2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1) 解析版

合集下载

武汉市部分学校2018-2019八年级下期中数学试题及答案word版本

武汉市部分学校2018-2019八年级下期中数学试题及答案word版本

武汉市部分学校2018-2019学年八年级下期中数学试题及答案2018-2019学年度第二学期期中考试八年级数学试卷及答案第Ⅰ卷(选择题,共36分)一、选择题(每题3分,共36分)1. 二次根式2+x 有意义,则x 的取值范围为 A.x >-2 B.x≥-2 C. x≠-2 D. x≥22.若b b -=-3)3(2,则b 满足的条件是A .b>3B .b<3C .b≥3D .b≤3 3.下列各式中计算正确的是A .3)3()1(91)9)(1(=-⋅-=-⋅-=--; B.2)2(2-=-;347=+=; D.71724252425242522=⨯=-⋅+=-. 4.下列各组线段中,能够组成直角三角形的是A .6,7,8 .B .5,6,7.C .4,5,6.D .3,4,5. 5.已知△ABC 中,∠A=12∠B=13∠C ,则它的三条边之比为A .1:1: .B .1::2 .C .1.D .1:4:1.6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是A .88°,108°,88°.B .88°,104°,108°.C .88°,92°,92° .D .88°,92°,88°.7、平行四边形的一边长为10cm ,那么这个平行四边形的两条对角线长可以是A.4cm 和 6cm .B.6cm 和 8cm.C.20cm 和 30cm .D.8cm 和12cm. 8、给定不在同一直线上的三点,则以这三点为顶点的平行四边形有A.1个 .B.2个 .C.3个.D.4个.9.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD ;这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法共有A.3种 .B.4种 .C.5种.D.6种. 10.已知ab <0,则b a 2化简后为A .b a .B . b a -.C .b a - .D .b a --. 11. 如图,铁路MN 和公路PQ 在点O 处交汇, 30QON ∠=︒.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.12. 如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4…的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=…=30°.若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2019的纵坐标为A.0.B. ﹣3×()2019.C. (2)2019. D. 3×()2019.第12题图 第11题第Ⅱ卷(非选择题 共84分)二、填空题(每题3分,共18分)13.在实数范围内分解因式22-x =14.已知正方形ABCD 的面积为8,则对角线AC =15.矩形的两条对角线的一个交角为60o ,两条对角线的和为8cm ,则这个矩形的一条较短边为 cm.16.菱形的一个内角为︒120 ,且平分这个内角的对角线长为8cm ,则这个菱形的面积为 .17.已知x =1﹣,y =1+,则x 2+y 2-xy -2x -2y 的值为 .18. 如图,四边形ABCD 中,AC 、BD 是对角线,△ABC 是等边三角形,∠ADC =30°,AD =3,BD =5,则四边形ABCD 的面积为______ _.三、解答题(共8题,共66分)19.(本题满分8分)计算(1)204554-+ (2)32241÷ 20. (本题满分8分)如图,在平行四边形ABCD 中,AC ,BD 相交于点O,点E,F 在AC 上,且OE=OF. (1)求证BE=DF ;(2)线段OE 满足什么条件时,四边形BEDF 为矩形(不必证明).21.(本题满分8分) 如图,在直角坐标系中,A (0,4),C(3,0).第20题图OABCDE F第18题(1) 以AC 为边,在其上方作一个四边形,使它的面积为22OC OA +; (2) 画出线段AC 关于y 轴对称线段AB,并计算点B 到AC 的距离.22. (本题满分10分) 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,CE =41BC ,F 为CD 的中点,连接AF 、AE 、EF , (1)判定△AEF 的形状,并说明理由;(2)设AE 的中点为O,判定∠BOF 和∠BAF 的数量关系,并证明你的结论.23. (本题满分10分)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD 中,AD ∥BC,E,F 分别是AB,CD 的中点,求证EF=)(21BC AD +.24. (本题满分10分) 小明在解决问题:已知a=321+,求1822+-a a 的值.他是这样分析与解的:∵a=321+=32)32)(32(32-=-+-,∴a-2=3-,∴,3)2(2=-a 3442=+-a a∴142-=-a a ,∴1822+-a a =2(1)42+-a a =2×(-1)+1=-1.C第23题图第22题图请你根据小明的分析过程,解决如下问题: (1)化简1191211571351131++++++++Λ(2)若a=121-,①求1842+-a a 的值;②直接写出代数式的值1323++-a a a = ; 21522++-aa a = .25. (本题满分12分)如图,在矩形ABCD 中,AB=8cm,BC=20cm,E 是AD 的中点.动点P 从A 点出发,沿A-B-C 路线以1cm/秒的速度运动,运动的时间为t 秒.将∆APE 以EP 为折痕折叠,点A 的对应点记为M.(1) 如图(1),当点P 在边AB 上,且点M 在边BC 上时,求运动时间t; (2) 如图(2),当点P 在边BC 上,且点M 也在边BC 上时,求运动时间t; (3) 直接写出点P 在运动过程中线段BM 长的最小值 .八年级数学参考答案及评分标准一、选择题(共12小题,每小题3分,共36分)题号 1234567891011 12 答 B D D D B D C C B BBAACB第25题图第25题图二、填空题(共6小题,每小题3分,共18分)13, )2)(2(-+x x ; 14. 4; 15.2; 16.316;17.3;18.63425- 三、解答下列各题(本大题共9小题,共72分) 19.解:(1)原式=525354-+=55 …………………………………4分(2)原式=4123241=⨯ ………………………8分20. (1)证四边形BEDF 是平行四边形或一对三角形全等;… …………5分 (2)OE=OD ………………………8分21.(1)略; …………………4分 (2)AC=5,面积法求得点B 到AC 的距离524…………………8分 22.(1)设正方形的边长为4a,则22222225,5,20a AE a EF a AF === ∴222AE EF AF =+∴△AE F 是直角三角形。

湖北省武汉二中广雅中学2018—2019学年八年级(下)段测数学试卷(二) 解析版

湖北省武汉二中广雅中学2018—2019学年八年级(下)段测数学试卷(二)  解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(二)一.选择题(共10小题)1.二次根式中a的取值范围是()A.a≥0B.a<3C.a≥﹣3D.a≤32.下列计算错误的是()A.B.C.D.=4 3.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4B.1,1,C.5,8,11D.5,13,234.已知a、b、c分别为△ABC中∠A、∠B、∠C的对边,下列说法错误的是()A.∠C=90°,则a2+b2=c2B.∠B=90°,则a2+c2=b2C.∠A=90°,则b2+c2=a2D.总有a2+b2=c25.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC中,边长为无理数的边数是()A.0B.1C.2D.36.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm27.把(2﹣x)的根号外的(2﹣x)移入根号内得()A.B.C.﹣D.﹣8.下面四个命题:①同旁内角相等,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.其中逆命题是真命题的个数是()A.1B.2C.3D.49.如图,A(0,1),B(3,2),点P为x轴上任意一点,则P A+PB的最小值为()A.3B.C.D.10.在四边形ABCD中,∠ABC=∠C=90°,DC=DA,∠D=60°,AB=2.将四边形ABCD折叠,使点D和点B重合,折痕为EF,则EF的长为()A.B.C.D.二.填空题(共6小题)11.化简:=;=;=.12.a、b、c为三角形的三条边,则=.13.如果是整数,则正整数n的最小值是.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.15.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是.16.已知点A(2,0)、B(0,4),点C是第一象限内一点且满足△ABC是等腰直角三角形,连OC,则线段OC=.三.解答题(共8小题)17.计算:(1)()+(2)(2﹣3)÷18.如图,在△ABC中,∠BAC=90°,AB=4,AC=8,AD⊥BC,垂足为D,求AD的长.19.若实数x、y满足y<++1.(1)x=,y<;(2)化简:.20.如图,每个小正方形的边长都为1.(1)求四边形ABCD的周长;(2)求四边形ABCD的面积.21.(1)已知x=﹣,y=+,求﹣的值;(2)若a﹣=,求a+的值.22.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.23.在Rt△ABC中,AC⊥BC,CA=CB,点D是△ABC外一点,且∠ADC=45°,连DC、DB、DA.(1)如图1,若AD⊥AC且AC=2,求BD的长度;(2)如图2,若DA=1,DC=3,求DB的长度;(3)在(1)的条件下,点E是直线AC上一点,连DE.当∠EDB=45°时,直接写出AE的长.24.如图1,在直角坐标系中,△ABC是等边三角形,点E是边BC上一动点.(1)若△ABC的面积是4,求点A的坐标;(2)如图2,点F在边AB上,EO⊥FO,连接EF.若CE=4,AF=2,求EF的长度;(3)如图3,连接OE,将OE绕原点O逆时针旋转60°到OG,连接BG、CG.当BE =CG时,求的值.参考答案与试题解析一.选择题(共10小题)1.二次根式中a的取值范围是()A.a≥0B.a<3C.a≥﹣3D.a≤3【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:3﹣a≥0,∴a≤3,故选:D.2.下列计算错误的是()A.B.C.D.=4【分析】直接利用二次根式的混合运算法则分别计算得出答案.【解答】解:A、×=7,计算正确,不合题意;B、÷=,计算正确,不合题意;C、+=8,计算正确,不合题意;D、4﹣=3,原式计算错误,符合题意.故选:D.3.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4B.1,1,C.5,8,11D.5,13,23【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、52+82≠112,故不是直角三角形,故此选项错误;D、52+132≠232,故不是直角三角形,故此选项错误.故选:B.4.已知a、b、c分别为△ABC中∠A、∠B、∠C的对边,下列说法错误的是()A.∠C=90°,则a2+b2=c2B.∠B=90°,则a2+c2=b2C.∠A=90°,则b2+c2=a2D.总有a2+b2=c2【分析】按照勾股定理分析即可得出答案.【解答】解:选项A:∠C=90°,则c为△ABC中斜边,a,b为直角边,由勾股定理可得:a2+b2=c2,故A正确,不符合题意;同理可得,选项B和选项C正确,故选项B和选项C不符合题意;选项D:只有直角三角形,且∠C为直角时,a2+b2=c2,故D错误,符合题意.故选:D.5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC中,边长为无理数的边数是()A.0B.1C.2D.3【分析】利用勾股定理计算出AB、BC、AC的长即可.【解答】解:AB==5,AC==,BC==,边长为无理数的边数是2条,故选:C.6.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.7.把(2﹣x)的根号外的(2﹣x)移入根号内得()A.B.C.﹣D.﹣【分析】根据负数没有平方根得到2﹣x<0,利用二次根式将2﹣x移入根号内即可.【解答】解:(2﹣x)=﹣=﹣,故选:D.8.下面四个命题:①同旁内角相等,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.其中逆命题是真命题的个数是()A.1B.2C.3D.4【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,错误;②如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,不成立;③全等三角形的对应边相等的逆命题是对应边相等的三角形全等,成立;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么这两个实数相等,不成立;逆命题成立的有1个;故选:A.9.如图,A(0,1),B(3,2),点P为x轴上任意一点,则P A+PB的最小值为()A.3B.C.D.【分析】作点A关于x轴的对称点A′.连接BA′交x轴于点P,此时P A+PB的值最小.根据勾股定理求出BA′即可;【解答】解:作点A关于x轴的对称点A′.连接BA′交x轴于点P,此时P A+PB的值最小.P A+PB的最小值=BA′==3,故选:B.10.在四边形ABCD中,∠ABC=∠C=90°,DC=DA,∠D=60°,AB=2.将四边形ABCD折叠,使点D和点B重合,折痕为EF,则EF的长为()A.B.C.D.【分析】过点E作EQ⊥AB于点Q,交CD于P.易得△DAC为等边三角形,由∠ABC =∠C=90°,∠ACB=30°,得出AC=2AB=2×2=4,BC=2,AD=CD=4,再由折叠可知BF=DF=CD﹣CF=4﹣CF,在Rt△BCF中由勾股定理CF2+BC2=BF2,设AE =2x,则EQ=x,AQ=x,BE=DE=4﹣2x,列出方程(x)2+(2+x)2=(4﹣2x)2,解得x=,即AE=,所以DE=4﹣AE=4﹣=,在Rt△DPE中,DP=DE =,PE=,所以PF=DF﹣DP=﹣=,在Rt△EPF中,由勾股定理,求出EF=.【解答】解:过点E作EQ⊥AB于点Q,交CD于P.∵∠ABC=∠C=90°,∴CD∥AB,∴EP⊥CD,∵DC=DA,∠D=60°,∴△DAC为等边三角形,∵∠ABC=∠C=90°∴∠ACB=30°,∴AC=2AB=2×2=4,BC=2,∴AD=CD=4,由折叠可知BF=DF=CD﹣CF=4﹣CF,在Rt△BCF中CF2+BC2=BF2,即CF2+(2)2=(4﹣CF)2,解得CF=,∴BF=4﹣=,DF=∵∠ABC=∠C=90°,∠D=60°∴∠DAB=120°,∠EAQ=60°,∠AEQ=30°,设AE=2x,则EQ=x,AQ=x,BE=DE=4﹣2x,在Rt△EQB中EQ2+BQ2=BE2,即(x)2+(2+x)2=(4﹣2x)2,x=,即AE=,∴DE=4﹣AE=4﹣=,在Rt△DPE中,DP=DE=,PE=,∴PF=DF﹣DP=﹣=,在Rt△EPF中,由勾股定理,EF2=PF2+PE2=()2+()2=,∴EF==.故选:C.二.填空题(共6小题)11.化简:=3;=;=.【分析】根据二次根式的性质化简,得到答案.【解答】解:==3,==,==,故答案为:3;;.12.a、b、c为三角形的三条边,则=2a.【分析】三角形三边满足的条件是:两边的和大于第三边,两边的差小于第三边,据此来确定绝对值和括号内的式子的符号,进而化简计算即可.【解答】解:∵a、b、c是三角形的三边长,∴a+b﹣c>0,b﹣a﹣c<0,∴=|a+b﹣c|﹣b+c+a=a+b﹣c﹣b+c+a=2a,故答案为:2a.13.如果是整数,则正整数n的最小值是3.【分析】因为是整数,且==2,则3n是完全平方数,满足条件的最小正整数n为3.【解答】解:∵==2,且是整数;∴2是整数,即3n是完全平方数;∴n的最小正整数值为3.故答案是:3.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为(2+2)米.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:根据题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.15.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是6.【分析】设AB=AF=x,则AC=x+4,由折叠可得∠AFE=∠B=90°,依据勾股定理在Rt△CEF中求出CF=4,在Rt△ABC中,根据勾股定理得出方程,解方程即可得出AB 的长.【解答】解:∵四边形ABCD是长方形,∴AB=CD,由折叠的性质可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴BC=BE+CE=3+5=8,在Rt△CEF中,CF===4,设AB=AF=CD=x,则AC=x+4,∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2,解得:x=6,∴CD=6,故答案为:6.16.已知点A(2,0)、B(0,4),点C是第一象限内一点且满足△ABC是等腰直角三角形,连OC,则线段OC=2或2或3.【分析】如图1,当∠ABC=90°,AB=BC时,过C作CD⊥y轴于D,如图2,当∠BAC =90°,AB=AC时,过点C作CD⊥x轴于点D,同理可证得:△OAB≌△DCA,如图3,当∠ACB=90°,AC=BC时,根据全等三角形的性质和勾股定理即可得到结论.【解答】解:如图1,当∠ABC=90°,AB=BC时,过C作CD⊥y轴于D,∴∠CDB=∠AOB=90°,∴∠DCB+∠CBD=∠CBD+∠ABO=90°,∴∠BCD=∠ABO,∴△AOB≌△BDC(AAS),∴BD=OA=2,CD=OB=4,∴OD=OB+BD=6,∴点C的坐标为(6,4);∴OC=2,如图2,当∠BAC=90°,AB=AC时,过点C作CD⊥x轴于点D,同理可证得:△OAB≌△DCA,∴AD=OB=4,CD=OA=2,∴OA=OA+AD=6,∴点C的坐标为(6,2);OC=2,如图3,当∠ACB=90°,AC=BC时,过点C作CD⊥y轴于D,CE⊥x轴于E.则△ACD≌△BCE(AAS),∴CD=CE=OE,AD=BE,∵AB==2,∴AC=AB=,∵CE2+(CE﹣2)2=AC2=10,解得CE=3或﹣1(不合题意舍去).则点C坐标为(3,3),OC=3.综上所述,OC的长为2或2或3,故答案为:2或2或3.三.解答题(共8小题)17.计算:(1)()+(2)(2﹣3)÷【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)原式=2﹣+=2;(2)原式=2÷﹣3÷=2﹣3=4﹣=﹣.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=8,AD⊥BC,垂足为D,求AD的长.【分析】根据勾股定理求出BC,根据三角形的面积公式求出AD.【解答】解:在Rt△BAC中,BC===4,∵S△ABC=×4×8=×4×AD∴AD=.19.若实数x、y满足y<++1.(1)x=1,y<1;(2)化简:.【分析】(1)根据二次根式的性质即可求出答案.(2)根据二次根式的性质以及绝对值的性质即可求出答案.【解答】解:(1)由题意可知:,∴x=1,∴y<1故答案为:1,1;(2)∵y<1,∴y﹣2<0,3﹣2y>0,原式=|y﹣2|+|3﹣2y|=2﹣y+3﹣2y=5﹣3y.20.如图,每个小正方形的边长都为1.(1)求四边形ABCD的周长;(2)求四边形ABCD的面积.【分析】(1)根据勾股定理得出边长,进而解答即可;(2)根据割补法得出面积即可.【解答】解:(1)AB=,AD=,CD=,BC=,周长=;(2)面积=5×6﹣×1×6﹣×2×4﹣×2×4﹣×(2+4)×1=16.21.(1)已知x=﹣,y=+,求﹣的值;(2)若a﹣=,求a+的值.【分析】(1)先求出xy与y+x与y﹣x的值,再代入计算即可;(2)先根据完全平方公式求出a2+()2,进一步得到(a+)2,从而得到a+的值.【解答】解:(1)∵x=﹣,y=+,∴xy=1,y+x=2,y﹣x=2,∴﹣====4;(2)∵a﹣=,∴(a﹣)2=21,∴a2+()2=23,(a+)2=25,∴a+=±5.22.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.23.在Rt△ABC中,AC⊥BC,CA=CB,点D是△ABC外一点,且∠ADC=45°,连DC、DB、DA.(1)如图1,若AD⊥AC且AC=2,求BD的长度;(2)如图2,若DA=1,DC=3,求DB的长度;(3)在(1)的条件下,点E是直线AC上一点,连DE.当∠EDB=45°时,直接写出AE的长.【分析】(1)过点D作DE⊥AB于E,证明△ADE为等腰直角三角形,求出DE,根据勾股定理可得出答案;(2)将线段CD绕点C顺时针旋转90°到CE,证得△BDC≌△AEC,得出BD=AE,求出DE长,则可求出答案;(3)过点D作DF⊥DC交CE的延长线于F,可得△CDF为等腰直角三角形,则DC=DF,∠FDC=90°,将△DFE绕点D逆时针旋转90°到△DCN,连接NO,证明△EDO ≌△NDO,得出∠DFE=∠DCN=45°,EO=ON,设AE=x,则OE=x+1,CE=1,EF =2﹣x,得出(x+1)2=(2﹣x)2+12,解方程即可得出答案.【解答】解:(1)过点D作DE⊥AB于E,∵∠ADC=45°,AD⊥AC,∠BAC=45°,∴∠ADC+∠DAB=180°,∴CD∥AB,∴∠ADC=∠DAE=45°,∴△ADE为等腰直角三角形,∵AC=AD=2,∴AE=DE=,AB=2,∴BE=AE+AB=3,∴BD===2;(2)将线段CD绕点C顺时针旋转90°到CE,∵CE=CD,∠ACE=∠BCD,BC=AC,∴△BDC≌△AEC(SAS),∴BD=AE,∵∠ADC=45°,∠CDE=45°,∴∠ADE=90°,∵CD=3,∴DE==3,∴BD=AE===.(3).理由:四边形ABCD为平行四边形.设AC、BD交于点O.如图3,∵AC=2,∴OA=OC=1,过点D作DF⊥DC交CE的延长线于F,∴△CDF为等腰直角三角形,∴DC=DF,∠FDC=90°,将△DFE绕点D逆时针旋转90°到△DCN,连接NO,∴DE=DN,∠FDE=∠NDC,EF=NC,∵∠EDO=45°,∴∠FDE+∠ODC=45°,∴∠ODC+∠NDC=45°,∴∠EDO=∠NDO,∵DO=DO,∴△EDO≌△NDO(SAS),∴∠DFE=∠DCN=45°,EO=ON,∴∠OCN=90°,∴CN2+OC2=ON2.∴OE2=EF2+OC2,设AE=x,则OE=x+1,CE=1,EF=2﹣x,∴(x+1)2=(2﹣x)2+12,解得:x=.∴AE=.24.如图1,在直角坐标系中,△ABC是等边三角形,点E是边BC上一动点.(1)若△ABC的面积是4,求点A的坐标;(2)如图2,点F在边AB上,EO⊥FO,连接EF.若CE=4,AF=2,求EF的长度;(3)如图3,连接OE,将OE绕原点O逆时针旋转60°到OG,连接BG、CG.当BE =CG时,求的值.【分析】(1)先设出点A的坐标,根据等边三角形的性质得出点C的坐标,进而得出AB,再用勾股定理表示出OB,最后用三角形ABC的面积建立方程求解即可得出结论;(2)利用倍长中线法构造出全等三角形,进而求出∠AGH=30°,判断出FG=EF,再求出FH,GH,最后用勾股定理即可得出结论;(3)先构造出△OCG≌△OME(SAS),得出ME=CG=BE,∠CGO=∠MEO,设出BE=ME=CG=x,则CM=MO=MB=2x,∴AB=BC=4x,再用勾股定理表示出BG,即可得出结论.【解答】解:(1)设点A(a,0),∴OA=a,∵△ABC是等边三角形,OB⊥AC,∴AC=AB,OC=OA,∴C(﹣a,0),∴AC=2a,∴AB=2a,在Rt△AOB中,根据勾股定理得,OB==a,∵S△ABC=4,∴AC•OB=4,∴×=4,∴a=2或a=﹣2(舍去),∴A(2,0);(2)如图2,∵△ABC是等边三角形,OB⊥AC,∴∠BAC=∠ACB=60°,OC=OA,延长EO至G,且使OG=OE,连接FG、AG,∵∠COE=∠AOG,OC=OA,∴△COE≌△AOG(SAS),∴AG=CE=4,∠OAG=∠ACB=60°,∴∠F AG=120°∵OF⊥OE,∴∠EOF=∠GOF=90°,∵OE=OG,OF=OF,∴△EOF≌△GOF(SAS),∴EF=FG,过点G作GH⊥AB交BA的延长线于H,∵∠AGH=30°,AG=4,∴AH=2,GH=2,∴FH=AF+AH=4,∴EF=FG===2;(3)如图3,在CB上截取CM=CO,∵∠BCA=60°,∴△COM为等边三角形,∴∠COM=60°,由旋转知,OG=OE,∠EOG=60°,∴∠COM=∠EOG,∴∠COG=∠MOE,∴△OCG≌△OME(SAS),∴ME=CG=BE,∠CGO=∠MEO,∴∠GCB=∠GOE=60°,过点B作BN⊥CG于N,设BE=ME=CG=x,则CM=MO=MB=2x,∴AB=BC=CM+ME+BE=2x+x+x=4x,∵∠BCN=60°,∠CBN=30°∴CN=BC=MB=2x,GN=x,根据勾股定理得,BN==2x,∴BG==x∴=.。

