反应精馏

反应精馏

摘要:反应精馏是化学反应和精馏过程耦合为一体的单元操作,已成为当今的重要研究领。本文总结了反应精馏的优点、基本要求、以及操造作流程等。

关键字:反应精馏、精馏、反应

1 反应精馏技术概述

反应精馏(Reactive Distilation简称RD)是蒸馏技术中的一个特殊领域,它是化学反应与蒸馏相耦合的化工过程,有关精馏的早期研究始于1921年,反应精馏概念由Backhaus提出从20世纪30年代到60年代初,主要对一些特定体系的工艺条件进行探索,并且局限于板式塔中的均相反应精馏。一直到60年代末,才开始对反应精馏的一般性规律进行研究。70年代后,开始转向反应精馏的工艺计算,同时也开始对催化精馏进行研究。20世纪80年代后,反应精馏模拟计算的研究异常活跃,为优化操作和设计装置提供了极为有力的工具,数学模型也由平衡级模型拓展到非平衡级模型进而发展到90年代末的非平衡池模型,可模拟气相和液相在级上的停留时问分布和较准确地描述反应和传质行为,是对非平衡级模型的提高和进一步完善,是非常有前途的反应精馏模型。

1.1反应精馏的优点

反应精馏与常规精馏都是在普通的蒸馏塔中进行,但由于精馏操作和化学反应的相互影响,反应精馏具有自身显著的优点,主要有以下几点:

1)提高了反应物的转化率和选择性,有些情况下可使反应物的转化率接近100 。对于可逆反应,蒸馏操作把生成物从反应体系中移走,使化学反应不断向正方向移动,加大了反应物的转化率。对于连串反应,蒸馏操作及时地把中间产物从反应体系中移走,可以避免副产物的产生,同时提高了反应物的选择性。

2)化学反应过程容易控制。操作系统压力恒定,混合物的组成变化不大,则系统的温度分布将基本保持不变,使化学反应速率因温度的变化所受影响较小,也减小副反应发生的机率。

3) 减少设备投资费用和操作费用,也减少能量消耗。由于化学反应和精馏操作在一个精馏塔中进行,所以化学反应不需要专门的反应器,不必进行未参与反应的反应物二次蒸馏和重回反应器的操作,减少了能量消耗。若化学反应是放热反应,则产生的反应热可以被蒸馏操作直接利用,减少了再沸器提供的能量。

4) 设备紧凑,减少操作所需要占用的空间。

5) 可以有效地避免共沸物的形成给精馏分离操作所带来的困难。在反应精馏中,由于化学反应的存在,在常规精馏中存在的共沸体系在反应精馏中可能消失。

6) 对于一些用常规精馏难以分离的物系,使用反应精馏可以获得比较纯净的目的产物。如间二甲苯和对二甲苯是同分异构体,使用常

规精馏分离,需要较多的理论塔板数和较大的回流比,使用对二甲苯钠作为夹带剂只需要6块塔板即可有效分离。

7)对于催化蒸馏,催化剂填充层起着加速化学反应速率和传质的作用。尺寸不同的催化剂结构组成的床层可以有效地防止出现旁道和沟流等现象。催化剂颗粒一般都用其他物质包裹起来,这样避免了催化剂与器壁直接接触,减轻了催化剂对设备的腐蚀,同时降低催化剂的磨损,延长了催化剂的使用寿命。

1.2 使用反应精馏的基本要求

由于反应精馏是化学反应和精馏分离耦合的操作过程,所以化学反应和精馏操作既相互促进,又相互限制。一个化学工艺如要使用反应精馏操作得到所需要的目的产物,必须满足以下基本要求:(1)化学反应必须在液相中进行;(2)在操作系统压力下,主反应的反应温度和目的产物的泡点温度接近,以使目的产物及时从反应体系中移出;(3)主反应不能是强吸热反应,否则精馏操作的传热和传质会受到严重影响,会使塔板分离效率减低,甚至使精馏操作无法顺利进行;

(4)主反应时间和精馏时间相比较,主反应时间不能过长,否则精馏塔的分离能力不能得到充分利用;(5)对于催化蒸馏,要求催化剂具有较长的使用寿命,因为频繁地更换催化剂需要停止反应精馏操作,从而影响到生产效率,同时增加了生产成本;(6)催化剂的装填结构不仅能使催化反应顺利进行,同时要保证精馏操作也能较好地进行。

1.3 反应精馏的分类

根据使用催化剂形态的不同,反应精馏可以分为均相反应精馏和催化蒸馏;根据投料操作方式,反应精馏可以分为连续反应精馏和间歇反应精馏;根据化学反应速度的快慢,反应精馏分为瞬时、快速和慢速反应精馏。

2. 反应精馏的操作流程及工艺条件

以常温常压下典型的液相可逆反应A+B—C+D为例,对反应精馏的工艺流程作一介绍。A,B,C,D 4种物质的挥发度由大到小的顺序为C,A,B,D,其中目标产物为D。传统工艺和反应精馏工艺的主要流程示意分别见图1(a)和(b)。

图1 传统工艺和反应精馏工艺流程的主要部分

由图1(a)可见,传统的工艺是将A和B在反应器内反应完毕后再进人蒸馏塔中进行分离,由于反应平衡的限制,进入蒸馏塔的混合物中反应物含量还是较高,这样在分离时可能得不到较纯的产物,而且若不回收未反应的A和B,将会造成原料的浪费,因此,在蒸馏塔后一

般还有回收装置。由图1(b)可见,采用反应精馏技术,原料A和B分别从反应段的下方和上方进入反应蒸馏塔,在反应段充分接触反应,且产物和反应物得到了及时的分离。由于反应和分离相互促进,能得到传统工艺需耗费大量能量和时间才能获得的高转化率和分离效率。反应精馏技术能节省设备投资,减少操作费用,对于可逆放热反应而言,还可充分利用反应热从而节省能耗。这些优势使得反应精馏技术成为解决化工高能耗和低原料利用率的有效手段。

3.反应精馏的应用

3.1 烷基化

乙烯与苯烷基化的CD塔由二部分组成,上部填装特殊设计的捆扎包内装Y型分子筛,下部安装精馏塔板,乙烯从催化剂层底部进料,苯从回流罐进塔,过程的特点是反应温度受饱点温度制约,避免反应区热点的生成,提高了催化剂的寿命,副产物二乙丙苯和三异丙苯返回CD塔,与苯进行烯烃转移反应生成更多的异丙苯,消除了大量苯的循环,反应热有效利用。

3.2 叠合过程

采用反应精馏技术可使烯烃分子有选择的叠合,因为精密的温度控制和反应段的宽分布将减少非理想产品的二聚物、三聚物或高聚物的生成,丁烯叠合的反应精馏工艺目前已获工业许可。

