行程问题(相遇、追及、多次相遇、电车)

合集下载

奥数——行程、多次相遇和追及问题

奥数——行程、多次相遇和追及问题

精心整理页脚内容但只1.第2第3第N2.第2第3…………,………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出多次相遇与追及问题精心整理页脚内容全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别【例 2】【巩固】【例 3】【巩固】【例 4】【巩固】.【例 5】.【巩固】【例 6】2001次相遇地点之间的距离.【巩固】 甲、乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求第三次相遇时共走了多少千米.【例 7】A 、B 两地相距2400米,甲从A 地、乙从B 地同时出发,在A 、B 间往返长跑。

甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动。

甲、乙两人在第几次相遇时A 地最近?最近距离是多少米?【巩固】 A 、B 两地相距950米。

甲、乙两人同时由A 地出发往返锻炼半小时。

甲步行,每分钟走40米;乙跑步,每分钟行150米。

则甲、乙二人第_____次迎面相遇时距B 地最近。

例题精讲......【例 8】甲、乙两车分别从A ,B 两地出发,并在A ,B 两地间不断往返行驶。

奥数 行程 多次相遇和追及问题

奥数 行程 多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程;即甲第1次如果走了N 米,以后每次都走2N 米;2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成;折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少;如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易;例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间;已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地;问:甲车的速度是乙车的多少倍【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇;如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米;问:甲、乙二人的速度各是多少【例 3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C 点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 5】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【巩固】甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇;他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇;求两次相遇地点的距离;【例 6】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米.【例 7】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑;甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动;甲、乙两人在第几次相遇时A地最近最近距离是多少米【巩固】A、B两地相距950米;甲、乙两人同时由A地出发往返锻炼半小时;甲步行,每分钟走40米;乙跑步,每分钟行150米;则甲、乙二人第___ __次迎面相遇时距B地最近;【例 8】甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶;已知甲车的速度是 15千米/时,乙车的速度是25千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米;求A,B两地的距离;【巩固】欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米;两人同时从A点出发,到达B点后返回,已知他们第二次迎面相遇的地点距离AB的中点5米,AB之间的距离是________; 【例 9】甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜;已知甲、乙的速度分别为米/秒和米/秒;问:1比赛开始后多长时间甲追上乙2甲追上乙时两人共迎面相遇了几次【巩固】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次【例 10】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前途中能遇上几艘从纽约开来的轮船【巩固】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟课堂检测【随练1】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇;已知C离A有80米,D离B有60米,求这个圆的周长;【随练2】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【随练3】A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次【随练4】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次家庭作业【作业1】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米【作业2】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分【作业3】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远. 【作业4】湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回;两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米;问:两岛相距多远【作业5】在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇;甲、乙环行一周各需要多少分【作业6】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。

行程问题(相遇、追及、多次相遇、电车)

行程问题(相遇、追及、多次相遇、电车)

相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。

同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。

(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。

相遇问题追及问题(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律这部分内容涉及以下几个方面:1求相遇次数2求相遇地点3由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。

举个例子:假设A、B两地相距6000米,甲从A地出发在AB间往返运动,速度为6千米/小时,乙从B出发,在AB间往返运动,速度为4千米/小时。

我们可以依次求出甲、乙每次到达A点或B点的时间。

为了说明甲、乙在AB间相遇的规律,我们可以用“折线示意图”来表示。

第四次相遇第五次相遇第六次相遇第二次相遇第三次相遇第一次相遇折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。

五年级奥数.行程 .多次相遇和追及问题

五年级奥数.行程 .多次相遇和追及问题

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

行程问题(相遇、追及、多次相遇、电车)

行程问题(相遇、追及、多次相遇、电车)

相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。

同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。

(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。

相遇问题追及问题(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律这部分内容涉及以下几个方面:1求相遇次数2求相遇地点3由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。