2018-2019年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019 学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10 小题)1.以下各图象不可以表示y 是 x 的函数的是()A .B.C.D.2.若函数 y=( 3﹣ m)是正比率函数,则m 的值是()A .﹣ 3B .3C.± 3D.﹣ 13.以下计算,正确的选项是()A .(﹣ 1)= 1B .=C.﹣= 1D.= 34.菱形拥有而矩形不必定拥有的特点是()A.对角相等B.对角线相互均分C.一组对边平行,另一组对边相等D.对角线相互垂直5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣ x+b 的图象上的点.y1, y2的大小关系为()A .y1< y2B. y1> y2C. y1= y2D.以上结论都有可能6.如图,在 ? ABCD 中,AC、BD 订交于点O,若 BD= 10,AC= 6,则 AB 的取值范围为()A .4< AB< 16B .4< AB< 10C. 2< AB< 8D. 3<AB< 57.已知一次函数y=( m﹣ 4)x+2m+1 的图象过一、二、四象限,则 m 的取值范围是()A .m<4B .m<﹣C.﹣<m<4D.无解8.甲乙两同学从 A 地出发,骑自行车在同一条路上行驶到 B 地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如下图.依据图中供给的信息,有下列说法:①他们都行驶了18 千米.②甲车逗留了0.5 小时.③乙比甲晚出发了0.5 小时.④ 相遇后甲的速度<乙的速度.⑤ 甲、乙两人同时抵达目的地.此中切合图象描绘的说法有()A .2 个B .3 个C. 4 个D. 5 个9.以下图形中,表示一次函数y= mx+n 与正比率函数y= mnx( m, n 为常数,且mn≠ 0)的图象的是()A .B.C.D.10.正方形ABCD 中, E、F 分别是 AB 、CB 上的点,且AE=CF , CE 交 AF 于 M ,∠ CMF= 45°,则的值为()A .B .C.D.二.填空题(共 6 小题)11.化简:=.12.已知对于 x的方程 mx+n= 0 的解是 x=﹣ 2,则直线 y= mx+n 与 x 轴的交点坐标是.13.如图,将平行四边形ABCD 沿对角线BD 折叠,使点 A 落在点 A'处.若∠ 1=∠ 2=50°,则∠ A'为.14.如图,直线y= kx+b 经过点 A(﹣ 1,﹣ 2)和点 B(﹣ 2,0),直线 y= 2x 过点 A,则不等式 2x< kx+b< 0 的解集为.15.如图,将边长为8 的正方形纸片 ABCD 折叠,使点 D 落在 BC 边的点 E 处,点 A 落在点 F 处,折痕为MN ,若 MN = 4,则线段CN的长是.16.在同一平面直角坐标系中,直线y=kx﹣ k 与函数 y=的图象恰巧有三个不一样的交点,则k 的取值范围是.三.解答题(共8 小题)17.计算:( 1)( 2)18.已知一次函数的图象过M( 3, 5), N(﹣ 4,﹣ 9).( 1)求这个一次函数的分析式;( 2)将直线 MN 向上平移 1 个单位,得直线l , l 的分析式为(填空).19.为绿化校园,某校计划购进A、B 两种树苗,共21 课.已知 A 种树苗每棵90 元, B 种树苗每棵70 元.设购置 B 种树苗 x 棵,购置两种树苗所需花费为y 元.( 1)求 y 与 x 的函数表达式;( 2)若购置 B 种树苗的数目少于 A 种树苗的数目,请给出一种花费最省的方案,并求出该方案所需花费.20.已知点A( 8,0)及在第四象限的动点P( x, y),且 x+y= 10.设△ OPA 的面积为S.( 1)求 S 对于 x 的分析式,并直接写出x 的取值范围;( 2)画出函数S 的图象.21.已知矩形ABCD ,把△ BCD 沿 BD 翻折,得△ BDG ,BG,AD 所在的直线交于点E,过点D 作 DF ∥BE 交 BC 所在直线于点F.( 1)求证:四边形 DEBF 是菱形;( 2)若 AB =8, AD = 4,求四边形 BEDF 的面积.22.在平面直角坐标系中,直线y= 2x+4 与两坐标轴分别交于A, B 两点.( 1)若一次函数y=﹣x+m 与直线 AB 的交点在第二象限,求m 的取值范围;( 2)若M 是y 轴上一点,N 是x 轴上一点,直线AB 上能否存在两点P,Q,使得以M,N,P, Q 四点为极点的四边形是正方形.若存在,求出M, N两点的坐标,若不存在,请说明原因.23.如图,已知正方形ABCD ,点 E 在 BA 延伸线上,点 F 在 BC 上,且∠ CDE =2∠ ADF .(1)求证:∠ E= 2∠CDF ;(2)若 F 是 BC 中点,求证: AE+DE = 2AD ;( 3)作 AG⊥ DF 于点 G,连 CG.当 CG 取最小值时,直接写出AE: AB 的值.24.已知,如图:直线AB: y=﹣ 3x+3 与两坐标轴交于A, B 两点.(1)过点 O 作 OC⊥ AB 于点 C,求 OC 的长;(2)将△ AOB 沿 AB 翻折到△ ABD ,点 O 与点 D 对应,求直线 BD 的分析式;(3)在( 2)的条件下,正比率函数 y= kx 与直线 BD 交于 P,直线 AB 交于 Q,若 OP = 3OQ,求正比率函数的分析式.参照答案与试题分析一.选择题(共 10 小题)1.以下各图象不可以表示 y 是x 的函数的是()A .B .C .D .【剖析】 依据函数的意义即可求出答案,即对于每个自变量x 的值,函数 y 都有独一确定的值与其对应.函数的意义反应在图象上简单的判断方法是:作垂直于x 轴的直线,在左右平移的过程中与函数图象只会有一个交点.【解答】 解: C 图象作垂直于x 轴的直线,在左右平移的过程中与函数图象会有无数个交点.应选: C .2.若函数y =( 3﹣ m )是正比率函数,则m 的值是()A .﹣ 3B .3C .± 3D .﹣ 1【剖析】 依据正比率函数的定义解答.【解答】 解:∵函数y =( 3﹣ m )是正比率函数,∴ m 2﹣ 8= 1,解得: mm 1= 3, m 2=﹣ 3;且 3﹣m ≠ 0,∴ m =﹣ 3.应选: A .3.以下计算,正确的选项是()A .(﹣ 1)= 1B .=C .﹣= 1D .= 3【剖析】 依据二次根式的混淆运算次序和运算法例逐个计算可得.【解答】 解: A . ( ﹣ 1)= 2﹣ ,此选项错误;B.==,此选项错误;C.与不是同类二次根式,不可以归并,此选项错误;D .=|﹣3|=3,此选项正确;应选: D .4.菱形拥有而矩形不必定拥有的特点是()A.对角相等B.对角线相互均分D.对角线相互垂直【剖析】依据矩形、菱形的性质逐个判断即可.【解答】解:菱形的性质有:对角相等、对角线相互均分、一组对边平行,另一组对边相等、对角线相互垂直,矩形的性质有:对角相等、对角线相互均分、一组对边平行,另一组对边相等、对角线相等;即菱形拥有而矩形不必定拥有的特点是对角线相互垂直,应选: D .5.已知A(﹣,y1),B(﹣关系为()A .y1< y2C. y1= y2, y2)是一次函数y=﹣ x+b 的图象上的点.B. y1> y2D.以上结论都有可能y1, y2的大小【剖析】先依据一次函数y=﹣ x+b 中k=﹣ 1 判断出函数的增减性,再依据﹣<﹣进行解答即可.【解答】解:∵一次函数y=﹣ x+b 中k=﹣ 1<0,∴y 随 x 的增大而减小,∵﹣<﹣,∴y1> y2.应选: B.6.如图,在 ? ABCD 中,AC、BD 订交于点O,若 BD= 10,AC= 6,则 AB 的取值范围为()A .4< AB< 16B .4< AB< 10C. 2< AB< 8D. 3<AB< 5【剖析】由在 ?ABCD中,对角线AC 与BD订交于点O,若BD= 10,AC= 6,依据平行四边形的对角线相互均分,可求得OA与OB 的长,而后由三角形三边关系,求得答案.【解答】解:∵在 ? ABCD 中,对角线AC 与 BD 订交于点O, BD= 10,AC=6,∴OA= AC= 3, OB= BD= 5,∴边长 AB 的取值范围是:2<AB<8.应选: C.7.已知一次函数y=( m﹣ 4)x+2m+1 的图象过一、二、四象限,则m 的取值范围是()A .m<4B .m<﹣C.﹣< m< 4D.无解【剖析】若函数 y= kx+b 的图象过一、二、四象限,则此函数的k< 0,b>0,据此求解.【解答】解:∵函数y=( m﹣4) x+2 m+1 的图象过一、二、四象限,∴m﹣ 4< 0,2m+1> 0解得﹣< m< 4.应选: C.8.甲乙两同学从 A 地出发,骑自行车在同一条路上行驶到 B 地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如下图.依据图中供给的信息,有下列说法:①他们都行驶了18 千米.②甲车逗留了0.5 小时.③乙比甲晚出发了0.5 小时.④ 相遇后甲的速度<乙的速度.⑤ 甲、乙两人同时抵达目的地.此中切合图象描绘的说法有()A .2 个B .3 个C. 4 个D. 5 个【剖析】要能依据函数图象的性质和图象上的数据剖析得出函数的种类和所需要的条件,联合实质意义获得正确的结论.【解答】解:依据题意和图象可知:① 他们都行驶了18 千米.② 甲车逗留了0.5 小时.③乙比甲晚出发了1﹣ 0.5= 0.5 小时.④相遇后甲的速度<乙的速度.⑤ 乙先抵达目的地.故只有⑤ 不正确.应选: C.9.以下图形中,表示一次函数y= mx+n 与正比率函数y= mnx( m, n 为常数,且mn≠ 0)的图象的是()A .B.C.D.【剖析】依据“两数相乘,同号得正,异号得负”分两种状况议论mn 的符号,而后依据m、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当 mn>0, m, n 同号,同正时y= mx+n 过 1,3, 2 象限,同负时过2,4, 3 象限;②当 mn< 0 时, m, n 异号,则y= mx+n 过 1, 3, 4 象限或 2,4, 1 象限.应选: A.10.正方形ABCD 中, E、F 分别是 AB 、CB 上的点,且AE=CF , CE 交 AF 于 M ,∠ CMF= 45°,则的值为()A .B .C.D.【剖析】依据正方形的性质获得AB= BC,等量代换获得BE= BF,依据全等三角形的性质获得 AM= CM ,EM = FM ,推出点M 在点 A 和点 C 的对称轴上,连结BD ,过 M 作MG ⊥BC 于 G,则点 M 在 BD 上,依据等腰三角形的判断获得BE= BM ,设 BG= GM =x,获得 BE= BM=x,依据相像三角形的性质即可获得结论.【解答】解:∵在正方形ABCD 中,∴AB=BC,∵ AE= CF ,∴BE= BF ,在△ ABF 与△ CBE 中,,∴△ ABF ≌△ CBE ( SAS),∴∠ BAF =∠ BCE ,在△ AEM 与△ CFM 中,,∴△ AEM≌△ CFM (AAS),∴AM =CM , EM=FM ,∴点 M 在点 A 和点 C 的对称轴上,连结 BD ,过 M 作 MG ⊥ BC 于 G,则点 M 在 BD 上,∴∠ ABM=∠ CBM = 45°,∵∠ AME=∠ CMF = 45°,∴∠ AME=∠ CBM ,∴∠ BEM=∠ BAM +∠ AME=∠ BME =∠ CBM +∠BCM ,∴BE= BM ,∵MG ⊥ BC,∴ BG= GM,设 BG= GM = x,∴BE= BM = x,∵ MG ∥ BE,∴△ CMG ∽△ CEB,∴==,∴==+1,应选: A.二.填空题(共 6 小题)11.化简:=.【剖析】原式被开方数变形后,开方即可获得结果.【解答】解:原式===.故答案为:.y=mx+n 与x 轴的交点坐标是(﹣12.已知对于x 的方程 mx+n= 0 的解是 x=﹣ 2,则直线2, 0).【剖析】求直线与x 轴的交点坐标,需使直线y= mx+n的y 值为0,则mx+n= 0;已知此方程的解为x=﹣ 2.所以可得答案.【解答】解:∵方程的解为x=﹣ 2,∴当 x=﹣ 2 时 mx+n= 0;又∵直线 y= mx+n 与 x 轴的交点的纵坐标是0,∴当 y=0 时,则有mx+n= 0,∴ x=﹣ 2 时, y= 0.∴直线 y= mx+n 与 x 轴的交点坐标是(﹣2, 0).13.如图,将平行四边形ABCD 沿对角线 BD 折叠,使点 A 落在点 A'处.若∠ 1=∠ 2=50°,则∠A'为 105° .【剖析】由平行四边形的性质和折叠的性质,得出∠ ADB =∠ BDG=∠ DBG,由三角形的外角性质求出∠ BDG=∠ DBG=∠ 1= 25°,再由三角形内角和定理求出∠ A,即可获得结果.【解答】解:∵ AD∥ BC,∴∠ ADB=∠ DBG,由折叠可得∠ADB=∠ BDG ,∴∠ DBG=∠ BDG ,又∵∠ 1=∠ BDG+∠ DBG = 50°,∴∠ ADB=∠ BDG= 25°,又∵∠ 2= 50°,∴△ ABD 中,∠ A= 105°,∴∠ A'=∠ A= 105°,故答案为: 105°.14.如图,直线y= kx+b 经过点 A(﹣ 1,﹣ 2)和点 B(﹣ 2,0),直线 y= 2x 过点 A,则不等式 2x< kx+b< 0 的解集为﹣2<x<﹣1.【剖析】解不等式2x< kx+b< 0 的解集,就是指函数图象在A,B 之间的部分的自变量的取值范围.【解答】解:依据题意获得y= kx+b 与 y= 2x 交点为 A(﹣ 1,﹣ 2),解不等式2x< kx+b< 0 的解集,就是指函数图象在A,B 之间的部分,又 B(﹣ 2, 0),此时自变量 x 的取值范围,是﹣ 2< x <﹣ 1.即不等式 2x < kx+b < 0 的解集为:﹣ 2< x <﹣ 1.故答案为:﹣ 2< x <﹣ 1.15.如图,将边长为 8 的正方形纸片点 F 处,折痕为 MN ,若 MN = 4ABCD 折叠,使点 D ,则线段 CN 的长是落在3BC .边的点 E 处,点A 落在【剖析】 依据折叠的性质,只需求出DN 就能够求出 NE ,在直角△ CEN 中,设 DN = EN= x ,则 CN = 8﹣ x ,在 Rt △ ENC 中, EN 2=CN 2+EC 2,依据勾股定理就能够列出方程,从而解出 CN 的长.【解答】 解:过点 M 作 MH ⊥ CD 于点 H .连结 DE .依据题意可知 MN 垂直均分 DE ,易证∠ EDC =∠ MHN , MH =AD ,∵四边形 ABCD 是正方形,∴ MH = AD = CD ,∵∠ MHN =∠ C =90°, ∴△ MHN ≌△ DCE (ASA ), ∴ DE = MN = 4 ,在 Rt △DEC 中, CE === 4,设 DN =EN = x ,则 CN = 8﹣ x ,在 Rt △ENC 中, EN 2=CN 2+EC 2,∴ x 2=( 8﹣ x ) 2+42,解得 x =5,∴ CN = 8﹣x = 3.故答案为 3.16.在同一平面直角坐标系中,直线y=kx﹣ k 与函数y=的图象恰巧有三个不一样的交点,则k 的取值范围是﹣2<k<﹣.【剖析】依据题意把y= kx﹣ k 分别代入各个分段函数分析式,用k 表示出x 的值,再根据 x 的取值范围确立k 的范围.【解答】解:直线y= kx﹣k 与函数 y=﹣ 2x﹣ 6 在 x<﹣ 4 时有交点,则 x=<﹣4,解得﹣ 2< k<﹣;直线 y=kx﹣ k 与函数 y= 2 在﹣ 4≤ x< 1 时有交点,则k≤﹣;直线 y=kx﹣ k 与函数 y=﹣ 2x+4 在 x≥ 1 时有交点,则x=<﹣4,解得 k>﹣ 2.所以 k 的取值范围是﹣2<k<﹣.故答案为:﹣2< k<﹣.三.解答题(共8 小题)17.计算:( 1)( 2)【剖析】依据二次根式的运算法例即可求出答案.【解答】解:( 1)原式= 4﹣2+12=14( 2)原式= 2﹣18.已知一次函数的图象过M( 3, 5), N(﹣ 4,﹣ 9).( 1)求这个一次函数的分析式;( 2)将直线 MN 向上平移 1 个单位,得直线l , l 的分析式为y= 2x(填空).【剖析】( 1)利用待定系数法求一次函数分析式;( 2)依据直线平移的规律在分析式y= 2x﹣ 1 的右侧加上 1 即可.【解答】解:( 1)设一次函数分析式为y= kx+b,把 M( 3,5), N(﹣ 4,﹣ 9)代入得,解得,所以一次函数分析式为y=2x﹣ 1;(2)将直线 MN 向上平移 1 个单位,得直线 l ,则 l 的分析式为 y= 2x﹣1+1 = 2x.故答案为 y= 2x.19.为绿化校园,某校计划购进A、B 两种树苗,共21 课.已知 A 种树苗每棵90 元, B 种树苗每棵70 元.设购置 B 种树苗 x 棵,购置两种树苗所需花费为y 元.( 1)求 y 与 x 的函数表达式;( 2)若购置 B 种树苗的数目少于 A 种树苗的数目,请给出一种花费最省的方案,并求出该方案所需花费.【剖析】( 1)设购置 B 种树苗 x 棵,则购置 A 种树苗( 21﹣ x)棵,依据“总花费= A 种树苗的单价×购置 A 种树苗棵树 +B 种树苗的单价×购置 B 种树苗棵树” 即可得出y 对于x 的函数关系式;( 2)依据购置B 种树苗的数目少于 A 种树苗的数目可得出对于x 的一元一次不等式,解不等式即可求出x 的取值范围,再联合一次函数的性质即可得出结论.【解答】解:( 1)设购置 B 种树苗 x 棵,则购置 A 种树苗( 21﹣ x)棵,由已知得:y=70x+90 (21﹣x)=﹣20x+1890 (x 为整数且0≤x≤21).( 2)由已知得: x< 21﹣ x,解得: x<.∵y=﹣ 20x+1890 中﹣ 20<0,∴当x=10 时, y 取最小值,最小值为1690.答:花费最省的方案为购置 A 种树苗11 棵, B 种树苗10 棵,此时所需花费为1690 元.20.已知点A( 8,0)及在第四象限的动点P( x, y),且x+y= 10.设△OPA 的面积为S.( 1)求 S 对于( 2)画出函数x 的分析式,并直接写出 S 的图象.x 的取值范围;【剖析】( 1)第一把 x+y= 10,变形成 y= 10﹣ x,再利用三角形的面积求法:底×高÷2=S,能够获得 S 对于 x 的函数表达式; P 在第四象限,故 x> 0,y> 0,可获得 x 的取值范围;( 2)利用描点法画出函数图象即可.【解答】解:(1)∵x+y=10,∴ y=﹣ x+10 ,∴ S=× 8× |y|= 4( x﹣ 10)= 4x﹣ 40,∵第四象限的动点P( x, y),∴x> 0, y< 0,∴,∴x> 10,即S=4x﹣ 40( x>10);( 2)∵分析式为S= 4x﹣40( x> 10),∴函数图象经过点(10,0)( 15,20)(但不包含(10, 0)的射线).图象如下图21.已知矩形ABCD ,把△ BCD 沿 BD 翻折,得△ BDG ,BG,AD 所在的直线交于点E,过点D 作 DF ∥BE 交 BC 所在直线于点F.( 1)求证:四边形 DEBF 是菱形;( 2)若 AB =8, AD = 4,求四边形 BEDF 的面积.【剖析】( 1)依据邻边相等的平行四边形为菱形进行证明;( 2)依据菱形面积公式底×高进行计算.【解答】解:( 1)证明:∵四边形ABCD 为矩形,∴AD∥ BC,∴∠ EDB=∠ DBC,依据题意可知△BCD ≌△ BDG ,∴∠ DBG=∠ DBC ,∴∠ EDB=∠ EBD,∴ DE = BE,∵AD∥ BC,DF ∥ BE,∴四边形 BEDF 为平行四边形,又∵ DE =BE,∴四边形 BEDF 为菱形;( 2)设菱形 BEDF 的边长为 x,则 AE=DE ﹣ AD= x﹣ 4,在Rt△AEB 中, BE 2= AE2+AB2,222,即 x =( x﹣ 4) +8解得 x=10,∴菱形 BEDF 的面积= DE ?AB = 10× 8= 80.22.在平面直角坐标系中,直线y= 2x+4 与两坐标轴分别交于A, B 两点.( 1)若一次函数y=﹣x+m 与直线 AB 的交点在第二象限,求m 的取值范围;( 2)若M 是y 轴上一点,N 是x 轴上一点,直线AB 上能否存在两点P,Q,使得以M,N,P, Q 四点为极点的四边形是正方形.若存在,求出M, N两点的坐标,若不存在,请说明原因.【剖析】(1)分析式联立获得2x+4=﹣x+m,解得 x=(m﹣4),依据题意获得(m ﹣ 4)< 0,解得即可;(2)分三种状况议论,依据正方形的性质三角形全等的性质,三角形相像的性质即可求得 M, N 两点的坐标.【解答】解:(1)联立 y= 2x+4 与 y=﹣x+m,得 2x+4=﹣x+m,解得 x=(m﹣4),∵交点在第二象限,∴( m﹣4)< 0,∴ m< 4;( 2)当 x= 0 时, y= 2x+4=4,∴ A( 0, 4),当 y= 0 时, 0=2x+4, x=﹣ 2,∴ B(﹣ 2, 0),∴ OA= 4,OB= 2.如图 1,过点 Q 作 QH⊥ x 轴于 H ,∵ MN ∥ AB,∴△ NMO ∽△ BAO,∴==,设ON=a,则 OM = 2a,∵∠ MNQ =90°,∴∠ QNH +∠ MNO =∠ MNO +∠ NMO =90°,∴∠ QNH =∠ NMO ,在△ QNH 和△ NMO 中∴△ QNH ≌△ NMO ( AAS),∴QH =ON= a, HN =OM = 2a,又∵△ BQH ∽△ BAO,∴==,∴BH= a,∵OB= BH+HN+ON,∴2= a+2 a+a,解得 a=,∴M( 0,), N(﹣, 0);如图 2,过点 P 作 PH ⊥ x 轴于 H ,易证△ PNH ∽△ BAO,∴==,设PH = b,则 NH = 2b,同理证得△ PNH≌△ NMO ,∴PH= ON=b, HN =OM = 2b,∴OH =HN﹣ OH = b,又∵△ BPH ∽△ BAO,∴==,∴ BH=b,∵OB= BH+OH,∴2= b+b,解得 b=,∴M( 0,﹣),N(, 0);如图 3,过点 P 作 PH ⊥ x 轴于 H ,PE⊥ y 轴于 E, QF⊥ y 轴于 F ,易证△ PAE∽△ BAO ,∴==,设PE= c,则 AE=2c,同理证得△ PNH≌△ PME,∴ PH= PE= OE=c,则 AE= 2c,∵ OA= AE+OE,∴ 4= 2c+c,解得 c=,∵△ MQF ≌△ PME ,∴MF =PE=OE, EM = FQ,∴EM =OF= FQ ,设 EM= OF = FQ =m,则 Q(﹣ m,﹣ m),代入 y= 2x+4 中,得﹣ m =﹣ 2m+4 ,解得 m= 4,∴ NO= NH+OH =,∴ N(﹣,0),∵OF= m= 4,∴ M( 0,﹣ 4).综上所述 M( 0,),N(﹣,0)或 M( 0,﹣),N(,0)或 M(0,﹣ 4),N(﹣,0);.23.如图,已知正方形ABCD ,点 E 在 BA 延伸线上,点 F 在 BC 上,且∠ CDE =2∠ ADF .(1)求证:∠ E= 2∠CDF ;(2)若 F 是 BC 中点,求证: AE+DE = 2AD ;( 3)作 AG⊥ DF 于点 G,连 CG.当 CG 取最小值时,直接写出AE: AB 的值.【剖析】( 1)将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,证得∠ CDE =∠ ADM ,得出∠ E=∠ M= 180°﹣ 2∠ DFM ,可得出∠ CDF = 90°﹣∠ DFM ,则结论得证;( 2)将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,过点 M 作 MH ⊥ DF 于 H.设 BF=FC =x,则 CD =2x,求出 DF = x,证明△ DFC ∽△ MFH ,得出 FM ,AE= 4x,则结论得证;( 3)如图 3﹣ 1 中,取 AD 的中点 N,连结 GK, CK,当 C、 G、 N 三点共线时, CG 最小.在图3﹣ 2 中,证得四边形NCMD 为平行四边形,得出CM= DN=AD ,则答案可求出.【解答】( 1)证明:如图1,将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,∵∠ DCB=∠ DCM = 90°,∴ F、 C、 M 三点共线,∵将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,∴△ ADE≌△ CDM ,∴∠ E=∠ M,∠ EDA =∠ CDM ,∴∠ CDE=∠ ADM ,∵∠ CDE= 2∠ADF ,∴∠ ADM = 2∠ ADF ,∴∠ FDM =∠ ADF ,∵正方形ABCD 中 AD ∥ BC,∴∠ ADF =∠ DFM =∠ FDM ,∴∠ E=∠ M= 180°﹣ 2∠DFM ,∵∠ DCB= 90°,∴∠ CDF = 90°﹣∠ DFM ,∴∠ E= 2∠ CDF .( 2)证明:如图2,将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,作 MH ⊥ DF 于 H.∵∠ DCF =∠ DCM = 90°,∴F、 C、 M 三点共线,过点 M 作 MH ⊥ DF 于H .∵若 F 是 BC 中点,设 BF = FC= x,则 CD= 2x,=x,在 Rt△FDC 中, DF =由( 1)得,∠ DFM =∠ FDM ,∴ DM = FM ,又∵ HM ⊥ DF ,∴ FH =DF =x,∵∠ DFC =∠ MFH ,∠ DCB =∠ MHF = 90°,∴△ DFC ∽△ MFH ,∴,∴FM = x,∴CM = AE=FM ﹣ FC = x,∵ DE= DM = FM = x,∴AE+DE = x+ x= 4x,∵CD = AD=2x,∴AE+DE = 2AD = 4x.( 3)解:如图3﹣ 1 中,取 AD 的中点 K .∵AG⊥ DF 于点 G,∴∠ AGD= 90°,∵AK= DK ,∴GK = AD,∵CG≥ CK﹣GK ,∴当 C、 G、 N 三点共线时,CG 最小.如图 3﹣ 2 中,当 C、 G、 N 共线时,将△ADE 绕点 D 逆时针旋转90°得△ CDM ,∵∠ DCF =∠ DCM = 90°,∴ F、 C、 M 三点共线,∵∠ AGD= 90°, N 为 AD 中点,∴AN= NG=ND ,∴∠ NGD =∠ ADF ,由( 1)∠ ADF =∠ FDM ,∴∠ NGD =∠ FDM ,∴DM ∥ NC,∵正方形ABCD 中 AD ∥ BC,∴四边形NCMD 为平行四边形,∴CM = DN= AD,∵CM = AE,∴AE= AD= AB,∴AE: AB= 1:2.24.已知,如图:直线AB: y=﹣ 3x+3 与两坐标轴交于A, B 两点.(1)过点 O 作 OC⊥ AB 于点 C,求 OC 的长;(2)将△ AOB 沿 AB 翻折到△ ABD ,点 O 与点 D 对应,求直线 BD 的分析式;(3)在( 2)的条件下,正比率函数 y= kx 与直线 BD 交于 P,直线 AB 交于 Q,若 OP = 3OQ,求正比率函数的分析式.【剖析】(1)分别求出点A、B 的坐标,从而得出AB 的长,再依据三角形的面积公式解答即可;(2)连结 OD ,过点 D 作 DH ⊥x 轴于 H ,易证△ AOB∽△ OHD ,依据相像三角形的性质求出点 D 的坐标,再利用待定系数法求解即可;( 3)过点 P 作 PM⊥ x 轴于 M,点 Q 作 QN⊥x 轴于 N,用 k 的代数式分别表示出OM 、ON;由 OP=3OQ 可得 ON= 3OM ,从而得出对于k 的一元一次方程,求出k的值,问题得以解决.【解答】解:( 1)∵直线 AB 分析式为y=﹣ 3x+3,∴A( 0, 3),B( 1, 0),∴OA= 3,OB= 1,∴ AB=,∵S△AOB= OA ?OB= AB?OC,∴ OC==;( 2)连结 OD ,过点 D 作 DH ⊥ x 轴于 H,∵点 O 与点 D 对于 AB 对称,∴ AB 垂直均分OD,由( 1) OC=,∴ OD =2OC=,∵△ AOB∽△ OCB,△ OCB∽△ OHD ,∴△ AOB∽△ OHD ,∴,∴DH =, OH =,∴D(,).设直线 BD 分析式为y= kx+b,∵ B( 1, 0),D (,),∴,解得,∴直线 BD 分析式为y= 3x﹣ 3.( 3)如图,过点P 作 PM ⊥ x 轴于 M ,点 Q 作 QN⊥x 轴于 N.∵正比率函数y=kx 与直线 BD 交于 P,∴ kx= 3x﹣3,解得 x=,∴OM =.∵正比率函数y=kx 与直线 AB 交于 Q,∴ kx=﹣ 3x+3 ,解得 x=,∴ON=.∵OP=3OQ,∴ ON= 3OM ,∴=3×,解得k=.∴正比率函数的分析式为.。

