八年级函数及其图像知识点
华师大版八年级数学下函数及其图像知识点归纳
华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线→x=y.(2)点p(x,y)在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。
八年级数学函数图像知识点
八年级数学函数图像知识点数学函数是数学中一个重要的概念,而理解函数的图像则是数学学习中的一个重要环节。
在八年级数学中,了解函数图像知识点对于掌握数学知识非常必要。
一、函数的正比例函数正比例函数是一种最基本的函数类型之一,其中x和y的比例相同。
这种函数的图像是通过原点并通过第一象限。
数学学习中,这类函数可以由以下公式来表示:y = kx在这个公式中,k是一个常数,代表x和y之间的比例。
如果k 大于1,那么y就比x增大,反之,则y比x减小。
二、函数的反比例函数反比例函数和正比例函数相似,但是它们之间的比例是不同的。
在反比例函数中,y和x的比率并不是常数,而是一个分式。
这种函数的图像呈现出一个双曲线的形状,因为随着x的增加,y会趋向于一个有限值。
反比例函数可以用以下公式表示:y = k / x在这个公式中,k代表常数。
这种函数的图像相对于y轴对称,有一个垂直渐近线x = 0。
三、函数的平方函数平方函数是一种非常基础的函数类型,其中y是x的平方。
平方函数的图像是一个U形。
这种函数可以用以下公式来表示:y = x²由于这个函数的斜率在x>0和x<0时并不相同,因此这个函数没有对称轴。
然而,在对称轴x = 0处,这个函数有一个最小值,也就是函数的最低点。
四、函数的立方函数立方函数是一种比平方函数更具有挑战性的函数类型。
在这个函数中,y是x的立方。
它的图像是一个S形状的曲线,此函数的图像在它的对称轴x = 0上有一个拐点。
立方函数可以用以下公式来表示:y = x³由于这个函数对每一个x值都有一个不同的正负y值,因此这个函数没有对称轴。
总体来说,图像在数学函数的理解中起着非常重要的作用,因为通过图像,学生们才能够更好地理解函数之间的关系。
以上介绍的正比例函数,反比例函数,平方函数以及立方函数为数学学习中最基本的数学函数类型。
八年级第十七章《函数及其图象》知识点
.精品文档.八年级第十七章《函数及其图象》知识点八年级第十七《函数及其图象》知识点(2)一、一次函数(一)一次函数的概念:形如y=kx+b (其中k工0),两个特征:①k工0,②x的次数为1正比例函数的概念:当b=0时的一次函数成为正比例函数,此时称y与x成正比例【注意】两个变量成正比例,即y=kx.例题1、若函数y=(-1)x|| 是一次函数,则=.2、若y-1与x+3成正比例,且当x=1时,y=2,求y与x 的函数关系式.(二)一次函数的图象及其性质:y=kx+b (" 0)1、一次函数的图象是一条直线,故使用待定系数法求直线解析式时一般需要两个点.特殊直线:直线y=x或直线y= -x上的点到两坐标轴距离相等.2、一次函数的性质(与系数k、b相关)① k决定着函数的增减性当k > 0时,y随x的增大而增大(增函数),必过第一三象限当k v 0时,y随x的增大而减小(减函数),必过第二四象限② b决定着直线与y轴交点的位置:在原点的基础上“上加下减”当b=0时,必过原点;当b>0时,沿y轴向上平移;当b v 0时,沿y轴向下平移.补充口诀:上加下减改变b, y=kx+b —y=kx+b+左加右减改变x, y=kx+b —y=k(x+)+b③斜率k的性质:平移k不变;|k|越大,直线的倾斜程度越大;k=【可用于待定系数法求解析式中的k 1④截距b的性质:与y轴交点(0, b),与x轴交点(, 0)⑤四种特殊位置关系的直线:两直线平行k相等;两直线相互垂直--> k1 • k2= -1 ;两直线关于x轴对称--> k与b均互为相反数;两直线关于y轴对称k互为相反数,b相等.⑥点(x0, y0)到直线ax+by+=0的距离d公式:d=(三)一次函数的应用1、解题关键:点的坐标,尤其是交点的坐标三种交点:①与x轴交点,y坐标为0,即(x, 0)②与y轴交点,x坐标为0,即(0, y)③两个图象的交点:联立解析式,方程组的解即为交点的x坐标和y坐标2、解题思路:①与三角形全等、直角三角形、面积、周长、线段有关的问题均转化为点的坐标【数形结合很重要,注意运用“全等(含对称)、勾股定理、等面积法(含同底等高)”等知识】②求函数解析式(含求函数值或自变量的值)均用待定系数法,其中k、b注意利用性质求得.