离散数学二元关系与运算
离散数学二元关系与函数在计算机中的应用

在计算机科学领域中,离散数学中的二元关系和函数是非常重要的概念,尤其是在计算机程序的设计和实现中。
本文主要介绍了离散数学中的二元关系和函数在计算机中的应用。
在本文中,我们将回答以下问题:1. 什么是二元关系?2. 什么是函数?3. 二元关系和函数在计算机科学中的应用是什么?什么是二元关系?在数学中,二元关系是指一个由两个元素组成的集合对之间的关系。
这种关系可以表示为R(x, y),其中x和y是该关系中的元素,R(x, y)表示元素x和y之间的关系。
例如,在一组学生中,每个学生都有一个学号和一个年龄,关系可以表示为SR(学号,年龄),其中SR(001,20)表示学号为001的学生的年龄是20岁。
在计算机科学中,二元关系可以用于模拟数据结构中的关系,例如关系数据库中的表格。
在关系型数据库中,表格中的每一行包含一个记录,每个记录由唯一的主键表示。
由此可以建立一个这些记录的关系,这个关系就是二元关系的实例。
什么是函数?在数学中,函数是指一个定义域和一个值域之间的关系,其中每个输入值都对应一个唯一的输出值。
通常,函数可以用f(x)=y来表示,其中f表示函数,x表示自变量,y表示函数的值。
例如,函数f(x)=x^2表示输入值x的平方值。
在计算机科学中,函数也是非常重要的,因为它们提供了一种有序的方式来定义输入和输出之间的关系。
在编程中,函数通常是一组可重用的代码,它执行一个特定的任务,并返回一个结果。
例如,在C++中,我们可以定义一个名为sum的函数,该函数接受两个整数作为参数,并返回它们的和。
二元关系和函数在计算机科学中的应用是什么?二元关系和函数在计算机科学中有着广泛的应用。
在计算机科学中,二元关系和函数可以用于数据结构、算法设计和软件工程等领域。
例如,在计算机图形学中,二元关系可以用于描述点和线的关系,从而构建图形图形;在计算机网络中,二元关系可以用于描述不同计算机之间的关系,从而实现通信。
同时,函数的应用也非常广泛。
4-6 二元关系与函数 离散数学 教学课件

单机调度----拓扑排序
拓扑排序
构造一个包含某个给定部分序的全序的过程 。
拓扑排序算法----
1
对有限集T上给定的部分序R,产生一个全序S
Step1: (初始化)
2
3
令 k=1, T‘=T
Step2: (取下一个元素)
While T’ ≠
机器j的停止时间 Dj=max {sj(tk) | tk ∈Tj} + L(tk)
所有任务的截止时间
D=max{ Dj | j=1,2,…,m}
R={<ti,tj>|t1, tj∈T,i=j 或ti完成后tj才可开始加工} 一个可行调度是T的划分{T1,T2,…Tm},
Ti≠,由安排在机器cj上加工的所有任务组成,
多机调度
对任务集Tj,j=1,2,…,m,存在调度函数 sj: TjN,且满足下 述条件 (1)i, 0≤i<D, |{tk |tk∈T, sj(tk) ≤ i < sj(tk)+L(tk)}| ≤ 1 j=1,2,…,m 表示D之前的每个时刻 i,每台机器cj上至多只有一个任 务正在加工 (2) tk∈Ti, tj∈Tj, <tj, tj>∈R si(tk)+L(tk)≤sj(tL) i, j=1,2,…,m, i ≠ j 表示若任务tk与tj有偏序约束,则tk完成后tj才能开始加工
第4章 二元关系与函数
4.1 集合的笛卡儿积与二元关系 4.2 关系的运算 4.3 关系的性质 4.4 关系的闭包 4.5 等价关系和偏序关系 4.6 函数的定义和性质 4.7 函数的复合和反函数
集合论在计算机科学中的应用
二元关系 离散数学

