锅炉主蒸汽温度低原因及处理

合集下载

超临界直流锅炉影响汽温的因素分析及调整

超临界直流锅炉影响汽温的因素分析及调整

超临界直流锅炉影响汽温的因素分析及调整摘要:超临界直流锅炉汽温的调整对锅炉、汽轮机的安全性和经济性都有很大影响,随着锅炉本体及辅助设备布置形式的不同,各自的汽温调整也存在很大差异,本文主要对影响汽温的因素进行重点分析,得出总结,在实际操作中针对应的汽温调整特性进行调控,提高经济效益和安全性。

关键词:主汽温、减温水、中间点温度1 引言现代锅炉对过热汽温和再热汽温的控制是十分严格的,汽温过高过低,以及大幅度的波动都将严重影响锅炉、汽轮机的安全和经济性。

蒸汽温度过高,超过设备部件允许工作温度,将使钢材加速蠕变,从而降低设备使用寿命。

严重的超温甚至会使管子过热而爆破。

蒸汽温度过低,将会降低热力设备的经济性。

汽温过低,还会使汽轮机最后几级的蒸汽湿度增加,对叶片侵蚀作用加剧,严重时将会发生水冲击,威胁汽轮机的安全。

汽温突升或突降会使锅炉各受热面焊口及连接部分产生较大的热应力。

还将造成汽轮机的汽缸与转子间的相对位移增加,即胀差增加。

严重时甚至可能发生叶轮与隔板的动静摩擦,汽轮机剧烈振动。

2 正文一、超临界直流锅炉主汽温的影响因素1、煤水比直流锅炉运行中,为维持额定汽温,锅炉燃料量与给水流量必须保持一定比例。

煤水比合适则锅炉的热水段长度、蒸发段长度和过热段长度才能维持正常比例,蒸汽的过热度才能在合理范围内,金属管壁温度和蒸汽温度才能在合理范围内。

2、蒸汽流量波动给水量增加或主汽门关小,引起主汽流量增加,燃料量虽成比例的也增加,但由于超临界直流锅炉的过热器呈辐射特性,主汽温度应该会降低;后者的话,调门关小,主汽流量减小,主汽温度会有所增加。

3、中间点温度运行中当煤水比增大时,中间点温度便会自然升高。

因此,改变中间点温度的设定值,可使煤水比变动,从而影响汽温。

降低中间点温度设定值,过热汽温降低,反之则汽温升高。

3.1、给水温度机组加热器因故停运时,锅炉给水温度就会降低。

给水温度降低,使工质加热段的吸热需求量增加,若仍维持煤水比,直流锅炉的加热段将延长,过热段缩短(表现为过热器进口汽温降低同时锅炉出口烟气温度及排烟温度降低),过热汽温会随之降低。