【待定系数法思路:几个未知系数,就用几个条件构造方程】③比较大小的三种方法:【含两种方案的比较问题】代入计算法(对函数解析式已知的题目适用)增减性分析法(对k的符号已知的适用)图象分析法(对能画出大致图形的适用,借助交点和坐标轴分析)④最值问题(如最大利润):先求出自变量的取值范围(常以“有几种方案”的问题出现,需根据题意列不等式组求出);再列出关于利润的函数表达式(要化简整理成y=kx+b 的形式),最后根据增减性结合具体方案(自变量取值范围),找出最值.⑤行程问题(常以两车同向或相向为背景)图象交点的意义:两车相遇(或追上)两车的距离即为:s=y1-y2例题1、已知直线y=(k+2)x+k2-4 的图象经过原点,贝U k=.2、若一次函数y=(k+2)x-2k+3的图象不经过第四象限,则k的取值范围是.3、已知直线平行于直线y=2x,且与y轴交点到原点的距离为2,则该直线的解析式是.4、把直线y=-x+3向上平移个单位后,与直线y=2x+4的交点在第一象限,则的取值范围是.5、函数y=ax-2与y=bx+3的图象交于x轴上的一点,则=.6、一次函数y=(3a-7)x+a-2 的图象与y轴交点在x轴上方,且y随x的增大而减小,求a的取值范围.7、正比例函数y=-kx的图象经过第一三象限,在函数y=(k-2)x 的图象上有三个点(x1 , y1 )、(x2, y2)、(x3, y3), 且x1 >x2 > x3时,贝» y1、y2、y3的大小关系为.&若直线y=kx+b交坐标轴于(-2,0) 、(0,3)两点,则不等式kx+b > 0的解集是.9、函数y= -x+3,当图象在第一象限时,x的取值范围是;当-1 < x < 3时,函数的最小值是.10、直线AB过点A (0,6 )、B (-3,0 ),直线D与直线AB相互垂直,且过点(0,1 ).(1)求两直线的解析式;(2)求直线D与x轴的交点D 的坐标;(3)求直线AB上到y轴距离等于4的点的坐标;(4)求两直线的交点P的坐标;(5)求厶PAD的面积;(6)在y 轴上的是否存在点,使得S A PA=S^ PAD.11、点A为直线y=-2x+2上的点,点A到两坐标轴的距离相等,则点A的坐标为.12、把Rt △ AB放在平面直角坐标系中,点A (1,0 )、点B( 4,0 ), / AB=90°, B=5.将厶AB沿x轴向右平移,当点落在直线y=2x-6上时,求线段B扫过的面积.13、某工厂投入生产一种机器,当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x (单位:台)102030y (单位:万元/台)605550(1)求y与x之间的函数关系式,并写出自变量x的50取值范围;(2)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润. (注:利润=售价-成本)14、现从A, B两个蔬菜市场向甲、乙两地运送蔬菜,A, B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A地到甲地的运费为50元/吨,到乙地的运费为30元/吨;从B地到甲地的运费为60元/吨,到乙地的运费为45元/吨.(1) 设从A地往甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)AxB(2) 设总运费为元,请写出与x的函数关系式;(3) 共有多少种运送方案?哪种方案运费最少?15、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1 (k),出租车离甲地的距离为y2 ( k),客车行驶时间为x ( h), y1 , y2 与x 的函数关系图象如图所示:(1)根据图象,求出y1 , y2关于x的函数关系式。
八年级函数图像知识点总结
八年级函数图像知识点总结函数图像是中学数学中的重要部分,它贯穿了数学的各个领域。
在八年级数学中,我们学习了函数图像的一些基础知识,如函数的性质,图像的变化及其与函数性质的关系等。
在本文中,我们将对自己所学知识进行总结和归纳,帮助大家更好地理解和掌握函数图像的知识。
一、函数图像的性质函数图像有许多与函数性质相关的性质,如奇偶性、单调性、周期性等。
(1)奇偶性当函数满足f(x)=f(-x)时,函数称为偶函数,其图像关于y轴对称;当函数满足f(x)=-f(-x)时,函数称为奇函数,其图像关于原点对称。