二元关系离散数学
二元关系是离散数学中非常重要的概念之一。
二元关系是指将两个元素组合在一起形成的一种关系。
例如,整数之间的“大于”、“小于”等关系。
在二元关系中,每个元素都称为关系的一部分。
二元关系可以用箭头或括号表示。
例如,如果我们有集合A={1,2,3}和集合B={a,b,c},那么我们可以定义二元关系R={(1,a),(1,b),(2,b)},这表示1和a、1和b,2和b之间存在关系。
二元关系的性质也是离散数学中非常重要的。
二元关系可以是自反的,反对称的,传递的和等价的。
自反关系表示每个元素都与自己存在关系,反对称关系表示如果两个元素之间存在关系,那么它们不能同时与相同的元素存在关系,传递关系表示如果两个元素之间存在关系,那么这种关系会传递到它们之间的其他元素之间,等价关系表示该关系是自反的、对称的和传递的。
这些性质有助于我们理解和描述二元关系。
二元关系在离散数学中有许多应用。
例如,它们可以用于网络分析、逻辑推理、图像处理等领域。
在计算机科学中,二元关系在数据库中的查询和排序算法中也有广泛应用。
总之,二元关系是离散数学中重要的概念之一,它将两个元素联系在一起,并具有许多重要的性质和应用。
离散数学关系的运算

二、关系基本运算的性质
定理1 设F是任意的关系, 则 (1) (F1)1=F (2) domF1=ranF, ranF1=domF 定理2 设F, G, H是任意的关系, 则 (1) (F∘G)∘H=F∘(G∘H) (2) (F∘G)1= G1, T均为A上二元关系, 那么
1 rij 0
当且仅当aiRbj 当且仅当 ai Rb j
10
某关系R的关系图为:
1 2 3 5 4 6 a b c d
则R的关系矩阵为:
0 1 0 MR 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0
注意: 对于A上的任何关系R1和R2都有 R10 = R20 = IA 对于A上的任何关系 R 都有 R1 = R
7
例:
X {a, b, c} R { a, b , b, c , c, a }
R { a, c , b, a , c, b }
2
R R R { a, a , b, b , c, c } Ix
R0, R1, R2, R3,…的关系图如下图所示
14
幂的求法(续)
对于集合表示的关系R,计算 Rn 就是n个R右复合 . 矩阵表示就是n个矩阵相乘, 其中相加采用逻辑加. 例3 设A={a,b,c,d}, R={<a,b>,<b,a>,<b,c>,<c,d>}, 求R的各次幂, 分别用矩阵和关系图表示. 解 R与R2的关系矩阵分别为
3
3、限制与像
定义 F 在A上的限制 F↾A = {<x,y> | xFy xA} A 在F下的像 F[A] = ran(F↾A)
《离散数学》课件-第四章 二元关系

R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
离散数学ch2.二元关系(5、6、7节)

VS
详细描述
关系的对称差运算可以用符号表示为 R△S,其中 R 和 S 是两个关系。它包括 属于 R 但不属于 S,以及属于 S 但不属 于 R 的所有有序对。如果 (a, b) 在 R△S 中,那么 (a, b) 或者只属于 R,或者只属 于 S。
04
CATALOGUE
关系的闭包
闭包的定义
1 2
关系的交运算可以用符号表示为 R ∩ S,其中 R 和 S 是两个关系 。它包括同时属于 R 和 S 的所有 有序对。如果 (a, b) 在 R ∩ S 中 ,那么 (a, b) 同时是 R 和 S 的差是一种集合差集操作,它从第一个 关系中去除与第二个关系共有的元素。
中可以推导出的新事实。
数据完整性
03
在数据库设计中,闭包的概念用于确保数据的完整性和准确性
,防止出现冗余和不一致的情况。
05
CATALOGUE
关系的类型
函数关系
总结词
函数关系是一种特殊的二元关系,它满足每 个自变量都有唯一的因变量与之对应。
详细描述
在函数关系中,对于定义域中的每一个元素 ,在值域中都有唯一一个元素与之对应。这 种关系具有明确性、确定性和无重复性。常 见的函数关系有数学函数、映射函数等。
离散数学ch2.二元 关系(5、6、7节)
contents
目录
• 引言 • 二元关系的性质 • 关系的运算 • 关系的闭包 • 关系的类型 • 关系在数据库中的应用 • 关系在人工智能中的应用
01
CATALOGUE
引言
定义与概念
定义
二元关系是集合论中的一个基本概念 ,它描述了两个元素之间的联系。
在设计关系型数据库时,需要考虑数据结构、数据完整性、数据冗余和数 据安全性等方面。
离散数学 二元关系(2)