循环流化床锅炉主汽温度偏低的原因及解决方案

循环流化床锅炉主汽温度偏低的原因及解决方案

循环流化床锅炉主汽温度偏低的原因及解决方案一、原因分析:1.燃烧不完全:燃烧不完全是主汽温度偏低的常见原因之一、可能是燃料不均匀供给或供气不足导致的。

燃料不均匀供给会造成部分燃料燃烧不完全,从而影响主汽温度。

2.循环系统问题:循环系统中可能存在泄漏或堵塞等问题,导致循环介质流速偏低,无法将热量有效地传递到主汽中。

3.过量空气:过量的空气会稀释燃烧中的热量,导致主汽温度偏低。

可能是燃烧风机调节不当或控制系统故障导致的。

4.锅炉负荷不足:如果锅炉负荷较低,燃烧产生的热量不足以满足主汽的温度需求,从而导致主汽温度偏低。

二、解决方案:1.检查燃料供给系统:确保燃料供给均匀,可以使用燃料供给均衡装置进行调整。

同时,检查燃气供应系统,确保燃气供应充足。

2.检查循环系统:定期检查循环水系统,清洗水管,消除堵塞现象。

及时修复和防止泄漏,确保循环介质流速正常。

3.优化燃烧调节系统:调整燃烧风机的转速和空气送风量,使之能够满足燃料燃烧所需的氧气供应,避免过量空气的情况发生。

4.提高锅炉负荷:通过调整燃料供给量和燃烧条件,适时提高锅炉负荷,以提高燃烧产生的热量,从而提高主汽温度。

5.检查主汽调节系统:检查主汽调节系统的工作状态,确保主汽温度控制精度和稳定性。

如果发现故障,及时修复或更换故障部件。

6.定期检查锅炉烟气流动情况:定期检查锅炉烟气流动情况,确保烟道内无过多的烟灰积聚,防止烟气流动受阻,影响热量传递效果。

7.定期进行锅炉清灰:锅炉内积灰会影响热量传递效果,导致主汽温度偏低。

定期使用合适的方法进行清灰,保持锅炉内部清洁。

8.考虑采用余热回收技术:考虑采用余热回收技术,利用废气和废热产生的热量进行热能回收。

增加热量输入,提高主汽温度。

以上是主汽温度偏低的原因及解决方案的一些建议。

要解决主汽温度偏低的问题,需要综合考虑锅炉的各个方面,从燃料供给、循环系统、燃烧调节、锅炉负荷等多个方面入手进行检查和调整。

同时,及时维护和保养锅炉设备,定期进行清洁和检查。

锅炉汽温的控制和调节

锅炉汽温的控制和调节

燃料性质的变化
锅炉运行中,经常会碰到燃料品质发生变化的情况,当燃烧品质发生 改变时,燃烧的发热量、挥发分、灰分、水分和灰渣特性等都会发生 变动,因而对锅炉工况的影响比较复杂。当燃料中的灰分或水分增大 时,其可燃物质含量必然减少,因此燃料的发热量及燃烧所需要的空 气量和燃烧生成的烟气量等均将降低。这一变化,可以从燃料量及风 量未变时炉膛出口氧量增大这一现象上反映出来。在燃料量不变的情 况下当灰分或水分增大时,由于燃料的发热量降低,将使燃料在炉内 总放热量下降,其后果相当于总燃料量减少,在其它参数不变的情况 下,必将造成过热汽温的下降。如需保持过热汽温和锅炉出力不变, 必须增加燃料量保持炉膛出口氧量不变方能达到。 当燃煤的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛 温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使 辐射式过热器的吸热量降低,对流式过热量增加。必须指出,燃料中 的水分增大时,如通过增加燃料量保持炉膛出口氧量不变,则炉膛温 度、辐射受热面的吸热量可保持不变,但由于烟气的容积和重度是随 水分相应增加的,所以烟气的对流放热将增大。 当煤粉变粗时,燃料在炉内燃烬时间延长,火焰中心上移、汽温 将升高。
锅炉受热面的传热特性
锅炉的受热面,按传热方式一般可分为辐射受热面、半辐射受热面和对流受热面三种类型。水冷壁蒸发 受热面,前屏及包复管受热面等,由于辐射换热量占主要成份,一般属辐射受热面;后屏过热器一方面 吸收烟气的对流传热,另一方面又吸收炉膛中和管间烟气的辐射传热,属半辐射受热面;省煤器及对流 烟道中的过热器、再热器等受热面由于对流换热量占主要成份,一般属对流受热面。 随着锅炉负荷的变化,炉内辐射传热量和对流传热量的分配比例将发生变化。当锅炉负荷增加时, 对流受热面的传热份额将增加,辐射受热面的传热份额相对减少,而半辐射受热面则影响较小,见图42-1。 锅炉负荷增加时,炉膛温度及炉膛出口烟气温度均将升高,由于炉膛温度的提高,总辐射传热量将 增加;但是炉膛出口烟温的升高,又表示了每千克燃料在炉内辐射传热量的相应减少。所以锅炉负荷增 加时,辐射吸热量增加的比例将小于工质流量增加的比例。也就是说,随着锅炉负荷的增加,辐射受热 面内单位工质的吸热量将减少,使锅炉辐射传热的份额相对下降。 锅炉负荷增加时,一方面由于燃料量、风量相应增加,烟气量增多,使流经对流受热面的烟气流速 增加,从而增大了烟气对管壁的对流放热系数;另一方面由于炉膛出口烟温升高,使烟温与管壁温度的 平均温差增大,导致对流吸热量增加的比例大于负荷增加时工质流量增加的比例,使对流受热面内单位 工质的吸热量增加,锅炉对流传热份额上升。 此外,对流受热面内工质的负荷一汽温特性变化率还与受热面所处烟气温度的高低有关。受热面布 置在远离炉膛出口处时,汽温随锅炉负荷增高而上升的趋势将更加明显。对于布置在高烟温区的对流受 热面,由于烟气辐射吸热所占比例较大,使其在负荷变化时汽温变化较小,特性曲线近似于半辐射受热 面而显得比较平坦。 对于半辐受热面,由于它同时以辐射和对流两种方式传热,锅炉负荷升高时辐射传热减少而对流传 热增加,负荷降低时则反之,因而总的传热量将变化不大,使锅炉负荷变化时半辐射受热面内工质温度 的变化比较平稳。 为改善过热汽温的变化特性,目前大容量高参数锅炉过热器的布置大多采用联合式过热器,即整个 过热器由若干级辐射、半辐射和对流过热器串联组成,例如本锅炉采用一级屏式过热器和二级过热器串 联而成,前者为辐射受热面,后者为半辐射受热面。由于布置得当,当负荷在较大范围内变化时均可得 到相当平稳的汽温变化特性,在30%MCR至100%时 MCR时,过热汽温仅从535℃升至540℃,变化相 当小。 再热器根据其特性,以往大多采用对流布置型式。为了改善低负荷(尤其是机组热态启动阶段)及变工 况时的再热汽温特性,本锅炉的再热器采用半辐射和对流受热面串联组成的联合型式,结合再热汽温的 调节手段,再热汽温在50%MCR至100%MCR之间均能稳定在540℃的设计值。

(完整)锅炉主蒸汽温度低原因及处理

(完整)锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。

一、主蒸汽温度过低的危害当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。

一般机组主蒸汽温度每降低10℃,汽耗量要增加1.3%~1.5%。

主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全.其主要危害是:(1)末级叶片可能过负荷.因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。

(2)末几级叶片的蒸汽湿度增大。

主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。

(3)各级反动度增加。

由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低.(4)高温部件将产生很大的热应力和热变形。

若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。

(5)有水击的可能.当主蒸汽温度急剧下降50℃以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。

二、引起主蒸汽温度低的因素:1)水煤比。

在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。

当调节汽阀阶跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力P T一开始立即下降,然后逐渐下降至新的平衡压力。

由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。

循环流化床锅炉主再热汽温低的原因及改造措施

循环流化床锅炉主再热汽温低的原因及改造措施

循环流化床锅炉主再热汽温低的原因及改造措施摘要:中国燃煤电站锅炉正常运转时,锅炉再热蒸汽温度小于设计值是一个普遍现象。

锅炉再热蒸汽温度下降的真真正正原因是什么,应当怎样改善?关键词:锅炉、循环流化床锅炉、措施引言:本文选用了东锅所生产的DG-1177/175-II3型为例,该加热炉关键由一组膜式水冷壁炉膛出口、三个汽冷旋风分离器,以及一组尾部竖并三部分所构成。

炉内设有屏式受热面:12块膜式过热器管屏、6块膜式再热器管屏和二块水冷式风扇散热蒸发屏;并采用了三个由膜管屏覆盖着的水汽冷高效率旋风分离器,每一个旋风分离器下边设置一个回料器。

激波吹灰机,是由北京楚能科技开发公司所生产的激波吹灰器.采用了树状管路的分布式系统,系统中设有六十四个点。

过温器蒸汽温度调节由二级喷嘴控制,再热蒸汽调节通过尾端双烟道挡板做为正常运行的控制技术手段。

为了调节蒸汽温度的准确性,低压环境下再加压装置在屏式再加压装置的软管上,而超低温下再加压装置进口的配有调整洒水减温减压装置采用了预留设计,再增压装置事故洒水时不能作为系统正常工作的控制手段。

发电机组历经了一年多的运转,但二台发电机组再热器出口汽温度却始终较差,当二台发电机组在满负载下,再热器出水温一般为510℃以下,当机组负荷在250MW以下时,再热汽温度最多只能在520℃以下,而且始终无法满足额定值参数541℃运行,严重损害了二台发电机组的可靠性和经济效益。

一、循环流化床锅炉再加热时汽温降低的情况问题1.排烟温度偏高。

起动初期,锅炉的排烟温度基本接近于设定值,在运转一周后温度逐步上升。

但通过传热学的对流换热理论研究表明:对于水电站锅炉的主要热阻,都在排烟侧和灰垢边缘热阻上。

在锅炉机组设计条件规定的条件下,直接影响对流换热效果的就只是灰垢边缘热阻。

这也表明了各层受热面积灰较多,致使高温、低过加热器时吸收的热量明显减少。

而停炉后再检也证明了这些。

可见,最初使用的声波式吹灰装置吹灰时效率较差。

如何解决锅炉主再热汽温偏低问题

如何解决锅炉主再热汽温偏低问题

如何解决锅炉主、再热汽温偏低问题张兆民(大唐安阳发电厂发电部,河南安阳455004)摘要:为了维持稳定的汽温,并保持规程规定的汽温的高点,操作人员要掌握影响汽温变动因素,根据锅炉运行工况的变动及时地做出正确的判断和处理。