例如,f(x)=x^2是偶函数,其图像关于y轴对称;f(x)=x^3是奇函数,其图像关于原点对称。
(2)单调性如果对于函数f(x),当x1<x2, f(x1)<f(x2)时,称函数f(x)是单调递增的;当x1<x2, f(x1)>f(x2)时,称函数f(x)是单调递减的。
例如,f(x)=x^2是单调递增的,f(x)=-x^2是单调递减的。
(3)周期性如果对于函数f(x),存在一个正数T,使得f(x+T)=f(x),称函数f(x)是周期函数,T称为函数f(x)的周期。
例如,f(x)=sinx是以2π为周期的周期函数。
二、函数图像的基本类型在八年级数学中,我们学习了三种基本的函数图像:常数函数、一次函数和二次函数。
(1)常数函数常数函数的函数表达式为f(x)=b(b为常数),函数的图像是一条平行于x轴的直线,可以表示为y=b。
例如,f(x)=3是一条平行于x轴且经过y=3的直线。
(2)一次函数一次函数的函数表达式为f(x)=kx+b(k、b为常数),函数的图像是一条斜率为k、经过y轴的截距为b的直线。
例如,f(x)=2x+1是一条斜率为2,经过y=1的直线。
(3)二次函数二次函数的函数表达式为f(x)=ax^2+bx+c(a、b、c为常数,且a不等于0),二次函数的图像是一条对称于x轴的开口向上或开口向下的抛物线。
初二函数的图像知识点总结
初二函数的图像知识点总结一、坐标系和直角坐标系在学习函数图像之前,我们需要先了解坐标系和直角坐标系的概念。
坐标系是用来描述平面上点的工具,它由水平方向和垂直方向的两条线组成。
而直角坐标系是将坐标系中的每一个点都表示为一个有序对(x, y),其中x表示点在横坐标轴上的位置,y表示点在纵坐标轴上的位置。
二、函数的概念函数是数学中的重要概念,它描述了一个变量如何依赖于另一个变量。
通俗地讲,函数就是一种关系,它将一个自变量的取值映射到一个因变量的取值。
函数通常用f(x)表示,其中x是自变量,f(x)是对应的因变量。
在学习函数图像时,我们需要了解一些常见的函数类型,比如线性函数、二次函数、指数函数和对数函数等。
三、函数图像的基本性质在绘制函数图像时,我们需要掌握一些基本的性质。
比如,线性函数的图像是一条直线,它可以通过两个点来确定;二次函数的图像是一条抛物线,它的开口方向取决于二次项系数的正负;指数函数和对数函数的图像分别是指数曲线和对数曲线,它们有一些特定的性质和规律。
四、函数图像的绘制方法在学习函数图像时,我们也需要了解一些绘制方法,比如利用表格法来绘制函数图像。
表格法是通过选取一些自变量的值,计算对应的因变量的值,然后将这些点连接起来来近似函数的图像。
此外,我们还可以利用函数的性质和变化规律来绘制函数图像,比如线性函数的斜率和截距可以帮助我们绘制出函数的大致形状。
五、函数图像与实际问题的应用函数图像不仅仅是数学中的一个概念,它还可以帮助我们解决一些实际问题。
比如,我们可以利用函数图像来描述日常生活中的变化规律,比如温度随时间的变化、物体的运动轨迹等。
此外,在学习物理和工程学科时,我们也经常会遇到一些与函数图像相关的问题,因此掌握函数图像的知识对于解决实际问题是非常有帮助的。
总之,函数图像是数学中的一个重要概念,它能够帮助我们直观地理解函数的性质和特点。
在初中阶段,学生需要掌握关于函数图像的基本知识,包括坐标系和直角坐标系、函数的概念、函数图像的基本性质、函数图像的绘制方法以及函数图像与实际问题的应用。
初二数学知识点:函数的图象知识点
初二数学知识点:函数的图象知识点初二数学知识点:函数的图象知识点初中阶段是我们一生中学习的“黄金时期”。
不光愉快的过新学期,也要面对一件重要的事情那就是学习。
下面小编为大家提供了函数的图象知识点,希望对大家有所帮助。
一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的'交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
《函数及其图像》知识点归纳
华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p (x,y )在第一、三象限夹角平分在线→x=y.(2)点p (x,y )在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x 轴的直线上的所有点的纵坐标相同。