举个例子:假设A、B两地相距6000米,甲从A地出发在AB间往返运动,速度为6千米/小时,乙从B出发,在AB间往返运动,速度为4千米/小时。

我们可以依次求出甲、乙每次到达A点或B点的时间。

为了说明甲、乙在AB间相遇的规律,我们可以用“折线示意图”来表示。

第四次相遇第五次相遇第六次相遇第二次相遇第三次相遇第一次相遇折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。

奥数-行程多次相遇和追问题

奥数-行程多次相遇和追问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程; 第3次相遇,共走5个全程; …………, ………………; 第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………, ………………; 第N 次相遇,共走2N 个全程; 3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程 多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡知识框架多次相遇与追及问题柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?例题精讲【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

多次相遇、追及问题

多次相遇、追及问题

多次相遇、追及问题一难度:中难度甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。

已知甲车的速度是 25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。

求A,B两地的距离?200 多次相遇、追及问题二难度:中难度甲、乙二人分别从A﹑B两地同时相向而行,乙的速度是甲的2/3 ,二人相遇后继续行进,甲到B地,乙到A地后立即返回。

已知二人第二次相遇到地点距第一次相遇的地点是2 0千米,那么,A﹑B两地相距多少千米?50多次相遇、追及问题三难度:中难度A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟. 行程问题之多次相遇追练习题一1、两辆汽车同时从东、西两站相对开出,第一次在离车站60千米的地方相遇,之后两车继续以原来速度前进,各车到站后立即返回,又在离中点30千米处相遇,两站相距多少千米?2、甲、乙两车分别从东、西两站同时相对开出。

第一次相遇时,甲车行了80千米,两车继续以原来速度前进,各车到站后立即返回,第二次相遇地点在第一次相遇地点东侧40千米处。

东、西两站相距多少千米?3、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?4、一个自行车选手在相距950千米的甲、乙两地之间训练。

从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米?行程问题之多次相遇追练习题二5、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

两辆车行程问题归纳总结

两辆车行程问题归纳总结

两辆车行程问题归纳总结在现代社会中,我们经常会遇到两辆车在不同的时间、速度和方向上行驶的情况。

这种情况下,我们需要解决与车辆相遇、相追、相离等问题。

本文将对这些两辆车行程问题进行归纳总结,帮助读者更好地理解和应对这类问题。

一、两辆车相遇问题1. 向心相遇问题当两辆车从两个不同的地点出发,以不同的速度向同一目的地行驶时,我们需要计算它们相遇的时间和距离。

假设车A以速度v1行驶,车B以速度v2行驶,并在t小时后相遇。

根据相遇的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间2. 反向相遇问题有时,两辆车从同一地点同时出发,但以不同的速度和方向行驶,我们需要计算它们下次相遇的时间和地点。

假设车A以速度v1向东行驶,车B以速度v2向西行驶,并在t小时后相遇。

根据相遇的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间二、两辆车相追问题1. 追及问题在两辆车的行程中,一辆追着另一辆车行驶,我们需要计算追及时间和距离。

假设车A以速度v1行驶,车B以速度v2行驶,并在t小时后车B追到车A。

根据追及的定义,我们可以得到以下公式:距离 = (速度B - 速度A)×时间2. 交叉追问题当两辆车以不同的速度和方向行驶,并在某一点相交时,我们需要计算交叉追的时间和距离。

假设车A以速度v1向东行驶,车B以速度v2向西行驶,并在t小时后相交。

根据交叉追的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间三、两辆车相离问题当两辆车行驶在不同的速度、时间和方向上时,我们需要计算它们相离的时间和距离。

这种情况下的问题通常涉及到超越和错过的概念。

1. 超越问题当两辆车以不同的速度和方向行驶,并且一辆车超过了另一辆车时,我们需要计算超越的时间和距离。

假设车A以速度v1向东行驶,车B以速度v2向西行驶,并在t小时后车A超过车B。

根据超越的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间2. 错过问题当两辆车以不同的速度和方向行驶,并且它们错过了相遇的机会时,我们需要计算它们错过的时间和距离。