本文将结合工作实际,探讨如何解决锅炉主、再热汽温偏低的问题。

关键词:锅炉;主热汽温;再热气温;偏低中图分类号:TK223文献标识码:A 文章编号:1003-5168(2012)24-0001-01本厂#9、10锅炉型号:DG1025/18.2,亚临界自然循环汽包锅炉,单炉膛、一次中间再热,平行通风、钢构架、固态排渣、燃煤锅炉,制粉系统:中间储仓式;#1、2锅炉型号:DG1025/17.4,东方锅炉厂生产,亚临界、自然循环、单炉膛四角切园燃烧、一次中间再热、摆动燃烧器调温、平衡通风、固态排渣;制粉系统:风扇磨。

过热器是将饱和蒸汽加热到额定过热温度的锅炉受热面部件,再热器则是将汽轮机高压缸的排汽重新加热到额定再热温度的锅炉受热面部件。

设计锅炉的受热面时,规定了锅炉的燃料特性、给水温度、过量空气系数和各种热损失等额定参数,但实际运行时,由于各种扰动的存在,将不能获得设计预定的工况。

因此,锅炉的蒸汽参数将发生变化[1]。

1锅炉汽温调节的目的锅炉汽温调节的目的就是要在锅炉规定的负荷范围内,维持蒸汽温度的稳定。

锅炉在运行过程中,蒸汽温度将随锅炉负荷、燃料性质、给水温度、过量空气系数、受热面清洁程度的变化而波动,运行中应设法予以调节。

汽温过高,使管壁温度高,金属材料许用应力下降,影响其安全。

如高温过热器在超温10~20℃下长期运行,其寿命将缩短一半以上;汽温过低,机组循环效率下降,并使汽轮机排汽湿度增大,汽温下降10℃,煤耗增大约0.2%,对于高压机组,汽温下降10℃,汽轮机排汽湿度约增加0.7%;再热蒸汽温度不稳定,还会引起汽缸与转子的胀差变化,甚至引起振动。

汽温偏离额定值,对机组运行的经济性、安全性均有不利影响,在运行中,必须采取可靠的调节手段,维持汽温与额定汽温的差值不大于+5℃和一10℃。

330MW机组减负荷产生高压低温现象的分析与处理

330MW机组减负荷产生高压低温现象的分析与处理

330MW机组减负荷产生高压低温现象的分析与处理摘要:某330MW火电机组在协调方式下减负荷工况长期存在主汽压力升高、主汽温度降低的现象,通过实例分析,指出了导致这种异常现象的原因并进行了验证,改善机组在协调方式下减负荷工况的安全稳定性。

基于机组的动态特性和运行状况,从减负荷速率控制、燃烧调整等方面提出了优化方案,克服锅炉热惯性及迟滞性,提高机组变负荷能力。

优化后机组在AGC控制减负荷工况下,调节响应速度快、主汽压力波动小,机组运行稳定。

关键词:燃煤发电机组;主汽压力;协调控制;偏差引言某330MW火电机组参与电力现货市场及调频辅助服务交易的情况下,机组负荷跟随发电曲线深度调峰,现有的协调控制系统在机组大幅度减负荷工况下,主汽压力偏差大、煤量过调,出现主蒸汽压力高、温度低的现象,严重影响机组设备的安全运行,急需对协调控制策略进行优化和改进。

为此,分析协调方式下机组减负荷工况出现主蒸汽压力高、温度低的原因,并提出3项针对性的协调优化方案。

经过试验验证了优化方案的有效性和实用性,保证机组在减负荷工况下的安全稳定运行。

1 机组概况某330MW火电机组的锅炉为亚临界参数、汽包自然循环、一次中间再热、单炉膛。

制粉系统为典型的冷一次风机正压直吹式,配有5台中速辊式磨煤机。

汽轮机为亚临界、中间再热、单轴、两缸两排汽、双抽汽凝汽式供热汽轮机。

机组采用GE新华XDPS-400e系统,DCS与DEH一体化设计。

1.1 协调控制系统分析该330MW汽轮发电机组具备协调控制功能,协调控制系统的控制方式有:汽机主控、锅炉主控均为手动的BASE方式,汽机主控为自动的汽机跟随TF方式,锅炉主控为自动的锅炉跟随BF方式,汽机主控、锅炉主控均为自动的机炉协调控制CCS方式。

为保证机组运行的稳定性和经济性,正常运行中机组应在协调控制方式下运行。

协调控制系统(CCS)是指机组利用分散控制系统的逻辑回路协调汽轮机、锅炉保持高度一致,向锅炉主控、汽轮机主控分别传递指令,保持跟踪自动发电控制系统(AGC)发出的功率指令,并且维持机组重要参数运行在正常范围内的系统。

600MW超临界"W"型锅炉机组主蒸汽温度低的分析及处理

600MW超临界"W"型锅炉机组主蒸汽温度低的分析及处理
协 调 时 锅 炉 机 组 主 蒸 汽 温 度 低 的 问 题 .不 仅 造 成 机
B R MC
60 6 l9 0 0 5 71 2 .0 54
E R C
6 0 0 16 7 7 5 1 7 2 .1 51
1 8h试 运 6
6 O1 1 71 0 5 1 7 2 .O 5O
中图 分 类 号 :T 2 9 K2. 2
文 献标 志码 :B
文章 编 号 :1 0 6 9 2 1 )0 0 3 -4 0 49 4 ( 0 0 1 —0 1 0
电 厂 ) 二 期 扩 建 工 程 1 6 0MW 机 组 3号 锅 炉 采 用 x0
0 引言
国 内外 超 临 界 锅 炉 无 “ ” 焰 燃 烧 方 式 . 燃 W 火 只 用 烟 煤 、 煤 对 “ ” 火 焰 超 临 界 锅 炉 燃 用 无 烟 煤 贫 W 型 尚 无 先 例 大 唐 华 银 金 竹 山 火 力 发 电 有 限 公 司 3号 锅 炉 . 是 世 界 上 首 台 6 0 MW 超 临 界 燃 用 无 炯 煤 的 0 “ ” 火 焰 锅 炉 . 次 采 用 低 流 速 垂 直 水 冷 壁 炉 膛 W 型 首
组 被 迫 降 负 荷 、 至 机 组 异 常 停 运 , 且 严 重 威 胁 锅 甚 而 炉 机 组 安 全 运 行 .因 此 有 必 要 分 析 高 负 荷 时 锅 炉 机 组 主 蒸 汽 温 度 低 的 原 因 对 于 自 动 化 程 度 较 高 的 6 0 MW 超 临 界 “ ” 火 焰 锅 炉 机 组 . 方 面 必 须 制 0 W 型 一
布 置 的“ ” 焰 F W 火 I型 锅 炉 锅 炉 主 要 设 计 参 数 如 表 1所 示 . 锅 炉 按 带 基 本

