第七章 轴向力径向力及其平衡

合集下载

轴的径向力和轴向力

轴的径向力和轴向力

轴的径向力和轴向力轴的径向力和轴向力,听起来是不是有点高大上?其实它们就像是机器里的一对“老朋友”,你看不见摸不着,却无时无刻不在影响着它的工作状态。

就好比我们生活中,不管做什么事儿,肯定得有人推一把,或者有人顶一顶,是吧?这两股力,其实就是在默默推着、拉着机器转动,保持着它的正常运转。

简单来说,径向力就像是从侧面对轴施加的力量,而轴向力呢,更多的是从轴的两端方向来“发力”。

听起来像是两个“力”的较量,其实它们和机器里的工作方式密不可分。

轴在转动的时候,这两种力是一直在相互博弈的。

比如说你想象一下,车轮转动的时候,轴就像是车轮的“骨架”,要承受车轮转动时产生的压力和摩擦力。

径向力就像是从旁边压过来的,“哎,别转那么快,太晃了!”轴向力则更多像是“嘿,快点,别停下!”的那种推力。

大家都知道,车轮没了轴,就像人没了骨头一样,啥都不能干。

轴的径向力和轴向力也都是为了让轴能够更好地支撑工作,保持运动轨迹不偏离。

再说一下,径向力和轴向力之间的关系,也挺有意思的。

你可别觉得它们是敌人,实际上它们是好搭档。

径向力在轴承里起着支撑作用,帮助轴不被侧面压力压垮。

而轴向力呢,主要作用是推动轴的转动,保持动力传递的稳定性。

有点像是篮球队里的两名球员,一个负责在场上保护篮筐,另一个则负责得分。

两个人分工合作,谁都不能少。

没有径向力,轴可能就会因为侧向压力而变形;没有轴向力,机器的运动就会不连贯,功率传递也会受影响。

所以,这两者就像是一对好搭档,虽然各司其职,但在关键时刻必须联手出击。

但是说到实际应用,轴的径向力和轴向力也不是没有麻烦的。

你看看那些跑得飞快的高铁,或者说是那些重型机械,它们的轴就必须要承受很大的压力。

径向力大了,轴可能会因为受力不均而发生弯曲或者变形,甚至会导致设备的损坏。

轴向力大了,就会让机器产生过多的震动,长时间下来,设备容易磨损。

就像是两个人在扯绳子,力量太大了,绳子可能会断,力量太小了,绳子又拉不动。

机械设计基础第七章齿轮传动

机械设计基础第七章齿轮传动

§7-7 直齿圆锥齿轮传动的强度计
算 方向: Ft——主反从同
Fr——指向各自的轴线
一、直F齿a—圆—锥指齿向轮大传端 动的受力分析
Fr1 Fa2
Fa1 Fr 2
Ft1=-Ft2
二、强度计算
1、齿面接触强度的计算 2、齿根弯曲强度的计算
P120
§7-8 蜗杆传动强度计算
一、蜗杆传动的失效形式、设计准则及常用材料
2T1 d1
Fa2
பைடு நூலகம்Ft 2
2T2 d2
Fa1
Fr1 Fr2 Ft2tg
力的方向和蜗轮转向的判别
蜗轮转向的判别 : Fa1的反向即为蜗轮的角速度w2方向
圆周力
Ft——主反从 同
径向力
Fr——指向各自 的轴线
轴向力 Fa1——蜗杆左右
手螺旋定则
三、蜗杆传动强度计算
1、蜗轮齿面接触强度的计算 2、蜗轮齿根弯曲强度的计算
(2)铸钢 用于尺寸较大齿轮,需正火和退火以消除 铸造应力。 强度稍低 。
2、铸铁 脆、机械强度,抗冲击和耐磨性较差, 但抗胶合和点蚀能力较强,用于工作平 稳、低速和小功率场合。
常用铸铁:灰铸铁;球墨铸铁(有较好
的机械性能和耐磨性 )
3、非金属材料——工程塑料(ABS、尼 龙)、夹布胶木
适于高速、轻载和精度不高的传动中, 特点是噪音较低,无需润滑;
四、蜗杆传动热平衡计算
1、原因 效率低,发热大,温升高,润滑油粘度 下降润滑油在齿面间被稀释,加剧磨损 和胶合。
2、冷却措施 加散热片以增大散热面积;风扇;
冷却水管;循环油冷却
§7-9 齿轮、蜗杆和蜗轮的构造 一、结构
1、齿轮轴 2、实体式 3、辐板式(孔板式) 4、轮辐式 5、镶圈齿轮

轴向力径向力及其平衡 PPT

轴向力径向力及其平衡 PPT
速度之半 2 旋转
任意半径R 处的压头 h h h h (u 2 2 2 g )2(2 u 2 g )28 1 g(u 2 2u2)8 g 2(R 2 2R 2)
假设:vm1 vm2 vu1 0
H p p 2 g p 1 H t v 2 2 2 g v 2 H t (v m 2 2 v u 2 2 ) 2 g (v m 2 1 v u 2 1 )
ห้องสมุดไป่ตู้
混流泵叶轮轴向力 的计算 当原动机带动叶轮旋转后,对液体 的作用既有离心力又有轴向推力, 是离心泵和轴流泵的综合,液体斜向流出叶轮。
A1F3F1F2
F3(R220R22h)g H p
F1 (R22h Rh2)gHp 12(R22h Rh2)g8g2 (R22h Rh2)
2
(R 2 2hR h 2) g[H p1g 6(R 2 2hR h 2)]
( R m 2 R h 2 )g ( H p 8 g 2 R 2 2 8 g 2 R h 2 ) 1 2 ( R m 2 R h 2 )g 8 g 2 ( R m 2 R h 2 )
(R m 2R h 2) g[H p8g 3(R 2 2R m 2 2R h 2)]
半开式叶轮轴向力 的计算
三.双吸叶轮
使用双吸叶轮由于结构对称,能平衡轴向力。 但由于制造误差,或者两边密封环 磨损不同会存在一定的残余轴向力。
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A 1 g(R m 2R h 2)H [p8g 2(R 2 2R m 2 2R h 2)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧的压力 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的轴向力。
2gp ( H R m 2 2 R h 2 )2 2 8 g g 2 2 ( R m 2 2 R h 2 ) 2 8 g g 2 ( R m 4 4 R h 4 )