3.3 烯烃选择性加氢

已经证明,反应精馏可使不需要的烯烃杂质选择加氢,使其失去化学活性或不有利于精馏分离去除。目前,可应用反应精馏技术的有:丁二烯、戊二烯及己二烯选择性加氢。

3.4 氧化脱氢

如有合适的催化剂,就可使异丁烷氧化脱氢生成异丁烯。

3.5 C1化学

甲醛与甲醇反应生成甲缩醛,利用反应精馏,比采用常规多步工艺更为简洁。

3.6 醚化反应

甲基叔丁基醚(MTBE)是应用CD技术第一个取得工业成功的产品,该过程与传统流程相比具有无反应器的外部循环和冷却;通过预反应有效脱除催化剂毒物。延长催化剂的使用寿命;充分利用反

应放出的热量,反应物转化率高以及产品纯度高等特点。

3.7 酯化和水解

乙酸甲酯(MeoAc)合成与水解的催化精馏工艺是近年来国内外

研究和开发的热门话题,由于乙酸和甲醇的酯化受化学平衡的限制,且物系中有多个共沸物,故传统流程十分复杂,需多个反应器和精馏塔。

3.8 环氧化物的水解

与环氧乙烷水解生产乙二醇类似,环氧丙烷水解生产丙二醇。水和环氧乙烷分别在反应段上和下进料。由于环氧乙烷的高度挥发性,塔中反应区的环氧乙烷浓度低,低的反应物浓度和快速从反应区移出产物抑制了二乙二醇的产生,华东理工大学与湖南化工设计院连手开发了生产丙二醇的反应精馏工艺,在云南玉溪天山化工有限公司建成6000L/a装置,运行良好,转化率达到99.9 ,选择性为93 ,单耗为0.853 L/L。

4.结语

反应精馏技术经历了几十年的发展,因其独特的优势而在化学工业中日益受到重视。由于反应段固体催化剂的选择及装填方式对催化蒸馏工艺有关键的作用,因此,国内的科研机构和高校在注重工艺开发的同时,也需要在催化剂及填料内件上多做研究,以取得更大突破。

对于某些已成熟工艺,开发其在新领域的应用也具有重要意义,如将反应精馏用于分离的工艺研究。目前,反应精馏技术已在多个领域实现了产业化,对某些新领域的开发也取得了一定进展。随着节能和环保的要求日益提高,反应精馏技术将会发挥更大作用,是解决能源危机和缓解三废污染的有效途径。结合了先进的计算机模拟工具,相相信反应精馏工艺在未来几十年将会有更好的发展。

参考文献:

[1] 晋正茂, 王维德.反应精馏及其研究进展[J].化学工业与工艺技术,2006, 27(3): 10-12

[2] 安振国,张晓杰,任万忠.反应精馏技术的研究进展[J].化学工业与工程技术, 2007 ,

28(7):14-17

[3] 郭进宝.反应精馏技术的研究现状及应用[J]. 精细化工中间体,2005,35(1):26-30

[4] 赵玉军,孟德素.反应精馏技术的研究现状及应用进展[J].广州化工,2010,38(2):20-22

[5] 肖剑,张志炳.反应精馏研究进展及应用前景[J].江苏化工,2002.30(2):21-25.

[6] 刘劲松,白鹏,朱思强,等.反应精馏过程的研究进展[J].化学工业与工程,2002,19(1):101-106.

[7] 安振国,张晓杰,任万忠,等.反应精馏技术的进展[J].化学工业与工程与技术,2007,28(1):14-17.

[8] 马敬环,刘家祺,李俊台,等.反应精馏技术的进展[J].化学反应工程与工艺, 2003,19(1):l-8.

[9] 杨照,王志祥.反应精馏技术及其应用[J].化工时刊,2004,18(1):l0-l2.

实验六:精馏实验

化工原理实验报告 实验名称:精馏实验 学院:化学工程学院 专业:化学工程与工艺 班级:化工10-1班 姓名:丁翔学号10402010141 同组者姓名:方艳艳、夏佳利、王程曦 指导教师:史玉立 日期:2012年10月22日

一、实验目的 1.、了解精馏塔的基本结构及流程。 2.、掌握连续精馏的操作方法。 3.、学会板式精馏塔、单板效率和填料精馏塔等板高度的测定方法。 4.、确定部分回流时不同回流比对精馏塔效率的影响。 二、实验原理 1、全塔效率E T 全塔效率E T=N T/N P,其中N T为塔内所需理论板数,N P为塔内实际板数。板式塔内 各层塔板上的气液相接触效率并不相同,全塔效率简单反映了塔内塔板的平均效率,它反映了塔板的结构、物系性质、操作状况对塔分离能力的影响,一般由实验测定。 式中N T由已知的双组份物系平衡关系,通过实验测得塔顶产品组成X D、料液组成X F、热状态q、残液组成X W、回流比R等,即能用图解法求得。 2、单板效率E M 是指气相或液相经过一层实际塔板前后的组分变化与经过一层理论塔板前后的组成变化的比值。 三、实验装置流程 图1 精馏塔实验装置流程图

四、实验步骤及注意事项 1、全回流: (1)配制体积浓度16~19%的酒精水溶液加入塔釜中,至釜容积约2/3处; (2)启动总电源,再启动塔釜电加热器,通过控制电加热器电流来控制塔釜加热量。当发现液沫夹带过量时,应调低电流; (3)塔釜加热开始后,打开冷凝器的冷却水阀门,调冷却水流量至400 l/h左右,使塔顶蒸汽全部冷凝实现全回流; (4)当塔顶温度、回流量和塔釜温度稳定后,分别从塔顶和塔釜取样,进行色谱分析; (5)测板式塔单板效率时,塔板上液体取样直接用注射器从所测定的塔板中缓缓抽出,各个样尽可能同时取。 2、部分回流: (1)在原料罐中配制体积浓度50~60%的酒精水溶液; (2)待塔全回流操作稳定后,打开进料阀,开启进料泵按钮,调节进料量至适当大小; (3)启动回流比控制器按钮,调节回流比R (R=1~4); (4)当流量、塔顶及塔内温度稳定后,即可对进料、塔顶、塔釜液取样进行色谱分析,注意在取样瓶上标注以免出错; (5)测板式塔单板效率时,塔板上液体取样直接用注射器从所测定的塔板中缓缓抽出,各个样尽可能同时取。 3、结束实验 (1)实验结束后,关上进料泵电源,回流比分配器电源,电加热罐电源。 (2)打开成品罐放空阀、原料罐上的放空阀,打开循环泵电源,把塔釜和原料罐的料达到成品罐混合,打完之后关上成品罐和原料罐上的所有阀门,关上仪表电源和总电源,为下次实验做准备。 4、注意事项 (1)实验前,必须手动(电压为100V)给釜中缓缓升温,30min后再进行塔釜温度自动控制,否则会因受热不均而导致玻璃视盅炸裂。 (2)塔顶放空阀一定要打开。 (3)料液一定要加到设定液位2/3处方可打开加热管电源,否则塔釜液位过低会使电加热丝露出干烧致坏。 (4)部分回流时,进料泵电源开启前务必打开进料阀,否则会损害进料泵。 五、原始实验数据(附页) 稳定时温度T=90.1℃