锅炉常见故障及处理

锅炉常见故障及处理

第一节故障停炉一、遇有下列情况之一必须紧急停炉:1、锅炉严重缺水,水位在汽包水位计中消失。

2、锅炉严重满水,水位超过汽包水位计上部可见水位时。

3、锅炉爆管,不能维持正常水位时。

4、燃料在燃烧室后的烟道内燃烧,使排烟温度不正常地升高时。

5、所有水位计损坏时。

6、锅炉汽水管道爆破威胁设备与人身安全时。

7、压力超出动作压力,安全门不动作,同时对空排汽无法打开时。

8、燃烧室结焦,一次返料结焦,无法正常工作时。

二、遇有下列情况须请示值长停炉:1、水冷壁管、省煤器管、过热器管与减温器管泄漏时。

2、燃烧室内与烟气接触的汽包或联箱上的绝热材料脱落时。

3、炉墙裂缝且有倒塌危险或炉架横梁烧红时。

4、锅炉汽温或过热器壁温超过允许值,经调整和降低负荷仍未恢复正常时。

5、锅炉给水、炉水或蒸汽品质严重低于标准,经处理仍未恢复正常时。

三、紧急停炉的程序:1、立即停止给煤,停止二次风机、一次风机和引风机的运行。

若汽水管道爆破,则引风机不停,关闭减温水与旁路门。

2、因炉膛结焦而停炉,停炉后开启炉膛人孔门,观察结焦情况尽可能撬松渣块与时扒出炉外。

3、根据水位情况保持给水门适当开度,维持正常水位。

如满水、缺水或汽水管道爆破无法维持水位时,立即停止向锅炉上水。

4、关闭主汽门,单炉运行应通知汽机。

5、炉内有缺陷需消除时,8小时后将炉渣放尽,启动引风机强制冷却。

若压力到零位才能检修时,则加强上水、放水次数,但应得到厂级领导批准。

若要把炉水放尽才能检修时,则按正常消压。

第二节锅炉水位异常一、锅炉满水:1、现象:①水位报警器报警,高水位信号灯亮;②电接点水位计指示灯正值全亮;③汽包水位高于最高可见水位;④给水流量不正常地大于蒸汽流量;⑤蒸汽含盐量增大;⑥过热汽温下降;⑦严重满水时,蒸汽管道内发生水冲击,法兰处冒汽。

