人教版七年级单元测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

123(第三题)A B C D E

(第10题)(第14题)A B C

D

E F G H

第13题A

B

C D

1

234

(第2题)

1234567

8

(第4题)

a

b c A B

C

D

(第7题)七年级数学第五章《相交线与平行线》测试卷

一、选择题

1、如图所示,∠1和∠2是对顶角的是( )

A

B

C D

1

2

1

2

1

2

1

2

2、如图AB ∥CD 可以得到( )

A 、∠1=∠2

B 、∠2=∠3

C 、∠1=∠4

D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )

A 、90°

B 、120°

C 、180°

D 、140°

4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:

①∠2=∠6 ②∠2=∠8

③∠1+∠

4=180°

④∠3

=∠8,其中能判断是a

∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④

5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )

A 、第一次左拐30°,第二次右拐30°

B 、第一次右拐50°,第二次左拐130°

C 、第一次右拐50°,第二次右拐130°

D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )

B

D

7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )

A 、3:4

B 、5:8

C 、9:16

D 、1:2 8、下列现象属于平移的是( )

① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走

A 、③

B 、②③

C 、①②④

D 、①②⑤

9、下列说法正确的是( )

A 、有且只有一条直线与已知直线平行

B 、垂直于同一条直线的两条直线互相垂直

C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

D 、在平面内过一点有且只有一条直线与已知直线垂直。

10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( ) A 、23° B 、42° C 、65° D 、19° 二、填空题___________。

12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由是_____ 11、直线AB 、CD 相交于点O ,若∠AOC =100°,则∠AOD =__________________。 13、如图,在正方体中,与线段AB 平行的线段有__________________________。 14、奥运会上,跳水运动员入水时,形成的水花是评委评分的一个标准,如图所示为 一跳水运动员的入水前的路线示意图。按这样的路线入水时,形成的水花很大,请你 画图示意运动员如何入水才能减小水花?

15、把命题“等角的补角相等”写成“如果……那么……”的形式是:___________________。

16、如果两条平行线被第三条直线所截,一对同旁内角的度数之比是2:7,那么这两个角分别是_______。 三、解答题:

17、如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数。

1A

B O

F

D E C (第18题)

A B C A

O

D

B

E C

A B D E F 1423第19题)18、如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的

度数。

20、△ABC 在网格中如图所示,请根据下列提示作图 (1)向上平移2个单位长度。(2)再向右移3个单位长度。

21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。 此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的 夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?

22、把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。

23、如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D ,那么DF ∥AC ,请完成它成立的理由

∵∠1=∠2,∠2=∠3 ,∠1=∠4( )

∴∠3=∠4( )

∴________∥_______ ( )

∴∠C =∠ABD ( ) ∵∠C =∠D ( ) ∴∠D =∠ABD ( ) ∴DF ∥AC ( ) 24、如图,DO 平分∠AOC ,OE 平分∠BOC ,若OA ⊥OB ,

(1)当∠BOC =30°,∠DOE =_______________ 当∠BOC =60°,∠DOE =_______________ (2)通过上面的计算,猜想∠DOE 的度数与∠AOB 有什么关系,并说明理由。

B A

C

D E

F G M

N 1

2

相关文档
最新文档