实验预习报告 催化反应精馏制乙酸乙酯实验

催化反应精馏制乙酸乙酯 化工1402 【实验目的】 1.掌握反应精馏的操作。 2.了解反应精馏与常规精馏的区别。 3.学会分析塔内物料组成。 【实验原理】 反应精馏过程不同于一般精馏,他既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。两者同时存在,相互影响,使过程更加复杂。因此,反应精馏适合于可逆平衡反应。一般情况下,反应受平衡影响,转化率只能维持在平衡转化的水平;但是,若生成物中有低沸点或高沸点物质存在,则精馏过程可使其连续地从系统中排出,结果超过平衡转化率,大大提高了效率。 对醇酸酯化反应来说是可逆吸热反应,但该反应速度非常缓慢,故一般都用催化反应方式。本实验是以醋酸和乙醇为原料,在硫酸催化下生成醋酸乙酯的可逆反应。反应的化学方程式为: CH3COOH + C2H5OH——→CH3COOC2H5 + H2O 【实验步骤】 间歇操作流程 (1)将一定量的乙醇、乙酸,浓硫酸几滴倒入塔釜内,开启塔顶冷凝水,开启釜加热系统,开启塔身保温电源。 (2)当塔顶摆锤上有液体出现时,进行全回流操作15分钟后,设定回流比为3:1,开启回流比控制电源。 (3)30分钟后,用微量注射器在塔身五个不同部位取样,应尽量保证同步。 (4)分别将0.3uL样品注入色谱分析仪,记录数据,注射器用后应用蒸馏水或丙酮洗清,以备后用。 (5)重复3、4步操作。 (6)关闭塔釜及塔身加热电源,当不再有液体流回塔釜时,取塔顶馏出液和塔釜残留液称重,对馏出液及釜残液进行称重和色谱分析。 (7)关闭冷凝水及总电源。 【实验数据处理】 1.30分钟时,塔内不同高度处各物质组成 表1 30分钟时塔内物质组成 2.60分钟时,塔内不同高度处各物质组成

精馏实验

----------专业最好文档,专业为你服务,急你所急,供你所需------------- 精馏实验 一.实验目的 1.了解连续精馏塔的基本结构及流程。 2.掌握连续精馏塔的操作方法。 3.学会板式精馏塔全塔效率的测定方法。 二.实验原理 1. 理论塔板数NT 和全塔效率E T 的测定 理论板是指离开该塔板的气液两相互成平衡的塔板。 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即: (1) 式中:E T ——全塔效率 N T ——理论塔板数 N P ——实际塔板数 板式塔内各层塔板上的气液相接触效率并不相同,全塔效率简单地反映了整个塔内所有塔板的平均效率,它反映了塔板结构、物质性质、操作状况对塔分离能力的影响,一般需要由实验测定。如果塔的结构因素固定,物系相同,影响的因素主要就是操作因素,回流比的大小是操作因素中最重要的因素。众所周知,全回流操作所需理论塔板数最少,而且在全回流下,塔不再分精馏段和提馏段,如果在全回流下测定总板效率,实验控制更为方便。有时,实验的目的是为了进行模拟以测定数据,就应该使应用条件和实验条件一致,可能需要指定某一回流比测定全塔效率。 (1)解析法求理论塔板数 对于某一双组分溶液的精馏分离,如果在全回流条件下该物系的相对挥发度随组成的变化不大,可用芬斯克方程直接计算全回流的最少理论塔板数 Nmin : (2) 式中;x D —— 塔顶馏出液中易挥发组分的摩尔分率;

----------专业最好文档,专业为你服务,急你所急,供你所需------------- x W —— 塔釜馏残液中易挥发组分的摩尔分率; —— 平均挥发度; 、 分别表示塔顶和塔釜的相对挥发度。 如果该物系的相对挥发度随组成的变化较大,采用芬斯克方程求取会引入较大的误差,可以采用图解法求取。 (2)图解法求理论塔板数 利用物系的气—液相平衡关系,在直角坐标上做出平衡线和对角线(全回流操作时的操作线)。根据测得的塔顶馏出液和塔釜馏残液中易挥发组分的摩尔分率x D 和x W ,在对角线和平衡线之间,从对角线上一点x D 开始作直角梯级,直至在对角线上的交点小于x W 为止,其理论塔板数N T =梯级数-1。 在某一回流比下的理论塔板数可用逐板计算法,一般用图解法。步骤如下: ① 在直角坐标上绘出待分离混合液的x —y 平衡曲线,并作出对角线。 ② 根据确定的回流比做精馏段操作线,方程式如下: (3) 式中;y n+1 ——精馏段内第n+1块塔板上升蒸汽组成(摩尔分率); X n ——精馏段内第n 块塔板下降液体组成(摩尔分率); R ——回流比,R = L/D ; L ——精馏段内液体回流量,kmol/h ; D ——塔顶馏出液流量,kmol/h 。 ③ 根据进料热状况参数,做q 线,方程式为: (4) 式中;X F ——进料料液组成,(摩尔分率); q ——进料热状况参数 对于泡点进料,q=1。 ④ 做提馏段操作线,方程式如下:

催化精馏技术研究进展(DOC)

催化精馏技术应用研究进展 摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。 1、引言 反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research & Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。