2、原因:①给水自动失灵,给水调节装置失灵。

②水位计、蒸汽流量表、给水流量表指示不正确,使运行人员误判断而误操作。

③给水压力忽然升高。

锅炉主蒸汽、再热蒸汽温度问题原因与解决方法

锅炉主蒸汽、再热蒸汽温度问题原因与解决方法

锅炉主蒸汽、再热蒸汽温度问题原因与解决方法一、主蒸汽温度(℃):(一)、可能存在问题的原因:1、下列情况主蒸汽温度升高:①、炉膛火焰中心上移,炉膛出口温度升高。

②、煤量增加过快。

③、燃煤的挥发分降低,煤粉变粗,水分增加。

④、过剩空气量增加。

⑤、制粉系统启停。

⑥、减温水自动控制调整不当。

⑦、过热器吹灰选择不当。

⑧、给水温度偏低。

2、下列情况主蒸汽温度降低:①、火焰中心下偏:燃烧器摆角有偏差,下摆;喷燃器从上层切换到下层,或下层给粉量过多。

(煤粉炉)。

②、燃煤的挥发分增大,煤粉变细,水分减少。

③、过热器受热面积灰、结渣、内部结垢。

④、锅炉汽包汽水分离效果差。

⑤、减温水阀门内漏。

⑥、自动调整不当,减温水量过大。

⑦、炉水水质严重恶化或发生汽水共腾。

⑧、给水温度升高。

⑨、水冷壁和省煤器吹灰时间选择不当。

⑩、煤量减少过快。

(二)、解决问题的方法:1、运行措施:①、AGC控制时要严密监视给煤量波动情况,出现燃料猛增猛减的情况,须对减温水调节进行人工干预。

②、人为调整负荷时,煤量增减幅度不能过大。

③、进行优化燃烧调整试验,确定锅炉最佳氧量值,合理调节锅炉氧量。

④、调整燃烧器投运方式,通过燃烧调整保证锅炉的主蒸汽温度。

⑤、正常投入锅炉主蒸汽温度自动控制。

⑥、加强监视过热器各段汽温,对汽温调整做到勤调、细调,减少喷水减温水量,控制主蒸汽温度。

⑦、通过试验掌握制粉系统运行方式变化对主蒸汽汽温的影响规律,分析原因,做好预见性调整工作。

⑧、合理进行受热面吹灰。

⑨、分层调整燃料量,合理控制火焰中心,调节一、二次风配比,必要时改变过量空气系数。

2、日常维护及试验:①、进行燃烧调整试验,确定锅炉最佳的运行方式和控制参数。

②、提高主蒸汽温度自动调节品质。

③、及时发现和分析炉膛火焰中心发生偏移的原因,并采取针对性措施。

3、C/D修、停机消缺:①、消除减温水各阀门内漏现象。

②、受热面焦、积灰清理。

③、疏通预热器,处理烟道漏风。

4、A/B修及技术改造:①、对汽包内各汽水分离装置进行检查清理,及时消除有关缺陷。

锅炉主汽温度异常事故预案

锅炉主汽温度异常事故预案

一、预案目的为保障锅炉安全运行,有效预防和应对锅炉主汽温度异常事故,最大限度地减少人员伤亡和财产损失,根据国家有关法律法规和公司安全生产要求,特制定本预案。

二、适用范围本预案适用于公司所有锅炉在运行过程中出现的锅炉主汽温度异常事故。

三、事故类型及原因1. 事故类型:(1)主汽温度过高:指锅炉主汽温度超过规定值,可能引起过热器、再热器等设备损坏。

(2)主汽温度过低:指锅炉主汽温度低于规定值,可能影响机组发电效率。

2. 原因分析:(1)燃烧不稳定:燃料质量不合格、燃烧器故障、风量不足等。

(2)给水温度变化:给水温度过高或过低。

(3)蒸汽系统故障:过热器、再热器等设备故障。

(4)控制系统故障:温度控制系统失灵。

四、应急响应1. 事故报警(1)当锅炉主汽温度异常时,应立即启动报警系统,通知相关人员。

(2)值班人员应立即向相关部门报告,并按照预案要求采取相应措施。

2. 应急措施(1)调整燃烧工况:根据原因分析,调整燃烧器、风量等,确保燃烧稳定。

(2)调整给水温度:根据需要,调整给水温度,确保主汽温度恢复正常。

(3)检查设备:对过热器、再热器等设备进行检查,发现故障及时处理。

(4)控制系统:检查温度控制系统,确保其正常运行。

3. 人员疏散(1)当事故可能导致人员伤亡时,应立即组织人员疏散。

(2)疏散路线应明确,确保人员安全。

4. 事故处理(1)值班人员应按照预案要求,迅速处理事故。

(2)如事故无法自行处理,应立即联系专业人员进行抢修。

五、后期处理1. 事故调查:事故发生后,应立即进行调查,分析事故原因,总结经验教训。

2. 事故总结:根据事故调查结果,对事故进行总结,提出改进措施。

3. 事故报告:将事故报告报送相关部门,接受监督检查。

六、预案实施与培训1. 本预案由公司安全生产部门负责组织实施。

2. 公司应定期对全体员工进行预案培训,提高员工的安全意识和应急处置能力。

3. 本预案自发布之日起实施,如遇国家法律法规和公司政策调整,本预案将予以修订。

锅炉主汽温度低调整方法

锅炉主汽温度低调整方法

锅炉主汽温度低调整方法锅炉主汽温度是指经过蒸汽发生器生产后的蒸汽温度,对于许多工业和公共领域的应用来说,保持合适的蒸汽温度是非常关键的。

有时候会遇到锅炉主汽温度低的情况,这时就需要进行调整。

以下是一些调整方法。

1. 清洗管道和换热器有时候低温度是由管道内的污垢和水垢引起的。

这些物质可以妨碍蒸汽的流动,导致主汽温度下降。

定期清洁管道和换热器是防止这种情况发生的最好方法。

清洗管道和换热器可以使用专业的清洁剂和设备。

2. 减少进水温度进水温度对主汽温度有很大的影响。

如果进水温度太低,锅炉就需要耗费更多的能量使水变为蒸汽,这样就会导致主汽温度下降。

因此,调整进水温度可以提高主汽温度。

但是,调整进水温度时应该注意不要让水温过高,否则会增加锅炉的负担。

3. 调整燃烧器主汽温度低可能是由燃烧器不正常工作引起的。

燃烧器的调整应该由专业人员完成。

特别地,在调整燃烧器的时候,应该注意燃料的种类、供应压力、喷嘴的大小等因素,以确保燃烧器能够正常工作。

4. 加热表面换热器锅炉主汽温度低还可以通过加热表面换热器来解决。

加热表面换热器可以将热量传递给蒸汽,提高蒸汽温度。

加热表面换热器通常与蒸汽发生器一起工作,是一种使蒸汽发生器更有效的方法。

5. 检查水位水位对锅炉主汽温度也有很大的影响。

如果水位过低,锅炉可能无法产生足够的蒸汽来满足需要,导致主汽温度下降。

因此,在调整锅炉主汽温度时,应该检查并调整水位。

总之,锅炉主汽温度低可能是由多种因素引起的。

只有根据具体情况进行调整,才能确保锅炉的正常工作和蒸汽的充足供应。

火电厂锅炉主再热汽温调整分析

火电厂锅炉主再热汽温调整分析

火电厂锅炉主再热汽温调整分析摘要:如今,随着我国经济的快速发展,在火电厂的运行中,锅炉是主要的运行设备之一。

锅炉的主蒸汽温度以及再热蒸汽温度是锅炉运行的主要的指标。

在锅炉实际运行中,会受到负荷、压力以及水温等因素的影响,导致锅炉的主再热汽温出现明显的变化,影响锅炉的燃烧效率,同时增加煤耗。

因此,需要对于影响锅炉主再热汽温的因素进行分析总结,更好地调整锅炉汽温。

该文分析了影响锅炉主再热蒸汽汽温变化的原因,给出了锅炉主再热汽温调整的策略,以供参考。

关键词:火电厂;锅炉;主再热;汽温调整引言在火力发电机组运行中,特别是低负荷时,主再热蒸汽温度降低,将影响机组的安全、经济运行。

一般情况下主蒸汽温度每降低10℃,相当于耗燃料0.2%。

对于10~25MPa、540℃的蒸汽,主蒸汽温度每降低10℃,将使循环热效率下降0.5‰、汽轮机出口的蒸汽湿度增加0.7‰。

这不仅影响了热力系统的循环效率,而且加大了对汽轮机末级叶片的侵蚀,甚至发生水击现象,以致造成汽轮机叶片断裂损坏事故,严重威胁汽轮机的安全运行。

因此正常运行中保证额定的主再热汽温,对于机组的安全和经济运行尤为重要。

1影响锅炉主再热汽温变化的因素第一,燃烧强度的影响。

如果随着风量以及煤量的增加而燃烧强度增强的话,那么主汽压力就会上升,主汽温度以及再热汽温都会随着烟气量的增加而上升。

第二,燃烧中心位置的影响。

当炉膛的燃烧中心上移时,那么炉膛的出口烟温就会升高,导致炉膛上部的过热器以及再热器吸收的热量增加,从而使主再热汽温升高。

第三,燃烧煤质量的影响。

如果煤质差的话,维持相同的蒸发量就需要增加燃料量,而低质煤炭中的含水量以及灰分较高,大量的燃烧会导致炉膛的出口炉温降低,会导致过热器吸收的热量减少,汽温就会下降。

第四,风量大小的影响。

烟气量的大小受风量大小的影响,尤其是对于过热器以及再热器的影响比较大,因此,当风量增加时,汽温就会上升,相反,风量减少时,汽温就会下降。

主汽温大幅下降的原因

主汽温大幅下降的原因

主汽温大幅下降的原因
主汽温大幅下降的原因可能有多种,以下是一些可能的原因及其简要解释:
1. 锅炉吹灰:在锅炉吹灰的过程中,特别是吹水冷壁时,水冷壁的吸热量增加,导致分离器出口的过热度增加。

