复合模糊控制策略及应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2004-09-24复合模糊控制策略及应用

王 君,李 炜,乔平原

(兰州理工大学电气工程与信息科学学院,甘肃兰州 730050)

摘 要: 提出了一种复合模糊分段控制策略,应用于具有大惯性、强扰动并难以建立准确模型的系统,通过计算机仿真对三层PE温度控制系统进行模拟,取得了良好的效果.

关键词: 模糊控制;中频炉;三层PE

中图分类号: TP273 文献标识码: A 文章编号:1004-0366(2005)03-0108-04

A Segmented Fuzzy Control S trategy and Its Application

W AN G Jun,LI W ei,QIAO Ping-y uan

(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou730050,China)

Abstract: A segm ented fuzzy control stra tegy is presented.It can be used to the system w hose exact mod-el is difficult to establish due to la rg e inertia and stro ng disturbances.Sim ula tion fo r the tem perature con-trol sy stem o f a three-lay er PE process has been do ne with goo d effects.

Key words: fuzzy contro l;intermediate frequency stov e;three-layer PE

三层PE又称聚乙烯三层结构防腐层,是国际上目前最为先进的防腐技术之一.由于三层PE的生产工序较为复杂,各种变量之间存在强耦合、大惯性、非线性等特点,系统的工况随加工原料的不同复杂多变,对其建立精确的数学模型较为困难.因此采用传统的控制技术往往难以奏效,难以得到满意的效果.国内大多钢质管道聚乙烯防腐成型生产线的操作、工艺路线的确定都是根据生产者的经验确定,采用人工手动加电气控制配合的生产方式.受人为因素的影响,往往造成生产过程的不稳定,产品质量难以保证,生产效率低[1,2].

模糊控制作为智能控制的一个重要分支,非常适用于控制那些因具有高度非线性、或参数随工作点的变动较大、或交叉耦合严重、或环境因素干扰强烈,而不易获得精确数学模型和数学模型不确定或多变的一类被控过程,也是当前控制领域的一个研究热点[3].

针对三层PE生产工艺中严重制约生产效率以及影响产品质量的包覆段中恒速段传动、钢管胶化时的温度以及塑料挤出成型等工艺流程中的温度参数,以及在作者原有研究的基础上提出了一种复合模糊分段控制策略.以靖边防腐厂生产线的工艺参数为背景,进行仿真实验,仿真结果证明了这种算法的有效性.

1 系统工艺要求及结构模型建立如图1所示,经抛丸段预处理后的钢管,首先进入中频炉加热至200℃左右,经喷粉箱采用静电喷涂技术在钢管外表面熔结一层还氧树脂底漆(FBE),中间胶膜必须在FBE的胶化时间内包覆在钢管内,以保证熔融的共聚物粘胶剂与胶化状态的FBE发生化学反应,牢固粘结在钢管表面

.

图1 系统工艺模型

第17卷 第3期2005年9月

甘肃科学学报

J ou rnal of Gansu Sciences

Vol.17 No.3

Sep.2005

由文献[4,5]可知,FBE 胶化时间与钢管在经过中频加热后的温度有关系,而加热温度决定了中频加热功率以及钢管的轴向速度,即感应加热的温度受加热时间和供电电压的控制[6]

.轴向速度又取决于钢管的转速.另外,考虑到环境因素的影响,钢管在进入中频炉之前的初始温度会有较大的波动(-10℃~35℃),故对初始温度影响,应加入前馈补偿装置.从中频炉出口经粉仓至胶化,由于环境温度的影响会使钢管温度有所降低,且降低的值也会随环境温度的不同而不同,为了保证钢管的温度能满

足FBE 的理想胶化时间要求,可根据温降方式适当地对模型进行补充修正.最后,还应考虑由于钢管轴向速度的微小变化对温度的影响,可将其作为温度环的扰动加以抑制.综合以上分析,系统的控制结构方框图如图2所示.其中:k /(T 0s +1)为钢管感应加热的传递函数,-1/k 为前馈补偿的传递函数,1/(T 0s +1)为钢管进入中频炉前由初始温度θ0引起的扰动通道传递函数,1/(T 1s +1)为中频炉出口经粉仓至胶化由环境温度θ1引起钢管温降的传递函数

.

2 温度控制器设计

2.1 结构设计

模糊控制器(FLC)的结构设计是指确定控制器的输入变量和输出变量,目前被广泛采用的均为二维模糊控制器,即以误差和误差的变化为输入变量,以控制量的变化为输出变量.要提高基本FLC 的精度和跟踪性能,就必须对语言变量取更多的语言值,即分档越细性能越好,但同时带来的缺点是规则数和系统的计算量也大大增加,以至模糊控制规则表也更难把握,调试更加困难,或不能满足实时控制的要求.

为解决这个矛盾,在论域内用不同控制方式分段实现控制如图3所示,当偏差大于某一个域值时,用比例控制,以提高系统响应速度,加快响应过程;当偏差减小到域值以下时,切换转入模糊控制,以提高系统的阻尼性能,减小响应过程中的超调

.

然而,模糊控制没有积分环节,而且对输入量的

处理是离散而有限的,即控制曲面是阶梯形而非平滑的,因而最终必须存在稳态误差,即可能在平衡点附近出现小振幅的震荡现象.而PI 控制在小范围对此的调节效果是较理想的,其积分作用可消除稳态误差.因此,可采用一种多模态控制算法来综合比例、模糊和比例积分的长处,不但可以使系统具有较快响应速度和抗参数变化的鲁棒性,而且可以对系统实现高精度控制.2.2 FLC 的设计

(1)语言变量模糊集及隶属度函数确定 根据图3可知,FLC 选用系统的实际输出温度θy 与温度给定值θr 的误差e =θy -θr 及其误差的变化de 作为输入语言变量,把控制中频加热装置的供电电压变化量u 选作输出语言变量.

3个语言变量的量化等级均取13级,即E =d E =U =

{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.误差e 的基本论域为[-10℃,10℃],当|e |>10℃时进入比例控制;误差变化de 的基本论域为[-15℃/dec ,15℃/dec ];控制输出u 的基本论域为[-25V ,25V ].各量化因子为

Ke =0.6、Kc =0.4、Ku = 4.2.

把模糊集E 、d E 、U 的语言变量设为7个{N B 、N M 、N S 、ZR 、P S 、PM 、PB },实验研究结果表明,用正态型或近似正态型模糊变量来描述人进行控制活

动时的模糊概念是适宜的[7].故由此可得出,E 、d E 、

109

第17卷 王君等:复合模糊控制策略及应用

相关文档
最新文档