离心泵轴向力的产生及平衡措施

离心泵轴向力的产生及平衡措施

离心泵轴向力的产生及平衡措施许华峰【摘要】分析离心泵轴向力产生的原因,根据具体实际情况采用平衡措施,有效减少泵的故障,为装置平稳运行创造有利条件,同时也降低了维修成本.【期刊名称】《中国设备工程》【年(卷),期】2015(000)012【总页数】3页(P61-63)【关键词】轴向力;平衡措施;轴向力计算【作者】许华峰【作者单位】山东天弘化学有限公司,山东东营 257000【正文语种】中文【中图分类】TH311离心泵在运转时产生轴向力,流体作用在转子上的轴向力主要是由于其作用在叶轮两侧的压力分布不对称而引起的,此轴向力在工况稳定的情况下是一定值,即静态轴向力,设计时一般采用平衡装置将其平衡掉,剩余部分由止推轴承承担;而实际上,作用在止推轴承上的轴向力并不是固定不变的,运行工况、密封间隙、制造及装配误差等因素均会引起轴向力的变化,轴向力的变化部分称之为动态轴向力,而它是平衡装置无法平衡的。

加上各种轴向力计算公式理论上都存在着误差,静态轴向力的平衡也是不准确的。

这两方面是引起泵本身及电动机损坏的主要原因,极易造成作用在止推轴承上的轴向力过大或过小,轴向力过大则造成烧瓦、断轴、密封隔板的损坏或增大止推轴承的摩擦,主轴、叶轮向进口方向移动致使叶轮与泵壳发生摩擦,电动机负载加大;如果轴向力过小,则会引起转子的前后窜动。

1.轴向力的产生在离心泵中液体是在低压力P1下进入叶轮,而在高压力P2下流出叶轮。

由于出口压力大于进口压力及叶轮前后盖板的不对称,使得叶轮两侧所受的液体压力不相等,因而产生了轴向推力,如图1所示。

从图1可以看出,作用在叶轮右边的压力为:P右=πr22P2;作用在叶轮左边的压力为:P左=πr12P1+π(r22-r12)P2。

式中r1、r2为叶轮的内、外圆半径,ΔP=P右+P左=πr12(P1-P2)。

因P2>P1,故ΔP是正值。

因此当离心泵运转时总有一个沿轴并指向吸入口的力作用在转子上。

叶轮入口部位是低压,而出口及叶轮背部是高压,在叶轮的前轮盖和后轮盖之间形成压差,这个压差就形成了轴向力。

轴向力径向力及其平衡

轴向力径向力及其平衡
轴向力和径向力的平衡对于工程结构的稳定性至关重要,能够提高工程的安全性和可靠性。 在机械、航空航天、交通运输等领域,轴向力和径向力的应用广泛,对于工程进展和效益具 有重要意义。
添加标题 添加标题 添加标题 添加标题
汽车轮胎:在汽车行驶过程中,轮胎与地面接触产生的径向力使汽车得 以行驶平稳。
电梯:电梯的升降过程中,导轨对电梯的轴向力保证了电梯的运行稳定。
不平衡的径向力 会影响机器的性 能和寿命
轴向力不平衡:导致旋转轴弯曲或扭曲,影响旋转精度和机械效率 径向力不平衡:引起旋转轴振动,加速轴承磨损,降低机械寿命 产生原因:设计缺陷、制造误差、安装不当等 解决措施:优化设计、提高制造精度、精确安装等
轴向力在旋转机械中起到平衡作用, 防止设备发生轴向窜动。
径向力的作用点:沿着垂直 于轴线方向作用,通常作用 于物体与轴线相交的圆周上
轴向力方向:沿 着转子轴线方向
径向力方向:垂 直于转子轴线, 指向圆心
轴向力与径向力的平衡是指两种力在大小和方向上相互抵消,使物体保持稳定状态。
平衡的概念是物理学中一个重要的概念,它描述了物体在力的作用下保持静止或匀速直线运动 的状态。
力。
径向力在旋转机械 中常常被提及,例 如在轴承、齿轮和 转子等旋转部件中, 径向力会导致轴承 磨损、齿轮振动和 转子失衡等问题。
在轴向力与径向 力的平衡问题中, 径向力的平衡通 常是通过轴承、 支撑和平衡装置
等来实现的。
径向力的计算方 法有多种,可以 根据具体问题选 择适合的方法进
行计算。
轴向力的作用点:沿着轴线 方向作用,通常作用于物体 的两端
自行车:自行车轮胎与地面接触产生的径向力使自行车能够稳定行驶, 而车架受到的轴向力保证了自行车的刚度和稳定性。