行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。

由此可以演变为相遇问题和追及问题。

其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。

速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。

第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2 甲︳→ S1 →∣← S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→ S1 ←∣乙→ S2 ︳A B C在相同时间内S甲=AC , S乙=BC 距离差 AB =S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。

简单的有以下几种情况:三、例题:(一)相遇问题(1)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。

若两车从A、B两地同时开出,相向而行,T小时相遇,则可列方程为T=1000/(120+80)。

甲︳→ S1 →∣← S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000/(120+80)解析二:甲乙相距的距离是由甲乙在相同的时间内共同走完的。

相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120*T+80*T(2)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。

奥数——行程、多次相遇和追及问题

奥数——行程、多次相遇和追及问题

之马矢奏春创作一、由简单行程问题拓展出的屡次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、屡次相遇与全程的关系1. 两地相向动身:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N1个全程;注意:除第1次,剩下的次与次之间都是2个全程.即甲第1次如果走了N 米,以后每次都走2N 米.2. 同地同向动身:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;知识框架创作时间:二零二一年六月三十日…………, ………………;第N次相遇,共走2N个全程;3、多人屡次相遇追及的解题关键屡次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解屡次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成.折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地址”,以及“由相遇的地址求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是几多.如果不画图,单凭想象似乎对像我这样的一般人儿来说不容易.例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地址同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑几多米才华回到动身点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端动身,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地动身,不竭的往返行驶于A,B两地之间.已知甲车的速度比乙车快,而且两车动身后第一次和第二次相遇都在途中C地.问:甲车的速度是乙车的几多倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇.如果二人的速度各增加1千米/时,那么相遇地址距前一次相遇地址1千米.问:甲、乙二人的速度各是几多?【例 3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时动身反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是几多米?【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A 地95千米处相遇.相遇后继续前进达到目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是几多千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时动身,相向而行,他们第一次相遇地址离A地4千米,相遇后二人继续前进,走到对方动身点后立即返回,在距B地3千米处第二次相遇,求两次相遇地址之间的距离.【例 5】甲、乙二人以均匀的速度分别从A、B两地同时动身,相向而行,他们第一次相遇地址离A地18千米,相遇后二人继续前进,走到对方动身点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【巩固】甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇.他们各自达到对方车站后立即返回原地,途中又在距A地42千米处相遇.求两次相遇地址的距离.【例 6】甲、乙二人以均匀的速度分别从A、B两地同时动身,相向而行,他们第一次相遇地址离A地3千米,相遇后二人继续前进,走到对方动身点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地址与第次相遇地址之间的距离.【巩固】甲、乙二人以均匀的速度分别从A、B两地同时动身,相向而行,他们第一次相遇地址离A地7千米,相遇后二人继续前进,走到对方动身点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了几多千米.【例 7】A、B两地相距2400米,甲从A地、乙从B地同时动身,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时A地最近?最近距离是几多米?【巩固】A、B两地相距950米.甲、乙两人同时由A 地动身往返熬炼半小时.甲步行,每分钟走40米;乙跑步,每分钟行150米.则甲、乙二人第_____次迎面相遇时距B地最近.【例 8】甲、乙两车分别从A,B两地动身,并在A,B两地间不竭往返行驶.已知甲车的速度是 15千米/时,乙车的速度是25千米/时,甲、乙两车第三次相遇地址与第四次相遇地址相差100千米.求A,B两地的距离.【巩固】欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米.两人同时从A点动身,达到B点后返回,已知他们第二次迎面相遇的地址距离AB的中点5米,AB之间的距离是________.【例 9】甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜.已知甲、乙的速度分别为1.0米/秒和0.8米/秒.问:(1)角逐开始后多长时间甲追上乙?(2)甲追上乙时两人共迎面相遇了几次?【巩固】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端动身,连续跑了12分钟.在这段时间内,他们迎面相遇了几多次?【例 10】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在达到纽约前(途中)能遇上几艘从纽约开来的轮船?【巩固】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站动身沿电车线路骑车前往甲站.他动身的时候,恰好有一辆电车达到乙站.在路上他又遇到了10辆迎面开来的电车.达到甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了几多分钟?课堂检测【随练1】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时动身反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有80米,D离B有60米,求这个圆的周长.【随练2】甲、乙二人以均匀的速度分别从A、B两地同时动身,相向而行,他们第一次相遇地址离A地7千米,相遇后二人继续前进,走到对方动身点后立即返回,在距B地5千米处第二次相遇,求两次相遇地址之间的距离.【随练3】A、B两地间有条公路,甲从A地动身,步行到B地,乙骑摩托车从B地动身,不竭地往返于A、B两地之间,他们同时动身,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲达到B地时,乙追上甲几次?【随练4】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端动身,当他们跑了10分钟后,共相遇几次?家庭作业【作业1】甲、乙两人从400米的环形跑道上一点A背向同时动身,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地址与点A沿跑道上的最短路程是几多米?【作业2】上午8点8分,小明骑自行车从家里动身,8分钟后,爸爸骑摩托车去追他,在离家4千米的处所追上了他.然后爸爸立即回家,抵家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【作业3】甲、乙二人以均匀的速度分别从A、B两地同时动身,相向而行,他们第一次相遇地址离A地6千米,相遇后二人继续前进,走到对方动身点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地址距B 多远.【作业4】湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回.两人分别从A,B两岛同时动身,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米.问:两岛相距多远?【作业5】在一圆形跑道上,甲从A点、乙从B点同时动身反向而行,6分后两人相遇,再过4分甲达到B点,又过8分两人再次相遇.甲、乙环行一周各需要几多分?【作业6】A、B两位置于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时动身,相向而行,甲船达到B地、乙船达到A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地址相距20千米,那么两船在静水中的速度是米/秒.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:创作时间:二零二一年六月三十日。