2、催化精馏塔及其填料方式 2.1催化精馏塔 催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。

反应精馏实验

催化反应精馏法制乙酸乙酯 精馏是化工生产中常用的分离方法。它是利用气-液两相的传质和传热来达到分离目的。对于不同的分离对象,精馏方法也回有所差异。反应就留是精馏技术中的一个特殊领域。在操作过程中,化学反应与分离同时进行,故能显著提高总体转化率,降低能耗。此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。 (一)实验目的 1、了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程,是反应和分离过程的复合,通过实验数据和结果,了解反应精馏技术比常规反应技术在成本和操作上的优越性。 2、了解玻璃精馏塔的构造和原理,学习反应精馏玻璃塔的操作和使用,掌握反应精馏操作原理和步骤。 3、学习用反应工程原理和精馏塔原理,对精馏过程做全塔物料衡算和塔操作过程的分析。 4、了解反应精馏与常规精馏的区别,掌握反应精馏法是适宜的物系。 5、学习气相色谱的原理和使用方法,学会用气相色谱分析塔内物料的组成,了解气相色谱分析条件的选择和确定方法,并学习根据出峰情况来改变色谱条件。 6.学习用色谱分析,进行定量和定性的方法,学会求取液相分析物校正因子及计算含量的方法和步骤。了解气相色谱仪及热导池检测器的原理,了解分离条件的选择和确定。 (二)实验原理 1 反应精馏原理 反应精馏是随着精馏技术的不断发展与完善,而发展起来的一种新型分离技术。通过对精馏塔进行特殊改造或设计后,采用不同形式的催化剂,可以使某些反应在精馏塔中进行,并同时进行产物和原料的精馏分离,是精馏技术中的一个特殊领域。 在反应精馏操作过程中,由于化学反应与分离同时进行,产物通常被分离到塔顶,从而使反应平衡被不断破坏,造成反应平衡中的原料浓度相对增加,使平衡向右移动,故能显著提高反应原料的总体转化率,降低能耗。同时,由于产物与原料在反应中不断被精馏塔分离,也往往能得到较纯的产品,减少了后续分离和提纯工序的操作和能耗。此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。 反应精馏过程不同于一般精馏,它既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。两者同时存在,相互影响,使过程更加复杂。在普通的反应合成酯化、醚化、酯交换、水解等过程中,反应通常在反应釜内进行,而且随着反应的不断进行,反应原料的浓度不断降低,产物的浓度不断升高,反应速度会越来越慢。同时,反应多数是放热反应,为了控制反应温度,也需要不断地用水进行冷却,造成水的消耗。反应后的产物一般需要进行两次精馏,先把原料和产物分开,然后再次精馏提纯产品浓度。而在反应精馏过程中,由于反应发生在塔内,反应放出的热量可以作为精馏的加热源,减少了精馏的釜加热蒸汽。而在塔内进行的精馏,也可以使塔顶直接得到较高浓度的产品。由于多数反应需要在催化剂存在下进行,一般分均相催化和非均相催化反应精馏。均相催化反应精馏一般用浓硫酸等强酸做催化剂,具有使用方便等优点,但设备腐蚀严重,造成在工业应用中对设备要求高,生产成本大等缺点。非均相催化反应精馏一般采用离子交换树脂,重金属盐类和丝光沸石分子筛等固体催化剂,可以装填在塔板上或用纤维布等包裹,分段装填在精馏塔内。一般说来,反应精馏对下列两种情况特别适用: (1)可逆平衡反应。一般情况下,反应受平衡影响,转化率只能维持在平衡转化的水平;而实际反应中只能维持在低于平衡转化率的水平。因此,产物中不但含有大量过量,造成后续分离过程的操作成本提高和难度加大,而在精馏塔钟进行的酯化或醚化反应,往往因为生成物中有低沸点或高沸点物质存在,而多数会和水形成最

精馏系统实验报告

实习报告 实习名称:化工仿真技术 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号 指导教师: 日期:

第3章精馏系统 一、实习目的 化工仿真实习是我们大学学习计划的重要组成,解决了大学生的生产实习问题。仿真实习使得我们不进工厂就能通过计算机得到开车、停车和事故处理操作的机会,使得我们能比较系统的学习生产过程的基本程序和具体操作方法,分析操作参数的合理性、设备及仪表是否运转正常,从而加强我们对基本理论的理解、基本方法的运用和基本技能的训练。仿真教学有强调工业背景、适用面广、操作与控制界面先进、突出操作实践、内容由浅入深由简到繁、相互呼应、相互补充、附有大量思考题、实用性强、提倡新的教学方法等优点。能从分发挥学生创造意识的环境。可很好的将我们所学的理论知识和时间相结合,进一步巩固深化我们的专业知识和技能。 二、实习内容 1、工艺流程简介 脱丁烷塔是大型乙烯装置中的一部分。本塔将来自脱丙烷塔釜的烃类混合物(主要有C4、C5、C6、C7等),根据其相对挥发度的不同,在精馏塔内分离为塔顶C4馏分,含少量C5馏分,塔釜主要为裂解汽油,即C5以上组分的其他馏分。因此本塔相当于二元精馏。 工艺流程为:来自脱丙烷塔的釜液,压力为0.78MPa, 温度为65℃(由TI-1指示),经进料手操阀V1和进料流量控制FIC-1,从脱丁烷塔(DA-405)的第21块塔板进入(全塔共有40块板)。在本塔提馏段第32块塔板处设有灵敏板温度检测及塔温调节器TIC-3(主调节器)与塔釜加热蒸汽流量调节器FIC-3(副调节器)构成的串级控制。 塔釜液位由LIC-1控制。塔釜液一部分经LIC-1调节阀作为产品采出,采出流量由FI-4指示,一部分经再沸器(EA-405A/B)的管程汽化为蒸汽返回塔底,使轻组分上升。再沸器采用低压蒸汽加热,釜温由TI-4指示。设置两台再沸器的目的是釜液可能含烯烃,容易聚合堵管。万一发生此种情况,便于切换。再沸器A的加热蒸汽来自FIC-3所控制的0.35MPa低压蒸汽,通过入口阀V3进入壳程,凝液由阀V4排放。再沸器B的加热蒸汽亦来自FIC-3所控制的0.35MPa低压蒸汽,入口阀为V8,排凝阀为V9。塔釜设排放手操阀V24,当塔釜液位超高但不合格不允许采出时排放用(排放液回收)。塔顶和塔底分别设有取压阀V6和V7,引压至差压指示仪PDI-3,及时反映本塔的阻力降。此外塔顶设压力调节器PRC-2,塔底设压力指示仪PI-4,也能反映塔压降。 2

反应精馏制备乙酸乙酯实验

反应精馏是精馏技术中的一个特殊领域。在操作过程中,化学反应与分离同时进行,故能显著提高总体转化率,降低能耗。此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。 一、实验目的与内容 1. 掌握反应精馏的操作。 2. 能进行全塔物料衡算和塔操作的过程分析。 3. 了解反应精馏与常规精馏的区别。 二、实验原理 反应精馏过程不同于一般精馏,它既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。两者同时存在,相互影响,使过程更加复杂。因此,反应精馏对下列两种情况特别适用:(1)可逆平衡反应。一般情况下,反应受平衡影响,转化率只难维持在平衡转化的水平;但是,若生成物中有低沸点或高沸点物质存在,则精馏过程可使其连续地从系统中排出,结果超过平衡转化率,大大提高了效率。(2)异构体混合物分离。通常因它们的沸点接近,靠精馏方法不易分离提纯,若异构体中某组分能发生化学反应并能生成沸点不同的物质,这时可在过程中得以分离。 对醇酸酯化反应来说,适于第一种情况。但该反应若无催化剂存在,单独采用反应精馏操作也达不到高效分离的目的,这是因为反应速度非常缓慢,故一般都用催化反应方式。酸是有效的催化剂,常用硫酸。反应随酸浓度增高而加快,浓度在0.2~1.0%(wt)。此外,还可用离子交换树脂,重金属盐类和丝光沸石分子筛等固体催化反应,而应用固体催化剂则由于存在一个最适宜的温度,精馏塔本身难以达到此条件,故很难实现最佳化操作。本实验是以醋酸和乙醇为原料、在酸催化剂作用下生成醋酸乙酯的可逆反应。反应的化学方程式为实验的进料有两种方式:一是直接从塔釜进料;另一种是在塔的某处进料。前者有间歇和连续式操作;后者只有连续式。本实验用后一种方式进料,即在塔上部某处加带有酸催化剂的醋酸,塔下部某处加乙醇。釜沸腾状态下塔内轻组分逐渐向上移动,重组分向下移动。具体地说,醋酸从上段向下段移动,与向塔上段移动的乙醇接触,在不同填料高度上均发生反应,生成酯和水。塔内此时有4组元。由于醋酸在气相中有缔合作用,除醋酸外,其它三个组分形成三元或二元共沸物。水-酯,水-醇共沸物沸点较低,醇和酯能不断地从塔顶排出。若控制反应原料比例,可使某组分全部转化。因此,可认为反应精馏的分离塔也是反应器。反应过程进行情况,由反应的转化率和醋酸乙酯的收率来衡量,其计算式为: 转化率= 原釜内醋酸量 醋酸加料量釜残醋酸量 馏出醋酸量 原釜内醋酸量 醋酸加料量 +- -+