2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1) 解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1)  解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1)一.选择题(共10小题)1.若在实数范围内有意义,则x的取值范围是()A.x>0B.x>3C.x≥3D.x≤32.下列二次根式中的最简二次根式是()A.B.C.D.3.下列计算正确的是()A.2B.C.5D.4.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是()A.4B.C.4或D.以上都不正确5.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1B.﹣1C.2D.6.下列命题:①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在同一个三角形中,等边对等角.其中逆命题成立的个数为()A.1个B.2个C.3个D.4个7.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间8.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n9.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④10.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD中点,则=.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题)11.计算:(1)=;(2)(2)2=;(3)=.12.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式.13.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.14.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.15.在△ABC中,AB=15,AC=13,AD为△ABC的高,且AD=12,则S△ABC=.16.如图,∠AOB=30°,点C、D分别在边OA、OB上,且OC=2,OD=4,点M、N 分别在OB、OA上,则CM+MN+ND的最小值是.三.解答题(共8小题)17.计算:18.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.19.如图,一根竹子高10尺,折断后竹子的顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?20.如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB=,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为.21.等腰Rt△ABC中,∠ACB=90°且CA=CB.(1)如图1,若△ECD也是等腰Rt△且CE=CD,△ACB的顶点A在△ECD的斜边DE 上,求证:AE2+AD2=2AC2;(2)如图2,点M是△ACB外一点,CM∥AB,且BM=BA,求的值.22.“武黄城际铁路”是武汉市城市圈内一条连通武汉市和黄石市的快速城际铁路,如图1,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你解决以下问题:(1)求A、C之间的距离;(参考数据≈4.6);(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,应该选择哪种乘车方案?请说明理由.(不计候车时间)(3)“为了安全,请勿超速”.如图2,武黄城际列车通车后,在某直线路段MN限速180千米/小时,为了检测列车是否超速,铁路有关部门在铁路MN旁设立了观测点S,从观测点S测得列车从点P到达点Q行驶了1.5秒钟,已知∠SPN=45°,∠SQN=60°,SQ =200米,此列车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)23.已知△ABC中,AB=AC,∠BAC=2a,∠ADB=a(1)如图1,若a=30°,则线段AD、BD、CD之间的数量关系为;(2)若a=45°①如图2,线段AD、BD、CD满足怎样的数量关系?证明你的结论;②如图3,点E在线段BD上,且∠BAE=45°,AD=5,BD=4,则DE.24.在Rt△ABC中,∠C=90°,AC=BC,O是AB的中点,∠EOF=90°,(1)如图1,点E、F分别在线段AC和线段BC上.试确定EF、AE、BF之间的数量关系,并给出证明.(2)如图2,点E、F分别在线段AC和线段CB的延长线上,且OP平分∠EOF交直线CB于P点,试确定CP、PF、BF之间的数量关系,并加以证明.(3)如图3,在(2)的条件下,连接OC,过P作PM⊥OC于点M,过F作FN⊥OB 于点N,直线PM、FN交于D点,请判断DP、PM、NF之间的数量关系,并证明.参考答案与试题解析一.选择题(共10小题)1.若在实数范围内有意义,则x的取值范围是()A.x>0B.x>3C.x≥3D.x≤3【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.2.下列二次根式中的最简二次根式是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A.3.下列计算正确的是()A.2B.C.5D.【分析】利用二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、C进行判断;根据分母有理化对D进行判断.【解答】解:A、原式=6×3=18,所以A选项错误;B、与不能合并,所以B选项错误;C、5与﹣2不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.4.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是()A.4B.C.4或D.以上都不正确【分析】根据勾股定理的逆定理,可设第三条边长为x,如果满足32+52=x2或32+x2=52,即为直角三角形,解出x的值即可解答;【解答】解:设第三条边长为x,∵三角形是直角三角形,∴可得,32+52=x2或32+x2=52,解得,x=或x=4.故选:C.5.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1B.﹣1C.2D.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.6.下列命题:①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在同一个三角形中,等边对等角.其中逆命题成立的个数为()A.1个B.2个C.3个D.4个【分析】分别写出命题的逆命题,判断即可.【解答】解:①同旁内角互补,两直线平行,逆命题是:两直线平行,同旁内角互补,正确;②如果两个角是直角,那么它们相等,逆命题是:如果两个角相等,那么他们是直角,不成立;③如果两个实数相等,那么它们的平方相等,逆命题是:如果两数的平方相等,那么这两个数相等,不成立;④在同一个三角形中,等边对等角,逆命题是:在同一个三角形中,相等的角对相等的边,成立.故成立的有2个.故选:B.7.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.8.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D.9.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④【分析】由题意,①﹣②可得2xy=45记为③,①+③得到(x+y)2=94由此即可判断.【解答】解:由题意,①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴①②③正确,④错误.故选:B.10.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a ﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.二.填空题(共6小题)11.计算:(1)=;(2)(2)2=20;(3)=.【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案.【解答】解:(1)==;(2)(2)2=4×()2=4×5=20;(3)===.故答案为:(1);(2)20;(3).12.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式(n≥2且n为整数).【分析】观察可发现整数部分与分子相同,分母为整数的平方减1,据此可解.【解答】解:观察可发现整数部分与分子相同,分母为整数的平方减1,∴用n(n为正整数,且n≥2)表示的等式为:=n.故答案为:=n(n为正整数,且n≥2).13.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【解答】解:如图所示,路径一:AB==13;路径二:AB==;路径三:AB==;∵>13>,∴cm为最短路径.14.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.15.在△ABC中,AB=15,AC=13,AD为△ABC的高,且AD=12,则S△ABC=24或84.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的面积求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的面积求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD==9,在Rt△ACD中,CD==5∴BC=5+9=14∴△ABC的面积为:;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的面积为:∴当△ABC为锐角三角形时,△ABC的面积为84;当△ABC为钝角三角形时,△ABC 的面积为24.综上所述,△ABC的面积是84或24.故答案为:84或24.16.如图,∠AOB=30°,点C、D分别在边OA、OB上,且OC=2,OD=4,点M、N 分别在OB、OA上,则CM+MN+ND的最小值是2.【分析】作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接C′D′,与OB、OA分别交于点M、N,连接CM、DN,此时CM+MN+ND=C′M+MN+ND′=C′D′最小,根据勾股定理即可求得CM+MN+ND的最小值.【解答】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接C′D′,与OB、OA分别交于点M、N,连接CM、DN,此时CM+MN+ND=C′M+MN+ND′=C′D′最小,∴CM+MN+ND的最小值是C′D′的长.连接OC′、OD′,由对称性可知:∠C′OB=∠COB=∠COD′=30°,OC′=OC,OC′=OC,∴∠COC′=DOD′=60°,∴△OMC,△ODN为等边三角形,∴∠D′OC′=90°,OC′=2,OD′=4由勾股定理得,C′D′==2.所以CM+MN+ND的最小值是2.故答案为2.三.解答题(共8小题)17.计算:【分析】在二次根式的加减运算中,先对各个二次根式化成最简二次根式,再把同类二次根式合并.【解答】解:原式===14.18.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.【分析】(1)根据完全平方公式可以解答本题;(2)根据平方差公式可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,∴x2+2xy+y2=(x+y)2=(2)2=12;(2)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,x﹣y==2,x2﹣y2=(x+y)(x﹣y)==4.19.如图,一根竹子高10尺,折断后竹子的顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?【分析】杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解答】解:设杆子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=.答:折断处离地面的高度是尺.20.如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB=,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为2.【分析】(1)由AB==、AD==,结合网格与勾股定理可确定点A;(2)求出BC2、CD2、BD2,再利用勾股定理逆定理即可判断;(3)设点C到BD的距离为d,根据S△BCD=BC•CD=BD•d求解可得.【解答】解:(1)如图所示,四边形ABCD即为所求,其面积为5×5﹣×5×1﹣×2×4﹣×1×4﹣×(1+3)×1=14;(2)是,∵BC2=22+42=20,CD2=12+22=5,BD2=32+42=25,∴BC2+CD2=BD2,∴△BCD是直角三角形,且∠BCD=90°,(3)设点C到BD的距离为d,由(2)知,BC=2,CD=,BD=5,根据S△BCD=BC•CD=BD•d,则d===2.故答案为:2.21.等腰Rt△ABC中,∠ACB=90°且CA=CB.(1)如图1,若△ECD也是等腰Rt△且CE=CD,△ACB的顶点A在△ECD的斜边DE 上,求证:AE2+AD2=2AC2;(2)如图2,点M是△ACB外一点,CM∥AB,且BM=BA,求的值.【分析】(1)连结BD,由等腰直角三角形的性质得出∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,得出2AC2=AB2.由SAS 证明△AEC≌△BDC,得出AE=BD,∠E=∠BDC=45°,CE=CD,证出∠BDA=∠BDC+∠ADC=90°,在Rt△ADB中.由勾股定理即可得出结论;(2)过M作MH⊥BC交BC的延长线于H,设AC=BC=a,求得AB=BM=a,根据平行线的性质得到∠HCM=∠ABC=45°,设MH=CH=x,根据勾股定理得到CM=CH=a,于是得到结论.【解答】(1)证明:连接BD,如图所示:∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,∴2AC2=AB2.∠ECD﹣∠ACD=∠ACB﹣∠ACD,∴∠ACE=∠BCD在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD,∠E=∠BDC.∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴AD2+BD2=AB2,∴AD2+AE2=2AC2;(2)过M作MH⊥BC交BC的延长线于H,设AC=BC=a,∵∠ACB=90°,∴AB=BM=a,∵CM∥AB,∴∠HCM=∠ABC=45°,∴MH=CH,设MH=CH=x,∴x2+(x+a)2=()2,解得x=a(负值舍去),∴CM=CH=a,∴==.22.“武黄城际铁路”是武汉市城市圈内一条连通武汉市和黄石市的快速城际铁路,如图1,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你解决以下问题:(1)求A、C之间的距离;(参考数据≈4.6);(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,应该选择哪种乘车方案?请说明理由.(不计候车时间)(3)“为了安全,请勿超速”.如图2,武黄城际列车通车后,在某直线路段MN限速180千米/小时,为了检测列车是否超速,铁路有关部门在铁路MN旁设立了观测点S,从观测点S测得列车从点P到达点Q行驶了1.5秒钟,已知∠SPN=45°,∠SQN=60°,SQ =200米,此列车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【分析】(1)根据勾股定理解答即可;(2)根据路程与速度的关系得出时间即可;(3)根据三角函数得出PQ,进而判断即可.【解答】解:(1)过点C作AB的垂线,交AB的延长线于E点,∵∠ABC=120°,BC=20,∴BE=10,CE=10,在△ACE中,∵AC2=8100+300,∴AC=20=20×4.6=92km;(2)乘客车需时间t1==1(小时);乘列车需时间t2=+=1(小时);∴选择城际列车.(3)作SH⊥MN于H,如图,∵∠SPN=45°,∠SQN=60°,SQ=200米,∴HS=PH=100,QH=100,∴PQ=100(﹣1)≈73,则速度为m/s<180千米/小时,故为超速.23.已知△ABC中,AB=AC,∠BAC=2a,∠ADB=a(1)如图1,若a=30°,则线段AD、BD、CD之间的数量关系为DC2=DA2+DB2;(2)若a=45°①如图2,线段AD、BD、CD满足怎样的数量关系?证明你的结论;②如图3,点E在线段BD上,且∠BAE=45°,AD=5,BD=4,则DE=.【分析】(1)结论:DC2=DA2+DB2.如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.首先证明△DCM是等边三角形,再证明△ADM是直角三角形即可解决问题.(2)①结论:DC2=DB2+2DA2.如图2中,作AM⊥AD交DB的延长线于M,连接CM.由△DAB≌△MAC,推出BD=CM,∠ADB=∠AMC=45°推出∠DMC=90°,推出DC2=CM2+DM2,由CM=DB,DM=AD,即可证明.②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4﹣x,由AD=AM=5,推出DM=5,BM=DG=5﹣4,在Rt△DEG中,根据DG2+DE2=EG2,列出方程即可解决问题.【解答】解:(1)结论:DC2=DA2+DB2.理由:如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.∵CD=CM,∠DCM=60°,∴△DCM是等边三角形,∴DM=CD=CM,∵∠ADB=30°,∴∠DAB+∠DBA=150°,∵∠MAC=∠DBC,∴∠MAC+∠DAB=∠DBC+∠DAB=∠DBA+∠ABC+∠DAB=150°+60°=210°,∴∠DAM=360°﹣210°﹣60°=90°,∴DM2=DA2+AM2,∵AM=DB,DM=DC,∴DC2=DA2+DB2.故答案为DC2=DA2+DB2.(2)①结论:DC2=DB2+2DA2.理由:如图2中,作AM⊥AD交DB的延长线于M,连接CM.∵∠ADM=45°,∠DAM=90°,∴∠ADM=∠AMD=45°,∴DA=AM,DM=DA,∵∠DAM=∠BAC,∴∠DAB=∠MAC,∵AB=AC,∴△DAB≌△MAC,∴BD=CM,∠ADB=∠AMC=45°∴∠DMC=90°,∴DC2=CM2+DM2,∵CM=DB,DM=AD,∴DC2=DB2+2DA2.②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4﹣x,∵AD=AM=5,∴DM=5,BM=DG=5﹣4,在Rt△DEG中,∵DG2+DE2=EG2,∴(5﹣4)2+x2=(4﹣x)2,解得x=.故答案为=.24.在Rt△ABC中,∠C=90°,AC=BC,O是AB的中点,∠EOF=90°,(1)如图1,点E、F分别在线段AC和线段BC上.试确定EF、AE、BF之间的数量关系,并给出证明.(2)如图2,点E、F分别在线段AC和线段CB的延长线上,且OP平分∠EOF交直线CB于P点,试确定CP、PF、BF之间的数量关系,并加以证明.(3)如图3,在(2)的条件下,连接OC,过P作PM⊥OC于点M,过F作FN⊥OB 于点N,直线PM、FN交于D点,请判断DP、PM、NF之间的数量关系,并证明.【分析】(1)由“ASA”可证△CEO≌△BFO,可得CE=BF,由勾股定理可得结论;(2)连接OC,EP,由“ASA”可证△CEO≌△BFO,可得BF=CE,OE=OF,由“ASA”可证△EOP≌△FOP,可得PE=PF,由勾股定理可得结论;(3)由题意可证△PDF,△BNF均为等腰直角三角形,可得PF=DP,CP=PM,BF=NF,代入(2)的结论可求解.【解答】解:(1)AE2 +BF2 =EF2,理由如下:连接OC,EF,∵∠ACB=90°,AC=BC,点O是AB中点,∴AO=BO=CO,AB⊥CO,∠ACO=∠B=45°,∴∠COB=∠EOF=90°,∴∠EOC=∠FOB,且BO=CO,∠ECO=∠B=45°,∴△CEO≌△BFO(ASA)∴CE=BF,∵AC=BC,∴AE=CF,∵CE2+CF2=EF2,∴AE2 +BF2 =EF2;(2)CP2+BF2=PF2;理由如下:连接OC,EP,∵∠ACB=90°,AC=BC,点O是AB中点,∴AO=BO=CO,AB⊥CO,∠ACO=∠ABC=45°,∴∠COB=∠EOF=90°,∠OCE=∠OBF=135°,∴∠EOC=∠FOB,且BO=CO,∠OCE=∠OBF,∴△CEO≌△BFO(ASA)∴BF=CE,OE=OF,∵OP平分∠EOF,∴∠EOP=∠FOP=45°,且OE=OF,OP=OP,∴△EOP≌△FOP(ASA),∴PF=PE,∴CP2+BF2=CP2+CE2=PE2=PF2;(3)PM2+NF2=DP2.理由如下:∵∠OBC=∠NBF=∠DPF=45°,∴△PDF,△BNF均为等腰直角三角形,∴PF=DP,CP=PM,BF=NF,由(2)可知CP2+BF2=PF2,∴2PM2+2NF2=2DP2,即PM2+NF2=DP2.。