17
计算机科学与技术学院
Discrete Mathematics
② 合成运算成立结合律
定理 设 R,S,T分别是A到B,B到C,C到D的关 系, 则有(R S) T = R (S T)。 证明:略
西南科技大学
18
计算机科学与技术学院
Discrete Mathematics (4)关系的幂 定义 设R是A上的二元关系,n∈N,则关系R的n次 幂Rn定义为: (1). R0 =A是A上的恒等关系,即R0={<x,x>|xA}; (2). R1=R (3). Rn+1=Rn R
西南科技大学
5
计算机科学与技术学院
Discrete Mathematics
定义的有关说明:
1. R与S能进行合成的必要条件是R的后域B一定是 S的前域B,否则就不能合成。 2. <x,z>有合成关系的定义为:至少有一个做中间 桥梁的元素y属于B,使x,y有关系R,y,z有关系S。 例1 设A={1,2,3,4,5},B={3,4,5},C={1,2,3}
R是A到B的关系,且R={<x,y>|x+y=6},
S是B到C的关系,且S={<y,z>y-z=2} 。
求RS
西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 只需从两个关系的二重组中搜索: ∵<1,5>∈R,<5,3>∈S,∴<1,3>∈RS
∵<2,4>R,<4,2>S,∴<2,2>RS
S R= {<d,b> ,<c,b>}
离散数学 二元关系

<x,y>R xRy 也称之为x与y有R关系。 后缀表示 中缀表示
<x,y>R xRy 也称之为x与y没有R关系。
例3. R是实数集合,R上的几个熟知的关系
≤ ≥ =
y x2+y2=4
x
从例3中可以看出关系是序偶(点)的集合 (构成线、面)。
2019/3/20 15
作业 P105 ⑵
2019/3/20 12
4-2 关系及其表示法
相关 按照某种规则,确认了二个对象或多个
对象之间有关系,称这二个对象或多个对象是相 关的。
例1: 大写英文字母与五单位代码的对应关系R1: 令α={A,B,C,D,…Z}
β={30,23,16,22,…,21}是五单位代码集合
β={11000, 10011, 01110, 10010,…, 10001} R1={<A,30>,<B,23>,<C,16>,...,<Z,21>}α×β
2019/3/20
AB (CACB)。
9
5) 设A、B、C、D为非空集合,则 ABCDAC∧BD 证明:首先,由ABCD 证明AC∧BD 任取xA,任取yB,所以 xAyB<x,y>A×B <x,y>C×D (由ABCD ) xCyD 所以, AC∧BD。 其次, 由AC,BD 证明ABCD 任取<x,y>A×B xAyB xCyD (由AC,BD) <x,y>C×D 所以, ABCD 证毕。
2019/3/20ቤተ መጻሕፍቲ ባይዱ16
关系的表示方法 枚举法: 即将关系中所有序偶一一列举出,写在大括号内。 如R ={ <1,1>,<1,2>,<1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, <4,4>} 。 谓词公式法: 即用谓词公式表示序偶的第一元素与第二元素间 的关系。例如 R={<x,y>|x<y} 有向图法: RA×B,用两组小圆圈(称为 结点)分别表示A和B 的元素,当<x,y>R时,从x到y引一条有向弧 (边)。这样得到的图形称为R的关系图。
离散数学第四章课件

无对称的偶对。
表示关系矩阵的主对角线两侧各有一个1且 对称,即有一个对称的偶对。
C1
n(n+1) 2
n(n+1) C 2 n(n+1) 2
表示关系矩阵的主对角线两侧全为1,
C1 + n(n+ +…+ 2
n(n+1) C 2 n(n+1) 2
于是
C0 n(n+1) 2 =
2
n(n+1) 2
四、反对称性 ⒈ 定义: 若xy(x∈A∧y∈A∧xRy∧yRx→x=y), 称R是反对称的。 例:设A={ a , b , c , d } R={ < a , b > , < a , c > , < b , b > , <b,d>,<c,c>,<c,d>, < d , d >}
⒉自反关系的关系矩阵的特征
R的关系矩阵的主对角线上的元素均为
1 ,则该关系就不具有自反性;
主对角线上有一个元素不为1,则该关
系就不具有自反性。
⒊ 自反关系的图的特征 自反关系的关系图中,每个顶点都有 自回路,则该关系具有自反性。
二、反自反性 ⒈ 定义:若x(x∈A xRx)则该关系是 反自反的。 ⒉ 具有反自反性的关系的关系矩阵的主对角
2 t1× t2 × … ×tn
五、关系的表示法-----通常有三种表示方法
⒈ 集合表示法: 因为关系也是集合,所以也可以用集合 的表示方法
例:A={ 2, 3,4,6 ,9,12 }上的整除关系
用特征描述法表示为
R={ < x , y > | x∈A ∧ y∈A ∧ x|y }
用穷举法表示为
R={ < 2 , 2 > , < 2 , 4 > , < 2 , 6 > ,
离散数学第4章-二元关系