精馏综合实验

精馏综合实验 一、 实验目的 1. 熟悉精馏的工艺流程,了解板式塔的结构; 2. 掌握精馏过程的操作及调节方法; 3. 在全回流及部分回流条件下,测定板式塔的全塔效率及单板效率; 4. 观察精馏塔内气液两相的接触状态; 5. 了解阿贝折光仪测定混合物组成的方法 二、 基本原理 精馏利用混合物中各组分的挥发度的不同将混合物进行分离。在精馏塔中,再沸器或塔釜产生的蒸汽沿塔逐渐上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔内实现多次接触,进行传质、传热过程,轻组分上升,重组分下降,使混合液达到一定程度的分离。如果离开某一块塔板(或某一段填料)的气相和液相的组成达到平衡,则该板(或该段填料)称为一块理论板或一个理论级。然而,在实际操作的塔板上或一段填料层中,由于汽液两相接触时间有限,气液相达不到平衡状态,即一块实际操作的塔板(或一段填料层)的分离效果常常达不到一块理论板或一个理论级的作用。要想达到一定的分离要求,实际操作的塔板数总要比所需的理论板数多,或所需的填料层高度比理论上的高。 对于二元物系,若已知气液平衡数据,则根据塔顶馏出液的组成x D 、原料液的组成x F 、塔釜液的组成x W ,及操作回流比R 和进料热状态参数q ,就可用图解法或计算机模拟计算求出理论塔板数。 1.求全塔效率 在板式精馏塔中,完成一定分离任务所需的理论塔板数与实际塔板数之比定义为全塔效率(或总板效率),即: P T T N N E = (1) 式中 T E ——全塔效率; T N ——理论塔板数(不含釜); P N ——实际塔板数。 2.求单板效率 如果测出相邻两块塔板的气相或液相组成,则可计算塔的单板效率(塔板数自上向下计数)。 对于气相: 1 *1n n MV n n y y E y y ++-= - (2) 对于液相:

催化精馏技术研究及应用进展

催化精馏技术研究及应用进展 摘要:对催化蒸馏发展概况、原理以、工艺流程以及应用状况进行了综述,探讨了催化精馏目前存在的问题与今后的发展方向。 关键词:催化精馏;精馏;催化剂;乙酸乙酯;精馏塔;催化活性 Abstract :The development situation of the catalytic distillation,princiles,technological process and application conditions are briefly summarized . Meanwhile we also disscuss the problems exsisting temporaryly and the development derection in the future . keywords: catalytic distillation ; rectification ; catalyst ; ethyl acetate ; rectification column ; catalytic activity 催化精馏是将固体催化剂以适当形式装填于精馏塔内,使催化反应和精馏分离在同一个塔中连续进行,是借助分离与反应的耦合来强化反应与分离的一种新工艺。由于催化剂固定在精馏塔中,所以它起到了催化和促进气液热质传递的作用。 1 催化精馏发展概况 最早工业化的催化精馏工艺是甲基叔丁基醚(MTBE)的合成,该工艺由美国Chemical Research&Licensing(CR&L)公司于1978年开发,1981年在美国休斯顿炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域做了许多研究和创新,如宋少光等己成功地将该技术应用于丙二醇乙醚的合成;高纯度异丁烯的生产过程采用催化精馏技术已获成功。 由于催化精馏技术的诸多优势,催化精馏技术已取得了长足发展。主要研究方向可以分为以下三个方面。 1.1 烷基化过程 目前,工业上另一重要的烷基化过程是异丁烷的烷基化。现有的两种流程(硫酸烷基化流程和氢氟酸烷基化流程),共同的缺点是能耗高,设备腐蚀严重,维修费用大,并且需要投资很高的冷冻设备。采用催化精馏技术基本上可以克服这些缺点。目前这一工艺已取得实验结果,且认为工业上可行,但催化剂活性和选择性尚有较大差距。 1.2 叠合过程 采用催化精馏技术可以使烯烃分子有选择地叠合。因为精密的温度控制将减

连续反应精馏合成乙酸异丙酯_许前会

第32卷第12期辽 宁 化 工Vo l.32,No.122003年12月L iao ning Chemical Industry December,2003 连续反应精馏合成乙酸异丙酯 许前会,张秋荣 (淮海工学院,江苏连云港222005) 摘 要: 以乙酸和异丙醇为原料通过连续反应精馏合成乙酸异丙酯,实验研究了影响反应的因素,结果表明最佳合成条件为:酸醇比1 1.2,回流比3,异丙醇的进料流量2mL /min,硫酸用量为乙酸体积的2%,乙酸异丙酯的最大收率为92.5%。关 键 词: 反应精馏;酯化;乙酸异丙酯 中图分类号: T Q 225.24 文献标识码: A 文章编号: 10040935(2003)12051002 乙酸异丙酯是一种重要的精细化工中间体,对多种合成树脂有优良的溶解能力,是乙基纤维素、硝基纤维素、聚苯乙烯、甲基丙烯酸酯树脂等许多合成树脂的优良溶剂[1] ;常用作脱水剂、药 物生产中的萃取剂及香料组分[2] 。传统的工业生产方法[3]是将乙酸和异丙醇在硫酸催化下进行酯化反应,再经中和、脱水、精馏而得产品,工艺长,设备多,能耗大;另外,由于受到反应平衡的限制,原料的转化率只有71%左右[4]。而反应精馏工艺克服了上述缺陷,在乙酸乙酯、甲基叔丁基醚等工业生产中已经得到广泛应用[5] 。但采用连续反应精馏法合成乙酸异丙酯的工艺目前国内尚未见报道,因此本实验对此进行了研究。 1 实验部分 1.1 实验仪器及试剂 冰醋酸(AR 级,徐州溶剂厂),异丙醇(AR 级,上海化学试剂公司),硫酸(AR 级,上海化学试剂公司)。 气相色谱:气相色谱(GC910,上海分析仪器厂),采用GDX103柱,热导池检测,检测室温度110 。 反应精馏装置见图1。填料为高效 金属丝网,塔釜温、顶温及塔顶冷凝液的回流采用自动控制,全回流下以甲醇-水体系测得全塔理论板数 为42块。 图1 反应精馏装置 1 冷却水; 2 塔头; 3 测温元件; 4 摆针; 5 电磁铁; 6 集液管; 7 乙酸及硫酸加料管; 8 乙酸加料泵; 9 塔柱;10 异丙醇加料管;11 异丙醇加料泵;12 压差计;13 出料管;14 反应釜;15 电热套 2 实验方法 将硫酸与乙酸按照一定的比例混合后用加料泵打入塔内,打开塔顶冷凝水,开启塔釜加热器给反应物升温,待沸腾以后,从塔下段用泵连续加入异丙醇,分别打开塔下段和上段保温电源,调节适当电流给塔保温;全回流操作30min 以后,打开 收稿日期: 2003-09-16 作者简介: 许前会(1970-),女,讲师。