轴向力径向力及其平衡

轴向力径向力及其平衡

一.产生盖板力 的原因
离心泵工作时,由于叶轮两侧液体压力分布不均匀,如图1所示,而产生一个与轴线平行的轴向力,其方向指向叶轮入口。 图1离心泵轴向力示意图
计算过程 假设: 盖板两侧腔的液体无泄漏径向流动 盖板两侧液体以叶轮旋转角速度之半 旋转 任意半径R 处的压头 假设:
叶轮后盖板任意半径处,作用的压头差为 将上式两侧乘以液体密度和重力加速度 ,并从轮毂半径积分到密 封环直径,则得盖板轴向力 按压力体体积来计算 =圆柱体重量十抛物体重量
轴向力径向力及其平衡
第一节 产生轴向力的原因及其计算方法
1.叶轮前、后盖板不对称产生的轴向力,此 力指向叶轮吸入口方向,用 表示; 2.叶轮推动液体运动产生的动反力,此力指向叶轮 后面,用 表示; 3.轴台、轴端等结构因素引起的轴向力,其 方向视具体情况而定,用 表示; 4.转子重量引起的轴向力,与转子的布置方 式有关,用 表示; 5.影响轴向力的其它因素。
半开式叶轮轴向力 的计算
作用于后盖板的轴向力(抛物体的重量) 为 作用在前侧的轴向力(三角形压力体重量)为 总的轴向力
混流泵叶轮轴向力 的计算
当原动机带动叶轮旋转后,对液体 的作用既有离心力又有轴向推力, 是离心泵和轴流泵的综合,液体斜向流出叶轮。
半开式混流泵叶轮的轴向力
动反力 的计算 动反力;液体通常沿轴向进入叶轮,受到叶 轮作用力沿径向或斜向流出。反之,液体 给叶轮一个大小相等方向相反的反作用 力,该力即为动反力 由动量定理得 对于一般离心泵,可按下式估算于铸造和减小阻力损失; 两端轴封侧应布置低压级,以减小轴封所受的压力; 3相邻两级叶轮间的级差不要很大,以减小级间压差,从而减少泄漏。
布置原则:
2
节段式泵对称布置时,会增加级间泄露。 对称布置叶轮,只有在结构完全相同的情况下才能完全平衡。

演示模板轴向力径向力及其平衡.ppt

演示模板轴向力径向力及其平衡.ppt

F1 (R22h Rh2 )gH p
1 2
( R22h
Rh2 )g
2 8g
( R22h
Rh2 )
(
R22h
Rh2
) g [
H
p
2
16 g
(
R22h
Rh2
)]
F2 (R220 Rm2 )gH p
1 2
( R220
Rm2 )g
2 8g
( R220
Rm2 )
(
R220
Rm2
)g[ H
p
2
16 g
优选
13
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A1
g ( Rm2
Rh2 )[ H
p
2
8g
( R22
Rm2
2
Rh2
)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧的压力 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的轴向力。
计算方法:(设液体以 旋转)
bc = ac- ab
任意半径R 处的压头 h
h h h
(u2 )2 2 2g
(u)2 2
2g
1 8g
(u
2 2
u2) 2 8g
(R22
R2)
假设:vm1 vm2 vu1 0
Hp
p2 p1 g
Ht
v22 v2 2g
Ht
(vm2 2
vu22 ) (vm21 vu21 ) 2g
Ht
vu22 2g
优选
12
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的轴向力。

轴向力径向力及其平衡PPT课件

轴向力径向力及其平衡PPT课件
式有关,用 A4 表示;
5.影响轴向力的其它因素。
.
2
一.产生盖板力 A1 的原因
离心泵工作时,由于叶轮两侧液体压力分 图1离心泵轴向力示意图 布不均匀,如图1所示,而产生一个与轴线 平行的轴向力,其方向指向叶轮入口。
.
3
计算过程
假设: 1.盖板两侧腔的液体无泄漏径 向流动 2.盖板两侧液体以叶轮旋转角
2gp ( H R m 2 2 R h 2 )2 2 8 g g 2 2 ( R m 2 2 R h 2 ) 2 8 g g 2 ( R m 4 4 R h 4 )
A 1 g(R m 2R h 2)H [p8g 2(R 2 2R m 2 2R h 2)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
A3p(AhAs2)
P g H
H为单级扬程
.
10
四.影响轴向力的其它因素
1.叶轮前后盖板泵腔内的径向流
前泵腔总是存在着内向径向流,后泵 腔的惰况有所不同,一般无平衡孔的单 级泵则无径向流,有平衡孔时存在内向径向流,多级泵因级间泄漏而存 在外向的径向流。对不同的泵,按内向流压力减小,外向流压力增加来 分析对轴向力的影响。
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力,有时也 装设推力轴承。
.
12
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的轴向力。
三.双吸叶轮
使用双吸叶轮由于结构对称,能平衡轴向力。 但由于制造误差,或者两边密封环 磨损不同会存在一定的残余轴向力。

轴向力径向力及其平衡20页PPT

轴向力径向力及其平衡20页PPT


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
轴向力径向力及其平衡
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!Βιβλιοθήκη 20

第7章1 静力平衡

第7章1 静力平衡

Fx 0,
F5x 0 F5 0
在y轴方向有分力的只有F4、
z
F5、F6三个力,而其中二个
F
力已经求出,所以选择
y1
F6
y
Fy 0,
F4 y F5 y F6 y 0 x
F5
F3
F6 0
F4
F2
F1
再取过F1与F3作用点的y1轴为矩轴,有
M y1 0,
tan a