4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学二元关系习题讲解

极 大 元
极 小 元
作业
2.设集合X={x1,x2,x3,x4,x5}上的偏序关系如下图所示 最 最 极 极 上 下 ,求X的最大元、最小元、极大元、极小元。求子 集 上 下 大 小 大 小 确 确 集X1={x2,x3,x4},X合 ={x ,x ,x } , X ={x ,x ,x } 的上 界 界 2 3 4 5 3 1 3 5 元 元 元 元 界 界 界、下界、上确界、下确界、最大元、最小元、极 大元和极小元。 X1 无 x4 x2, x4 x1 x x1 x4
3
偏序关系
1.设集合A={a,b,c,d,e,f,g,h},对应的哈斯图见下图令 B1={a,b},B2={c,d,e}。求出B1,B2的最大元、最小 元、极大元、极小元、上界、下界、上确界、下确 界。 h
f d
c a
4
g e
集 合 B1
最 大 元 无
最 小 元 无
b
B2
无
c
上 下 下 上界 确 确 界 界 界 c,d,e,f a,b a,b ,g,h 无 c 无 a, b, h c d,e c h c
x1
x3 x3 x1 x1
4ቤተ መጻሕፍቲ ባይዱ
X2
x2 x3
x3 x1 x1
无 x5 无
X3
x5 X
x4, x3, 无 x3 x5 x1 x x5 x1 x1
5
无 x5
x4
5
x4, x5
二元关系
二元关系基本概念(重点) 关系的运算 关系的性质(重点) 关系的闭包运算 等价关系与偏序关系(难点)
关系的性质
例5 判断下述关系所具备的性质。
(1)集合A上的恒等关系,全域关系。 (2)R1={<x,y>|x≤y, x,y∈N}注:将≤改为<? (3)R2={<x,y>|x|y,x,y∈N-{0}} (4)R3={<S1,S2>|S1S2,S1,S2∈P(S)}其中P(S)是 S的幂集。注:若改为? (5)R4={<x,y>|x+y=偶数,x,y∈N}
《离散数学》 二元关系

数据结构、情报检索、数据库、算法分析、计算机理论等计算机学科很好的数
学工具。
3
第 4章 二元关系
1
历史人物
学习要求
内容导航
CONTENTS
4.1
二元关系及其表示
4.2
关系的运算
4.3
关系的性质
4.4
关系的闭包
4.5
关系的应用
4.6
作业
4
历史人物
第 4章 二元关系
5
1868-1942,德国数学家,
20
定义4.5 设A,B为两个非空集合,称A×B的任何子集R为从A到B的二元关系,简称
关系(Relation),记作R:A→B;
如A=B,则称R为A上的二元关系,记作R:A→A。
若<x,y>∈R,则记为xRy,读作“x对y有关系R”;
若<x,y>R,则记为xRy,读作“x对y没有关系R”。
解题小贴士—给定集合是否为从A到B的一个关系的判断方法
所以
(1)S1不是A×B的子集,从而S1不是A到B上的一个关系。
(2)S2是A×B的子集,从而S2是A到B上的一个二元关系。
第 4章 二元关系
4.1.2 关系的定义
例4.4 设A = {1,2},试判断下列集合是否为A上的关系。
(1)T1= Φ ;
是,空关系
(2)T2=A×A;
是,全关系
(3)T3={<1,1>,<2,2>};
(2)序偶中的两个元素具有确定的次序。即<a,b>≠<b,a>,但{a,b}={b,a}。
定义4.2 给定序偶<a,b>和<c,d>,
离散数学课件第四章二元关系习题