反应精馏实验报告材料

实验一反应精馏法制乙酸乙酯 一、实验目的 1.了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程。 2.掌握反应精馏的操作。 3.能进行全塔物料衡算和塔操作的过程分析。 4.了解反应精馏与常规精馏的区别。 5.学会分析塔内物料组成。 二、实验原理 反应精馏是精馏技术中的一个特殊领域。在操作过程中,化学反应与分离同时进行,故能显著提高总体转化率,降低能耗。此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。 反应精馏过程不同于一般精馏,它既有精馏的物理相变之传递现象,又有物质变性的化学反应现象。二者同时存在,相互影响,使过程更加复杂。因此,反应精馏对下列两种情况特别适用:(1)可逆平衡反应。一般情况下,反应受平衡影响,转化率只能维护在平衡转化的水平;但是,若生成物中有低沸点或高沸点物质存在,则精馏过程可使其连续地从系统中排出,结果超过平衡转化率,大大提高了效率。(2)异构体混合物分离。通常因它们的沸点接近,靠一般精馏方法不易分离提纯,若异构体中某组分能发生化学反应并能生成沸点不同的物质,这时可在过程中得以分离。 对醇酸酯化反应来说,适于第一种情况。乙醇沸点78.3℃,与水形成恒沸物,恒沸点78.15 ℃,乙醇含量89.43%(分子);乙酸沸点118.0℃,醋酸乙酯沸点77.1℃,与水形成非均相恒沸物,恒沸点70.40℃,酯含量76%;乙醇与醋酸乙酯形成恒沸物,恒沸点71.8℃,酯含量54%;水、乙醇、和醋酸乙酯形成三元恒沸物,恒沸点70.3℃,乙醇含量12.4%,酯含量60.1%。水-酯、水-醇恒沸物沸点较低,醇和酯能不断地从塔顶排出。但该反应若无催化剂存在,单独采用反应精馏存在也达不到高效分离的目的,这是因为反应速度非常缓慢,故一般都用催化反应方式。酸是有效的催化剂,常用硫酸。反应随酸浓度增高而加快,浓度在0.2~1.0%(wt)。此外,还可用离子交换树脂,重金属盐类和丝光沸石分子筛等固体催化剂。反应精馏的催化剂用硫酸,是由于其催化作用不受塔内温度限制,在全塔内都能进行催化反应,而应用固体催化剂则由于存在一个最适宜的温度,精馏塔本身难以达到此条件,故很难实现最佳化操作。本实验是以乙酸和乙醇为原料,在催化剂作用下生成乙酸乙酯的可逆反应。反应的方程式为:

反应精馏

第4章特殊精馏技术了盐增强萃取精馏的作用,又克服了固体盐的回收和输送问题,目前已在工业上得到了应用。工业应用实例有二:(1)醇一水物系的分离在乙醇、丙醇、丁醇等与水的混合液中,大多数存在着共沸物,采用加盐萃取精馏可实现预期的分离效果。以乙醇一水共沸物体系作为研究对象,选用乙二醇作溶剂,在溶剂中加入氯化钙或乙酸钾等盐类,形成混合萃取剂制取无水乙醇,并进行了工业试验。日产量达6~7t无水乙醇装置,以乙二醇加乙酸钾为混合萃取剂,与国外乙二醇萃取精馏方法比较,加盐后溶剂比减少为原来的1/4~1/5,节省了操作费用,减少了设备投资。这种形式的加盐精馏流程示意图见图4—34。目前工业上应用加盐萃取精馏分离乙醇一水抽取无水乙醇的规模为5000t/a,叔丁醇一水体系的分离已有3500t/a的中试装置。(2)酯一水物系的分离图4—34加盐精馏流程示意图酯一水物系也是形成共沸物的系统。传统的分离方法是共沸精馏。近年来利用加盐萃取精馏提纯乙酸乙酯的研究已取得进展。4.4反应精馏化工生产中,经常要遇到先进行化学反应而后将反应产物进行精馏分离的操作过程。在反应器中为了使床层温度趋于等温并使反应向产物方向转移,就必须借助换热方式将反应热从床层中移动。而精馏过程则又必须供给塔底物料一定的热量。为了更好地利用反应热,传统的做法是将其用于精馏的再沸器中,使反应系统和精馏系统的能量得以部分平衡,以节约加热工程热负荷并同时减小冷却工程的冷负荷。然而对于可逆反应,如果能利用精馏技术及时移去反应区的产物,就能使反应向产物方向移动,使反应放热与精馏的需热局部平衡,从而可达到产品分离及节能诸方面的效益。反应精馏是进行反应的同时用精馏方法分离出产品的过程,当有催化剂存在时的反应精馏叫作催化精馏。反应精馏进行的基本条件是化学反应的可逆性和物系有较大的相对挥发度,而且反应的温度压力条件应与精馏过程相近。在反应精馏中,按照反应与精馏的关系可分为两种类型,一种是利用精馏促反应,另一种是利用反应促进精馏分离。4.4.1反应精馏类型(1)利用精馏促进反应的反应精馏反应精馏适用于可逆反应,当反应产物的相对挥发度大于或小于反应物时,由于精馏作用,产物离开反应区,从而破坏了原有的化学平衡,使反应向生成产物的方向移动,提高了转化率。应用反应精馏技术,可在一定程度上变可逆反应为不可逆,而且可得到很纯的产物。醇与酸进行酯化反应就是一个典型的例子。如乙醇和乙酸的酯化反应:CH3COOH+CzHsOHi亍茅CH3COOCzHs+H201-125Ud794.4.1反应精馏类型(1)利用精馏促进反应的反应精馏反应精馏适用于可逆反应,当反应产物的相对挥发度大于或小于反应物时,由于精馏作用,产物离开反应区,从而破坏了原有的化学平衡,使反应向生成产物的方向移动,提高了转化率。应用反应精馏技术,可在一定程度上变可逆反应为不可逆,而且可得到很纯的产物。醇与酸进行酯化反应就是一个典型的例子。如乙醇和乙酸的酯化反应:CH3COOH+CzHsOHi亍茅CH3COOCzHs+H201-125Ud79 现代分离技术在普通的反应操作中,该反应是可逆的,乙酸乙酯的收率受反应平衡的限制;由该反应体系的物理化学性质可知,酯、水和醇之间存在三元最低共沸物,其沸点均低于乙醇和乙酸的沸点,如果利用反应精馏,可使该三元共沸物不断从反应区移去(除酯),使反应可持续向正方向进行,从而增加了反应的转化率。1983年Estman化学公司开发了生产醋酸甲酯反应精馏工艺。原料醋酸和甲醇按化学反应计量进料,以浓硫酸为催化剂,在塔中进行均相酯化反应精馏过程。对于连串反应,反应精馏具有独特的优点。连串反应可表示为A —R—S。按目的产物是R还是S,又可分为两种类型:①S为目的产物。很多生产,原料首先反应生成中间产物,进而得到目的产物,这两步反应条件一般不同,按传统生产工艺,需分别在两个反应器中进行,有时还需中间产物的分离。反应精馏的应用,能使两步反应在同一塔设备的两个反应区进行,利用精馏作用提供合适的浓度和温度分布,缩短反应时间,提高收率和产品纯度。例如香豆素生产工艺的改进即如此。②R为目的产物。对于这类反应,利用反应精馏的分离作用,把产物R尽快移出反应区,避免副反应进行是非常有效的。氯丙醇皂化生成环氧丙烷的反应精馏工艺就是一个典型的反应。(2)利用反应促进精馏的反应