408N
Fy 0,
FBy Pa 0, FBy 290N
z
FAz A FAx x
Pr a b
Pa
P
FBz
C
B
r FBx
a
c
T1
FBy D R
T2
q
y
b
M z 0, Pa FBx(a c) (T1 T2 cosq )(a c b) 0
例7-1 传动轴AB上,斜齿轮C节圆半径r=60mm,压力
角a=20°,螺旋角b=15°;带轮D半径R=100mm,胶 带紧边水平,松边与水平成角q=30°,胶带拉力
T1=2T2=1300N;又a=b=100mm,c=150mm。轴匀速转 动,不计轮与轴的重量,求斜齿轮所受的圆周力与轴
承A、B的约束力。
7.1.1 平衡条件 把作用在物体上的所有主动力与约束力作为一
个力系,如果物体在这个力系的作用下处于静 力平衡状态,则称该力系为静力平衡力系,简 称平衡力系。 空间任意力系为平衡力系的充分必要条件是该 力系的主矢和对任一点O的主矩均为零,即
FR 0 且 MO 0
空间任意力系的平衡方程
z
FAz A FAx x

电动机的轴向力与径向力控制

电动机的轴向力与径向力控制

电动机的轴向力与径向力控制电动机作为现代工业生产中不可或缺的设备之一,承担着将电能转化为机械能的重要任务。

在电动机运行过程中,轴向力和径向力的控制是非常关键的。

本文将从轴向力和径向力的定义、产生机理以及控制方法等方面进行讨论。

1. 轴向力的定义和产生机理轴向力指的是电动机输出轴上的力在轴向上的分量,即沿着电机轴线的方向产生的力。

轴向力的大小和方向对电动机的安装和运行具有重要影响。

轴向力的产生主要源于以下几个方面:(1)电磁力:在电机运行时,电磁场的作用下会产生电磁力,这些电磁力会作用于转子和定子之间,从而产生轴向力。

电磁力的大小和方向受电流和磁场的影响。

(2)机械不平衡:电机转子的不平衡会引起轴向力的产生。

这可能是由于转子质量分布不均匀、转子轴心线位置误差等造成的。

(3)轴承力:轴承在电机运行过程中承受着转子的重力和离心力,这些力会导致轴向力的产生。

2. 轴向力的控制方法为了保证电动机的正常运行和延长其使用寿命,需要对轴向力进行适当的控制。

下面介绍几种常用的轴向力控制方法:(1)合理电机设计:在电机设计过程中,可以通过合理选择转子和定子的结构参数,减小不平衡质量和偏心距离,从而减小轴向力的产生。

(2)磁极分布优化:通过优化磁极分布,可以减小电磁力的大小和方向,从而减小轴向力。

(3)使用轴向磁力轴承:将传统的机械轴承改为轴向磁力轴承可以有效地降低轴向力的大小,同时提高轴承的寿命和运行稳定性。

(4)安装补偿装置:通过在电机上安装补偿装置,如补偿盘或对轴,可以对产生的轴向力进行补偿,达到控制轴向力的目的。

3. 径向力的定义和控制径向力指的是电动机输出轴上的力在垂直于轴向的方向上的分量,即沿着电机轴线垂直方向产生的力。

径向力的存在会对轴承和齿轮等部件造成不利影响,因此需要进行有效的控制。

径向力的产生主要源于以下几个方面:(1)离心力:电机转子在高速旋转时会产生离心力,这会导致发电机出现径向力。

离心力的大小和方向与转子的质量、转速和几何结构等因素有关。

泵与风机-考试重点

泵与风机-考试重点

1.离心泵与风机,轴流泵与风机的叶片型式及其特点离心式:1、径向式叶片:叶片的弯曲方向沿叶轮的径向展开,叶片出口几何角为90°2、后弯式叶片:叶片的弯曲方向与叶轮的旋转方向相反,叶片出口几何角小于90°3、前弯式叶片:叶片的弯曲方向与叶轮的旋转方向相同,叶片出口几何角大雨90°特点:(1)在其他条件相同的前提下,扬程随出口叶片安装角的增加而增大;(2)前弯式叶片的扬程最大,径向叶片次之,后弯式叶片的扬程最小;1、后弯式叶片风机应用最广;对于后弯式风机,风机流量增大,风机的轴功率也增大,增大至最大值后便不再增加,这种性能使电动机不会超载。

2、前弯式叶片风机主要用于低压、中小风量的场合,且要求输送的气体中不存在固体小颗粒。

小颗粒会在叶片中积存。

前弯式风机有一不稳定工作区,风机工作时要避开该不稳定区,因此安全工作区域较窄前弯式风机的轴功率随风量的增大而增大,并且持续全过程,可能导致电机过载。

3、径向式风机适用于输送的气体中含有大量的固体颗粒。

在产生相同全压情况下,径向式风机的转速除了前弯式以外是最低的,因此固体颗粒在叶片表面上的运动速度较低。

径向式风机的性能比较稳定。

轴流式:·轴流泵与风机的基本结构型式及适应场合轴流式:五种常见结构形式1.单个叶轮。

这种形式泵与风机效率不高,一般为百分之70—80。

适用于小型低压轴流泵和低压轴流通风机2.单个叶轮后设置导叶。

这种效率优于单个叶轮形式,一般为百分之80—88。

在轴流泵和轴流通风机中普遍应用,目前,火力发电厂的轴流送引风机大都采用这种型式3.单个叶轮前设置导叶。

这种型式的轴流风机结构尺寸较小,占地面积较小,其效率可达78%--82%。

在火力发电厂中子午加速轴流风机常采用这种型式。

由于考虑泵气蚀的缘故,轴流泵一般不能有这种型式。

4.单个叶轮前,后均设置导叶。

其效率为82%--85%这种型式如果前置导叶可调,则流风机在变工况状况下工作有较好的效果。

轴向力径向力及其平衡

轴向力径向力及其平衡

ab
R22
Re
2
)
ac
H
P
2
8g
( R2 2
R2
)
ab
HG
2
8g
( Re 2
R2
)
可以得bc……省略
将bc从轮毂Rh
积Re 分到 得到平衡方程
F1
Re Rh
bc
g
2R
dR
3 2
16 g
g
Re 2
Rh2
2