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。

2018-2019学年第二学期八年级数学期中模拟试卷(1)

2018-2019学年第二学期八年级数学期中模拟试卷(1)

2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。

武汉二中广雅中学2018-2019学年度第二学期八下数学训练卷(一)

武汉二中广雅中学2018-2019学年度第二学期八下数学训练卷(一)

22. (10 分)如图所示,甲、乙两块边长为 a 米(a>1)的正方形田地,甲地修了两条互相乘直的宽为 1 米的通道,乙地正中间修了边长为 1 米的蓄水池,甲乙两田地的剩余地方全部种植小麦,一年后收获小麦 m 千克. (m>0) (1)甲地的小麦种植面积为 平方米,乙地的小麦种植面积为 平方米; (2 分) (2)甲乙两地小麦种植面积较小的是 地; (2 分) (3)若高的单位面积产量是低的单位面积产量的
5.下列等式从左到右的变形,属于因式分解的是( A.x2+2x+1=x(x+2)+1 C.x2+4=(x+2)2 6.若把分式
1 1 1 D. - x 2 + y 2 = ( x + y )( y - x ) 4 2 2
x- y 中 x 和 y 都缩小为原来的一半,那么分式的值( 2x + y
) D.不确定
第 10 题图 9.列车平均提速 v 千米/小时,用相同的时间,列车提速前行驶 S 千米,提速后比提速前多行驶 50 米,设 提速前列车的平均速度为 x 米/小时,下列方程不正确的是( A.
S S + 50 = x x+v
) D.
S S + 50 +v = x x
B.
x S = x + v S + 50
C. x + v =
S + 50 S x
10.如图,△ABC 中,∠ABC=30°,点 D 在△ABC 外,且 BD=2,连 AD、CD,则△ACD 的周长最小值 为( A.1 ) B. 3 C. 2 D. 2 3
二、填空题(每小题 3 分,共 18 分)
1 = ; 12 = ;( 2 5 )2= . 2 12.若 x+m 与 x-2 的乘积之中不含 x 的一次项,则 m=

2018-2019学年湖北省武汉二中广雅中学八年级下学期段测数学试卷 (解析版)

2018-2019学年湖北省武汉二中广雅中学八年级下学期段测数学试卷 (解析版)

2018-2019学年武汉二中广雅中学八年级第二学期段测数学试卷一、选择题1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣33.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A.0.3B.0.7C.0.4D.0.64.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.由几个大小相同的小正方体组成的立体图形的俯视图如图所示,则这个立体图形应是下图中的()A.B.C.D.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A.B.C.D.7.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.8.如图是某月的日历表,在此日历表上可以用一个长方形圈出2×2个位置相邻的4个数,若圈出的4个数的和为52,则最大数与最小数的积为()A.153B.272C.128D.1059.如图,△ABE中,点A、B是反比例函数y=(k≠0)图象上的两点,点E在x轴上,延长线段AB交y轴于点C,点B恰为线段AC中点,过点A作AD⊥x轴于点D.若S=,DE=2OE,则k的值为()△ABEA.6B.﹣6C.9D.﹣910.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56B.72C.56或72D.不存在二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是.12.对于一组统计数据2、7、6、4、3、3,这组数据的中位数是.13.计算﹣的结果是.14.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.15.平面直角坐标系中,点A(m,n)为抛物线y=ax2﹣(a+1)x﹣2(a>0)上一动点,当0<m≤3时,点A关于x轴的对称点始终在直线y=﹣x+2的上方,则a的取值范围是.16.如图,△ABC中,∠A=90°,点D、E分别在边AB、AC上,=m.若,则m=.三、解答题(共8题,共72分)17.计算:(1)a3•a4•a+(a2)4+(﹣2a4)2(2)28x4y2÷7x3y18.如图,AB∥CD,EF分别交AB,CD于点E、F,∠AEF、∠DFE的平分线分别为EG、FH,求证:EG∥FH.19.中华文化,源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请补全条形分布直方图,本次调查一共抽取了名学生;(2)扇形统计图中“1部”所在扇形的圆心角为度;(3)若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名?20.如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.(1)∠ACB的大小为;(2)要求在下图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:第一步:延长AC到格点B1,使得AB1=AB;第二步:延长BC到格点E,使得CE=CB,连接AE;第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.请你按步骤完成作图,并直接写出B1、E、F三点的坐标.21.如图,△ABC中,AC为⊙O的直径,点D在BC上,AC=CD,∠ACB=2∠BAD (1)求证:AB与⊙O相切;(2)连接OD,若tan B =,求tan∠ADO.22.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)产品甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E为线段BC上一点,AE交CD于G,且GC=GE,EF⊥BC交AB于点F.(1)求证:AE2=AF•AB;(2)连FG,若BE=2CE,求tan∠AFG;(3)如图2,当tan B=时,CE=FE(请直接写出结果,不需要解答过程).24.已知抛物线y=ax2﹣2ax﹣3a与y轴交于C点,交x轴于A、B,且OB=OC.(1)求抛物线的解析式;(2)如图1,直线l:y=x+b(b<0)交x轴于M,交y轴于N.将△MON沿直线l 翻折,得到△MPN,点O的对应点为P.若O的对应点P恰好落在抛物线上,求直线l 的解析式;(3)如图2,将原抛物线向左平移1个单位,向下平移t个单位,得到新抛物线C1.若直线y=m与新抛物线C1交于P、Q两点,点M是新抛物线C1上一动点,连接PM,并将直线PM沿y=m翻折交新抛物线C1于N,过Q作QT∥y轴,交MN于点T,求的值.参考答案一、选择题(共10小题,每小题3分,共30分)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.解:3的相反数是﹣3.故选:A.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3【分析】根据二次根式的被开方数大于等于0列式进行计算即可得解.解:根据题意得,x+3≥0,解得x≥﹣3.故选:B.3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A.0.3B.0.7C.0.4D.0.6【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率.解:∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选:A.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.5.由几个大小相同的小正方体组成的立体图形的俯视图如图所示,则这个立体图形应是下图中的()A.B.C.D.【分析】由俯视图判断出组合的正方体的几何体的列数即可.解:根据给出的俯视图,这个立体图形的左边有2列正方体,右边1列正方体.故选:C.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:人数×8﹣3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.解:设有x人,物品价值y元,由题意得:,故选:C.7.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.8.如图是某月的日历表,在此日历表上可以用一个长方形圈出2×2个位置相邻的4个数,若圈出的4个数的和为52,则最大数与最小数的积为()A.153B.272C.128D.105【分析】可设正方形框中的第一个数为x,第二个数比x大1,为x+1,第3个数比x大7,为x+7,第4个数比x+7大1,为x+8,再根据四个数的和为52,列出方程求解即可;解:(3)设最小的数为x,依题意有x+x+1+x+7+x+8=52,解得x=9则x+1=10x+7=16x+8=17.∴这四个数为9,10,16,17.∴最大数与最小数的积为9×17=153.故选:A.9.如图,△ABE中,点A、B是反比例函数y=(k≠0)图象上的两点,点E在x轴上,延长线段AB交y轴于点C,点B恰为线段AC中点,过点A作AD⊥x轴于点D.若S=,DE=2OE,则k的值为()△ABEA.6B.﹣6C.9D.﹣9【分析】根据题意设A(2a,b),则B(a,2b),E(,0),作BM⊥x轴于M,根据S△ABE=S梯形ABMD+S△BME﹣S△ADE得出﹣ab=,求得ab=﹣3,即可求得k=2ab =﹣6.解:∵点A、B是反比例函数y=(k≠0)图象上的两点,点B恰为线段AC中点,∴设A(2a,b),则B(a,2b),∴k=2ab,∵DE=2OE,∴E(,0),作BM⊥x轴于M,∵S△ABE=S梯形ABMD+S△BME﹣S△ADE,S△ABE=,∴(﹣a)•(b+2b)+(﹣a)•2b﹣(﹣2a)•b=,整理得﹣ab=,解得ab=﹣3,∴k=2ab=﹣6.故选:B.10.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56B.72C.56或72D.不存在【分析】根据相同时间内速度的比等于路程的比,可得v1:v2的值,根据相似三角形的性质,可得∠ADB=∠BDP,根据等腰三角形的判定,可得BP与DP的关系,根据勾股定理,可得DP的长,根据有理数的加法,可得P点移动的距离;根据相似三角形的性质,可得EO1的长,分类讨论:当⊙O首次到达⊙O1的位置时,当⊙O在返回途中到达⊙O1位置时,根据v1:v2的值,可得答案.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是4.【分析】根据二次根式的性质求出即可.解:=4,故答案为:4.12.对于一组统计数据2、7、6、4、3、3,这组数据的中位数是 3.5.【分析】根据中位数的定义直接解答即可.解:把这些数从小到大排列为2、3、3、4、6、7,则这组数据的中位数是(3+4)÷2=3.5.故答案为:3.5.13.计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.解:原式=+=故答案为:14.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.15.平面直角坐标系中,点A(m,n)为抛物线y=ax2﹣(a+1)x﹣2(a>0)上一动点,当0<m≤3时,点A关于x轴的对称点始终在直线y=﹣x+2的上方,则a的取值范围是0<a<1.【分析】求得直线y=﹣x+2,当x=3时的函数值为﹣1,根据题意当x=3时,抛物线的函数值小于1,得到关于a的不等式,解不等式即可求得a的取值范围,解:直线y=﹣x+2中,当x=3时,y=﹣x+2=﹣1,∵A(m,n)关于x轴的对称点始终在直线y=﹣x+2的上方,∴当x=3时,n<1,∴9a﹣3(a+1)﹣2<1,解得a<1,∴a的取值范围是0<a<1,故答案为0<a<1.16.如图,△ABC中,∠A=90°,点D、E分别在边AB、AC上,=m.若,则m=.【分析】作EF⊥BE,CF⊥CE交于点F,易得△ABE∽△CEF,易证四边形BDCF为平行四边形,设BE=2a,CD=BF=3a,可求EF=a,即可求出m的值.解:作EF⊥BE,CF⊥CE交于点F,则∠AEB+∠CEF=90°=∠AEB+∠ABE,∴∠ABE=∠CEF,∵∠A=∠ECF=90°∴△ABE∽△CEF,∴===m,∵=m.∴CF=BD,∵∠A=∠ECF=90°,∴AB∥CF,∴四边形BDCF为平行四边形,设BE=2a,CD=BF=3a,在Rt△BEF中,EF==a,=m,∴=m,∴m=,故答案为.三、解答题(共8题,共72分)17.计算:(1)a3•a4•a+(a2)4+(﹣2a4)2(2)28x4y2÷7x3y【分析】(1)直接利用积的乘方运算法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案;(2)直接利用整式的除法运算法则计算得出答案.解:(1)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8;(2)28x4y2÷7x3y=4xy.18.如图,AB∥CD,EF分别交AB,CD于点E、F,∠AEF、∠DFE的平分线分别为EG、FH,求证:EG∥FH.【分析】由AB与CD平行,利用两直线平行,内错角相等得到一对角相等,再由EG 与FH为角平分线,利用角平分线定义及等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥CD,∴∠AEF=∠EFD(两直线平行,内错角相等).∵EG平分∠AEF,FH平分∠EFD,∴∠GEF=∠AEF,∠HFE=∠EFD(角平分线定义),∴∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行).19.中华文化,源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请补全条形分布直方图,本次调查一共抽取了40名学生;(2)扇形统计图中“1部”所在扇形的圆心角为126度;(3)若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名?【分析】(1)由2部人数及其所占百分比可得总人数,总人数减去0、2、3、4部的人数即可求出1部的人数,从而补全图形;(2)用360°乘以1部人数所占比例可得;(3)用总人数乘以样本中3、4部人数占被调查人数的比例即可得.解:(1)本次调查的总人数为10÷25%=40(人),则“1部”的人数为40﹣(2+10+8+6)=14(人),补全图形如下:故答案为:40;(2)扇形统计图中“1部”所在扇形的圆心角为360°×=126°,故答案为:126;(3)估计至少阅读3部四大古典名著的学生有1000×=350(人).20.如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.(1)∠ACB的大小为90°;(2)要求在下图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:第一步:延长AC到格点B1,使得AB1=AB;第二步:延长BC到格点E,使得CE=CB,连接AE;第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.请你按步骤完成作图,并直接写出B1、E、F三点的坐标.【分析】(1)利用CA和CB为网格的对角线可判断∠ACB的度数;(2)利用勾股定理得到AB1=AB=5,则利用网格特点可确定B1点的位置,利用∠EAC=∠BAC且AE=AB可确定E点位置,要得到B1C1⊥AE,利用网格特点取F点使B1F⊥AE.解:(1)∠ACB=90°,故答案为90°;(2)如图所示,△AB1C1即为所求.其中B1(3,3);E(﹣3,5),F(﹣4,2).21.如图,△ABC中,AC为⊙O的直径,点D在BC上,AC=CD,∠ACB=2∠BAD(1)求证:AB与⊙O相切;(2)连接OD,若tan B=,求tan∠ADO.【分析】(1)设线段AD与⊙O交于E,连接CE,根据圆周角定理得到CE⊥AD,求得∠ACE=∠DAB,于是得到结论;(2)根据切线的性质得到∠CAB=90°,延长CE交AB于M,则CM为AD的垂直平分线,连接DM,根据全等三角形的性质得到∠CDM=∠CAB=90°,设AM=MD=3a,DB=4a,MB=5a,得到AB=8a,AC=6a,设EN=k,得到AE=DE=2k,CE=4k,过O作ON⊥AD于N,根据三角形的中位线定理得到ON=CE=2k,AN=AE=k,于是得到结论.【解答】(1)证明:设线段AD与⊙O交于E,连接CE,∵AC为⊙O的直径,∴CE⊥AD,∵AC=CD,∴∠ACD=2∠ACE,∵∠ACB=2∠BAD,∴∠ACE=∠DAB,∵∠CAE=90°,∴∠CAE+∠DAB=90,∴∠CAB=90°,∴AB与⊙O相切;(2)解:∵AB与⊙O相切,∴∠CAB=90°,延长CE交AB于M,则CM为AD的垂直平分线,连接DM,∴DM=AM,∵AC=CD,CM=CM,∴△ACM≌△DCM(SSS),∴∠CDM=∠CAB=90°,∴∠BDM=90°,∵tan B =,∴设AM=MD=3a,DB=4a,MB=5a,AB=8a,AC=6a,∴tan∠ACM=tan∠EAM =,∴CE=2AE,AE=2EM,设EN=k,∴AE=DE=2k,CE=4k,过O作ON⊥AD于N,∴ON∥CE,∴ON =CE=2k,AN =AE=k,∴DN=3AN=3k,∴tan∠ADO ==.22.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)品甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【分析】(1)根据利润=销售数量×每件的利润即可解决问题.(2)根据一次函数的增减性,二次函数的增减性即可解决问题.(3)根据题意分三种情形分别求解即可:①(1180﹣200a)=440,②(1180﹣200a)>440,③(1180﹣200a)<440.解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①1180﹣200a=440,解得a=3.7,②1180﹣200a>440,解得a<3.7,③1180﹣200a<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E为线段BC上一点,AE交CD于G,且GC=GE,EF⊥BC交AB于点F.(1)求证:AE2=AF•AB;(2)连FG,若BE=2CE,求tan∠AFG;(3)如图2,当tan B=时,CE=FE(请直接写出结果,不需要解答过程).【分析】(1)根据等腰三角形的性质、同角的余角相等得到∠AEF=∠B,证明△AEF ∽△ABE,根据相似三角形的性质证明结论;(2)设CE=a,则BE=2a,证明△AEC∽△BAC,得到AC=a,求出∠AFG=60°,得到答案;(3)设BE=a,CE=EF=b,证明△AEC∽△BAC,得到AC=,证明△BEF ∽△BCA,求出a、b的关系,根据正切的定义解答即可.【解答】(1)证明:∵GC=GE,∴∠GCE=∠GEC,∵CD⊥AB,∴∠DCE+∠B=90°,∵EF⊥BC,∴∠GEC+∠AEF=90°,∴∠AEF=∠B,又∠EAF=∠BAE,∴△AEF∽△ABE,∴=,∴AE2=AF•AB;(2)设CE=a,则BE=2a,∵∠DCB+∠B=90°,∠CAB+∠B=90°,∴∠DCB=∠CAB,∵∠GCE=∠GEC,∴∠CAB=∠GEC,又∠ACE=∠BCA=90°,∴△AEC∽△BAC,∴=,即=,解得,AC=a,∴∠CAE=∠BAE=∠AEF=30°,∴FA=FE,∵∠GAC=∠GCA=30°,∴GA=GC,∵GC=GE,∴GA=GE,又FA=FE,∴∠AFG=60°,∴tan∠AFG=;(3)设BE=a,CE=EF=b,∵△AEC∽△BAC,∴=,即=,解得,AC2=b(a+b),∴AC=,∵EF∥AC,∴△BEF∽△BCA,∴=,即=,整理得,b2+ab﹣a2=0,则()2+﹣1=0,解得,=,∴tan B==,故答案为:.24.已知抛物线y=ax2﹣2ax﹣3a与y轴交于C点,交x轴于A、B,且OB=OC.(1)求抛物线的解析式;(2)如图1,直线l:y=x+b(b<0)交x轴于M,交y轴于N.将△MON沿直线l 翻折,得到△MPN,点O的对应点为P.若O的对应点P恰好落在抛物线上,求直线l 的解析式;(3)如图2,将原抛物线向左平移1个单位,向下平移t个单位,得到新抛物线C1.若直线y=m与新抛物线C1交于P、Q两点,点M是新抛物线C1上一动点,连接PM,并将直线PM沿y=m翻折交新抛物线C1于N,过Q作QT∥y轴,交MN于点T,求的值.【分析】(1)OB=OC=3a,故点B(3a,0),将点B的坐标代入y=ax2﹣2ax﹣3a,即可求解;(2)求出点P的坐标(﹣b,b),将点P的坐标代入抛物线表达式,即可求解;(3)计算x P+x M=k,同理可得:x P+x N=﹣k,而x T=x Q=﹣x P,而TH∥MG,故,即==1.解:(1)∵c=﹣3a,∴OB=OC=3a,故点B(3a,0),将点B的坐标代入y=ax2﹣2ax﹣3a并解得:a=1或﹣(舍去﹣),故抛物线的表达式为:y=x2﹣2x﹣3;(2)连接OP,交MN于点K,则OP⊥MN,则直线OP的表达式为:y=﹣2x,而直线MN的表达式为:y=x+b,联立上述两个表达式并解得:x=﹣b,则点K(﹣b,b),∵点K是OP的中点,由中点公式得:点P的坐标为(﹣b,b),将点P的坐标代入抛物线表达式得:(﹣b)2﹣2(﹣b)﹣3=b,解得:b=﹣(不合题意值已舍去);故直线l的表达式为:y=x﹣;(3)平移后抛物线的表达式C1:y=x2﹣4﹣t①,设直线PM的表达式为:y=kx+c②;则PN的表达式为:y=﹣kx+d,联立①②并整理得:x2﹣kx﹣(4+t+c)=0,∴x P+x M=k,同理可得:x P+x N=﹣k,而x T=x Q=﹣x P,如图2,过点N作x轴的平行线交过点M与y轴的平行线于点G,延长TQ交NG于点H,∴TH∥MG,故,即==1.。