精馏综合实验

实验六 精馏塔实验 一、实验目的 1.了解板式精馏塔的结构和操作。 2.学习精馏塔总板效率的测量方法。 3.学习识别精馏塔内出现的几种操作状态及对塔性能的影响; 4.观测塔板上气─液传质过程的情况。 二、实验内容 1.测定全回流条件下精馏塔的总板效率。 2.测定部分回流条件下精馏塔的总板效率。 3.测定不同进料位置对精馏过程的影响。 三、实验原理 1.板式塔的总板效率 总板效率E 又称全塔效率,是指塔体本身的理论板数N T 与实际板数N p 的比值。 (6—1) 2.理论板数N T 的求法 对于二元物系(乙醇—正丙醇)系统,若已知其气—液平衡数据,则根据精馏塔的原料液组成、进料状态、操作回流比及塔顶流出液组成和塔底釜液组成可以求得该塔的理论板数N T 。 ⑴ 全回流条件下(R=∞) 此条件下,在y —x 图上,对角线即为精馏段操作线。根据已测出的塔顶、塔釜的浓度x D 和x W ,用求理论塔板的图解法,在平衡与操作线之间绘阶梯,即可求得塔系统内x D 和x W 两取样口之间的理论塔板数N T 。 ⑵ 部分回流条件下 进料热状况参数q 的计算: 进料为冷液体时,q 值的计算式可写成 (6—2) 式中:t F —冷液体进料的温度,℃。 t BP —进料的泡点温度,℃。 C PM —进料液体在平均温度(t F +t BP )/2下的比热,kJ/(kmol ·℃)。 r m —进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 。 kJ/(kmol ·℃) (6—3) kJ/kmol (6—4) 式中:C p1、C p2—分别为纯组分1和纯组分2在平均温度(t F +t BP )/2下的比热,kJ/(kmol ·℃)。 100%T p N E N = ?m m F BP PM r r t t C q +-= )(2 22111x M C x M C C P P PM +=2 22111x M r x M r r m +=

精馏实验报告正确版讲解

系别:化学与环境科学系班级:09应用化学(1)班姓名:赖雪梅 学号:090604118

采用乙醇—水溶液的精馏实验 赖雪梅 摘要:双组分混合液的分离是最简单的精馏操作。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。本文介绍了精馏实验的基本原理以及填料精馏塔的基本结构,研究了精馏塔在全回流条件下,塔顶温度等参数随时间的变化情况,测定了全回流和部分回流条件下的理论板数,分析了不同回流比对操作条件和分离能力的影响。 关键词:精馏;精馏段;提馏段;全回流;部分回流;等板高度;理论塔板数 1.引言 欲将复杂混合物提纯为单一组分,采用精馏技术是最常用的方法。尽管现在已发展了柱色谱法、吸附分离法、膜分离法、萃取法和结晶法等分离技术,但只有在分离一些特殊物资或通过精馏法不易达到的目的时才采用。从技术和经济上考虑,精馏法也是最有价值的方法。在实验室进行化工开发过程时,精馏技术的主要作用有:(1)进行精馏理论和设备方面的研究。(2)确定物质分离的工艺流程和工艺条件。(3)制备高纯物质,提供产品或中间产品的纯样,供分析评价使用。 (4)分析工业塔的故障。(5)在食品工业、香料工业的生产中,通过精馏方法可以保留或除去某些微量杂质。 2.精馏实验部分 2.1实验目的 (1)了解填料精馏塔的基本结构,熟悉精馏的工艺流程。 (2)掌握精馏过程的基本操作及调节方法。 (3)掌握测定塔顶、塔釜溶液浓度的实验方法。 (4)掌握精馏塔性能参数的测定方法,并掌握其影响因素。 (5)掌握用图解法求取理论板数的方法。

反应精馏

反应精馏 摘要:反应精馏是化学反应和精馏过程耦合为一体的单元操作,已成为当今的重要研究领。本文总结了反应精馏的优点、基本要求、以及操造作流程等。 关键字:反应精馏、精馏、反应 1 反应精馏技术概述 反应精馏(Reactive Distilation简称RD)是蒸馏技术中的一个特殊领域,它是化学反应与蒸馏相耦合的化工过程,有关精馏的早期研究始于1921年,反应精馏概念由Backhaus提出从20世纪30年代到60年代初,主要对一些特定体系的工艺条件进行探索,并且局限于板式塔中的均相反应精馏。一直到60年代末,才开始对反应精馏的一般性规律进行研究。70年代后,开始转向反应精馏的工艺计算,同时也开始对催化精馏进行研究。20世纪80年代后,反应精馏模拟计算的研究异常活跃,为优化操作和设计装置提供了极为有力的工具,数学模型也由平衡级模型拓展到非平衡级模型进而发展到90年代末的非平衡池模型,可模拟气相和液相在级上的停留时问分布和较准确地描述反应和传质行为,是对非平衡级模型的提高和进一步完善,是非常有前途的反应精馏模型。 1.1反应精馏的优点