F1
3 8
(
Ae
Ah
)
1 2g
(ue 2
uh2 )g
上面的计算是基于叶片端部和壳体的间隙很小时,但间隙大时 液体转'速 (应1该t ) 为
Ht
(gHt u2 )2 2g
Hp
H t (1
gHt 2u22
)
叶轮后盖板任意半径处,作用的压头差为
h
H
p
h
H
p
2
8g
( R22
R2)
将上式两侧乘以液体密度和重力加速度 ,并从轮毂半径积分到密
封环直径,则得盖板轴向力
A1
Rm 2RdRhg
Rh
2 g
[ H Rm
Rh
p
2 8g
( R22
R 2 )]RdR
双吸泵从理论上讲无轴向力作用,由于上述原因,当两侧密封环 长度不同、磨损不同时,会产生指向泄漏大的一侧的附加轴向力
第二节 轴向力的平衡
危害:如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此 将拉动转子轴向串动,与固定零件接触,造成泵零件的损坏以至不
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力, 装设推力轴承。

轴向力径向力及其平衡ppt课件

轴向力径向力及其平衡ppt课件
13
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A1
g ( Rm2
Rh2 )[ H
p
2
8g
( R22
Rm2
2
Rh2
)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧的压力 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的轴向力。
计算方法:(设液体以 旋转)
bc = ac- ab
任意半径R 处的压头 h
h h h
(u2 )2 2 2g
(u)2 2
2g
1 8g
(u
2 2
u2) 2 8g
(R22
R2)
假设:vm1 vm2 vu1 0
Hp
p2 p1 g
Ht
v22 v2 2g
Ht
(vm2 2
vu22 ) (vm21 vu21 ) 2g
Ht
vu22 2g
R 2 )]RdR
2 gH
p
( Rm2
2
Rh2
)
2 2gR22 8g
( Rm2
2
Rh2
)
2g 2 8g
( Rm4
4
Rh4
)
A1
g(Rm2
Rh2 )[ H p
2 8g
( R22
Rm2
2
Rh2
)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
( Rm2
Rh2 ) g(H p
2 8g
R22
R1h )2 (R1h
2 3
(R2h
R1h ))
8
二.动反力 A2 的计算
动反力;液体通常沿轴向进入叶轮,受到叶 轮作用力沿径向或斜向流出。反之,液体 给叶轮一个大小相等方向相反的反作用 力,该力即为动反力

第七章轴向力径向力及其平衡

第七章轴向力径向力及其平衡

第七章轴向⼒径向⼒及其平衡图7—1 轴向⼒计算原理图第七章轴向⼒径向⼒及其平衡第⼀节产⽣轴向⼒的原因及计算⽅法泵在运转中,转⼦上作⽤着轴向⼒,该⼒将拉动转⼦轴向移动。

因此,必须设法消除或平衡此轴向⼒,⽅能使泵正常⼯作。

泵转⼦上作⽤的轴向⼒,由下列各分⼒组成:1.叶轮前、后盖板不对称产⽣的轴向⼒,此⼒指向叶轮吸⼊⼝⽅向,⽤1A 表⽰;2.动反⼒,此⼒指向叶轮后⾯,⽤2A 表⽰;3.轴台、轴端等结构因素引起的轴向⼒,其⽅向视具体情况⽽定,⽤3A 表⽰;4.转⼦重量引起的轴向⼒,与转⼦的布置⽅式有关,⽤4A 表⽰;5.影响轴向⼒的其它因素。

下⾯分别计算各轴向⼒。

⼀. 盖板⼒1A 的计算(图17—1)由图可知,叶轮前后盖板不对称,前盖板在吸⼊眼部分没有盖板。

另⼀⽅⾯,叶轮前后盖板象轮盘⼀样带动前后腔内的液体旋转,盖板侧腔内的液体压⼒按抛物线规律分布。

作⽤在后盖板上的压⼒,除⼝环以上部分与前盖板对称作⽤的压⼒相抵消外,⼝环下部减去吸⼊压⼒1P 所余压⼒,产⽣的轴向⼒,⽅向指向叶轮⼊⼝,此⼒即是1A 。

假设盖板两侧腔的液体⽆泄漏流动,并以叶轮旋转⾓速度之半2ω旋转,则任意半径R 处的压头h '为(推导见⼗⼋章))R R (g)u u (g g )u (g )u (h h h 22222222228812222-=-=-='''-''='ω(7—1)叶轮出⼝势扬程,当假定21m m v v =,01=u v 时,为 g)v v ()v v (H g v v H g p p H u m u m t t p 222121222222212+-+-=--=-=ρ g)u gH (H g v H t u t 2222122-=-= 即 )u gH (H H t t p 2221-= (7—2)叶轮后盖板任意半径处,作⽤的压头差为)R R (g H h H h p p 22228--='-=ω将上式两侧乘以液体密度ρ和重⼒加速度g ,并从轮毂半径积分到密封环直径,则得盖板轴向⼒1A--==m h m h R R p R R RdR )]R R (gH [g g RdRh A 22221822ωπρρπ )R R (g g )R R (g gR )R R (gH h m h m h m p 482282224422222222-+---=ωπρπρωπρ即 )]R R R (g H )[R R (g A h m p h m 2822222221+---=ωπρ(7—3)这部分轴向⼒也可很⽅便地按压⼒体体积来计算。