2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)

2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)

2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)一、选择题(共10小题,每小题3分,共30分)1.(3分)下列式子中一定是二次根式的是()A.B.C.D.2.(3分)下列计算结果,正确的是()A.=﹣3B.=C.2﹣=1D.()2=5 3.(3分)下列二次根式中,能与合并的二次根式的是()A.B.C.D.4.(3分)下列四组数据不能作为直角三角形的三边长的是()A.3、4、5B.1、、2C.13、14、15D.8、15、17 5.(3分)若,则x的取值范围是()A.x≥1B.x>2C.1≤x<2D.x≥1且x≠2 6.(3分)如图是一圆柱玻璃杯,从内部测得底面半径为6cm,高为16cm,现有一根长为25cm的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A.6cm B.5cm C.9cm D.25﹣2cm 7.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.同位角相等,两直线平行8.(3分)如图所示,以C为圆心,BC为半径的圆与数轴上交于点A,则点A所表示的数为a,则a的值是()A.+2B.﹣2C.﹣+2D.﹣﹣2 9.(3分)如图,将一块含的直角三角板ABC的边AC放在直线l上,∠ACB=90°,BC=2AC=2.将三角板ABC绕点A沿直线l顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角板绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;再将位置②的三角板绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转三角板,直至得到点P40,则AP40的长为()A.39+13B.39+14C.40+13D.40+1410.(3分)如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G 落在HI上.若AC+BC=6,空白部分面积为13.5,则AB=()A.2B.C.2D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简=;=;=.12.(3分)在平面直角坐标系中,O为原点,点M(﹣4,3)到原点的距离是.13.(3分)在Rt△ABC中,∠A、∠B、∠C、分别对应边a、b、c,其中a、b满足b=+4,则斜边c的高为.14.(3分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=10,BC=20,则AD=.15.(3分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<4).当t =时,△PQB是以PQ为腰的等腰三角形.16.(3分)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.三、解答题(共8题,共72分)17.(8分)计算:(1);(2)2.18.(8分)化简并求值:,其中x=3,y=2.19.(8分)已知Rt△ABC中,∠C=90°,AH=3,CH=4,AC=5,求BH的长.20.(8分)如图,在7×7网格中,每个小正方形的边长都为1(1)图中格点△ABC的面积为;(2)若AD=,BD=,请在图中找出格点D;(3)CD所在的直线上有一点P,使得P A+PB最小,则P A+PB的最小值是(保留作图痕迹).21.(8分)如图,四边形ABCD中,AB∥CD,AB=2CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于点F.(1)求证:点F是BC的中点;(2)连CE,若CE=6,EF=3,求DE的长.22.(10分)如图,一辆火车在铁路MN上自西向东行驶,铁路有关部门规定MN路段限速180km/h,A处有一测速仪,已知B、C在MN上,AB=300m,∠ABC=45°,∠ACB =120°,请解决以下问题:(1)如图1,测速仪测得该火车从B点行驶至C点用时2秒,该火车超速了吗?请说明理由;(2)如图2,若MN上有一点D,且CD=2BC,若火车从C点行驶至D点,求A处测速仪探头旋转角∠CAD的度数.23.(10分)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,BC=.以AB为边作△ABD,AD=,BD=.(1)求四边形ADBC的面积;(2)如图2,若DE平分∠ADB交BC于点E,求证:BE=CE;(3)如图3,点F在BC上,CF=CA,点M为BC上一动点,将线段MA绕点M逆时针旋转90°得到线段MN,连接FN,直接写出FN最小时线段CM的长度.24.(12分)如图,在平面直角坐标系中,点A、B、C在坐标轴上,点A(0,),∠ABC =60°.(1)求AB的长;(2)如图1,∠ACB=∠ABC,∠BAC、∠ACB的角平分线AD、CE交于点F,求CF 的长;(3)如图2,∠ACB=∠ABC,AM=BN,CM与AN交于点P.若BP⊥CM,求BP的长.2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列式子中一定是二次根式的是()A.B.C.D.【解答】解:A.,是二次根式;B.中,根指数为3,故不是二次根式;C.中,﹣2<0,故不是二次根式;D.中,x不一定是非负数,故不是二次根式;故选:A.2.(3分)下列计算结果,正确的是()A.=﹣3B.=C.2﹣=1D.()2=5【解答】解:A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=5,所以D选项正确.故选:D.3.(3分)下列二次根式中,能与合并的二次根式的是()A.B.C.D.【解答】解:A、=2,和不能合并,故本选项不符合题意;B、=3,和不能合并,故本选项不符合题意;C、和不能合并,故本选项不符合题意;D、=,和能合并,故本选项符合题意;故选:D.4.(3分)下列四组数据不能作为直角三角形的三边长的是()A.3、4、5B.1、、2C.13、14、15D.8、15、17【解答】解:A、32+42=52,此时三角形是直角三角形,故本选项不符合题意;B、12+()2=22,此时三角形是直角三角形,故本选项不符合题意;C、132+142≠152,此时三角形不是直角三角形,故本选项符合题意;D、82+152=172,此时三角形是直角三角形,故本选项不符合题意;故选:C.5.(3分)若,则x的取值范围是()A.x≥1B.x>2C.1≤x<2D.x≥1且x≠2【解答】解:由题意可知:,∴x>2,故选:B.6.(3分)如图是一圆柱玻璃杯,从内部测得底面半径为6cm,高为16cm,现有一根长为25cm的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A.6cm B.5cm C.9cm D.25﹣2cm 【解答】解:∵底面半径为半径为6cm,高为16cm,∴吸管露在杯口外的长度最少为:25﹣=25﹣20=5(厘米).故选:B.7.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.同位角相等,两直线平行【解答】解:A、若a=b,则a2=b2,逆命题不成立,a,b可能互为相反数.B、若a>0,b>0,则ab>0,逆命题不成立,a,b可能是负数.C、等边三角形是锐角三角形,逆命题不成立,锐角三角形不一定是等边三角形.D、两直线平行,同位角相等,逆命题成立.故选:D.8.(3分)如图所示,以C为圆心,BC为半径的圆与数轴上交于点A,则点A所表示的数为a,则a的值是()A.+2B.﹣2C.﹣+2D.﹣﹣2【解答】解:由题意得:BC=,即AC=BC=,∵点C表示的数为2,∴点A表示的数为2﹣.故选:C.9.(3分)如图,将一块含的直角三角板ABC的边AC放在直线l上,∠ACB=90°,BC=2AC=2.将三角板ABC绕点A沿直线l顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角板绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;再将位置②的三角板绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转三角板,直至得到点P40,则AP40的长为()A.39+13B.39+14C.40+13D.40+14【解答】解:由图可知,每旋转3次为一个循环组依次循环,∵40÷3=13…1,∵AP3=3+,∴AP40=13•AP3+AP1=13×(3+)+=39+14.故选:B.10.(3分)如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G 落在HI上.若AC+BC=6,空白部分面积为13.5,则AB=()A.2B.C.2D.【解答】解:∵四边形ABGF是正方形,∴∠F AB=∠F=90°,∵∠ACB=90°,∴∠F AC+∠BAC=∠BAC+∠ABC=90°,∴∠F AC=∠ABC,在△F AM与△ABN中,,∴△F AM≌△ABN(AAS),∴S△F AM=S△ABN,∴S△ABC=S四边形FNCM,在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=13.5,∴AB2﹣AC•BC=13.5,∴3AB2=63,解得AB=或﹣(负值舍去).故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简=5;=4;=.【解答】解:=5;=4;=.故答案为:5;4;.12.(3分)在平面直角坐标系中,O为原点,点M(﹣4,3)到原点的距离是5.【解答】解:点M(﹣4,3)到原点的距离为:==5.故答案为:5.13.(3分)在Rt△ABC中,∠A、∠B、∠C、分别对应边a、b、c,其中a、b满足b=+4,则斜边c的高为 2.4.【解答】解:设斜边c的高为h,由题意得,a﹣3≥0,3﹣a≥0,解得,a=3,则b=4,由勾股定理得,c==5,由三角形的面积公式可知,×3×4=×5×h,解得,h=2.4,故答案为:2.4.14.(3分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=10,BC=20,则AD=.【解答】解:连接AE,∵DE垂直平分AC,∴EA=EC,又EO⊥AC,∴∠AEO=∠CEO,∵AD∥BC,∴∠ADE=∠CEO,∴∠AEO=∠ADE,∴AD=AE,在Rt△ABE中,AB2+BE2=AE2,即102+(20﹣AE)2=AE2,∴AE=,∴AD=AE=,故答案为:.15.(3分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<4).当t =或3时,△PQB是以PQ为腰的等腰三角形.【解答】解:连接PB,过点Q作QE⊥CD,若△PQB是以PQ为腰的等腰三角形,则有两种情况:①当PQ=PB时,∵四边形ABCD是矩形,∴AD=BC=EQ,∴△PEQ≌△PCB(HL),∴PE=PC.由题意得:PD=2t,AQ=t,四边形ADEQ是矩形,∴PE=2t﹣t=t,PC=t,∵PD+PC=8,∴2t+t=8,解得t=.②当PQ=QB时,PQ=QB=8﹣t,Rt△PQE中,PQ=8﹣t,PE=t,EQ=4,∴(8﹣t)2=t2+42,解得t=3.故答案为:或3.16.(3分)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是4.【解答】解:如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.三、解答题(共8题,共72分)17.(8分)计算:(1);(2)2.【解答】解:(1)原式=﹣(2﹣)=﹣2+=﹣2;(2)原式=4×÷4=3÷4=.18.(8分)化简并求值:,其中x=3,y=2.【解答】解:原式=+﹣+5=6,当x=3,y=2,原式=6=6.19.(8分)已知Rt△ABC中,∠C=90°,AH=3,CH=4,AC=5,求BH的长.【解答】解:∵AH=3,CH=4,AC=5,∴AH2+CH2=AC2,∴△ACH是直角三角形,∴∠AHC=90°,∠CHB=90°,∴BC2=CH2+BH2,∵∠BCA=90°,∴AB2﹣AC2=BC2,∴AB2﹣AC2=CH2+BH2,∴(AH+BH)2﹣AC2=CH2+BH2,∵AH=3,CH=4,AC=5,∴(3+BH)2﹣52=42+BH2,解得BH=,即BH的长是.20.(8分)如图,在7×7网格中,每个小正方形的边长都为1(1)图中格点△ABC的面积为5;(2)若AD=,BD=,请在图中找出格点D;(3)CD所在的直线上有一点P,使得P A+PB最小,则P A+PB的最小值是5(保留作图痕迹).【解答】解:(1)S△ACB=4×4﹣×3×4﹣×2×4﹣×1×2=5.故答案为:5.(2)如图,点D即为所求作.(3)如图,点P即为所求作.最小值==.21.(8分)如图,四边形ABCD中,AB∥CD,AB=2CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于点F.(1)求证:点F是BC的中点;(2)连CE,若CE=6,EF=3,求DE的长.【解答】证明:(1)∵AB⊥BC,AE⊥BD,∴∠ABC=∠AEB=90°,∴∠ABD+∠DBC=90°=∠ABD+∠BAF,∴∠BAF=∠DBC,∵AB∥CD,∴∠ABC=∠DCB=90°,在△ABF和△BCD中,,∴△ABF≌△BCD(ASA),∴BF=CD,∵AB=BC,AB=2CD,∴BC=2CD=2BF,∴BF=FC,∴点F是BC的中点;(2)如图,过点C作CH⊥AF,交AF的延长线于H,在△BEF和△CHF中,,∴△BEF≌△CHF(AAS),∴EF=FH=3,BE=CH,∴EH=6,∵CE=6,∴CH===6,∴BE=6,∴BF===3,∴BC=6,CD=3,∴BD===15,∴DE=BD﹣BE=15﹣6=9.22.(10分)如图,一辆火车在铁路MN上自西向东行驶,铁路有关部门规定MN路段限速180km/h,A处有一测速仪,已知B、C在MN上,AB=300m,∠ABC=45°,∠ACB =120°,请解决以下问题:(1)如图1,测速仪测得该火车从B点行驶至C点用时2秒,该火车超速了吗?请说明理由;(2)如图2,若MN上有一点D,且CD=2BC,若火车从C点行驶至D点,求A处测速仪探头旋转角∠CAD的度数.【解答】解:(1)火车限速为180km/h,则每秒限速为180000÷3600=50m/s,过A作AE⊥MN于E,∵∠ABC=45°,∠AEB=90°,∴∠BAE=∠ABE=45°,∴AE=BE=AB=300m,在Rt△ACE中,∠ACE=180°﹣∠ACB=60°,∴CE=AE=100m,∴BC=(300﹣100)m,则该火车速度为(300﹣100)÷2=150﹣50(m/s),∵150﹣50>50,∴该火车超速了;(2)作DF⊥AC于F,由(1)知,△ACE中,CE=100m,∠CAE=30°,∴AC=2CE=200(m),在Rt△CDF中,CD=2BC=600﹣200(m),∴∠CDF=30°,∴CF=300﹣100(m),∴DF=CF=300﹣300(m),∴AF=AC﹣CF=200﹣(300﹣100)=300﹣300(m),∴AF=DF,∵∠AFD=90°,∴∠CAD=∠ADF=45°.23.(10分)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,BC=.以AB为边作△ABD,AD=,BD=.(1)求四边形ADBC的面积;(2)如图2,若DE平分∠ADB交BC于点E,求证:BE=CE;(3)如图3,点F在BC上,CF=CA,点M为BC上一动点,将线段MA绕点M逆时针旋转90°得到线段MN,连接FN,直接写出FN最小时线段CM的长度10﹣5..【解答】解:(1)在等腰直角三角形ABC中,AB=BC=10=AC,∵AD2+BD2=(2)2+(4)2=100=AB2,故△ABD为直角三角形,则四边形ADBC的面积=AD•BD+AB•AC=×2×4+×10×10=70;(2)如图2,设AB交DE于点O,过点O作作OH⊥BC交CB于点H,作OG⊥BD于点G,∵DE平分∠ADB,则∠BDE=∠AED=45°,则设OD=GD=x,则OD=x,则BG=4﹣x,∵∠ADB=90°,故OD∥AD,∴△BGD∽△BDA,∴,即,解得x=,则OG=GD=x=,OD=x=,则BG=BD﹣x=,BO==,则OA=AB﹣OB=;∵∠ABC=∠ADE=45°,∠AOD=∠BOE,∴△DOA∽△BOE,∴,即,解得OE=,在等腰三角形BOH中,BH=OH=OB=,则HE===在BE=BH+HE=+=5=BC,∴BE=CE;(3)当FN⊥BC时,FN最小,过点A作AD⊥BC于点D,∵∠FMN+∠AMF=90°,∠AMF+∠DAM=90°,∴∠FMN=∠DAM,∵∠MFN=∠ADM=90°,AM=MN,∴△MFN≌△ADM(AAS),∴FM=AD=AC=5,而CF=AC=10,∴CM=CF﹣FM=10﹣5.故答案为:10﹣5.24.(12分)如图,在平面直角坐标系中,点A、B、C在坐标轴上,点A(0,),∠ABC =60°.(1)求AB的长;(2)如图1,∠ACB=∠ABC,∠BAC、∠ACB的角平分线AD、CE交于点F,求CF 的长;(3)如图2,∠ACB=∠ABC,AM=BN,CM与AN交于点P.若BP⊥CM,求BP的长.【解答】解:(1)∵点A(0,),∴OA=,在Rt△AOB中,OA=,∠ABC=60°,∴AB=2OB,∴AB2=OB2+OA2,即(2OB)2=OB2+OA2,解得:OB=1,∴AB=2;(2)过点C作CM⊥AD于点M,∵∠ABC=60°,∠ACB=∠ABC,∴∠ACB=40°,∴∠BAC=80°,∵CE平分∠ACB,AD平分∠BAC,∴∠ACE=20°,∠F AC=40°,∴∠AFC=180°﹣∠F AC﹣∠ACE=120°,∴∠MFC=60°,在Rt△AOB中,sin∠ABC=,∴OA=AB•sin60°,在Rt△AOC中,OA=AC•sin∠ACB=AC•sin40°,∴AB•sin60°=AC•sin40°,∴AC=,在Rt△AMC中,MC=AC•sin∠F AC=AC•sin40°,在Rt△FMC中,MC=CF•sin∠MFC=CF•sin60°,∴AC•sin40°=CF•sin60°,∴AC=,∴=,∴CF=2;(3)过点C作CH⊥AN于点H,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴AB=BC=AC=2,∴∠BAC=∠BCA=60°,在△AMC和△BNA中,,∴△AMC≌△BNA(SAS),∴∠ACM=∠BAN,∵∠BAN+∠NAC=∠BAC=60°,∴∠ACM+∠NAC=60°,∴∠HPC=∠ACM+∠NAC=60°,又∵∠ACM+∠NCP=60°,∴∠NAC=∠NCP,在Rt△ACH中,HC=AC•sin∠NAC,在Rt△PCH中,HC=CP•sin∠HPC=CP•sin60°,∴AC•sin∠NAC=CP•sin60°,∵在Rt△BPC中,sin∠BCP==,在Rt△ACH中,sin∠NAC==,∵∠NAC=∠NCP,∴=,∵CP=,∴=,解得:BP=.。