函数及其图像知识点
《函数及其图像》知识点一、函数的概念、变量〔自变量、因变量〕、常量的概念。
①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。
②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。
③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。
此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。
练习:在函数r cπ2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。
二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值范围:平面直角坐标系。
水平的数轴叫做横轴〔x 轴〕,取向右为正方向;铅直的数轴叫做纵轴〔y 轴〕,取向上为正方向;两条数轴的交点O 叫做坐标原点。
x 轴和y 轴将坐标平面分成四个象限〔如图〕:五、平面内点的坐标:〔横坐标,纵坐标〕如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为〔2 , 3〕 六、平面内特殊位置的点的坐标情况:〔连线〕第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 〔- ,-〕 〔- ,+〕 〔+ ,+〕 〔+ ,-〕 〔0 ,a 〕 (b , 0) 七、点的表示〔横坐标,纵坐标〕注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A 〔2,1〕 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。
概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。
八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。
y xO 第四象限第三象限第二象限第一象限⑵关于y 轴对称的点:横坐标 ,纵坐标 。
⑶关于原点对称的点:横坐标 ,纵坐标 。
八年级函数基础知识点总结
八年级函数基础知识点总结一、函数的概念1. 什么是函数?函数是一种特殊的数学关系,它将每个自变量(输入值)映射到唯一的因变量(输出值)。
通俗地讲,函数就是一个“机器”,它能够将一个数映射成另一个数。
2. 函数的表示方法函数可以用各种不同的表示方法来表达,比如代数式、图形、表格、文字描述等。
3. 函数的符号表示用数学符号表示函数的一般形式为:f(x) = y。
其中,f(x)表示函数名,x表示自变量,y 表示因变量。
二、函数的图象1. 函数的图象函数的图象是函数在平面直角坐标系中的几何表现,通常用曲线来表示。
横坐标表示自变量,纵坐标表示因变量。
2. 函数的性质函数的图象具有一些特定的性质,比如单调性、奇偶性、周期性等。
这些性质可以通过函数的图象来进行判断和分析。
三、函数的运算1. 函数的四则运算函数之间可以进行加、减、乘、除等四则运算,这些运算的结果仍然是一个函数。
2. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入,进行组合运算得到一个新的函数。
3. 反函数如果函数f将x映射为y,那么反函数f^(-1)将y映射为x。
反函数是原函数的逆运算。
四、函数的性质1. 函数的值域和定义域函数的值域是函数所有可能的输出值的集合,定义域是函数所有可能的输入值的集合。
2. 奇偶性函数f(x)的奇偶性是指当x为某个数时,函数f(-x)与f(x)的关系。
如果f(-x) = f(x),则函数f(x)是偶函数;如果f(-x) = -f(x),则函数f(x)是奇函数。
3. 单调性如果函数在定义域上的任意两个数x1、x2,若有x1 < x2,则f(x1)与f(x2)的关系。
如果f(x1) < f(x2),则函数f(x)是增函数;如果f(x1) > f(x2),则函数f(x)是减函数。
4. 周期性函数f(x)的周期是一个正数T,如果对于任意x,f(x+T) = f(x)。