轴承轴向力和径向力的判断

轴承轴向力和径向力的判断

轴承轴向力和径向力的判断轴承是一种用于支撑旋转轴的机件,具有轴向和径向两种载荷。

轴向载荷是垂直于轴线的载荷,而径向载荷是平行于轴线的载荷。

在轴承设计和使用过程中,准确判断轴向力和径向力的大小和方向是非常重要的。

判断轴向力的大小和方向,需要分析轴承中的受力情况。

在一般情况下,轴向载荷由机械设计或者工作条件所决定,通常是一个已知的数值。

当轴承在运转时,轴向载荷将会产生轴向力。

通过对轴承内部结构进行分析,可以确定轴向力的大小和方向。

一般情况下,若轴向力向轴承的外侧施加,则为正轴向力;反之为负轴向力。

判断径向力的大小和方向,同样需要对轴承内部结构进行分析。

轴承受到的径向载荷可能来自重力、离心力、横向力等多个方向。

通过分析轴承结构和工作条件,可以确定径向载荷和径向力的大小和方向。

一般情况下,如果轴承在工作过程中受到向轴心方向的载荷,则称其为正径向载荷;反之称为负径向载荷。

在实际操作过程中,径向力的大小和方向往往与轴向力相关,因此需要对轴承承受的载荷作出整体分析。

除了通过轴承的内部结构,判断轴向力和径向力的大小和方向,还可以通过一些工具来实现。

例如,在超声波振动分析测试过程中,可以通过信号处理和数据分析对轴承中的振动模式进行分析,从而得到轴向力和径向力的大小和方向。

在实际应用中,准确判断轴向力和径向力的大小和方向,可以帮助设计师优化轴承的结构和材料选择,确保轴承的稳定工作。

同时,也可以帮助运维人员判断轴承的故障类型,及时进行维护和更换,提高轴承的使用寿命。

总之,轴承轴向力和径向力的判断是机械设计和运维过程中非常重要的一环。

通过对轴承内部结构和振动信号等信息的分析,可以得到轴向力和径向力的大小和方向,优化轴承的设计和使用,确保设备的正常工作。

离心泵的主要零部件

离心泵的主要零部件

外装式机械密封
(2)平衡型与非平衡型
D −D K= D −D
2 2 2 2 2 0 2 1
β =K
尺 D 变 来 到 由 寸 1的 化 达 。
K代 介 压 作 到 封 上 多 。 比 ) 表 质 力 用 密面 的 少 ( 例
β ≤0 非 衡 D < D 平 0 1 0 < K <1 1> β > 0 部 平 分 衡 常 用 K =0 β =1 完 平 D = D 不 全 衡 0 用 2
叶轮结构: 叶轮结构:
闭式:有盖板、轮盘,用于高扬程,洁净液体。 闭式:有盖板、轮盘,用于高扬程,洁净液体。 半开式:无前盖板,适于含固体颗粒和杂质液体。可 半开式:无前盖板,适于含固体颗粒和杂质液体。 铣制,强度好,易制造。 铣制,强度好,易制造。 开式:无盖板和轮盘,输送糊状、浆状液体。 开式:无盖板和轮盘,输送糊状、浆状液体。 单吸: 简单,适合于多级泵。 单吸: 简单,适合于多级泵。 双吸:大流量,汽蚀性能较好。 双吸:大流量,汽蚀性能较好。
+
ps
π
4
(D − D ) 2 0
2 2 2 2 2 1
π
p π 2 2 P 表 平 膜 则 P pm (D − D ) = λps λ = m 示 均 压 = m 0 2 1 p 4 pb = psp + Kp− pm = psp +(K −λ) ps
4
(D − D )

π
4
P 0 (D − Dຫໍສະໝຸດ ) 2 1按直线分布可推出公式
D D D r− 1 2 2 2 2πrdr = π (D − D )(2D + D ) p 2 2 P = ∫D1 pr 2πrdr = ∫D1 p 0 2 1 2 1 D D 12 2 1 2 2 − 2 2 2D + D P 0 2 1 pm = p = π 2 2 3(D + D ) 2 1 (D − D ) 2 1 4 由 得 此 pm 2D + D 2 1 λ= = p 3(D + D ) 2 1

轴向力径向力及平衡

轴向力径向力及平衡

第10讲:轴向力径向力及平衡轴向力产生的原因1. 泵在运转时,叶轮前后盖板压力不对称产生轴向力,其力的方向指向吸入口方向。

2. 动反力:液体从吸入口到排出口改变方向时作用在叶片上的力,该力指向叶轮后面。

3. 泵内叶轮进口压力与外部大气压不同在轴端和轴台阶上产生的轴向力。

4. 立式泵转子重量引起的轴向力,力的方向指下面。

5. 其它因素:泵腔内的径向流动影响压力分布;叶轮二侧密封环不同产生轴向力。

轴向力的计算10.2.1 叶轮前后盖板不对称产生的盖板力A 1假设盖板二侧腔的液体无泄漏流动,并以叶轮旋转角速度之半ω/2旋转,则任意半径R 处的压头h ‘为:h ‘=(ω2/8g )(R 22-R 2) R 2-叶轮外径半径假定叶轮进口轴面速度与出口轴面速度相等,V m1=V m2, 进口圆周分速度V u1=0 叶轮出口势扬程H P =H T -((g H T /u 2)2/2g )= H T (1-(g H T 8g8g10.2.210.2.310.3.1用推力轴承平衡轴向力 2.用平衡孔平衡轴向力 3.单级泵采用双吸叶轮平衡轴向力,多级泵采用叶轮背靠背对称布置平衡轴向力。