闭包的定义基于关系的传递 性,即如果关系R满足传递性, 那么对于任何元素x,如果存 在元素y和z,使得xRy和yRz, 那么一定存在一个元素z',使 得xRz'。闭包就是由给定关系 和所有满足闭包定义的新元 素构成的关系集合。
闭包具有一些重要的性质, 这些性质决定了闭包在数学 和计算机科学中的广泛应用 。
同余关系的应用
应用1
在密码学中,同余关系可用于生成加 密密钥。例如,通过选择两个同余的 数作为密钥,可以确保加密和解密操 作的一致性。
应用2
在计算机科学中,同余关系可用于实 现数据校验。例如,通过将数据与一 个已知的校验值进行同余运算,可以 检测数据是否在传输过程中被篡改。
THANKS
感谢观看
反对称性
如果对于关系中的每一对 元素,如果元素x与元素y 有关系,且元素y与元素x 也有关系,但元素x与元 素y的关系不等于元素y与 元素x的关系,则称该关 系具有反对称性。
习题解析
习题1
判断给定的关系是否具有自反性、反自反性、对称性和反对称性。通过举例和推理,分析 给定的关系是否满足这些性质。
习题2
表示方法
总结词
掌握二元关系的表示方法是解题的关键。
详细描述
在数学中,我们通常使用笛卡尔积来表示二元关系。例如,如果A和B是两个集合, 那么A和B的笛卡尔积可以表示为A×B,它包含了所有形如(a, b)的元素,其中a属于 A,b属于B。
习题解析
总结词
通过解析具体习题,可以加深对二元关系定义和表示方法的理解。
有着广泛的应用。
05
习题五:关系的同余
同余关系的定义与性质
定义
反身性
对称性
传递性
如果对于任意元素$x$, 都有$f(x) = g(x)$,则 称$f$和$g$是同余的。
离离散数学 第7章 二元关系

关于AC∧BD A×BC×D的讨论
该性质的逆命题不成立,可分以下情况讨论。 (1)当A=B=时,显然有AC 和 BD 成立。 (2)当A≠且B≠时,也有AC和BD成立,证明如下:
任取x∈A,由于B≠,必存在y∈B,因此有 x∈A∧y∈B
<x,y>∈A×B <x,y>∈C×D x∈C∧y∈D x∈C 从而证明了 AC。 同理可证 BD。
<x,y>AC xAyC xByD <x,y>BD (2) 不一定.反例如下:
A={1},B={2}, C = D = , 则 AC = BD 但是 A B.
第二节 二元关系
一、二元关系的定义 1.定义 7.3 如果一个集合满足以下条件之一: (1)集合非空, 且它的元素都是有序对 (2)集合是空集 则称该集合为一个二元关系, 简称为关系,记作 R. 如果<x,y>∈R, 可记作 xRy;如果<x,y>R, 则记作 x y 2.实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R 是二元关系, 当 a,b 不是有序对时,S 不是二元关系 根据上面的记法,可以写 1R2, aRb, a c 等.
关于AC∧BD A×BC×D的讨论
该性质的逆命题不成立,可分以下情况讨论。 (3)当A=而B≠时,有AC成立,但不一定有
BD成立。 反例:令A=,B={1},C={3},D={4}。
(4)当A≠而B=时,有BD成立,但不一定有 AC成立。 反例略。
例 设 A={1,2},求 P(A)×A。 解 P(A)×A ={ ,{1},{2},{1,2}}×{1,2}
4.关系的表示 表示一个关系的方式有三种:关系的集合表达式、关系矩阵、关系图. 关系矩阵和关系图的定义 关系矩阵 若 A={x1, x2, …, xm},B={y1, y2, …, yn},R 是从 A 到 B 的关系, R 的关系矩阵是布尔矩阵 MR = [ rij ] mn, 其中 rij = 1 < xi, yj> R. 关系图 若 A= {x1, x2, …, xm},R 是从 A 上的关系, R 的关系图是 GR=<A, R>,其中 A 为结点集,R 为边集. 如果<xi,xj>属于关系 R,在图中就有一条从 xi 到 xj 的有向边. 注意: 关系矩阵适合表示从 A 到 B 的关系或者 A 上的关系(A,B 为有穷集) 关系图适合表示有穷集 A 上的关系
离散数学中的二元关系