行程问题七大经典问题公式

行程问题七大经典问题公式

行程问题公式如下:
1、相遇问题:路程和=速度和×相遇时间。

2、追及问题:路程差=速度差×追及时间。

3、流水行船:顺水速度=船速+水速逆水速度=船速—水速。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2。

4、多次相遇:线型路程:甲乙共行全程数=相遇次数×2-1。

环型路程:甲乙共行全程数=相遇次数。

其中甲共行路程=甲在单个全程所行路程×共行全程数。

5、环形跑道。

6、行程问题:中正反比例关系的应用。

路程一定,速度和时间成反比。

速度一定,路程和时间成正比。

时间一定,路程和速度成正比。

7、列车过桥问题:车长+桥长=速度×时间。

车长甲+车长乙=速度和×相遇时间。

车长甲+车长乙=速度差×追及时间。

列车与人或骑车人或另一列车上的司机的相遇及追及问题。

车长=速度和×相遇时间车长=速度差×追及时间。

多次相遇和追及问题含答案

多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

奥数——行程、多次相遇和追及问题概要

奥数——行程、多次相遇和追及问题概要

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?例题精讲【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

奥数行程、多次相遇和追及问题

奥数行程、多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程知识框架多次相遇与追及问题多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。

同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。

(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。

相遇问题追及问题(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律这部分内容涉及以下几个方面:1求相遇次数2求相遇地点3由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。

举个例子:假设A、B两地相距6000米,甲从A地出发在AB间往返运动,速度为6千米/小时,乙从B出发,在AB间往返运动,速度为4千米/小时。

我们可以依次求出甲、乙每次到达A点或B点的时间。

为了说明甲、乙在AB间相遇的规律,我们可以用“折线示意图”来表示。

第四次相遇第五次相遇第六次相遇第二次相遇第三次相遇第一次相遇折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。