4.采用背叶轮平衡轴向力 5.用平衡鼓+推力轴承平衡轴向力 6.用平衡盘平衡轴向力 7.用平衡鼓+平衡盘+推力轴承联合结构平衡轴向力 8.用双平衡鼓平衡轴向力10.3.2 平衡鼓+止推轴承平衡轴向力通常平衡鼓平衡总轴向力的90~95%,余下5~10%的剩余轴向力由止推轴承承受。

平衡鼓前后压差:△P=P 3-P 5P 3-平衡鼓前压力 P 3=P 2-((ω2/8g)(R 22-R H 2))ρg P 2-末级叶轮出口压力 P 2=P 1+[H 1(i -1)+H P ]ρgP 1-第1级叶轮进口压力 H 1-泵单级扬程 H P -末级叶轮势扬程P 5-平衡鼓后压力 P 5=P 1+ρgh P 5 通常取0.5 kg/cm 2 h -平衡回水管阻力损失 平衡鼓面积:F=△P(R 12-R 2h )π R 1-平衡鼓外半径 R h -轮毂半径10.3.3 平衡盘平衡轴向力1.平衡盘的灵敏度平衡盘用于多级泵中自动平衡转子轴向力,一般不设止推轴承。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图7—1 轴向力计算原理图 第七章 轴向力径向力及其平衡第一节 产生轴向力的原因及计算方法泵在运转中,转子上作用着轴向力,该力将拉动转子轴向移动。

因此,必须设法消除或平衡此轴向力,方能使泵正常工作。

泵转子上作用的轴向力,由下列各分力组成:1.叶轮前、后盖板不对称产生的轴向力,此力指向叶轮吸入口方向,用1A 表示;2.动反力,此力指向叶轮后面,用2A 表示;3.轴台、轴端等结构因素引起的轴向力,其方向视具体情况而定,用3A 表示;4.转子重量引起的轴向力,与转子的布置方式有关,用4A 表示;5.影响轴向力的其它因素。

下面分别计算各轴向力。

一. 盖板力1A 的计算(图17—1)由图可知,叶轮前后盖板不对称,前盖板在吸入眼部分没有盖板。

另一方面,叶轮前后盖板象轮盘一样带动前后腔内的液体旋转,盖板侧腔内的液体压力按抛物线规律分布。

作用在后盖板上的压力,除口环以上部分与前盖板对称作用的压力相抵消外,口环下部减去吸入压力1P 所余压力,产生的轴向力,方向指向叶轮入口,此力即是1A 。

假设盖板两侧腔的液体无泄漏流动,并以叶轮旋转角速度之半2ω旋转,则任意半径R 处的压头h '为(推导见十八章))R R (g)u u (g g )u (g )u (h h h 22222222228812222-=-=-='''-''='ω (7—1) 叶轮出口势扬程,当假定21m m v v =,01=u v 时,为 g)v v ()v v (H g v v H g p p H u m u m t t p 222121222222212+-+-=--=-=ρ g)u gH (H g v H t u t 2222122-=-= 即 )u gH (H H t t p 2221-= (7—2) 叶轮后盖板任意半径处,作用的压头差为)R R (g H h H h p p 22228--='-=ω将上式两侧乘以液体密度ρ和重力加速度g ,并从轮毂半径积分到密封环直径,则得盖板轴向力1A⎰⎰--==m h m h R R p R R RdR )]R R (gH [g g RdRh A 22221822ωπρρπ )R R (g g )R R (g gR )R R (gH h m h m h m p 482282224422222222-+---=ωπρπρωπρ 即 )]R R R (g H )[R R (g A h m p h m 2822222221+---=ωπρ (7—3) 这部分轴向力也可很方便地按压力体体积来计算。

图7—1左侧影线部分的压力体体积的重量,在数值上等于轴向力。

这部分压力体体积分为圆柱体和抛物体两部分,而抛物体体积等于同底等高圆柱体积之半,即1A =圆柱体重量十抛物体重量 )R R (gg )R R ()R g R g H (g )R R (h m h m h p h m 22222222222282188--++--=ωπρωωπρ )]R R R (g H [g )R R (h m p h m 282222322+---=ωπρ 二、动反力2A 的计算 液体通常沿轴向进入叶轮,沿径向或斜向流出。

液流通过叶轮其方向之所以变化,是因为液体受到叶轮作用力的结果。

反之,液体给叶轮一个大小相等方向相反的反作用力,该力即为动反力,指向叶轮后面,由动量定理)cos v v (Q A m m αρ3012-= (N ) (7—4)式中 ρ——液体密度(3m kg );1Q ——泵理论流量(s m 3);0m v 、3m v ——叶片进口稍前、出口稍后的轴面速度(s m );α——叶轮出口轴面速度与轴线方向的夹角。