离散数学中的二元关系1 什么是二元关系二元关系是离散数学里面一个重要的概念,指的是两个可以分别属于两个集合A和B的元素之间的关系。
它是一种特殊的集合论概念,意味着在某一个函数f上,两个元素之间存在着一种单一的关系,这种关系被称之为二元关系。
这种二元关系可以用写成集合的形式也可以是表的形式。
2 二元关系表的一般形式一般的二元关系表的形式为:$f=\left\{\left(x,y\right)\inA\times B \mid P(x,y)\right\}$其中,A和B都是集合,P(x,y)是关于它们的关系式,学习中会有各种关系式,比如等于、不等于、大于及小于等。
3 二元关系的类型由于不同的二元关系关系式不同,所以,二元关系也可以分为多种类型。
常见的有:(1)等价关系:表示两个可以互换的元素之间的关系,一般以“=”表示,也可以一一对应;(2)全序关系:表示两个元素之间的一种“前大于后”的关系,一般以“>”或“<”表示,可以用来描述一种有序的类型;(3)传递关系:这种关系意味着“当关系式成立时,如果保持原有的条件不变,则关系式仍然成立”,这种关系一般以“++”表示;(4)偏序关系:和全序关系类似,也是一种前大于后的一种关系,但不代表完全的大小,只是一种大体的参照,一般以“>+”及“<+”表示;(5)子集关系:子集关系是一个集合是某个集合的子集,一般以“⊆”表示;(6)关联关系:此关系也称为满足关系,是指满足一定的关系式,两个或多个元素有直接或间接的关系,一般以“→”表示。
4 二元关系的应用二元关系是离散数学中很重要的概念,与它特殊的表达方式有着密切的联系。
在数学运算中,二元关系常常被用来表示集合之间的关系、排列组合以及概率等,还应用于计算机科学中的图论。
此外,在社会学、心理学等学科中,二元关系也被广泛应用,它有助于理解彼此之间的关系、区分概念及表达媒体变化等。
离散数学之3—二元关系

R10={(1,1)}
既对称, 也反对称。 R9={(1,2), (2,1), (1,4)} 既不是对称, 也不是反对称。
5。如果(x, y) R (y, z) R (x, z) R, 就说 R是A上的一个传递关系。 例:设A={a, b, c}, S1 ={ (a, c), (a, b), (b, b), (c, b), (c, c) }, S2 ={ (a, a), (b, a), (b, c), (c, b), (c, c) }, S3 ={ (a, c), (a, b) }, 则 S1, S3 都是传递的, 而 S2 不是传递的。
(a, c) (R T) (S T)。
⑵ (a, c) (R S) T
( b)[ bA (a, b) R S (b, c) T ] ( b)[ bA ( (a, b) R (a, b)S ) (b, c)T ] ( b)[ bA (a, b) R ( b, c)T ) ] ( b)[ bA
R = { (a, a), (a, c), (b, a), (b, b), (c, b), (c, c) }, S = { (a, a), (a, c), (b, a), (b, c), (c, b), (c, c) }, 则 R S ={ (a, a), (a, c), (b, a), (b, c), (b, b), (c, b), (c, c) },
那么,详细写出即是 R={(2, 4), (5, 25), (2, 1), (5, 4)}。
例 2:设A={2,3,4,5,6,8},定义A到自身的一 个
二元关系为 MOD3={(a, b)a, bA (a b(mod 3))},
那么,MOD3={(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (8, 8),
离散数学第四章二元关系和函数