反应精馏与常规精馏都是在普通的蒸馏塔中进行,但由于精馏操作和化学反应的相互影响,反应精馏具有自身显著的优点,主要有以下几点: 1)提高了反应物的转化率和选择性,有些情况下可使反应物的转化率接近100 。对于可逆反应,蒸馏操作把生成物从反应体系中移走,使化学反应不断向正方向移动,加大了反应物的转化率。对于连串反应,蒸馏操作及时地把中间产物从反应体系中移走,可以避免副产物的产生,同时提高了反应物的选择性。 2)化学反应过程容易控制。操作系统压力恒定,混合物的组成变化不大,则系统的温度分布将基本保持不变,使化学反应速率因温度的变化所受影响较小,也减小副反应发生的机率。 3) 减少设备投资费用和操作费用,也减少能量消耗。由于化学反应和精馏操作在一个精馏塔中进行,所以化学反应不需要专门的反应器,不必进行未参与反应的反应物二次蒸馏和重回反应器的操作,减少了能量消耗。若化学反应是放热反应,则产生的反应热可以被蒸馏操作直接利用,减少了再沸器提供的能量。 4) 设备紧凑,减少操作所需要占用的空间。 5) 可以有效地避免共沸物的形成给精馏分离操作所带来的困难。在反应精馏中,由于化学反应的存在,在常规精馏中存在的共沸体系在反应精馏中可能消失。 6) 对于一些用常规精馏难以分离的物系,使用反应精馏可以获得比较纯净的目的产物。如间二甲苯和对二甲苯是同分异构体,使用常

筛板精馏实验知识讲解

筛板精馏实验装置 使用说明书 华中师范大学化学学院2016年12月

筛板精馏实验装置 一、实验目的 1、熟悉板式精馏塔的结构、流程及各部件的结构作用; 2、了解精馏塔的正确操作,学会正确处理各种异常情况; 3、用作图法确定精馏塔全回流与部分回流时理论板数,并计算出全塔效率。 二、实验流程、装置描述 筛板精馏实验流程图 阀门:V1塔釜加料阀,V2塔釜放净阀,V3塔釜出料阀,V4塔底产品罐放净阀,V5塔顶产品罐放净阀,V6冷却正丙醇流量调节阀,V7采出电磁阀,V8回流电磁阀,V9采样阀,V10、

V11压差计连通阀。 温度:TI1塔釜温度,TI2塔顶温度,TI3回流温度,TI4进料温度,TI5~ TI12塔板温度。 压力:PI1塔釜压力。 差压:DPI1全塔压降。 流量:FI1冷却正丙醇流量。 液位:LI1塔釜液位。 流程说明: 进料:进料泵从原料罐内抽出原料液,经过塔釜换热器,原料液走管程,塔釜溢流液走壳程,热交换后原料液由塔体中间进料口进入塔体 塔顶出料:塔内蒸汽上升至冷凝器,蒸汽走壳程,冷却正丙醇走管程,蒸汽冷凝成液体,流入馏分器,一路经回流电磁阀回流至塔内,另一路经采出电磁阀流入塔顶产品罐塔釜出料:塔釜溢流液经塔釜出料阀V3溢流至塔釜换热器,塔釜溢流液走壳程,原料液走管程,热交换后塔釜溢流液流入塔釜产品罐 冷却正丙醇:冷却正丙醇来自实验室自来正丙醇,经冷却正丙醇流量调节阀V6控制,转子流量计计量,流入冷凝器,冷却正丙醇走管程,蒸汽走壳程,热交换后冷却正丙醇排入地沟 设备仪表参数: 精馏塔:塔内径D=50mm,塔内采用筛板及圆形降液管,共有8块板,板间距HT=55mm,塔板:筛板上孔径d=1.5mm,筛孔数N=127个,开孔率11%。 进料泵:蠕动泵,25#进料管,流量1.6ml/r,转速0-100.0rpm 冷却正丙醇流量计16~160 l/h 总加热功率为3.3Kw 压力传感器0—10KPa 温度传感器:PT100,直径3mm 差压传感器0-5 KPa 三、实验操作(以乙醇-正丙醇为例): 1、开车 ⑴、一般是在塔釜先加入10~20v%(体积)的乙醇正丙醇溶液,釜液位与塔釜出料口持平。 ⑵、开启软件和装置电源,软件与设备建立连接(软件操作见附1-软件说明)。 ⑶、开启电加热电源,选择加热方式,维持塔釜压力在约1000Pa为合适。 ⑷、打开塔顶冷凝器进正丙醇阀V5,流量约80 l/h。 ⑸、回流比操作切换至手动状态,关闭采出电磁阀,开启回流电磁阀,使塔处于全回流状态;

SG-HC23 反应精馏实验装置

SG-HC23 反应精馏实验装置 技术指标说明 装置特点1.利用本装置,可以实现普通精馏操作,也可实现反应精馏;既可实现连续操作,又可进行间歇操作;既可采用分相回流,又可采用混相回流。 2.反应精馏既服从质量作用定律又服从相平衡规律,适于进行可

逆平衡反应和异构体的分离。实验体系为乙酸乙酯的制备。在塔身上部某位置加入带有酸催化剂的醋酸,塔身下部某位置加入乙醇。 3.玻璃塔外壁采用透明导电膜保温抵抗热损失,塔内可装填不同的填料。 4.塔体留有侧线进、出口,可供进、出料和取样、测温用。 5.集约化控制,智能化测、控温,操作方便易行。 装置功能1、熟悉精馏单元操作过程的设备与流程。 2、掌握反应精馏的原理及操作。 3、学习精馏塔效率的测定方法。 主要配置玻璃精馏塔、冷凝器、再沸器、预热器、蠕动泵、温度控制仪、温度显示仪、流量计、不锈钢框架、控制屏。 公用设施水:装置需冷却水,自带和自来水管相连的接口。自来水通过装置接口进入塔顶的冷凝器后排出。 液:装置自带玻璃高位槽。实验时经流量计进入精馏塔釜。电:电压AC220V,功率2KW,标准单相三线制。 技术参数1、精馏塔塔径φ25mm,塔高1400mm,材质为玻璃塔结构,塔内填装φ3x 3 mm不锈钢θ网环型填料。塔釜为三口烧瓶,容积1000ml,塔外壁镀有金属保温膜,通电加热保温,功率:300W。 2、塔釜加热:塔釜置于1000W电热包中。采用电压控制器控制釜温。 3、250ml高位玻璃加料瓶,LZB--2转子流量计:流量范围1.6~16ml/min ,数量2套。 4、温度控制及仪表:3个数显温度控制仪,量程:0-150℃;温度误差≤2℃。 5、塔顶冷凝器为蛇管冷凝器,塔顶冷凝液体的回流采用摆动式回流比控制器操作。此控制系统由塔头上摆锤、电磁铁线圈、回流比计数器等仪表组成。 6、各项操作及温度、回流比、流量的显示、调节、控制全在控制屏面板进行。 7、框架为304不锈钢材质,结构紧凑,外形美观,流程简单、操作方便。 8、外形尺寸:1200×500×2200mm(长×宽×高),外形为可移动式设计,带3寸双刹车轮。 测控组成变量检测机构显示机构执行机构流量转子流量计转子流量计手动调节 回流比回流比继电器回流比控制显示仪回流比控制显示仪 塔节温度PT100铂电阻数字温度仪表无 塔顶温度PT100铂电阻数字温度仪表无 塔釜温度PT100铂电阻数字温度控制仪固态调压模块SG-HC23/II反应精馏实验装置

相关文档
最新文档