五、函数的应用1. 实际问题中的函数函数在各个行业和领域中有着广泛的应用,比如物理学中的运动学函数、经济学中的收益函数、生物学中的生长函数等。
初二函数总结知识点归纳
初二函数总结知识点归纳在初中数学教学中,函数是一个重要的概念。
学习和掌握函数的知识对于提高数学水平和解决实际问题具有重要意义。
本文将对初二阶段学习的函数知识点进行总结和归纳。
一、函数的定义和表示方法函数是一种特殊的数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
例如,y = f(x)表示因变量y是自变量x的函数。
二、函数的图象和性质1. 函数的图象是在直角坐标系中的表示形式。
对于定义域中的每个x值,都有对应的y值与之对应。
函数的图象可以用来观察函数的性质和变化规律。
2. 函数的单调性:函数的单调性表示函数在定义域上的增减规律。
如果对于任意的x1和x2(x1 < x2),有f(x1) < f(x2),则称函数在该区间上为递增函数;如果对于任意的x1和x2有f(x1) > f(x2),则称函数在该区间上为递减函数。
3. 函数的奇偶性:函数的奇偶性用来描述函数图象关于y轴对称性的特点。
如果对于定义域中的任何x值,有f(-x) = f(x),则函数为偶函数;如果对于定义域中的任何x值,有f(-x) = -f(x),则函数为奇函数。
三、常见的基本函数1. 常数函数:常数函数是指定义域上恒定输出的函数,可以表示为f(x) = a的形式,其中a为常数。
常数函数的图象是一条与x轴平行的直线。
2. 一次函数:一次函数是指其定义域上的每个x值与y值之间均满足y = ax + b的函数,其中a和b为常数,且a不为0。
一次函数的图象是一条斜率为a的直线。
3. 二次函数:二次函数是指其定义域上的每个x值与y值之间均满足y = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为0。
二次函数的图象是抛物线。
四、函数的运算1. 函数的加法、减法和乘法:对于两个函数f(x)和g(x),它们的加法表示为(f + g)(x) = f(x) + g(x),减法表示为(f - g)(x) = f(x) - g(x),乘法表示为(f * g)(x) = f(x) * g(x)。
八年级上册函数图像知识点
八年级上册函数图像知识点在学习数学中,函数图像是一个重要的概念。
当我们学习函数图像时,需要明确一些关键的知识点。
下面将重点介绍八年级上册函数图像的知识点。
一、什么是函数图像?函数图像指数学中函数的图形,是指在平面直角坐标系中,通过将自变量的所有可能取值对应的因变量的值点进行连线而得到的连续曲线或曲线段的总称。
二、函数图像的表示方式当我们绘制函数图像时,可以选择不同的表示方式。
以下列举了常用的函数图像表示方式:1. 解析式函数的解析式是用一组公式来表示函数的数学表达式。
以y=f(x) 为例,通过将 x 带入函数中计算,得出对应的 y 值。
再将所有的 (x,y) 坐标点绘制在坐标系上,就形成了函数的图像。
2. 参数式函数的参数式是指将自变量 x 的值与一个或多个参数符号 t 进行关联。
通过改变参数 t 的取值,使函数的图像发生变化。
以y=at+b 为例,通过改变 a 和 b 的取值,可以绘制出不同的直线图像。
3. 点列式点列式将函数对应的坐标点逐一列出,然后将这些点进行连线,即可得到该函数的图像。
点列式的表达方式直接清晰,适合于人工绘图或计算机绘图。
三、常见函数图像1. 一次函数一次函数又称为一元一次函数,是指函数的最高次项为一次的函数。
一次函数的图像为一条直线,具有一定的倾斜度。
2. 二次函数二次函数又称为一元二次函数,是指函数的最高次项为二次的函数。
二次函数的图像为一条开口向上或开口向下的 U 型曲线。
3. 立方函数立方函数的最高次项为三次,是一种平滑的连续曲线。
立方函数的图像为一条先向负无穷走,再向正无穷走的 S 型曲线。
4. 指数函数指数函数是一个以常数 e 为底的幂函数,具有固定的单调性和对称轴。
指数函数的图像为一条向上凸起的曲线。
5. 对数函数对数函数的图像为一条斜率逐渐减小趋向于零的曲线。
四、绘制函数图像的方法1. 通过解析式绘制函数图像根据函数的解析式,计算 x 取不同的值对应的 y 值,然后将这些坐标点绘制在坐标系中,即可得到函数的图像。
八年级上册函数知识点大全
八年级上册函数知识点大全函数是数学中的一种基本概念,是描述两个数集之间关系的规则。