为了维持过热度,自动调节系统会增加水,从而增大了水煤比。

这会导致产汽量增加,而给煤量没有变化,使得炉膛的吸热量增加,导致炉膛出口温度降低,烟气温度也随之降低。

由于蒸汽量的增加,对于对流换热来说,出口温度降低,最终过热汽温降低。

2. 一次风机出力不正常或跳闸:一次风机如果出现失速、喘振甚至跳闸的情况,会导致一次风压大幅下降,从而使得磨煤机的出力降低,主汽温度也会大幅走低。

3. 蒸汽压力异常:蒸汽压力过低会导致蒸汽中的热量散失,从而使主蒸汽的温度下降。

蒸汽压力的异常可能是由于蒸汽发生器故障、蒸汽管道泄漏、阀门失效等原因引起的。

4. 燃料供应异常:燃料供应异常也可能导致主蒸汽温度的急剧下降。

例如,当燃料供应不足或中断时,燃烧过程会受到影响,导致主蒸汽温度下降。

5. 进汽量变化:进汽量的突然变化也可能导致汽轮机主蒸汽温度下降。

这可能是由于过热器受到污染或堵塞、锅炉水位突然上升、安全阀突然泄放或调节阀调节不当等原因引起的。

为了应对主汽温大幅下降的情况,可以采取一些处理措施,如调整锅炉的运行参数、检查并修复设备故障、优化燃料供应等。

具体的处理措施需要根据实际情况来确定。

锅炉汽温、烟温偏低原因分析及处理

锅炉汽温、烟温偏低原因分析及处理

过热蒸汽出口流量 D1 t/h 435 392
过热蒸汽出口温度 T1″ ℃ 540 540
过热蒸汽出口压力 P1″ MPa 13.7 13.7
再热蒸汽出口流量 D2 t/h 357 323
再热蒸汽进口温度 t2′ ℃ 315 307
再热蒸汽出口温度 t2″ ℃ 540 540
再热蒸汽进口压力 P2′ MPa 2.59 2.34
围以外,主汽欠温会更加明显,见图 1。因此将分隔烟道内的旁路省 煤器全部或部分改成低温过热器会明显改善欠温状况(需要经过热力 计算确定)。 (4)为了提高汽温,无论负荷高低,运行中都采用高氧量运行 方式,炉膛出口过量空气系数在 1.4 以上 [2],这是引起热风 / 排烟温 度比设计值低的原因之一。 (5)为缓解炉膛左、右两侧的烟温、汽温偏差,缓解受热面超温 问题,运行中可加大上层反切二次风的风量。 (6)为缓解汽温欠温问题,采取合理的吹灰方式,在结焦问题不 严重的情况下,减少炉膛的吹灰频率,增加过热 / 再热受热面的吹灰 频率。
参考文献 : [1] 魏建 . 锅炉汽温偏低的原因分析及处理 [J]. 科技资讯 ,2015(10):56-58. [2] 黄伟 . 大型锅炉汽温偏低和燃烧不稳原因分析及措施 [J]. 中国电 力 ,2004(12):44-48. [3] 张济蓉 .130-410t/h 锅炉汽温偏低问题分析及处理 [J]. 东方电气 评论 ,1998(02):97-100.
2 异常情况
该厂 #5、6 炉自投产运行一年以来仍存在以下问题: (1)主蒸汽温度偏低。机组在 130 ~ 110MW 负荷时主蒸汽温度 维持较好,可达到 530℃以上,在此负荷范围之外,主蒸汽温度经常 维持在 510℃左右,即便减温水手动截门和电动调门全关,温度也无 法维持在 530℃以上,通过多次燃烧调整仍难以改变。 (2)再热蒸汽温度偏低,经常维持在 510℃左右,尤其是机组低 负荷(95MW 以下),再热蒸汽温度维持在 490℃左右,通过烟气挡 板调整和燃烧调整以及全关事故喷水、微量喷水也难以提高汽温。 (3)排烟温度和热风温度偏低。机组在额定负荷下运行时,排烟 温度和热风温度均与设计值相差太大,分别维持在 110℃和 280℃左右。 机组在低负荷(80MW)运行时,排烟温度为 90℃左右,发生低温腐蚀 的危害极大,同时热风温度低,对煤粉燃烧也造成一定程度的影响。

锅炉主汽温度低的原因及处理方法

锅炉主汽温度低的原因及处理方法

锅炉主汽温度低的原因及处理方法1. 引言锅炉的主汽温度就像是炖汤时的火候,火候不到,汤可就没味道了!当锅炉主汽温度低的时候,可真让人头疼。

别担心,今天咱们就来聊聊这个问题,顺便给大家支几招,处理起来就像喝水一样简单。

1.1 温度低的常见原因那么,锅炉主汽温度低究竟是怎么回事呢?首先,最常见的原因就是水位过低。

锅炉里的水就像我们吃饭时的米饭,太少了肯定不行!如果水位低,锅炉就没法正常运行,蒸汽自然也就温度不高了。

其次,锅炉内部的污垢堆积也可能导致热交换效率下降,简直就像厨房里油污重重,锅底粘得一塌糊涂,火都不容易打着。

再者,控制系统出现故障也是一个大问题,有时候就是那些小零件出了岔子,搞得锅炉像个“病号”,怏怏不振。

1.2 其他潜在因素此外,锅炉的燃料质量也不能忽视,像是劣质煤炭就容易让锅炉“罢工”,不仅使得燃烧不充分,还增加了废气排放。

还有,锅炉的运行环境也很重要,外部温度过低或风速过大,都会影响锅炉的热效率,像极了夏天空调开得太低,房间里还是热得像个蒸笼。

2. 处理方法知道了原因,接下来咱们就要说说处理的方法啦!首先,检查水位是重中之重。

确保水位在正常范围内,如果发现水位过低,赶紧加水,像是给锅里加点汤,让它继续煮下去,别让它干锅了。

其次,定期清理锅炉内部的污垢也是很重要的,保持锅炉的洁净,热交换效率自然提升,锅炉也就能焕发新生,像新买的一样。

2.1 燃料质量检查说到燃料,定期检查燃料的质量可不能少。

确保使用合格的燃料,不要因为贪小便宜买了劣质煤,得不偿失,得不偿失!当然,调节锅炉的运行参数也是个好办法,像调音一样,把锅炉的“音调”调到最佳,让它发出最美妙的声音。

2.2 控制系统的维护还有,记得对控制系统进行定期维护哦。

很多时候,问题就在那些小细节上,像是修自行车,零件没装好,车子可就不走了。

可以定期请专业的技术人员来检查,及时排查故障,确保锅炉稳定运行。

3. 总结最后,温馨提醒大家,锅炉就像家里的宝贝,得好好呵护!主汽温度低不是小事,处理不当可会影响生产效率,甚至造成更大的损失。

火电厂锅炉主汽温度变化原因及控制方法分析

火电厂锅炉主汽温度变化原因及控制方法分析

火电厂锅炉主汽温度变化原因及控制方法分析经济的快速发展,各行各业及人们在生产生活中对电能的需求量有了大幅度的提升,为了保证电能的有效供应,电厂在技术上有了很大的改变。