对于一般离心泵,可按下式估算轴向力(图7—2)i )R R (gH k A h m 221-=πρ式中 A ——总的轴向力(N );1H ——泵单级扬程(m );m R ——叶轮密封环半径(m );h R ——叶轮轮毂半径(m );i ——泵级数;k ——系数,当10030~n s = 时,60.k =;当220100~n s =时,70.k =当280240~n s=时;80.k =三、半开式叶轮轴向力1A 的计算(图7—3)作用于后盖板的轴向力(抛物体的重量)1F 为 gh )R R (gH )R R (F h p h πρπρ222222121---=式中 )R R (g h h 22228-=ω作用在前侧的轴向力(三角形压力体重量)为2F )]R R (R [)R R (g H F m m m p -+-=22232221πρ 总的轴向力 )]R R (R [)R R (g H )R R (g g )R R (gH )R R (F F A m m m p h h p h -+------=-=22222222222221132221821πρωπρπρ 四、混流泵叶轮轴向力1A 的计算(图7—4)由前述2131F F F A -+= p h gH )R R (F πρ222203-= )R R (g g )R R (gH )R R (F h h h h p hh 22222222221821----=ωπρπρ )]R R (g H [g )R R (h h p h h 222222216---=ωπρ )R R (gg )R R (gH )R R (F m m p m 22202222022202821----=ωπρπρ )]R R (g H [g )R R (m p m 22202222016---=ωπρ六、轮毂轴端等结构引起的轴向力3A 的计算(一) 悬臂式叶轮轴头吸入压力和大气压力不同引起的轴向力(图7—6)当泵进口压力高时,作用在轴头上的轴向力的值较大,其值用下式计算)p p (d A a h -=1234π 式中 1p ——泵进口压力(绝对压力);a p ——大气压力;h d ——填料处的轴径。

(二) 对称布置叶轮由于轴细部结构不同引起的轴向力(图7—7)对称布置叶轮的泵,一般说来,轴向力自动平衡,但是由于细部结构不同,仍作用有轴向力。

现以对称布置叶轮的两级泵说明该轴向力的计算方法。

设第一级叶轮进口的压力为s p ,经过一级增加一个压力p (gH p ρ=,H 为单级扬程),写出各级叶轮前后的轴向力,然后相加。

第1级叶轮前的轴向力:−−−−→−-ss m p )A A (11 第1级叶轮后的轴向力:第2组叶轮后的轴向力:第2组叶轮前的轴向力:相加之后,得通常负号表示轴向力指向第一级叶轮进口。

如果在结构上使得s h A A =,则03=A 。

用和两级泵类似的方法写出各级叶轮上的轴向力,而后相加,可以求出任何多级泵由于轴肩尺寸不同引起的轴向力3A 。

七、立式泵转子(包括其中液体)的重量,造成泵的轴向力八、影响轴向力的其它因素1. 叶轮前后盖板泵腔内的径向流(图7—8)前述计算轴向力的公式,是假设泵腔内液体无径向流动的条件下推得的,当有径向流时会改变压力分布,因而影响轴向力的数值。

图中实线表示无径向流时的压力分布,虚线表示有径向流时的压力分布。

在前盖板泵腔,存在着内向径向流动,压力分布如左侧的虚线所示。

这是因为叶轮出口的压力2p 固定不变,液体在流动中要产生附加的压力下降所致。

后泵腔中存在外向的径向流 时,液体要流动,在轮毂处的压力必须大于无径向流时的压力,到叶轮出口处变为压力2p ,压力分布如右侧虚线所示。

前泵腔总是存在着内向径向流,后泵腔的惰况有所不同,一般无平衡孔的单级泵则无径向流,有平衡孔时存在内向径向流,多级泵因级间泄漏而存在外向的径向流。

对不同的泵,按内向流压力减小,外向流压力增加来分析对轴向力的影响。

2.叶轮两侧密封环不同,双吸泵从理论上讲无轴向力作用,由于上述原因,当两侧密封环间隙长度不同、磨损不同时,会产生指向泄漏大的一侧的附加轴向力。

第二节轴向力的平衡如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此轴向力将拉动转子轴向串动,与固定零件接触,造成泵零件的损坏以至不能工作。

可以采用下述方法平衡泵的轴向力。

一、推力轴承对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济的方法。

即使采用其它平衡装置,考虑到总有一定的残余轴向力,有时也装设推力轴承。

如图 7—9所示,在叶轮后盖板上附设密封环,密封环所在直径一般与前密封环相等,同时在后盖板下部开孔,或设专用连通管与吸入侧连通。

由于液体流经密封环间隙的阻力损失,使密封下部的液体的压力下降,从而减小作用在后盖板上的轴向力。

减小轴向力的程度取决于孔的数量和孔径的大小。

(通常取平衡孔的总面积等于五倍平衡环间隙的面积)在这种情况下,仍有l 0%一15%的不平衡轴向力。

要完全平衡轴向力必须进一步增大密封环所在直径,值得说明的是密封环和平衡孔是相辅相成的,只设密封环无平衡孔不能平衡轴向力,只设平衡孔不设密封环,其结果是泄漏量很大,平衡轴向力的程度甚微。

采用这种平衡方式可以减小轴封的压力,其缺点是容积损失增加(平衡孔的泄漏量一般为设计流量的2%一5%)。

另外,经平衡孔的泄漏流与进入叶轮的主液流相冲击.破坏了正常的流动状态,会使泵的抗汽蚀性能下降。

为此.有的泵在泵体上开孔,通过管线与吸人管连通。

但结构变得复杂。

在非额定流量下,叶轮入口的流动状态发生变化。

小流量状态下.由于预旋的影响.H1飞进口中心部分的压力低于外周的压力.经平衡孔的泄漏增加,尽管泵扬程增加.泵密封环下腔的压力还是很低的,因而铀向力进一步减小。

大流量时.由于泵扬程下降.轴向力也变小、轴向力随流量的变化如图17—10所示,纵坐标月表示轴向力,在0点以上表示釉向力指向叶轮后方,零点以下表示指向前方。

平衡孔泄漏量和平衡程度的计算,由固17一U1 』 J g『 f 5月”——叶轮势扬程:氏——密封阎陈阻力系数。

人=1.5 C,——平衡孔阻力系数。

通常(p;2;尸m=0mx6——密封间隙过流面税fj=专n:件伤ZL‘B6讯。

相关文档
最新文档