例题
• 例题4.8:下列关系都是整数集Z上的关系,分别求出它们的 定义域和值域.
– R1={<x,y>|x,yZxy}; – R2={<x,y>|x,yZx2+y2=1};
• domR1=ranR1=Z. R={<0,1>,<0,-1>,<1,0>,<-1,0>} domR2=ramR2={0,1,-1}
IA={<0,0>,<1,1>,<2,2>}
关系实例
• 设A为实数集R的某个子集,则A上的小于等于关系定义为 LA={<x,y>|x,yA,xy}.
• 例4.4 设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A),xy}, 则有 P(A)={,{a},{b},A}. R={<, >,<,{a}>,<,{b}>,<,A>, <{a},{a}>,<{a},A>,<{b},{b}>,<{b},A>,<A,A>}.
– 例如:A={a,b},B={0,1,2},则 AxB={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}; BxA={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}.
– 如果A中的元素为m个元素,B中的元素为n个元素, 则AxB和BxA中有mn个元素.
0100 1010 . 0001 0000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (F1)1 = F
(2) domF1 = ranF,ranF1 = domF
(3) (F G) H = F (G H)
(4) (F G)1 = G1 F1
(5) F (G∪H) = F G∪F H (对∪的分配律)
(6) F (G∩H) F G∩F H (对∩的半分配律)
s(R) = R∪R = R∪{<b,a>,<c,b>,<d,c>,<c,d>,<a,a>} ={<a,b>,<b,c>,<c,d>,<d,c>,<b,a>,<c,b>,<a,a>}
例4.5 下列关系都是整数集Z上的关系,分别求 出它们的定义域和值域:
(1) R1={<x, y> | x, y Z xy} (2) R2={<x, y> | x, y Z x2+y2=1} (3) R3={<x, y> | x, y Z y=2x} (4) R4={<x, y> | x, y Z |x|=|y|=3}
(3) R3={<x, y> | x, y Z y=2x} 解: domR3 = Z, ranR3 = {偶数}
(4) R4={<x, y> | x, y Z |x|=|y|=3} 解: domR4 = ranR4 = ( ? )
二、关系的常用运算
(1) 逆: F是任意关系,F的逆F1={<x,y> | yFx} (2) 合成: F、G是任意两个关系,F与G的合成
记作:F G={<x,y> | (z)(xGzzFy)}
(3) 限制: 关系F在集A上的限制,记作: F | A={<x,y> | xFyxA}
(4) 象: 集A在关系F下的象F[A] = ran(F | A)
例4.6 设F,G是N上的关系,其定义为: F = {<x, y> | x, yNy = x2} G = {<x, y> | x,yNy = x+1}
二、二元关系的表示方法
A上关系的表示法
1. 关系矩阵: 设A={x1, x2, …, xn),R是A上的关系, 令:
1 rij =
0
若xi R xj 若xi R xj
(i, j = 1,2,…, n)
r11 r12 r1n
则 (rij)nxn = r21
r22
r2n
是R的关系矩阵
rn1
解: 关系矩阵 :
1100 0011 0000 0100
关系图 :
1
2
4
3
§4.2 关系的运的定义域: domR = {x | (y)<x, y>R} (即R中有序组的第一个元 素构成的集合)
关系R的值域:
ranR ={y | (x)<x, y>R} (即R中有序组的第二个元 素构成的集合)
求 G1,F G,G F,F |{1,2},F[{1,2}]
解:由定义知: G1 = {<y, x> | y, xNy = x+1}
列出G1 中的元素就是 G1 = {<1,0>,<2,1>,<3,2>,…,<x+1, x>,…}
为了求F G,可以先直观表示如下: 对任何xN x G x+1= Z F Z2 = y 即 y = (x+1)2
§4.1 二元关系的概念
一、二元关系的概念
1. 二元有序组:由两个元素x和y按一定顺序 排成二元组,记作:<x,y> 。
如: 平面直角坐标系中点的坐标
二元有序组的性质 (1) 当x y时,<x,y> <y,x> (2) <x,y> = <u,v>,当且仅当x = u,y = v
(1)、(2)说明有序组区别于集合