锅炉做为电厂正常生产运营的重要设备,其自身的正常运营是保证电能稳定供应的关键。

长期以来,在锅炉运行过程中其主蒸汽温度都是控制的难点。

文章对引起主蒸汽温度变化的各种原因进行了分析,并进一步对主汽温度控制的主要方法进行了具体的阐述。

标签:火电厂;锅炉;主汽温度;控制前言电厂的正常运行,需要各设备有效的发挥各自的性能,而锅炉做为电厂的重要生产设备,对电厂的稳定安全运行有着极其重要的作用。

主蒸汽温度作为锅炉运行过程中重要的输出变量,对其进行严格的控制,不仅可以保证锅炉运行的安全性和稳定性,同时还能有效的保证电能的正常供应,对锅炉的使用寿命将起到了积极的作用。

所以可以通过对过热器出口气温的控制来对主蒸汽温度进行调节,从而使其在正常范围内进行运转,这是具有十分重要意义的事情。

1 引起主蒸汽温度变化的各种原因分析1.1 主蒸汽压力的变化主蒸汽压力对于过热汽温的影响是通过工质焓升分配和蒸汽比热容的变化实现的,过热蒸汽的比热容受压力影响较大,低压下额定汽温与饱和温度的差值增大,过热汽总焓升就会减小。

1.2 给水温度的影响当锅炉出力不变时,给水温度的高低对主蒸汽压力的影响是很大的。

当锅炉给水温度较低时,则需要较多的燃料,这时炉膛内燃料量较多,炉内总辐射热及出口烟温差则会有所增加,同会导致过热器出口的汽温增加,同时烟气量和传热温差的增加也会使出口的汽温升高,这二者相加起来则会导致过热汽温有大幅度的升高,而且升高的幅度比锅炉单纯增加负荷时要大得多,通常情况下给水温度降低3℃,过热汽温就升高约1℃。

1.3 炉膛火焰中心位置的影响炉膛出口烟的温度会随着炉膛火焰中心位置的移动而发生变化,越往上移,其出口的烟温则会越高。

通常在锅炉运行时,导致其火焰中心位置温度发生的变化的因素较多,大致有以下几点:第一,煤质。

锅炉主蒸汽温度的调整手段

锅炉主蒸汽温度的调整手段

锅炉主蒸汽温度的调整手段
1. 燃烧调整:通过调整燃烧系统的供气量、燃烧器的喷嘴大小、点火时间等参数,控制燃料的供给量,从而影响蒸汽的温度。

2. 燃烧空气调整:通过调整燃烧器的空气进口量,使燃烧室内的氧含量达到最佳状态,从而影响蒸汽的温度。

3. 锅炉负荷调整:通过改变锅炉的负荷,调整蒸汽的产量和温度。

可以通过调整燃料的供给量、给水的供给量、引风机的转速等方式,改变锅炉的负荷状况。

4. 蒸汽过热器调整:蒸汽过热器是提高蒸汽温度的关键设备,通过调整过热器的出口温度,可以改变蒸汽的温度。

可以调整过热器的出口温度设定值,或通过改变过热器中的出口蒸汽流量、过热器的加热面积等方式。

5. 给水温度调整:给水温度是影响蒸汽温度的重要因素之一。

通过调整给水装置的供水温度,可以间接调整蒸汽温度。

以上是一些常见的锅炉主蒸汽温度调整手段,具体的调整方法需要根据锅炉的工作原理和具体情况来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我厂三期机组主蒸汽温度低原因及处理近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。

一、主蒸汽温度过低的危害当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。

一般机组主蒸汽温度每降低10℃,汽耗量要增加1。

3%~1。

5%。

主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。

其主要危害是:(1)末级叶片可能过负荷。

因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。

(2)末几级叶片的蒸汽湿度增大.主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命.(3)各级反动度增加.由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。

(4)高温部件将产生很大的热应力和热变形。

若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。

(5)有水击的可能.当主蒸汽温度急剧下降50℃以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。

二、引起主蒸汽温度低的因素:1)水煤比。

在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。

当调节汽阀阶跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力P T一开始立即下降,然后逐渐下降至新的平衡压力。

由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。

当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃烧率保持不变,过热汽温就基本保持不变。

燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动.当燃烧率B阶跃增加时,经过一段较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。

当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流量D、汽压P T、功率N E几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压P T也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度.给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。

这就是说明严格控制水煤比是直流炉主蒸汽调节的关键.a—汽机调节汽阀扰动 b-燃料率扰动 c-给水流量扰动图1 直流锅炉动态特性示意图图2燃料与给水比例增加时的动态特性2)给水温度。

在水煤比保持不变的前提下,给水温度降低,蒸发段后移,过热段减少,过热汽降. 给水温度温度降低较多,导致中间点的温度变化较大,引起水煤比的调节,过热汽温会回升甚至会短暂升高超过额定值. 3)煤质变化。

大容量超临界压力锅炉对煤种适应性强和其他因素,导致我厂用煤并不是单一的固定煤种,当煤种发生变化时,燃料中的元素构成和发热量都会发生改变,煤质成分的改变会对烟气与工质间的换热特性产生影响,使辐射换热和对流换热的比例发生变化.其中影响较大的是水分、挥发分和灰分.煤中水分、灰分变大,挥发分减小,都会导致燃料着火晚,燃烧和燃尽过程延迟,最高火焰温度位置上移。

发热量降低,当水煤比不变时,使得锅炉输入热量减少,燃料放出的热量和工质需要的热量不匹配,使过热汽温发生变化.4)过量空气系数。

过量空气系数增大,锅炉保持水煤比保持不变的前提下,锅炉总对流吸热量的增大,由于再热器表现为对流汽温特性,其吸热量会增大,再热汽温升高;由于锅炉送入的燃料量没有变化,输入总热量亦没有变化,再热器系统吸热量增加时,炉膛水冷壁和过热器系统的总吸热量减少,过热汽温会略有下降。

5)火焰中心位置。

对超临界直流锅炉而言,火焰中心上移,使炉膛水冷壁的辐射吸热量减少,炉膛出口烟温升高。

对流烟道中的吸热量增加,使过热器、再热器系统吸热量的增加,再热汽温升高;由于炉膛水冷壁的辐射吸热量减少,虽然过热器系统的吸热量有所增加,但炉膛水冷壁和过热器系统的总吸热量减少,过热汽温下降。

火焰中心下移时,再热汽温下降,过热汽温升高。

6)受热面沾污或结渣。

受热面沾污或结渣将使受热面吸热量减少,使过热汽温、再热汽温变化.受热面不同部位沾污对汽温的影响是不同的.进入纯直流运行的锅炉,炉膛水冷壁及过热器受热面沾污或结渣时会使一次汽吸热量不足,过热汽温下降.除受热面沾污或结渣时,过热汽温、再热汽温也会受到影响。