武汉二中-广雅中学八年级下学期期中数学试题

武汉二中-广雅中学八年级下学期期中数学试题

武汉二中-广雅中学 八年级下学期期中考试数学试卷一、选择题1.下列式子中不是分式的是( ) A.1x B.22x x y - C. m n m n -+ D. 2x 53-2.要使分式x1x 1+-有意义,则x 满足的条件是( )A.x ≠1B. x ≠-1C. x >-1D. x >13.用科学计数法表示0.00002,其中正确的是( )A.2×105B. 2×10-5C. 2×104D. 2×10-44.如图,将一张长为5cm ,宽为4cm 的长方形纸片折叠,使点A落到BC 边的A ’处,那么CA ’的长为( )A.4cmB.3cmC.17cmD.7cm5.已知x =1是方程1m x x 23-+=的一个解,那么m 的值是( )A. 2B. 3C. -2D. -3 6.已知反比例函数w 2x y -=,位于每个象限的图象都具有y 随x 的增大而增大的性质,那么下列答案正确的是( )A.w 2<B. w 2=C. w 2>D.w 为任意实数 7.下列哪个的图象是函数2x y=的图象( )8.小明家在某楼盘的二十楼,小明每天坐电梯下楼去上学,忽然发现电梯间是一个大约宽1米,长2米,高6米的空间,他想如果带一根竹竿坐电梯,那么这根竹竿的长度最多可以是( )A.6米B. 8米C. 3米D. 3.5米9.已知若a 个人b 天可以搬c 块砖,那么b 个人c 天可以搬( )块砖A. aB. 2ca C. 2ab c D.2ba10.下列命题中:①同旁内角互补,两直线平行;②如果a 2=b 2,那么a =b ;③如果一个三角形的三边之比是1:3:2,那么这个三角形是直角三角形;④如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 是x 的反比例函数。

其中正确的是( )A. 1个B. 2个C. 3个D. 4个11.“丰收1号”小麦的试验田是边长为a 米的正方形去掉一个边长为1米的正方形的水池后余下的部分,共收获小麦m 千克;“丰收2号”小麦的试验田是边长为(a -1)米的正方形,共收获小麦n 千克。

武汉二中广雅数学八下周练精选试卷四套

武汉二中广雅数学八下周练精选试卷四套

武汉二中广雅中学八年级(下)数学周练(一)一、选择题。

(10×3′=30′)1.x 的取值范围是( )A .1≥xB . 1≤xC . 1-≥xD .1-≤x 2.下列计算正确的是( ) A.752=+B.2C. 3=D.333=3.在□ABCD 中,对角线AC 、BD 交于点O ,且AC+BD=20,BC=8,则△AOD 的周长( ) A .28 B .24 C .18 D .144. 菱形ABCD 的边长为10,一条对角线的长为16,则另一条对角线的长为( ) A. 6 B. 8 C. 10 D. 125. 下列图形:①等腰三角形;②平行四边形;③菱形;④矩形;⑤正方形,其中对称轴只有两条的个数是( )A .1B .2C .3D .4 6. 下列命题中,假命题是( )A .一组对边平行,一组对角相等的四边形是平行四边形B .有三个角是直角的四边形是矩形C .四边都相等的四边形是菱形D .对角线互相垂直平分的四边形是正方形7.如图,在正方形ABCD 的内部作等边△ADE ,则∠AEB 度数为( ) A. 80° B. 75° C. 70° D. 60°8. 已知菱形ABCD 周长为20,两条对角线BD 、AC 的长度比为3︰4,DH ⊥BC 于点H ,那么DH 长为( )A .3B .4C .4.8D .5第7题 第8题 第9题9.如图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为6根火柴棍时,摆出的正方形所用的火柴棍的根数为( )A .60B .84C .96D .11210.在矩形ABCD 中,AB=8,BC=7,以CD 为边在矩形外部作△CDE ,且S △CDE =16,连接BE ,则BE DE +的最小值为( ) A .15 B .16 C .17 D .18 …… n =1 n =2 n =3 O H D C BA ED C BAED C BA二、填空题(6×3′=18′)11.=;=;2= . 12.如图,在□ABCD 中,AB=5,AD=7,AE 、DF 分别平分∠BAD 、∠ADC , 则EF 长为__________.13. 如图, 将两张对边平行且宽度相等的纸条交叉叠放在一起, 若∠ABC =120°, AD =2, 则重合部分的面积为__________.14.如图, 将一张矩形纸片ABCD 沿CE 折叠, 使D 点落在D ’点处, 若CD ’∥DB , ∠ABD =66°,则∠DCE 的度数为________15.如图所示,在菱形ABCD 中,∠B =80°,E , F 分别是边AB 和AD 的中点,EH ⊥CD 于点H ,则∠FEH 的度数是__________16.如图,在正方形ABCD中,对角线BD=点E 、F 分别在边AB 、对角线BD 上,AE=3,DF=G 在边BC 上,FG=FE ,则BG 长为__________三、解答题(共72分)17.(8分)计算:(1)-(218. (8分)先化简, 再求值:211(1)22x x x --÷++,其中x 1.19.(8分)如图,正方形ABCD 中,点E 、F 分别为 边CD 、AD 上的点,CE=DF ,AE 、BF 交于点H . (1)求证:AE=BF ;(2)若AB=4,CE=1,求AH 的长.HEFDCBA第15题 H F EC B A 第13题 第12题 第14题 F E DC B A E D'D C B A FE D CB A 第16题20.(8分)如图, 直角坐标系中的网格由单位正方形构成, △ABC 的顶点A (3-,5), B (7-,2) C (42--,). (1)画出△ABC 关于y 轴对称的△111C B A , 点1A 、1C 的坐标分别为 ; ; (2)画出△ABC 先向右平移5个单位后,再向下 平移5个单位后的△222C B A ,点2B 、2C 的坐标 分别为 ; ;(3)则以A 、C 、2C 、2A 为顶点的四边形的形状为 。

湖北省武汉二中广雅中学2018-2019学年八年级(下)段测数学试卷(五) 解析版

湖北省武汉二中广雅中学2018-2019学年八年级(下)段测数学试卷(五) 解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(五)一.选择题(共10小题)1.二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>12.下列运算正确的是()A.+=B.﹣=C.×=3D.÷=4 3.下列二次根式,最简二次根式是()A.B.C.D.4.四边形ABCD对角线互相垂直,顺次连接四边形ABCD四边中点所得到的四边形是()A.一般的平行四边形B.矩形C.菱形D.正方形5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:16.正方形和矩形都具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.如图,等腰Rt△ACD,斜边AD=4,分别以的边AD、AC、CD为直径画半圆,所得两个月形图案AGCE和DHCF的面积之和是()A.4B.4πC.2πD.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.79.如图,已知△ABC中,AC=BC,∠ACB=90°.直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC、BC于点D,E两点.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),给出以下个结论:①CD=BE;②AD2+BE2=DE2;③四边形CDFE 不可能是正方形;④△DFE是等腰直角三角形;⑤S四边形CDEF=S△ABC,上述结论正确的个数为()A.2B.3C.4D.510.在面积为6的平行四边形ABCD中,过点A作AE⊥BC于点E,作AF⊥CD于F,若AB=3,BC=2,则CE+CF的值为()A.10+5B.2+C.10+5或2+D.10+5或5﹣10二.填空题(共6小题)11.(2)2=,=,()﹣1=.12.当x=﹣1,代数式x2+2x+3的值是.13.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=.14.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式.15.如图,正方形ABCD中,E是AD上一点,F是AB延长线上一点,DE=BF.点G,H分别在边AB、CD上,且GH=,GH交EF于M.若∠EMH=45°,则EF的长为16.如图,∠ABC=90°,AB=BC,点P在BC边上,CP>BP,点D为AC中点,AB边上有一点N,使△BPN的周长等于BC的长,若DP=2,DN=3,则AN2+CP2的值为.三.解答题(共8小题)17.计算:(1)﹣+;(2)2.18.如图,在▱ABCD中,AH⊥BD于H,CG⊥BD于G,连接CH和AG,求证:∠1=∠2.19.如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB=5,AC =2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.20.已知三角形三边为a、b、c,其中a、b两边满足a2﹣12a+36+=0.(1)求这个三角形的最大边c的取值范围.(2)已知三角形三边为a、b、c,且满足,求这个三角形的周长.21.如图,在▱ABCD中,AB=6,BC=4,∠B=60°.点E、F分别是AB、CD上的点,将▱ABCD沿EF折叠,得到四边形EFGC,点A、D的对应点分别为C、G.(1)求证:CE=CF.(2)求S△CEF.22.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.23.如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交BE,BF于M,N,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=,正方形ABCD的边长=;(2)如图2,将∠AED绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.参考答案与试题解析一.选择题(共10小题)1.二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>1【分析】根据二次根式的性质,被开方数大于或等于0,即可求a的取值范围.【解答】解:根据题意得:a﹣1≥0,解得a≥1.故选C.2.下列运算正确的是()A.+=B.﹣=C.×=3D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法对C进行判断;根据二次根式的除法对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2﹣=,所以B选项正确;C、原式==,所以C选项错误;D、原式==2,所以D选项错误.故选:B.3.下列二次根式,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=,故B不是最简二次根式;(D)原式=2,故D不是最简二次根式;故选:C.4.四边形ABCD对角线互相垂直,顺次连接四边形ABCD四边中点所得到的四边形是()A.一般的平行四边形B.矩形C.菱形D.正方形【分析】根据四边形对角线互相垂直,运用三角形中位线平行于第三边证明四个角都是直角,判断是矩形.【解答】解:如图,∵E、F、G、H分别为各边中点,∴EF∥GH∥AC,EF=GH=AC,EH=FG=BD,EH∥FG∥BD,∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形.故选:B.5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:1【分析】根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.【解答】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.6.正方形和矩形都具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直【分析】分别根据正方形、矩形、菱形的性质进行判断即可.【解答】解:正方形的对角线互相垂直、平分、相等且平分一组对角,矩形的对角线相等且平分,菱形的对角线互相垂直平分且平分每一组对角,∴正方形和矩形都具有而菱形不一定具有的是对角线相等,故选:B.7.如图,等腰Rt△ACD,斜边AD=4,分别以的边AD、AC、CD为直径画半圆,所得两个月形图案AGCE和DHCF的面积之和是()A.4B.4πC.2πD.【分析】由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.【解答】解:∵△ACD是直角三角形,∴AC2+CD2=AD2,∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,∴S半圆ACD=•AD2,S半圆AEC=•AC2,S半圆CFD=•CD2,∴S半圆ACD=S半圆AEC+S半圆CFD,∴所得两个月型图案AGCE和DHCF的面积之和=Rt△ACD的面积=×2×4=4.故选:A.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD =AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF =∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF =BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.9.如图,已知△ABC中,AC=BC,∠ACB=90°.直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC、BC于点D,E两点.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),给出以下个结论:①CD=BE;②AD2+BE2=DE2;③四边形CDFE 不可能是正方形;④△DFE是等腰直角三角形;⑤S四边形CDEF=S△ABC,上述结论正确的个数为()A.2B.3C.4D.5【分析】连接CF,如图,根据等腰直角三角形的性质得AC=BC,∠ACB=90°.点F 是AB中点,先证明△AFD≌△CFE,则AD=CE,DF=EF,于是可对①②④⑤进行判断;由于FD⊥AC时,四边形CDFE为矩形,利用FE=FD可判断四边形CDFE是正方形,则可对③进行判断.【解答】解:连接CF,如图,∵AC=BC,∠ACB=90°.点F是AB中点,∴CF=AF=BF,CF⊥AB,∠A=∠BCF=45°,∵∠AFD+∠CFD=90°,∠CFD+∠CFE=90°,∴∠AFD=∠CFE,∴△AFD≌△CFE(ASA),∴AD=CE,DF=EF,∴CD=BE,所以①正确;在Rt△CDE中,CE2+CD2=DE2,∴AD2+BE2=DE2;所以②正确;当FD⊥AC时,四边形CDFE为矩形,而FE=FD,则此时四边形CDFE是正方形,所以③错误;∵DF=EF,∠DFE=90°,∴△DFE是等腰直角三角形,所以④正确;∵S四边形CDEF=S△CDF+S△CEF,而△AFD≌△CFE,∴S四边形CDEF=S△CDF+S△ADF=S△ACF,∴S四边形CDEF=S△ABC,所以⑤正确.故选:C.10.在面积为6的平行四边形ABCD中,过点A作AE⊥BC于点E,作AF⊥CD于F,若AB=3,BC=2,则CE+CF的值为()A.10+5B.2+C.10+5或2+D.10+5或5﹣10【分析】根据平行四边形面积求出AE和AF,有两种情况,求出CE和CF的值,相加即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD=2,①如图1中:由平行四边形面积公式得:BC×AE=CD×AF=6,∴AE=3,AF=2.在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=3,AE=3代入求出BE=6>2,即E在BC延长线上.同理DF=4<3,即F在DC上(如图1),∴CE=6﹣2,CF=3﹣4,即CE+CF=2+.②如图2中:∵AB=3,AE=3,在△ABE中,由勾股定理得:BE=6,同理DF=4,∴CE=6+2,CF=3+4,∴CE+CF=10+5.∴综上可得:CE+CF=2+或10+5.故选:C.二.填空题(共6小题)11.(2)2=20,=,()﹣1=.【分析】直接利用二次根式的性质化简求出答案.【解答】解:(2)2=20,=,()﹣1==.故答案为:20,,.12.当x=﹣1,代数式x2+2x+3的值是25.【分析】将所求式子进行配方处理,再将已知条件代入即可.【解答】解:x2+2x+3=(x+1)2+2,∵x=﹣1,∴x2+2x+3=(x+1)2+2=23+2=25,故答案为25.13.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=112.5°.【分析】由于CE=AC,∠ACB=45°,可根据外角定理求得∠E的值,同样根据外角定理∠AFC=∠FCE+∠E,从而求得∠AFC.【解答】解:∵四边形ABCD是正方形,∴∠ACB=45°,∠DCB=90°,∵AC=CE,∴∠E=∠CAF,∵∠ACB是△ACE的外角,∴∠E=∠ACB=22.5°,∵∠AFC是△CFE的外角,∴∠AFC=∠FCE+∠E=112.5°,故答案为:112.5°.14.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式(n≥2且n为整数).【分析】观察可发现整数部分与分子相同,分母为整数的平方减1,据此可解.【解答】解:观察可发现整数部分与分子相同,分母为整数的平方减1,∴用n(n为正整数,且n≥2)表示的等式为:=n.故答案为:=n(n为正整数,且n≥2).15.如图,正方形ABCD中,E是AD上一点,F是AB延长线上一点,DE=BF.点G,H 分别在边AB、CD上,且GH=,GH交EF于M.若∠EMH=45°,则EF的长为3【分析】连接CE、CF,证明△FBC≌△EDC(SAS),得出CF=CE,∠FCB=∠ECD,证出△CEF是等腰直角三角形,得出∠EFC=45°,EF=CF,证出四边形FCHG是平行四边形,得出CF=GH=3,进而得出答案.【解答】解:连接CE、CF,如图:∵四边形ABCD是正方形,∴AB∥DC,BC=DC,∠ABC=∠D=90°,∴∠FBC=90°=∠D,在△FBC和△EDC中,,∴△FBC≌△EDC(SAS),∴CF=CE,∠FCB=∠ECD,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF是等腰直角三角形,∴∠EFC=45°,EF=CF,∵∠EMH=45°,∴∠EFC=∠EMH,∴GH∥FC,∵AF∥DC,∴四边形FCHG是平行四边形,∴CF=GH=3,∴EF=CF=3;故答案为:3.16.如图,∠ABC=90°,AB=BC,点P在BC边上,CP>BP,点D为AC中点,AB边上有一点N,使△BPN的周长等于BC的长,若DP=2,DN=3,则AN2+CP2的值为29.【分析】作∠PDN=45°,在线段CB上截取CN'=BN,连接BD,根据等腰直角三角形的性质得到BD=CD=AC,∠ABD=∠ACB=45°,延长ND到F,使DN=DF,连接CF,根据全等三角形的性质得到AN=CF,∠FCD=∠A=45°,作PM⊥ND,根据勾股定理即可得到结论.【解答】解:作∠PDN=45°,在线段CB上截取CN'=BN,连接BD,∵∠ABC=90°,AB=BC,点D为AC中点,∴BD=CD=AC,∠ABD=∠ACB=45°,∴△DNB≌△DN'C(SAS),∵△BPN的周长等于BC的长,∴PN=PN′,延长ND到F,使DN=DF,连接CF,∵AD=CD,∠ADN=∠CDF,∴△ADN≌△CDF(SAS),∴AN=CF,∠FCD=∠A=45°,∴∠PCF=90°,作PM⊥ND于M,∴△PMD是等腰直角三角形,∵DP=2,∴PM=DM=2,∴MF=DM+DF=5,AN2+CP2=PF2=22+52=29,故答案为:29.三.解答题(共8小题)17.计算:(1)﹣+;(2)2.【分析】(1)分别化简每个二次根式,再由加法运算法则运算即可;(2)先化简二次根式,再由左向右依次运算即可.【解答】解:(1)原式=4﹣2+=3;(2)原式=2×2×=4×3=12=12×=6.18.如图,在▱ABCD中,AH⊥BD于H,CG⊥BD于G,连接CH和AG,求证:∠1=∠2.【分析】首先证明AH∥CG,再利用平行四边形的性质证明△ABD≌△CDB(SSS),可得S△ABD=S△BCD,进而可得AH=CG,再根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵AH⊥BD,CG⊥BD,∴AH∥CG,∵四边形ABCD是平行四边形,∴CD=AB,AD=BC,在△ADB和△CBD中,∴△ABD≌△CDB(SSS),∴S△ABD=S△BCD,∴AH=CG,∴四边形AGCH为平行四边形,∴CH∥AG,∴∠1=∠2.19.如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB=5,AC =2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.【分析】(1)根据点A、B、C在正方形网格的格点上,AB=5,AC=2,BC=,即可在网格中画出△ABC;(2)①根据勾股定理即可求出AC、BC的长;②根据割补法即可求出三角形ABC的面积;③根据等面积法即可求出AB边上的高.【解答】解:(1)△ABC即为所求;(2)①AC==,BC==;②S△ABC=2×2﹣×1﹣1×2﹣1×2=,③如图2,AB边上的高为CD,垂足为D,∵S△ABC=AB•CD=,∵AB==,∴CD=,∴CD=.故答案为:、、、.20.已知三角形三边为a、b、c,其中a、b两边满足a2﹣12a+36+=0.(1)求这个三角形的最大边c的取值范围.(2)已知三角形三边为a、b、c,且满足,求这个三角形的周长.【分析】(1)首先利用完全平方公式因式分解,进一步根据两个非负数的和是0,可以求得a,b的值.再由三角形的三边关系就可以求得第三边的范围;(2)首先利用非负数的性质得出b+c=8,进一步利用非负数的性质建立方程组求得a、b、c的数值,求得三角形的周长即可.【解答】解:(1)∵a2﹣12a+36+=0,∴(a﹣6)2+=0,∴a﹣6=0,b﹣8=0,则a=6,b=8,∴8﹣6<c<8+6,即2<c<14,∵c是三角形的最大边,∴8<c<14.(2)∵,∴,解得,∴b+c=8,∴a﹣5=0,解得a=5,∴这个三角形的周长为:a+b+c=5+8=13.21.如图,在▱ABCD中,AB=6,BC=4,∠B=60°.点E、F分别是AB、CD上的点,将▱ABCD沿EF折叠,得到四边形EFGC,点A、D的对应点分别为C、G.(1)求证:CE=CF.(2)求S△CEF.【分析】(1)连接AC、AF,设AC交EF于H.利用全等三角形的性质证明即可.(2)过C点作CG⊥AB于G点,令AE=CE=x,则EG=4﹣x,在Rt△CEG中,根据CE2=EG2+CG2,构建方程即可解决问题.【解答】(1)证明:连接AC、AF,设AC交EF于H.∵AB∥CD,∴∠EAC=∠ACD,∵EA=EC,∴∠ECA=∠EAC=∠ACD,∵CA⊥EF,∴∠CHE=∠CHF=90°,∵CH=CH,∴△CEH≌△CFH(ASA),∴CF=CE=AE=AF,∴四边形AECF为菱形.(2)过C点作CG⊥AB于G点,∵CB=4,∠B=60°,∠CGB=90°∴BG=BC=2,CG=BG=2,令AE=CE=x,则EG=4﹣x,在Rt△CEG中,∵CE2=EG2+CG2,∴x2=(4﹣x)2+(2)2,∴x=,∴S△CEF=S△ACE=.22.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.【分析】(1)连接AC,过P点作PG⊥BC交AC于G点,根据全等三角形的判定求出△P AG≌△PEC即可;(2)延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,根据全等三角形的判定求出△ABQ≌△ADF,△QAP≌△F AP,△PEH≌△APB,根据全等三角形的性质得出QP=PE,设EH=CH=BP=x,求出PC=4﹣x,PF=1+x,在Rt△PCF中,由勾股定理得出(1+x)2=(4﹣x)2+32,求出x即可.【解答】(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△P AG和△PEC中∴△P AG≌△PEC(ASA),∴PE=P A;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠P AE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠P AE=90°﹣45°=45°=∠P AE,在△QAP和△F AP中∴△QAP≌△F AP(SAS),∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.23.如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交BE,BF于M,N,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为﹣1(直接写出结果).【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S四边形BMDN=BD×MN=×6×2=12;(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=a+a=(+1)a,∴==﹣1.故答案为:﹣1.24.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=1,正方形ABCD的边长=;(2)如图2,将∠AED绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.【分析】(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的边长;(2)①过点B′作B′M垂直于l1于点M,进而得出Rt△AE′D′≌Rt△B′MA(HL),求出∠B′AD′与α的数量关系即可;②首先过点E′作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠E′D′N=60°,可求出AE′=1,E′O,E′N,ED′的长,进而由勾股定理可知菱形的边长.【解答】解:(1)由题意可得:∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△AED和△DGC中,,∴△AED≌△DGC(AAS),∴AE=GD=1,又∵DE=1+2=3,∴正方形ABCD的边长==,故答案为:1,;(2)①∠B′AD′=90°﹣α;理由:过点B′作B′M垂直于l1于点M,在Rt△AE′D′和Rt△B′MA中,,∴Rt△AE′D′≌Rt△B′MA(HL),∴∠D′AE′+∠B′AM=90°,∠B′AD′+α=90°,∴∠B′AD′=90°﹣α;②过点E′作ON垂直于l1分别交l1,l3于点O,N,若α=30°,则∠E′D′N=60°,AE′=1,故E′O=,E′N=,E′D′=,由勾股定理可知菱形的边长为:==.。