折线图只能直观的表示出相遇的次数和大致时间和地点,具体的时间和地点还必须通过相遇和追及问题的公式进行计算。

通过计算,我们能得出:甲、乙第一次相遇的时间为6÷(6+4)=0.6(小时),即36分钟。

相遇点距离B地0.6×4=2.4(千米),从第一次相遇到第二次相遇,甲、乙行程的路程总和等于两个AB长,所以两次相遇的时间间隔为72分钟。

第二次相遇发生的时间为108分钟。

事实上,我们从折线示意图就能看出来,任意两次相邻的相遇事件的时间间隔都是72分钟,而每72分钟,甲乙两人运动的总路程都等于2个AB长,所以我们能得到如下推论:如果甲、乙是从线段两端出发,那么相邻的两次相遇事件的时间间隔都相等,并且第n 次相遇时,他俩行走路程和相当于(2n-1)个线段总长。

同样的相邻两次的追及事件(速度快的追上速度慢的)发生的时间间隔都相等。

第n次追及时,他俩行走路程差相当于(2n-1)个线段总长。

注意:如果甲、乙在线段的端点碰面,既可以算作相遇事件也可以算作追及事件,例如例子当中的E点,既是甲、乙的第三次相遇,也是甲第一次从后面追上乙。

(三)发车间隔问题有关公共汽车与行人的问题,主要涉及到这几个量:行人速度、汽车速度、前后相邻汽车间距、汽车发车时间间隔、相遇(追及)事件时间间隔。

这些貌似不相关的数量之间隐含着很多数量关系:1.我们首先分析一下公共汽车的发车过程:从一辆汽车发车到下一辆汽车发车,经过一个“汽车发车时间间隔”,所以当下一辆车发车的时候,前一辆车已经开走了“一个汽车发车时间间隔”的时间,这个时间内前一辆车共行驶了“一个汽车发车时间间隔”乘以“汽车速度”,之后两辆车之间的距离保持不变,即距离保持为“相邻汽车间距”,所以我们得到第一条公式:汽车间距=汽车速度汽车发车时间间隔2.与公共汽车发车过程类似的,如果行人和汽车相向(反向)行驶,那么从行人遇到第一辆车到遇到第二辆车的过程可以看作一个相遇问题,所以有如下数量关系:汽车间距(汽车速度+行人速度)相遇事件时间间隔=⨯同样的如果行人和汽车同向行驶,则有关系式:汽车间距(汽车速度-行人速度)追及事件时间间隔=⨯三、经典透析【例1】甲、乙、丙三人每分钟分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙。

求A,B两地的距离。

[审题要点]从已知条件中唯一的时间量入手,明确甲、乙、丙之间的距离变化关系,逐步求解。

[详解过程]甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从三人出发到甲与乙相遇一共经过了150分钟,所以A、B之间的距离为:(60+50)×150=16500(米)。

[点评]此题实质上有着三个行程基本问题:两个相遇问题:甲和乙相遇,甲和丙相遇;一个追及问题:丙和乙的追及问题。

而且这三个问题之间有着相互的联系,甲和丙的相遇路程就是丙和乙的追及路程,丙和乙的追及时间就是甲和乙的相遇时间。

利用这些关系层层推进即可解出答案。

【例2】甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人。

已知甲车每分钟行1000米,丙车每分钟行800米,求乙车的速度是多少?[审题要点]摩托车在各时间点行驶的位置是甲、乙、丙三车行驶距离的度量,所以本题的关键是求出摩托车的速度。

[详解过程]甲与丙行驶7分钟的距离差为:(1000-800)×7=1400(米),也就是说当甲追上骑摩托车人的时候,丙离骑摩托车人还有1400米,丙用了14-7=7(分)追上了这1400米,所以丙车和骑摩托车人的速度差为:1400÷(14-7)=200(米/分),骑摩托车人的速度为:800-200=600(米/分),三辆车与骑摩托车人的初始距离为:(1000-600)×7=2800(米),乙车追上这2800米一共用了8分钟,所以乙车的速度为:2800÷8+600=950(米/分)。