在八年级上册的学习中,函数是一个比较重要的知识点,下面我们来详细了解一下八年级上册函数知识点大全。
一、函数的定义与概念函数是一个输入与输出之间的关系,其中的输入称为自变量,输出称为因变量。
函数的定义包括三个要素:定义域、值域和对应法则。
其中,定义域是自变量的取值范围,值域是因变量的取值范围,对应法则是根据自变量和因变量的关系所写的算式或图形表现。
二、函数图像的基本形状函数的图像通常有以下形状:1、直线函数:y=kx+b,函数图像为一条直线。
2、二次函数:y=ax²+bx+c,函数图像为抛物线。
3、根函数:y=√x,函数图像在x轴右侧,由左向右逐渐上升。
4、指数函数:y=ax,函数图像在x轴右侧,由下向上逐渐上升。
三、函数的性质与运算在八年级上册函数知识点大全中,我们也需要了解函数的一些性质与运算。
1、奇函数和偶函数:若对任意x有f(-x)=-f(x),则f(x)为奇函数;若对任意x有f(-x)=f(x),则f(x)为偶函数。
2、函数的相反数和函数的和:若f(x)为函数,则-g(x)也为函数,且f(x)+g(x)为函数。
3、函数的积和函数的商:若f(x)和g(x)为函数,则f(x)*g(x)和f(x)/g(x)为函数。
4、函数的复合:若f(x)和g(x)为函数,则f(g(x))为函数。
四、分段函数分段函数是指函数的自变量x在一定范围内,函数表达式不同的情况。
例如:f(x) = { x+1 (x>=0){ x-1 (x<0)这个函数在x>=0的时候,函数表达式为x+1;在x<0的时候,函数表达式为x-1。
五、指数函数和对数函数指数函数是以不同数为底数的幂函数,一般写为y=a^x。
对数函数是指一个数与另一个数的幂等于一个数,一般写为y=logax,其中a是底数,x是指数,y是幂次数。
六、三角函数三角函数是以角度为自变量的函数,包括正弦函数、余弦函数和正切函数。
八年级函数图像知识点
八年级函数图像知识点函数图像是初中数学中一个非常重要的知识点,学好函数图像的知识不仅可以为学生将来学习高中数学和大学数学打下坚实的基础,而且还可以为学生成为优秀的一个数学家打下基础。
在这篇文章中,我将会涉及到八年级函数图像的几个重要知识点。
一、一次函数一次函数是最简单的线性函数,可以用y=kx+b 的方式来表达,其中 k 是斜率, b 是截距。
一次函数的图像是一条直线,斜率为正的直线向右上方倾斜,斜率为负的则向右下方倾斜。
当斜率k=0 时,直线是水平的;当 b=0 时,直线经过原点,称为原点通过的直线。
二、二次函数二次函数是常见的非线性函数之一,可以用 y=ax²+bx+c 的方式来表达,其中 a 不等于0。
a 的正负决定了二次函数开口朝上或朝下,当 a>0 时,二次函数开口朝上,当 a<0 时,二次函数开口朝下。
b 的正负决定了二次函数的对称轴位置,对称轴的方程为 x=-b/2a。
c 影响了二次函数的 y 坐标截距。
当 a=1,b=c=0 时,二次函数变为 y=x²,这是一个基础的二次函数,成为抛物线。
三、指数函数指数函数是 y=a^x 的函数形式,其中 a 是正数,且不等于 1。
当a>1 时,指数函数增长迅速;当0<a<1 时,指数函数衰减迅速。
指数函数的图像随着指数 x 不断增加而上升或下降,与 x 轴永不相交。
指数函数有一个特殊的基础函数 y=2^x,这个函数的图像是一条向上的曲线,与 x 轴相交于 x 轴上方的一点。
指数函数是一种常用的模型,可以描述很多实际现象,如细菌数量增长、放射性衰变等。
四、对数函数对数函数是 y=loga(x) 的函数形式,其中 a 是正数,不等于 1。
这个函数的反函数是指数函数。
当 a>1 时,对数函数单调增加,当 0<a<1 时,对数函数单调减少。
对数函数的图像有一个特殊点(1,0),这是因为 loga(a^x)=x,所以当 x=0 时,a^x=1,对数函数得到最小值 0。
初中数学函数图像知识点汇总
初中数学函数图像知识点汇总函数是数学中的重要概念,而函数图像则是理解函数性质的重要工具之一。
在初中数学中,学习函数图像有助于学生理解函数的变化规律、性质和应用。
下面将对初中数学函数图像的知识点进行详细总结。
1. 基本函数图像:(1) 常数函数 f(x)=a : 这是一条平行于x轴的直线,横坐标不变,纵坐标为常数a。
(2) 一次函数 f(x)=kx+b : 这是一条斜率为k的直线,纵截距为b。
(3) 平方函数 f(x)=x^2 : 这是一条开口向上的抛物线,对称轴是y轴。