2018年二中广雅八年级下期中考试数学试题

2018年二中广雅八年级下期中考试数学试题

⼆二中⼴广雅2017-2018年年⼋八下期中考试卷⼀一、选择题(30分)1.若在实数范围内有意义,则x的取值范围是()A、B、C、D、x为任意实数2.下列列⼆二次根式中与是同类⼆二次根式的是()A、B、C、D、3.能判定⼀一个四边形是菱形的条件是()A、对⻆角线互相平分,⼀一组邻⻆角相等B、两组对边分别相等,对⻆角线互相平分C、两组对⻆角分别相等,对⻆角线互相垂直D、对⻆角线互相垂直,⼀一组邻边相等4.下列列计算正确的是()A、B、C、D、5.如图,在直⻆角坐标系中,的顶点A(1,4),C(5,0),则B点坐标为()A、(5,4)B、(6,4)C、(6,5)D、(5,6)6.如图所示,⼀一个圆柱体⾼高8cm,底⾯面直径,⼀一只蚂蚁从点A爬到点B处吃⻝⾷食,要爬⾏行行的最短路路径是()A、12cmB、10cmC、20cmD、第5题第6题第8题7.菱形周⻓长为,它的⼀一条对⻆角线⻓长为6cm,则菱形的⾯面积为()A、48B、12C、24D、368.如图,Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD、AE分别是其⻆角平分线和中线,过点B作BG⊥AD于G,交AC于F,连接EG,则线段EG的⻓长为()A、B、1C、D、29.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以△ABC的三条边为直径作半圆,则图中阴影部分的⾯面积之间的关系是()A、B、C、D、10.如图,正⽅方形ABCD中,M为AB上⼀一点,DM交AC于G,DM的垂直平分线PQ交AC于Q,交正⽅方形的边于E、F,连接MQ,则下列列结论:①∠AQM=∠ADM;②;③为定值;④;⑤PQ=PE+QF;其中正确的结论有()个.A、2B、3C、4D、5⼆二、填空题(18分)11.计算:__________,__________,__________.12.已知n是正整数,是整数,n的最⼩小值是__________.13.已知,则__________.14.如图,将正⽅方形纸⽚片ABCD折叠,使点D落在BC边点E处,点A落在点F处,折痕为MN,若∠NEC=36°,则∠FMN=__________.15.如图,铁路路MN和公路路PQ在点O处交汇,∠QON=30°,公路路PQ上A处距离O点240⽶米,如果⽕火⻋车⾏行行驶时,⽕火⻋车头周围150⽶米以内会受到噪⾳音的影响,那么⽕火⻋车在铁路路MN上沿MN⽅方向以72千⽶米/⼩小时的速度⾏行行驶时,A处受到噪⾳音影响的时间为__________. 16.如图,Rt△ABC中,∠ABC=90°,AB=3,AC=4,分别以AB、AC为边作正⽅方形ABDE 和正⽅方形ACGF,连接CD、BG交于P,△BPC的⾯面积为__________.14题15题16题三、解答题(72分)17.计算题(8分)计算:(1)(2)18.(8分)如图,四边形ABCD是平⾏行行四边形,DM平分∠ADC交AB于M,BN平分∠ABC交DC于N,求证:四边形MBND是平⾏行行四边形.19.(8分)如图,中,.(1)若,,求;(2)若,,求边上的⾼高.20.(8分)如图,每个⼩小三⻆角形的边⻓长都为1.(1)四边形的周⻓长=______________.(2)四边形ABCD的⾯面积=______________.(3)是直⻆角吗?判断并说明理理由.21.(8分)如图所示,⼀一根⻓长2.5⽶米的⽊木棍,斜靠在与地⾯面垂直的墙上,此时墙⻆角与⽊木棍端的距离为1.5⽶米,设⽊木棍的中点为,此时⽊木棍端沿墙下滑,B端沿地⾯面向右滑⾏行行.(1)⽊木棍在滑动的过程中,线段的⻓长度发⽣生改变吗?说明理理由;若不不变,求OP 的⻓长.(2)如果⽊木棍的底端向外滑出0.9⽶米,那么⽊木棍的顶端沿墙下滑多少距离?22.(10分)如图在平⾯面直⻆角坐标系中,AB∥y轴且AB=24,点从点出发,以个单位⻓长度/s的速度向点运动;点从点出发,以y个单位⻓长度/s的速度向点运动,规定其中⼀一个动点到达端点时,另⼀一个点也随之停⽌止运动,设运动的时间为t秒.(1)若①当四边形是平⾏行行四边形时,求t的值;②当时,求t的值;(2)当恰好垂直平分时,求的值.23.(10分)如图,正⽅方形的边⻓长为1,以为边作菱形,点在同⼀一直线上,是的中点,,且交于点.(1)求证:;(2)求的度数;(3)直接写出=____________.(提示:)24.(12分)如图所示,在平⾯面直⻆角坐标系中,正⽅方形的点分别在x轴和y轴的正半轴上,点在第⼀一象限.平分交于.(1)求的度数和的⻓长.(2)将正⽅方形绕点逆时针旋转⾄至图2的位置,为(1)中线段上⼀一点,轴于为中点,试探究的关系并证明.(3)绕点旋转正⽅方形⾄至图3,此时,x轴上有⼀一点,分别为x轴负半轴和线段上的动点,试求的最⼩小值,并在图中画出取最⼩小值时的位置.(简要说明作图过程)图1图2图3。

2018 2019年湖北省武汉二中广雅中学八年级下段测数学试卷六解析版

2018 2019年湖北省武汉二中广雅中学八年级下段测数学试卷六解析版

2018-2019学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()..BA.D.C)是正比例函数,则m的值是(y=(3﹣m)2.若函数B.3C.±A.﹣33D.﹣1 3.下列计算,正确的是().=3﹣=B1.=C.AD.)=(﹣114.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直(﹣,y)是一次函数y=﹣x+b的图象上的点.y,y的大小5.已知A,(﹣y),B2211关系为()A.y<y B.y>y2121D=C.yy.以上结论都有可能216.如图,在?ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()5<AB<3.D8<AB<2.C10<AB<4.B16<AB<4.A.7.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是().﹣<m<4D.4B m.无解<﹣C A.m<8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是().BA..DC.CMF,∠M于AF交CE,CF=AE上的点,且CB、AB分别是F、E中,ABCD.正方形10.=45的值为(°,则).D.A.B.C二.填空题(共6小题).11.化简:=12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x 轴的交点坐标是.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是.的图象恰好有三=y与函数k﹣kx=y.在同一平面直角坐标系中,直线16..的取值范围是k个不同的交点,则三.解答题(共8小题)17.计算:(1))(218.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为(填空).19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OPA的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;的面积.BEDF,求四边形4=AD,8=AB)若2(.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.=﹣x+m与直线AB的交点在第二象限,求m的取值范围;y(1)若一次函数(2)若M是y 轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP,求正比例函数的解析式.OQ3=参考答案与试题解析一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是().BA...CD【分析】根据函数的意义即可求出答案,即对于每个自变量x的值,函数y都有唯一确定的值与其对应.函数的意义反映在图象上简单的判断方法是:作垂直于x轴的直线,在左右平移的过程中与函数图象只会有一个交点.【解答】解:C图象作垂直于x轴的直线,在左右平移的过程中与函数图象会有无数个交点.故选:C.)是正比例函数,则m的值是()m2.若函数y=(3﹣B.3C.±3DA.﹣3.﹣1【分析】根据正比例函数的定义解答.)是正比例函数,﹣m=(【解答】解:∵函数y32﹣8=1,解得:mm=3,m∴m=﹣3;21且3﹣m≠0,∴m=﹣3.故选:A.3.下列计算,正确的是().=D3.=C.﹣=1)=﹣A.(11B【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.,此选项错误;﹣2)=1﹣(.A解:【解答】.=,此选项错误;.B=不是同类二次根式,不能合并,此选项错误;.与C=|﹣3|D=.3,此选项正确;故选:D.4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直【分析】根据矩形、菱形的性质逐个判断即可.【解答】解:菱形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线互相垂直,矩形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线相等;即菱形具有而矩形不一定具有的特征是对角线互相垂直,故选:D.(﹣,y)是一次函数y=﹣x+),Bb的图象上的点.y,y的大小5.已知A,(﹣y2112关系为()A.y<y B.y>y2112D.以上结论都有可能=C.yy21<﹣进再根据﹣中bk=﹣1判断出函数的增减性,【分析】先根据一次函数y=﹣x+行解答即可.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,<﹣,∵﹣∴y>y.21故选:B.)(的取值范围为AB则,6=AC,10=BD若,O相交于点BD、AC中,ABCD?在如图,.6.A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<5【分析】由在?ABCD中,对角线AC与BD相交于点O,若BD=10,AC=6,根据平行四边形的对角线互相平分,可求得OA与OB的长,然后由三角形三边关系,求得答案.【解答】解:∵在?ABCD中,对角线AC与BD相交于点O,BD=10,AC=6,=BD=5,=3,OB∴OA=AC∴边长AB的取值范围是:2<AB<8.故选:C.7.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是().﹣<m<4<﹣CD.无解m A.m<4B.【分析】若函数y=kx+b的图象过一、二、四象限,则此函数的k<0,b>0,据此求解.【解答】解:∵函数y=(m﹣4)x+2m+1的图象过一、二、四象限,∴m﹣4<0,2m+1>0解得﹣<m<4.故选:C.8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.)其中符合图象描述的说法有(.A.2个B.3个C.4个D.5个【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()..AB.D.C【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.CMF,∠M于AF交CE,CF=AE上的点,且CB、AB分别是F、E中,ABCD.正方形10.)°,则的值为(45=.D.BA..C【分析】根据正方形的性质得到AB=BC,等量代换得到BE=BF,根据全等三角形的性质得到AM=CM,EM=FM,推出点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,根据等腰三角形的判定得到BE=BM,设BG=GM==x,根据相似三角形的性质即可得到结论.x,得到BE=BM【解答】解:∵在正方形ABCD 中,∴AB=BC,∵AE=CF,∴BE=BF,中,,在△ABF与△CBE,(SAS)ABF∴△≌△CBE,BAF=∠BCE∴∠中,,与△在△AEMCFM,AEM≌△CFM(AAS)∴△,EM=FM,CM∴AM=A和点C的对称轴上,M∴点在点G于,BD连接,过M作MG⊥BC BD上,则点M在°,∴∠ABM=∠CBM=45=∠CMF=45°,∵∠AME CBM=∠,∴∠AME,BCM+=∠=∠∠BAMBEM∴∠=∠+AMEBMECBM ∠,BM=BE∴.,BC∵MG⊥,∴BG=GM,=GM=x设BGx=,∴BE=BM,∵MG∥BE CEB∴△CMG∽△,=∴=,=,+1=∴A.故选:6小题)二.填空题(共.化简:=.11【分析】原式被开方数变形后,开方即可得到结果.=.【解答】解:原式==故答案为:.n与x轴的交点坐标是(﹣则直线=﹣2,y=mx=12.已知关于x的方程mx+n0的解是x+2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0..)0,2轴的交点坐标是(﹣x与n+mx=y∴直线°,=50A'处.若∠1=∠2ABCD13.如图,将平行四边形沿对角线BD折叠,使点A落在点105A'°.为则∠【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为:105°.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为﹣2<x<﹣1.【分析】解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【解答】解:根据题意得到y=kx+b与y=2x交点为A(﹣1,﹣2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,,)0,2(﹣B又..<x<﹣1此时自变量x的取值范围,是﹣2.<x<﹣1kx+b<0的解集为:﹣2即不等式2x<.x<﹣1故答案为:﹣2<落在A边的点E处,点8的正方形纸片ABCD折叠,使点D落在BC15.如图,将边长为的长是34,则线段CN.=点F处,折痕为MN,若MN【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,设DN=EN222,根据勾股定理就可以列出方程,EC中,EN+=CN﹣x,则CN=8x,在Rt△ENC=从而解出CN的长.【解答】解:过点M作MH⊥CD于点H.连接DE.根据题意可知MN垂直平分DE,易证∠EDC=∠MHN,MH=AD,∵四边形ABCD是正方形,∴MH=AD=CD,∵∠MHN=∠C=90°,∴△MHN≌△DCE(ASA),∴DE=MN=4,△DEC中,CE在Rt=4==,设DN=EN=x,则CN=8﹣x,222,+中,EN=CNECENC在Rt△222,x)+4∴x8=(﹣解得x=5,∴CN=8﹣x=3..3故答案为的图象恰好有三y=kx﹣k与函数16.在同一平面直角坐标系中,直线y=﹣2<k<﹣的取值范围是个不同的交点,则k.【分析】根据题意把y=kx﹣k分别代入各个分段函数解析式,用k表示出x的值,再根据x 的取值范围确定k的范围.【解答】解:直线y=kx﹣k与函数y=﹣2x﹣6在x<﹣4时有交点,则x=<﹣4,解得﹣2<k<﹣;直线y=kx﹣k与函数y=2在﹣4≤x<1时有交点,则k≤﹣;直线y=kx﹣k与函数y=﹣2x+4在x≥1时有交点,则x=<﹣4,2解得k>﹣.2<k<﹣.因此k的取值范围是﹣.k<﹣2故答案为:﹣<小题)三.解答题(共817.计算:1)((2)【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=4﹣2+12=14(2)原式=2﹣.)9,﹣4(﹣N,)5,3(M.已知一次函数的图象过18.(1)求这个一次函数的解析式;的解析式为y=2x MN向上平移1个单位,得直线l,l(填空).(2)将直线【分析】(1)利用待定系数法求一次函数解析式;(2)根据直线平移的规律在解析式y=2x﹣1的右边加上1即可.【解答】解:(1)设一次函数解析式为y=kx+b,把M(3,5),N(﹣4,﹣9)代入得,,解得所以一次函数解析式为y=2x﹣1;(2)将直线MN向上平移1个单位,得直线l,则l的解析式为y=2x﹣1+1=2x.故答案为y=2x.19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,根据“总费用=A种树苗的单价×购买A种树苗棵树+B种树苗的单价×购买B种树苗棵树”即可得出y关于x的函数关系式;(2)根据购买B种树苗的数量少于A种树苗的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【解答】解:(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,由已知得:y=70x+90(21﹣x)=﹣20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21﹣x,解得:x<.∵y=﹣20x+1890中﹣20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种树苗11棵,B种树苗10棵,此时所需费用为1690元..S的面积为AOP.设△10=y+x,且)y,x(P)及在第四象限的动点0,8(A.已知点20.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.【分析】(1)首先把x+y=10,变形成y=10﹣x,再利用三角形的面积求法:底×高÷2=S,可以得到S关于x的函数表达式;P在第四象限,故x>0,y>0,可得到x的取值范围;(2)利用描点法画出函数图象即可.【解答】解:(1)∵x+y=10,∴y=﹣x+10,=×8×|y|=4(x﹣∴S10)=4x﹣40,∵第四象限的动点P(x,y),∴x>0,y<0,∴,,x>10∴);10x﹣40(x>=即S410>),40=(2)∵解析式为S4x﹣(x)的射线),(但不包括(2015),∴函数图象经过点(100(,)100.图象如图所示21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.【分析】(1)根据邻边相等的平行四边形为菱形进行证明;(2)根据菱形面积公式底×高进行计算.【解答】解:(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC,根据题意可知△BCD≌△BDG,∴∠DBG=∠DBC,∴∠EDB=∠EBD,∴DE=BE,∵AD∥BC,DF∥BE,∴四边形BEDF为平行四边形,又∵DE=BE,∴四边形BEDF为菱形;,4﹣x=AD﹣DE=AE,则x的边长为BEDF)设菱形2(.222,+=AEAB在Rt△AEB中,BE222,+8x﹣4即x)=(解得x=10,∴菱形BEDF的面积=DE?AB=10×8=80.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.=﹣x+m与直线AB1()若一次函数y的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.,根据题意得到()m=(m﹣2x+44=﹣x+m,解得x(【分析】1)解析式联立得到﹣4)<0,解得即可;(2)分三种情况讨论,根据正方形的性质三角形全等的性质,三角形相似的性质即可求得M,N 两点的坐标.=(m﹣4)+m,解得x,2x+4与yx=﹣+m,得2x+4=﹣x=1【解答】解:()联立y∵交点在第二象限,∴(m﹣4)<0,∴m<4;(2)当x=0时,y=2x+4=4,∴A(0,4),当y=0时,0=2x+4,x=﹣2,∴B(﹣2,0),∴OA=4,OB=2.如图1,过点Q作QH⊥x轴于H,,AB∥MN∵.∴△NMO∽△BAO,=,∴=设ON=a,则OM=2a,∵∠MNQ=90°,∴∠QNH+∠MNO=∠MNO+∠NMO=90°,∴∠QNH=∠NMO,在△QNH和△NMO中∴△QNH≌△NMO(AAS),∴QH=ON=a,HN=OM=2a,又∵△BQH∽△BAO,=,=∴=a,∴BH∵OB=BH+HN+ON,=,a,解得a∴2+=a+2a(﹣,0);0N,),∴M(如图2,过点P作PH⊥x轴于H,易证△PNH∽△BAO,=,=∴设PH=b,则NH=2b,同理证得△PNH≌△NMO,∴PH=ON=b,HN=OM=2b,∴OH=HN﹣OH=b,又∵△BPH∽△BAO,=,∴=,b=BH∴.∵OB=BH+OH,=,+b,解得∴2b=b(,0N);∴M(0,﹣),如图3,过点P作PH⊥x轴于H,PE⊥y轴于E,QF⊥y轴于F,易证△PAE∽△BAO,=,∴=设PE=c,则AE=2c,同理证得△PNH≌△PME,∴PH=PE=OE=c,则AE=2c,∵OA=AE+OE,=,c2c+c,解得∴4=∵△MQF≌△PME,∴MF=PE=OE,EM=FQ,∴EM=OF=FQ,设EM=OF=FQ=m,则Q(﹣m,﹣m),代入y=2x+4中,得﹣m=﹣2m+4,解得m=4,(﹣,0N,∴),∴NO=NH+OH=,=4∵OF=m)0,﹣4.(∴M(﹣,40M0N)()或,,0M综上所述(,)N(﹣0M0,﹣,(,)或(,﹣)N)0,;.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.【分析】(1)将△ADE绕点D逆时针旋转90°得△CDM,证得∠CDE=∠ADM,得出∠E=∠M =180°﹣2∠DFM,可得出∠CDF=90°﹣∠DFM,则结论得证;(2)将△ADE绕点D逆时针旋转90°得△CDM,过点M作MH⊥DF于H.设BF=FC=,则结论得x4=AE,FM,求出2xDF,得出MFH∽△DFC,证明△xCD=x,则=证;最,连接中,取1AD的中点NGK,CK三点共线时,、GNCG,当C、﹣)如图(33,则答案可=ADDNCMNCMD23小.在图﹣中,证得四边形为平行四边形,得出=求出.,CDM°得△90逆时针旋转D绕点ADE,将△1)证明:如图1(【解答】.∵∠DCB=∠DCM=90°,∴F、C、M三点共线,∵将△ADE绕点D逆时针旋转90°得△CDM,∴△ADE≌△CDM,∴∠E=∠M,∠EDA=∠CDM,∴∠CDE=∠ADM,∵∠CDE=2∠ADF,∴∠ADM=2∠ADF,∴∠FDM=∠ADF,∵正方形ABCD中AD∥BC,∴∠ADF=∠DFM=∠FDM,∴∠E=∠M=180°﹣2∠DFM,∵∠DCB=90°,∴∠CDF=90°﹣∠DFM,∴∠E=2∠CDF.(2)证明:如图2,将△ADE绕点D逆时针旋转90°得△CDM,作MH⊥DF于H.∵∠DCF=∠DCM=90°,∴F、C、M三点共线,过点M作MH⊥DF于H.,x2=CD,则x=FC=BF中点,设BC是F∵若.=x=,Rt△FDC中,DF在,由(1)得,∠DFM=∠FDM,∴DM=FM,又∵HM⊥DF=DFx,∴FH=∵∠DFC=∠MFH,∠DCB=∠MHF=90°,∴△DFC∽△MFH,∴,=x,∴FM=x,FM﹣FC∴CM=AE==x,=FM∵DE=DM+x=4DEx=x,∴AE+∵CD=AD=2x,∴AE+DE=2AD=4x.(3)解:如图3﹣1中,取AD的中点K.∵AG⊥DF于点G,∴∠AGD=90°,∵AK=DK,=ADGK,∴∵CG≥CK﹣GK,最小.CG三点共线时,N、G、C∴当.如图3﹣2中,当C、G、N共线时,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCF=∠DCM=90°,∴F、C、M三点共线,∵∠AGD=90°,N为AD中点,∴AN=NG=ND,∴∠NGD=∠ADF,由(1)∠ADF=∠FDM,∴∠NGD=∠FDM,∴DM∥NC,∵正方形ABCD中AD∥BC,∴四边形NCMD为平行四边形,=AD,=DN∴CM∵CM=AE,=ABAD,∴AE=∴AE:AB=1:2.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP,求正比例函数的解析式.OQ3=【分析】(1)分别求出点A、B的坐标,进而得出AB的长,再根据三角形的面积公式解答即可;(2)连接OD,过点D作DH⊥x轴于H,易证△AOB∽△OHD,根据相似三角形的性质求出点D 的坐标,再利用待定系数法求解即可;(3)过点P作PM⊥x轴于M,点Q作QN⊥x轴于N,用k的代数式分别表示出OM、ON;由OP=3OQ可得ON=3OM,进而得出关于k的一元一次方程,求出k的值,问题得以解决.【解答】解:(1)∵直线AB解析式为y=﹣3x+3,∴A(0,3),B(1,0),∴OA=3,OB=1,=,∴AB=AB?OB?OC,∵S=OA AOB△=;=∴OC轴于⊥作,过点)连接(2ODDDHxH,∵点O与点D关于AB对称,=,)OC AB垂直平分OD,由(1∴=,∴OD=2OC∵△AOB∽△OCB,△OCB∽△OHD,∴△AOB∽△OHD,∴,=,OHDH=,∴,)D.(∴设直线BD解析式为y=kx+b,,)(,1,0),D(∵B,解得,∴∴直线BD解析式为y=3x﹣3.(3)如图,过点P作PM⊥x轴于M,点Q作QN⊥x轴于N.∵正比例函数y=kx与直线BD交于P,=,x3x﹣3,解得∴kx=∴OM.=∵正比例函数y=kx与直线AB交于Q,,=x,解得+3x3=﹣kx∴.=.ON∴∵OP=3OQ,∴ON=3OM,=.,解得k3∴=×.∴正比例函数的解析式为。

