的电场为1222320()4[()]x y z x a y zqx a y z πε+++=+++e e e E电荷2q -在(,,)x y z 处产生的电场为2222320()24[()]x y z x a y z q x a y z πε-++=--++e e e E (,,)x y z 处的电场则为12=+E E E 。

令0=E ,则有22232()[()]x y z x a y z x a y z +++=+++e e e 222322[()][()]x y z x a y z x a y z -++-++e e e由上式两端对应分量相等,可得到2223222232()[()]2()[()]x a x a y z x a x a y z +-++=-+++ ① 222322232[()]2[()]y x a y z y x a y z -++=+++ ②2223222232[()]2[()]z x a y z z x a y z -++=+++ ③当0y ≠或0z ≠时,将式②或式③代入式①,得0a =。

所以,当0y ≠或0z ≠时无解; 当0y =且0z =时,由式①,有33()()2()()x a x a x a x a +-=-+解得(3x a =-±但3x a =-+不合题意,故仅在(3,0,0)a --处电场强度0=E 。

2.9 一个很薄的无限大导电带电面,电荷面密度为σ。

证明:垂直于平面的z 轴上0z z =处的电场强度E 中,有一半是有平面上半径为03z 的圆内的电荷产生的。

解 半径为r 、电荷线密度为d l r ρσ=的带电细圆环在z 轴上0z z =处的电场强度为0223200d d 2()zr z rr z σε=+E e 故整个导电带电面在z 轴上0z z =处的电场强度为002232221200000d 12()2()2z z zr z r z r z r z σσσεεε∞∞==-=++⎰E e e e 而半径为03z 的圆内的电荷产生在z 轴上0z z =处的电场强度为022320000d 12()42zz zr z r r z σσεε'==-==+E e e e E 2.10 一个半径为a 的导体球带电荷量为Q ,当球体以均匀角速度ω绕一个直径旋转,如题2.10图所示。

求球心处的磁感应强度B 。

解 球面上的电荷面密度为24Q a σπ=题2.10图当球体以均匀角速度ω绕一个直径旋转时,球面上位置矢量r a =r e 点处的电流面密度为S z r a σσσω==⨯=⨯=J v ωr e esin sin 4Qa aφφωωσθθπ=e e将球面划分为无数个宽度为d d l a θ=的细圆环,则球面上任一个宽度为d d l a θ=细圆环的电流为 d d sin d 4S Q I J l ωθθπ== 细圆环的半径为sin b a θ=,圆环平面到球心的距离cos d a θ=,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为202232d d 2()z b Ib d μ==+B e 230222232sin d 8(sin cos )z Qa a a μωθθπθθ=+e 30sin d 8zQ aμωθθπe 故整个球面电流在球心处产生的磁场为 3000sin d 86z zQ Q a aπμωθμωθππ==⎰B e e 2.11 两个半径为b 、同轴的相同线圈,各有N 匝,相互隔开距离为d ,如题2.11图所示。

电流I 以相同的方向流过这两个线圈。

(1)求这两个线圈中心点处的磁感应强度x x B =B e ; (2)证明:在中点处d d x B x 等于零;(3)求出b 与d 之间的关系,使中点处22d x B x 也等于零。

解 (1)由细圆环电流在其轴线上的磁感应强度 2022322()zIa a z μ=+B e得到两个线圈中心点处的磁感应强度为 202232(4)xNIb b d μ=+B e(2)两线圈的电流在其轴线上x )0(d x <<处的磁感应强度为2200223222322()2[()]x NIb NIb b x b d x μμ⎧⎫=+⎨⎬++-⎩⎭B e 所以 220022522252d 33()d 2()2[()]x B NIb x NIb d x x b x b d x μμ-=-+++- 故在中点2d x =处,有220022522252d 32320d 2[4]2[4]x B NIb d NIb d x b d b d μμ=-+=++ (3) 222200222722252d 153d 2()2()x B NIb x NIb x b x b x μμ=-+++ 222002272225215()32[()]2[()]NIb d x NIb b d x b d x μμ--+-+- 令0d d 222==d x xx B ,有 0]4[1]4[45252227222=+-+d b d b d 即 5222d b d +=题2.11图题 2.13图故解得 b d =2.12 一条扁平的直导体带,宽为a 2,中心线与z 轴重合,通过的电流为I 。

证明在第一象限内的磁感应强度为 04x I B aμαπ=-,021ln 4yI r B a r μπ= 式中α、1r 和2r 如题2.12图所示。

解 将导体带划分为无数个宽度为x 'd 的细条带,每一细条带的电流x aII '=d 2d 。

由安培环路定理,可得位于x '处的细条带的电流I d 在点),(y x P 处的磁场为00d d d 24I I x B R aRμμππ'===02212d 4[()]I x a x x y μπ''-+ 则 022d d d sin 4[()]x Iy x B B a x x y μθπ'=-=-'-+ 022()d d d cos 4[()]y I x x x B B a x x y μθπ''-=='-+ 所以022d 4[()]ax aIy x B a x x y μπ-'=-='-+⎰0arctan 4a aI x x a y μπ-'⎛⎫--= ⎪⎝⎭0arctan arctan 4I a x a x a y y μπ⎡⎤⎛⎫⎛⎫-----=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦0arctan arctan 4I x a x a a y y μπ⎡⎤⎛⎫⎛⎫+---=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦021()4I a μααπ--=04I aμαπ- 022()d 4[()]a y a I x x x B a x x y μπ-''-=='-+⎰220ln[()]8aa I x x y a μπ-'--+=22022()ln 8()I x a y a x a y μπ++=-+021ln 4I r a r μπ 2.13 如题2.13图所示,有一个电矩为1p 的电偶极子,位于坐标原点上,另一个电矩为2p 的电偶极子,位于矢径为r 的某一点上。

相关文档
最新文档