(4) 绝对值函数 f(x)=|x| : 这是一条以原点为顶点的V字形折线。
2. 函数的变换:(1) 平移:将函数图像沿x轴或y轴平行地移动。
当函数图像向右平移h单位时,函数表示形式为f(x-h);当函数图像向上平移k单位时,函数表示形式为f(x)+k。
(2) 翻折:将函数图像沿x轴或y轴翻转。
当函数图像关于x轴对称时,函数表示形式为-f(x);当函数图像关于y轴对称时,函数表示形式为f(-x)。
(3) 压缩与拉伸:将函数图像沿x轴或y轴进行扩大或缩小。
当函数图像水平方向压缩为原来的1/a倍,纵轴方向拉伸为原来的a倍时,函数表示形式为f(ax);当函数图像水平方向拉伸为原来的a倍,纵轴方向压缩为原来的1/a倍时,函数表示形式为f(x/a)。
3. 常见函数图像特征:(1) 斜率:一次函数的斜率代表了函数图像的倾斜程度。
斜率越大,函数图像越陡峭。
(2) 零点:函数图像与x轴相交的点称为零点。
零点对应于函数的解,即f(x)=0。
(3) 最值:函数图像的最高点称为最大值,最低点称为最小值。
(4) 对称中心:若函数图像关于某一点对称,则该点为对称中心。
常见对称中心有原点和y轴。
(5) 单调性:函数图像在某一区间上递增或递减称为函数的单调性。
4. 常用函数图像的特点:(1) 常数函数 f(x)=a : 函数图像平行于x轴,斜率为0,没有零点,单调性为常数。
八年级上册数学函数知识点
八年级上册数学函数知识点八年级上册数学函数知识点一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
八年级上册数学函数知识考点归纳大全我们称数值变化的量为变量(variable)。
有些量的数值是始终不变的,我们称它们为常量(constant)。
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。
八年级《函数及其图象》复习总结.doc
八年级《函数及其图象》复习总结一、 函数定义:例1、 判断下列说法是否正确。
(1)2x-1是x 的函数。
(2)x 是x 2的函数。
二、 求函数自变量的取值范围的方法:1、对于给定的函数关系式,要使原式有意义。
(1) 整式函数: (2) 分式函数: (3) 二次根式函数:例2、求下列函数的自变量的取值范围。
(1)732-=x y (2)422-+=x x y (3)x y -=2 (4)xy -=21 (4)x x y 3212---=2、对于根据实际问题所列出的函数关系式,不仅要使所列出的函数关系式有意义,而且还要符合实际问题的意义。
例3、已知等腰三角形的周长为18cm ,试写出它的底边长y (cm) 与腰长x (cm)之间的函数关系式,并求自变量x 的取值范围。
三、坐标的双重意义:1、符号意义:2、绝对值意义:例4、如图,等边△OAB的边长是4,试求A、B、C三点的坐标。
四、会看函数图象:例5、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()例6、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关Array系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?五、函数的图象与性质:1、正比例函数的图象和性质:2、一次函数的图象和性质:3、 反比例函数的图象和性质:例7、(1)若52)1(--=m x m y 是正比例函数,且图象经过二四象限,求m 值。
函数及其图像复习知识点归纳(初二)
一、知识点:〈一〉 平面直角坐标系1、 各象限内点的坐标特征2、 坐标轴上的点不属于任何一个象限例:(太原)在平面直角坐标系中,点P )2,1(a a -+在第四象限,求a 的取值范围。
3、 平面直角坐标系中点的坐标的对称(中考常考)思路:关于x 轴对称点的坐标有什么特征?关于y 轴对称点的坐标有什么特征?关于原点对称点的坐标有什么特征?例:点P )4,3(-关于原点对称的点的坐标是 ;此对称点到原点的距离是 。
例:在平面直角坐标系中,第一、三象限角平分线所在直线的函数关系式是 ;第二、四象限角平分线所在直线的函数关系式是 。