炉膛内掉渣时,直流运行的锅炉,过热器汽温会升高,再热汽温会下降;7)变压运行.大容量超临界锅炉普遍采用变压运行,变压运行时的主蒸汽压力是锅炉负荷的函数,当锅炉负荷降低时,主蒸汽压力下降,与之相应的工质理论吸热量(从给水加热至额定出口汽温所必须吸收的热量)增大,如果水煤比不变,过热器出口焓值降低,过热汽温下降。

三、主蒸汽温度的调节1)主蒸汽温度的粗调(即水煤比的调节)对于直流锅炉,控制主蒸汽温度的关键在于控制锅炉的水煤比,而水煤比合适与否则需要通过中间点温度来鉴定。

在直流锅炉运行中,为了维持锅炉主蒸汽温度的稳定,通常在过热区段中取一温度测点,将它固定在相应的数值上,这就是通常所谓的中间点温度.实际上把中间点至过热汽出口之间的过热区段固定。

在主蒸汽温度调节中,中间点温度实际是与锅炉负荷有关,中间点温度与锅炉负荷存在一定的函数关系,那么锅炉的煤水比B/G按中间点温度来调整,中间点至过热器出口区段的过热汽温变化主要依靠喷水减温调节.对于直流锅炉,其喷水减温只是一个暂时措施,要保持稳定汽温的关键是要保持固定的煤水比.其原因是:从图3可以看出直流炉G=D,如果过热区段有喷水量d,那么直流炉进口水量为(G—d)。

如果燃料量B增加、热负荷增加,而给水量G未变,这样过热汽温就要升高,喷水量d必然增加,使进口水量(G—d)的数值就要减少,这样变化又会使过热汽温上升。

因此喷水量变化只是维持过热汽温的暂时稳定(或暂时维持过热汽温为额定值),但最终使其过热汽温稳定,主要还是通过煤水比的调节来实现的。

而中间点的状态一般要求在各种工况下为微过热蒸汽。

图3 超临界压力锅炉工作示意图2)主蒸汽温度的细调考虑到实际运行中锅炉负荷的变化,给水温度、燃料品质、炉膛过量空气系数以及受热面结渣等因素的变化,对过热汽温变化均有影响,因此在实际运行中要保证比值B/G的精确值也是不容易的.特别是燃煤锅炉,控制燃料量是比较粗糙的,这就迫使除了采用B/G作为粗调的调节手段外,还必须采用在蒸汽管道设置喷水减温器作为细调的调节手段。

我厂主蒸汽温度调节方法是采用水煤比进行粗调,两级喷水减温进行细调。

其中第一级喷水减温器装置在前屏过热器与后屏过热器之间,消除前屏过热器中产生偏差;第二级喷水减温器装置在后屏过热器与高温过热器之间,维持过热器出口汽温在额定值.四、引起主蒸汽温度低的典型工况及其处理方向1)虚假煤量。

当给煤机电机转而皮带不转(即是我们常说的皮带打滑)时,给煤机皮带上还有煤,使得该给煤机显示给煤量将不会发生变化;而实际因为皮带没有转,该台给煤机实际给煤量为0,即为我们常说的虚假煤量。

该种情况出现,直接导致水煤比失调,机组负荷、主汽压、汽温将根据该台给煤机煤量、煤质和所有给煤机带负荷能力持续快速下降,如不及时发现处理,将会严重危及机组安全允许.应对对策:认真监盘,加强分析,及时发现虚假煤量,然后立即将故障给煤机停运;如其余给煤机已到最大煤量应将燃料主控解列为手动将指令减下来,使各运行给煤机煤量控制在50T/H以内;同时严密监视给水自动的跟踪情况,维持正常水煤比,必要时进行手动干预。

有备用磨煤机时应立即启动备用磨煤机,防止机组负荷和汽温汽压大幅波动。

注意事项:在大幅度变化过热度偏值调节汽温时,一旦汽温在低位稳定并开始回升时,应立即回调过热度偏值,避免发生超温事故;非必要情况下,不要解除给水自动.2)一台或多台给煤机断煤不来且其余给煤机裕量不足。

一台或者多台给煤机断煤,其他给煤机煤量均加到最大值,但总煤量仍低于断煤前的值,即给煤机裕量不足.此时由于燃料减少,汽温、汽压均会下降,协调控制为了维持负荷将会不断增加燃料主控指令,而实际给煤机煤量已到最大不会增加了;另外此时一次风会短路从断煤的磨煤机流走,一次风母管压力降低,进入炉内实际煤量减少,导致水煤比失调。

应对对策:果断将燃料主控解手动将指令下减,使正常运行给煤机煤量控制在50T/H以内。

同时严密监视给水自动的跟踪情况,必要时手动干预。

有备用磨煤机时应立即启动备用磨煤机,防止机组负荷和汽温汽压大幅波动,同时应立即关闭该磨煤机热风调门。

3)煤质突然变差.由于个别给煤机煤质突然变差,燃烧减弱,汽温、汽压均会下降,协调将会不断增加燃料主控指令和给水指令维持机组负荷,引起水煤比暂时性失调,如果运行给煤机裕量不足,那么水煤比将严重失调,导致主汽温快速下降,威胁机组安全。

应对对策:在进行负荷和其它参数调整过程中煤、水、负荷必须时刻保持一致。

出现这种情况应迅速适当提高一次风压,提高过热度偏置,同时降低机组负荷,控制给煤机煤量控制在50T/H以内。

直到过热度有回头的迹象时。

同时启动备用磨煤机。

加强燃烧调整,适当关少燃烬风。

4)启动磨煤机倒风时,由于一次风短路进入该磨煤机,一次风母管压力下降,进入炉内燃料减少,主汽温会下降。

不过这只是个暂时的,一旦启动了该给煤机,则主汽温会马上回升。

应缓慢加煤,防止主、再热汽温超温。

所以启动磨煤机倒风时,应先提高一次风压偏置,缓慢开启热风调门.暧磨好后,启动了该给煤机,应根据主、再热汽温情况缓慢加煤。

其它给煤机煤量降到45T/H,再适时降低一次风压力偏置,避免主汽压力、温度急升。

5)煤质差时加负荷过快时,主汽温也会大幅降低。

特别是#6炉目前A、C、E磨煤机磨辊磨损严重,制粉能力较差,煤加进去了,但实际进入炉内的煤量没同步增加,部分煤通过石子煤室排走了.但此时水是同步增加的,水煤比失调,导致主汽温降低。

应对对策:①遇到煤质差加负荷时,应先提高一次风压偏置,锅炉炉热负荷响应速度快些.当实际主汽压与目标主汽压偏差1MPa时应减慢或停止加负荷,避免主汽温降低。

相关文档
最新文档