[点评]从整体考虑,7分钟的时候摩托车与甲车在同一位置即7×1000=7000(米),14分钟的时候摩托车与丙车在同一位置即14×800=11200(米),所以所以摩托车在7-14分这7分钟内一共行驶了11200-7000=4200(米),所以摩托车的速度为4200÷7=600(米/秒),摩托车在8分钟时的位置为7000+600=7600(米),所以乙车的速度为7600÷8=950(米/分),这种解法比较类似于牛吃草问题。

【例3】铁路旁一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民,问:军人与农民何时相遇?[审题要点]涉及火车的行程问题中,火车的长度当然不能忽略,解题关键是找出15秒(12秒),火车行驶和人步行与火车车长之间的数量关系。

[详解过程]分析:火车速度为30×1000÷60=500(米/分)。

要求军人与农民的速度必须先知道知道军人和农民的速度。

由题目条件,从军人被火车头追上到车尾离他而去,一共有15秒,这十五秒可以看作车尾追及军人的时间,所以根据追及公式,火车速度减去军人速度等于110÷(15÷60)=440(米/分),所以军人的速度为500-440==60(米/分),即60米/分,同样的我们还可以求出农民的速度:110÷(12÷60)-500=50(米/分),即50米/分,8点06火车与农民相遇,所以8点时火车头与农民的距离为:(500+50)×6=3300(米),这么长一段路,军人与农民相遇需要3300÷(60+50)=30(分)。

此时的时间为8点30分。

[点评]1、此题中有着三个基本问题。

火车追及军人,火车农民相遇,军人和农民相遇,找到三者之间的关系就是解决题目的关键。

2、解决行程问题的关键是三步:a:正确画出示意图;b:把复杂的行程问题分解为每一个基本的相遇或追及问题;c:找到这些相遇或追及问题之间的数量关系,包括路程关系,时间关系与速度关系。

【例4】一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇,然后两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇。

A、B两地之间的距离是多少千米?[审题要点]结合两次相遇的时间规律,找出两个相遇点位置和A、B两地距离的关系。

[详解过程]根据题目中所给的条件,可以画出整个行程过程的线段示意图:摩托车卡车B A由示意图看出卡车从A 地出发后行驶了60千米时与摩托车相遇,此时卡车和摩托车共同行驶的路程和相当于一个AB 距离。

而卡车和摩托车第二次相遇的时候,卡车和摩托车共同行驶的路程和相当于三个AB 距离。

所以如果卡车、摩托车从出发到第一次相遇时所用时间为t 的话,那么卡车、摩托车从出发到第二次相遇时所用时间为3t ,因此第二次相遇时卡车行驶的距离为:60×3=180(千米)。

这180千米等于AB 的全程再加上B 地到第二个相遇点的距离30千米,所以AB 的距离为:180-30=150(千米)。

[点评] 本题是甘肃省第十四届小学生数学冬令营原题,类似的题目在很多杯赛中出现过。

题目中使用了比例的知识,题目并没有直接求出卡车和摩托车的速度和时间,但使用了两次的比例转换:首先是利用总路程的三倍关系得出时间的三倍关系,然后利用时间的三倍关系得出卡车的路程三倍关系。

【例5】 如下图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形。

甲、乙两人分别从两个对角处沿逆时针方向同时出发。

如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[审题要点] 当甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长。

[详解过程]当甲、乙之间的距离等于300米时,即甲追上乙一条边(300米)需300÷(90-70)=15(分), 此时甲走了90×15÷300=4.5(条)边,所以甲、乙不在同一条边上,甲看不到乙。

但是甲只要再走0.5条边就可以看到乙了,即甲从出发走5条边后可看到乙,共需2300590163⨯÷=(分),即16分40秒。

相关文档
最新文档