4、 图形的平移与坐标的变化(近几年的中考有上升趋势)〈二〉 正比例函数、一次函数1、 定义一次函数:)0(≠+=k b kx y 正比例函数:)0(≠=k kx y图象:一条直线(故一次函数)0(≠+=k b kx y 也叫直线)0(≠+=k b kx y )2、图象的性质:(由系数k 与b 决定)k :决定图象上升(或下降)的趋势〈即y 随x 的变化情况〉b :决定图象与y 轴的交点位置(纵截距)3、一次函数:)0(≠+=k b kx y 的几种大致图象(共6种)例:函数b kx y +=的图象大致如右,则( )A 0,0>>b kB 0,0<>b kC 0,0><b kD 0,0<<b k例:请写出一个一次函数,使它的图象不经过第一象限,该表达式可以是 。
(满足条件k<0, b<0即可)4、一次函数表达式的确定方法:待定系数法 依据:两点确定一条直线例:已知一次函数的图象经过A )3,1(),3,2(B --两点。
(1)求这个一次函数的表达式; (2)试判断点P )1,1(-是否在这个一次函数的图象上?y x o(在求系数k 与b 时,可用简便方法)5、 一次函数图象性质的运用〈三〉 反比例函数1、 定义及表达式:xk y = k xy = 1-=kx y )0(≠k 学会灵活运用上面三种表达式例:已知反比例函数的图象经过点(2,3),则这个反比例函数的表达式是 。
八年级(人教版)函数知识点总结
八年级(人教版)函数知识点总结
1. 函数的定义和特点
- 函数是指两个变量之间的一种特殊关系。
通常用符号“y=f(x)”表示。
- 函数的特点包括单值性、对应性和确定性。
2. 函数的表示方法
- 表达法:y=f(x)
- 函数图像法:用图像表示函数的变化规律
- 函数表格法:通过表格列出函数的输入和输出值
3. 函数的分类
- 一次函数:y=ax+b,其中a和b为常数,a不等于0
- 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不等于0 - 反比例函数:y=k/x,其中k不等于0
- 正比例函数:y=kx,其中k不等于0
4. 函数的图像和性质
- 一次函数的图像为一条直线,斜率决定了函数的增减性。
- 二次函数的图像为一条抛物线,开口方向和开口大小由二次项的系数决定。
- 反比例函数的图像为一条曲线,通过原点,并且随着x的增大,y的值逐渐减小。
- 正比例函数的图像为一条经过原点且与x轴平行的直线。
5. 函数的应用
- 函数广泛应用于数学和实际生活中的问题求解。
- 函数可以描述物体的运动规律、变化趋势、关系等。
以上是八年级(人教版)函数知识点的简要总结,希望对您有所帮助。
初中数学函数知识点总结(定义、性质和图像)
函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 第二象限:(-,+) 第三象限:(-,-) 第四象限:(+,-)3、坐标轴上点的坐标特征:x 轴上的点,y 为零;y 轴上的点,x 为零;原点的坐标为(0 , 0)。
4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级函数及其图像知识点
函数是数学中的一个重要概念,可以描述两个变量之间的关系。
在八年级学习函数和图像的过程中,需要掌握以下知识点:
一、函数的概念
函数可以看作是输入和输出之间的一个规律或者关系,其中输
入称为自变量,输出称为函数值或因变量。
在函数的定义中,每
一个自变量会产生唯一的函数值,这也是函数的一条重要特征。
二、函数的表达式
函数可以通过表达式来表示,例如 y = 2x + 1 就是一个函数表
达式,其中 x 是自变量,y 是函数值。
在函数表达式中,可以用符号表示函数的性质,例如 y = f(x) 中的 f(x) 就表示函数名。
三、函数的性质
函数有很多相关的性质,包括奇偶性、单调性、周期性等。
其中奇偶性表示函数的对称性,单调性表示函数的增减变化趋势,周期性表示函数的周期规律。
四、函数的图像
函数的图像也是非常重要的,可以通过图象的形状和位置来描述函数的性质。
例如 y = sin x 的图像呈现出一条波浪形,表示函数的周期性特征。
图像的位置和斜率还可以表示函数的变化趋势和变化速率。
五、函数的应用
函数在数学和现实生活中都有广泛的应用。
例如在数学中,函数可以用于描述各种变化规律,例如物理运动、生物生长等。
在现实生活中,函数可以用于分析各种数据,例如统计数据、金融数据等。
八年级函数及其图像的知识点虽然较多,但只要认真学习,多
加练习,就能够掌握其中的精髓。
希望同学们能够善于发现问题,多思考,多探索,不断提升自己的数学能力。