自反闭包 记作 r(R) 对称闭包 记作 s(R) 传递闭包 记作 t(R) 由A求r(R),s(R),t(R)的过程叫闭包运算。
二、计算方法
为了有效地计算关系R的各种闭包, 先引进关系的幂运算概念。
幂运算:设RAA,kN,约定 (1) R0 = IA = {<x, x> | xA} (2) R1 = R (3) Rk+1 = Rk R
二元关系:如果一个集合的元素都是二元有 序组,则这个集合称为一个二元 关系,记作:R 。
如果<x, y> R ,记作 x R y 如果<x, y> R ,记作 x R y
从A到B的二元关系:设A,B为集合,A B的任 何子集所定义的二元关系叫做从 A到B的二元关系。
若A=B,叫做 A上的二元关系; 若|A|=n,则|AA|=n2。 AA的所有子集有2n2 个。 就是说,A上有2n2个不同的二元 关系,其中包括空关系、全域 关系UA和恒等关系IA。
整除,即yRx,从而R是对称的; 如果A中三
个元素x,y,z满足xRy, yRz,则x y,yz 被3整除,由于xz=(xy)+(yz),所以xz被3
整除,从而xRz即R具有传递性。
§4.4 关系的闭包运算
一、定义
闭包:设RAA,那么,包含R而使之具有自反 性质的最小关系,称之为R的自反闭包; 包含R而使之具有对称性质(传递性质)的 最小关系,称之为R的对称(传递)闭包。
积运算的性质
(1) 若A,B中有一个空集,则笛卡儿积是空集, 即: B = A =
(2) 当AB,且A,B都不是空集时,有ABBA
(3) 当A,B,C都不是空集时,有(AB)C A(BC) 因为(AB)C中的元素< <x,y>, z>,而A(BC)中 的元素为< x, <y, z> > 。
例4.1 设A={a,b},B={0,1,2} ,求AB,BA 解:根据笛卡儿积的定义知
A B = {<a,0>, <a,1>, <a,2>, <b,0>, <b,1>, <b,2> } B A = {<0, a>, <0, b>, <1,a>, <1,b>, <2,a>, <2,b>} 一般地:如果|A|=m,|B|=n,则 |AB|=|BA|=m n
(5) F (G∪H) = F G∪F H的证明: 任取<x, y> <x, y>F (G∪H) (z)(<x, z>(G∪H)<z, y>F)
(z)((<x, z>G∪<x, z>H)<z,y>F) (注意对括号的顺序)
(z)(<x, z>G<z, y>F>∪(<x,z>H<z,y>F)) <x, y>F G∪<x, y>F H ∴ F (G∪H) = F G∪F H
(4) A(B∪C) = (AB)∪(AC) (对∪的分配律)
(B∪C)A = (BA)∪(CA)
(?)
A(B∩C) = (AB)∩(AC)
(?)
(B∩C)A = (BA)∩(C A)
(?)
我们证明:
A(B∪C) = (AB)∪(AC)
证明思想
要证明两个集合相等,通常有两种方法: 一是证两个集合相互包含; 二是利用已有的 集合运算的性质(算律和已证明过的公式),仿 照代数恒等式的证明方法,一步步从左(右)边 推出右(左)边,或从左、右边分别推出同一个 集合式子。一般说来,最基本的集合相等关 系要用第一种证法,比较复杂的集合相等关 系用第二种方法更好,但第二种方法的使用 取决于我们对算律和常用公式的熟练程度。
例4.3 设A = {a,b},写出P(A)上的包含关系R :
解: P(A) = {,{a},{b}{a,b}} R = {<, >, < ,{a}>, <{,{b}>,<{a, b}>, <{a},{a}>,<{a},{a, b}>, <{b},{b}>, <{b},{a, b}>, <{a, b},{a, b}>}
因此 F G = {<x,y> | x,yNy = (x+1)2} 同理可求 G F = {<x,y> | (?)} (自己做!)
发现 F G G F
F |{1,2} = {<1,1>,<2,4>} F [{1,2}] = ran(F |{1,2}) = {1,4}
关系运算的性质:设F、G、H、为任意关系,则有:
例4.7 设A={1,2,…,10},对于A上的关系 R={<x,y> | (xy)/3I}
I为整数集,问R有哪些性质?
解:逐条性质加以验证R={<x,y> | (xy)/3I}
任取A中元素x,由于(xx)/3=0,所以R 是自反的; 又设A中任意两个元素x,y,如果
xRy,即xy可被3整除,则yx也一定可被3
= {,{1},{2},{1,2}} {1,2} = {<,1>,<,2>,<{1},1>,<{1},2>,
<{2},1>,<{2},2>, <{1,2},1>,<{1,2},2>} n阶笛卡儿积:
A1 A2 …An = {(x1,x2,… xn) | x1A1x2A2 …xnAn}
3、二元关系的数学定义