2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)

2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)

2018-2019学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣13.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=34.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<57.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.二.填空题(共6小题)11.化简:=.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是.三.解答题(共8小题)17.计算:(1)(2)18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为(填空).19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.。

2018-2019学年人教新版湖北省武汉市武昌区八校联考八年级第二学期期中数学试卷含解析

2018-2019学年人教新版湖北省武汉市武昌区八校联考八年级第二学期期中数学试卷含解析

2018-2019学年⼈教新版湖北省武汉市武昌区⼋校联考⼋年级第⼆学期期中数学试卷含解析2018-2019学年⼋年级第⼆学期期中数学测试卷⼀、选择题1是同类⼆次根式的是()A B C D2x的取值范围是()A.3x>B.3x…且0x≠C.3x…D.3x<且0x≠3.下列各命题都成⽴,⽽它们的逆命题不能成⽴的是()A.两直线平⾏,同位⾓相等B.全等三⾓形的对应⾓相等C.四边相等的四边形是菱形D.直⾓三⾓形中,斜边的平⽅等于两直⾓边的平⽅和4.下列各组数能构成勾股数的是()A.2B.12,16,20 C.13,14,15D.23,24,255.已知a,b,c是ABC的三边,且满⾜222()()0a b a b c---=,则ABC是() A.直⾓三⾓形B.等边三⾓形C.等腰直⾓三⾓形D.等腰三⾓形或直⾓三⾓形6.下列说法不正确的是()A.⼀组邻边相等的矩形是正⽅形B.对⾓线互相垂直的矩形是正⽅形C.对⾓线相等的菱形是正⽅形D.有⼀组邻边相等、⼀个⾓是直⾓的四边形是正⽅形7.已知3y=+,则yx的值为()A.43B.43-C.34D.34-8.如图,在菱形ABCD中,13AB=,对⾓线24BD=,若过点C作CE AB⊥,垂⾜为E,则CE的长为()A .12013B .10C .12D .240139.如图,在ABC ?中,AD 平分CAB ∠交BC 于点E .若90BDA ∠=?,E 是AD 中点,2DE =,5AB =,则AC 的长为( )A .1B .43C .32 D .5310.凸四边形ABCD 的两条对⾓线和两条边的长度都为1,则四边形ABCD 中最⼤内⾓度数为( ) A .150?B .135?C .120?D .105?⼆、填空题(本⼤题共6⼩题,共18分) 11.0ab <,则2a b 化简结果是. 12.计算:2748+= .13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,3PO =,则菱形ABCD 的周长是.14.如图,在等边三⾓形ABC 中,6BC cm =,射线//AG BC ,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,点F 从点B 出发沿射线BC 以2/cm s 的速度运动.如果点E 、F 同时出发,设运动时间为()t s 当t = s 时,以A 、C 、E 、F 为顶点四边形是平⾏四边形.15.若0x >,0y >且24x y +=,求22169x y +++的最⼩值.16.如图,正⽅形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为.三、解答题(本⼤题共8⼩题,共72分) 17.计算:(1)(12518)(458)+- (2)1(486)124+÷. 18.阅读下列材料,并解决相应问题:2(53)2(53)5353(53)(53)++==--+应⽤:⽤上述类似的⽅法化简下列各式:(176+(2)若a 2的⼩数部分,求3a的值. 19.如图,在77?⽹格中,每个⼩正⽅形的边长都为1.(1)建⽴适当的平⾯直⾓坐标系,使点(3,4)A 、(4,2)C ,则点B 的坐标为;(2)求图中格点ABC ?的⾯积;(3)判断格点ABC ?的形状,并说明理由.(4)在x 轴上有⼀点P ,使得PA PC +最⼩,则PA PC +的最⼩值是.20.如图,正⽅形ABCD 中,点P ,Q 分别为AD ,CD 边上的点,且DQ CP =,连接BQ ,AP .求证:BQ AP =.21.如图,在四边形ABCD 中,//AB DC ,AB AD =,对⾓线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.22.阅读下⾯内容:我们已经学习了《⼆次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,Q 2()20a b a ab b =-+…,∴2a b ab +…,当且仅当a b =时取等号.请利⽤上述结论解决以下问题:(1)当0x >时,1x x +的最⼩值为;当0x <时,1x x+的最⼤值为.(2)当0x >时,求2316x x y x++=的最⼩值.(3)如图,四边形ABCD 的对⾓线AC ,BD 相交于点O ,AOB ?、COD ?的⾯积分别为4和9,求四边形ABCD ⾯积的最⼩值.23.如图,ABCAC=,D是BC边上⼀动点,//DF ABDE AC交AB于E,//AB=,8中6交AC于F.(1)若10BC=,判断四边形AEDF的形状并证明;(2)在(1)的条件下,若四边形AEDF是正⽅形,求BD的长;(3)若60∠=?,四边形AEDF是菱形,则BD=.BAC24.已知O为坐标原点,A,B分别在y轴、x轴正半轴上,D是x轴正半轴上⼀动点,AD DE =,ADEαAC BC=.∠=,矩形AOBC的⾯积为32且2α=?时,直线CE交x轴于点F,求证:F为OB中点;(1)如图1,当90α=?时,若D是OB中点,求E点坐标;(2)如图2,当60α=?时,Q是AE的中点,求D点运动过程中BQ的最⼩值.(3)如图3,当120参考答案⼀、选择题1是同类⼆次根式的是( )A BC D【分析】可先将各⼆次根式化为最简,然后根据同类⼆次根式的被开⽅数相同即可作出判断.解:A =不是同类⼆次根式,故本选项错误;B =不是同类⼆次根式,故本选项错误;C =,与是同类⼆次根式,故本选项正确;D 不是同类⼆次根式,故本选项错误.故选:C .2x 的取值范围是( ) A .3x >B .3x …且0x ≠C .3x …D .3x <且0x ≠【分析】根据⼆次根式有意义的条件和分式有意义的条件得出30x -…且0x ≠,求出即可.30x -…且0x ≠,解得:3x …且0x ≠,故选:B .3.下列各命题都成⽴,⽽它们的逆命题不能成⽴的是( ) A .两直线平⾏,同位⾓相等 B .全等三⾓形的对应⾓相等 C .四边相等的四边形是菱形D .直⾓三⾓形中,斜边的平⽅等于两直⾓边的平⽅和【分析】把⼀个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从⽽利⽤排除法得出答案.解:A 、逆命题是同位⾓相等,两直线平⾏,成⽴;B 、逆命题是对应⾓相等的三⾓形是全等三⾓形,不成⽴;C 、逆命题是菱形是四边相等的四边形,成⽴;D 、逆命题是⼀条边的平⽅等于另外两条边的平⽅和的三⾓形是直⾓三⾓形,成⽴.故选:B .4.下列各组数能构成勾股数的是( )A .2B .12,16,20C .13,14,15D .23,24,25【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两⼩边的平⽅和是否等于最长边的平⽅.解:A 、2222+=,但不是正整数,故选项错误; B 、222121620+=,能构成直⾓三⾓形,是整数,故选项正确; C 、222111()()()453+≠,不能构成直⾓三⾓形,故选项错误;D 、222222(3)(4)(5)+≠,不能构成直⾓三⾓形,故选项错误.故选:B .5.已知a ,b ,c 是ABC ?的三边,且满⾜222()()0a b a b c ---=,则ABC ?是( ) A .直⾓三⾓形 B .等边三⾓形C .等腰直⾓三⾓形D .等腰三⾓形或直⾓三⾓形【分析】由222()()0a b a b c ---=,可得:0a b -=,或2220a b c --=,进⽽可得a b =或222a b c =+,进⽽判断ABC ?的形状为等腰三⾓形或直⾓三⾓形.解:222()()0a b a b c ---=Q , 0a b ∴-=,或2220a b c --=,即a b =或222a b c =+,ABC ∴?的形状为等腰三⾓形或直⾓三⾓形.故选:D .6.下列说法不正确的是( ) A .⼀组邻边相等的矩形是正⽅形 B .对⾓线互相垂直的矩形是正⽅形 C .对⾓线相等的菱形是正⽅形D .有⼀组邻边相等、⼀个⾓是直⾓的四边形是正⽅形【分析】利⽤正⽅形的判定⽅法分别判断得出即可.解:A 、⼀组邻边相等的矩形是正⽅形,说法正确,不合题意; B 、对⾓线互相垂直的矩形是正⽅形,说法正确,不合题意;C 、对⾓线相等的菱形是正⽅形,说法正确,不合题意;D 、有⼀组邻边相等、⼀个⾓是直⾓的平⾏四边形是正⽅形,原说法错误,符合题意;故选:D .7.已知443y x x =-+-+,则yx的值为( ) A .43B .43-C .34 D .34-【分析】根据⼆次根式有意义的条件列出不等式,解不等式求出x 、y 的值,计算即可.解:由题意得,40x -…,40x -…,解得4x =,则3y =,则34y x =,故选:C .8.如图,在菱形ABCD 中,13AB =,对⾓线24BD =,若过点C 作CE AB ⊥,垂⾜为E ,则CE 的长为( )A .12013B .10C .12D .24013【分析】连接AC 交BD 于O ,由菱形的性质得出12OA OC AC ==,1122OB OD BD ===,AC BD ⊥,由勾股定理求出OA ,得出AC ,再由菱形⾯积的两种计算⽅法,即可求出CE 的长.解:连接AC 交BD 于O ,如图所⽰: Q 四边形ABCD 是菱形, 12OA OC AC ∴==,1122OB OD BD ===,AC BD ⊥,90AOB ∴∠=?,222213125OA AB OB ∴=-=-=,10AC ∴=,Q 菱形的⾯积12AB CE AC BD ==g g ,即11310242CE ?=,解得:12013CE =.故选:A .9.如图,在ABC ?中,AD 平分CAB ∠交BC 于点E .若90BDA ∠=?,E 是AD 中点,2DE =,5AB =,则AC 的长为( )A .1B .43C .32 D .53【分析】延长AC 、BD 交于点F ,过点D 作//DG AF 交BC 于G ,证明()DGE ACE AAS ,得出DG AC =,证出F ABD∠=∠,得出5AF AB ==,BD FD =,证明DG 是BCF ?的中位线,得出2CF DG =,得出33AF AC CF DG AC =+==,即可得出答案.解:延长AC 、BD 交于点F ,过点D 作//DG AF 交BC 于G ,如图所⽰:则DGE ACE ∠=∠, E Q 是AD 中点, DE AE ∴=,在DGE ?和ACE ?中,DGE ACE DEG AEC DE AE ∠=∠??∠=∠??=?,()DGE ACE AAS ∴, DG AC ∴=,AD Q 平分CAB ∠, BAD FAD ∴∠=∠, 90BDA ∠=?Q ,AD BF ∴⊥,90FDA ∠=?, F ABD ∴∠=∠, 5AF AB ∴==,BD FD ∴=, //DG AF Q ,DG ∴是BCF ?的中位线, 2CF DG ∴=,33AF AC CF DG AC ∴=+==,1533AC DG AF ∴===;故选:D .10.凸四边形ABCD 的两条对⾓线和两条边的长度都为1,则四边形ABCD 中最⼤内⾓度数为( ) A .150?B .135?C .120?D .105?【分析】⾸先,这两条相等的边不可能是对边,如果两条对边相等,则对⾓线⾄少有⼀条⼤于这两条边.也就是说这两条相等的边是邻边(设为AB 、)AC ,加上连接这两条边的那条对⾓线()BC ,就是⼀个等边三⾓形()ABC ;当另⼀条对⾓线()AD 垂直于对⾓线()BC 时,BDC ∠是最⼤内⾓150?;当AD 不垂直于BC 时,BDC ∠介于150?到90?之间,⽽ABD ∠和ACD ∠都介于75?到150?之间.所以最⼤的内⾓是150?.解:如图:AB AC BC ==Q , ABC ∴?是等边三⾓形,当另⼀条对⾓线AD BC ⊥时,150BDC ∠=?;当AD 不垂直于BC 时,BDC ∠介于150?到90?之间,⽽ABD ∠和ACD ∠都介于75?到150?之间.所以最⼤的内⾓是150?.故选:A .⼆、填空题(本⼤题共6⼩题,共18分) 11.0ab <2a b 化简结果是 b - .2||a a =,利⽤0ab <2a b 解:0ab ",∴2a b b =-,"故答案为:b -.122748+= 73 .【分析】根据⼆次根式的运算法则即可求出答案.解:原式334373=+=,故答案为:313.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,3PO =,则菱形ABCD 的周长是 24 .【分析】根据菱形的性质可得AC BD ⊥,AB BC CD AD ===,再根据直⾓三⾓形的性质可得2AB OP =,进⽽得到AB 长,然后可算出菱形ABCD 的周长.解:Q 四边形ABCD 是菱形, AC BD ∴⊥,AB BC CD AD ===,Q 点P 是AB 的中点, 2AB OP ∴=, 3PO =Q , 6AB ∴=,∴菱形ABCD 的周长是:4624?=,故答案为:2414.如图,在等边三⾓形ABC 中,6BC cm =,射线//AG BC ,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,点F 从点B 出发沿射线BC 以2/cm s 的速度运动.如果点E 、F 同时出发,设运动时间为()t s 当t = 2或6 s 时,以A 、C 、E 、F 为顶点四边形是平⾏四边形.【分析】分别从当点F 在C 的左侧时与当点F 在C 的右侧时去分析,由当AE CF =时,以A 、C 、E 、F 为顶点四边形是平⾏四边形,可得⽅程,解⽅程即可求得答案.解:①当点F 在C 的左侧时,根据题意得:AE tcm =,2BF tcm =,则62()CF BC BF t cm =-=-,//AG BC Q ,∴当AE CF =时,四边形AECF 是平⾏四边形,即62t t =-,解得:2t =;②当点F 在C 的右侧时,根据题意得:AE tcm =,2BF tcm =,则26()CF BF BC t cm =-=-,//AG BC Q ,∴当AE CF =时,四边形AEFC 是平⾏四边形,即26t t =-,解得:6t =;综上可得:当2t =或6s 时,以A 、C 、E 、F 为顶点四边形是平⾏四边形.故答案为:2或6.15.若0x >,0y >且24x y +=,求22169x y +++的最⼩值 25 .【分析】将代数式22169x y +++转化为2222(0)(04)(24)(03)x x -+-+-+-,理解为(,0)A x 到(0,4)B 、(24,3)C 的距离的最⼩值,利⽤勾股定理解答即可.解:24x y +=Q ,24y x ∴=-,原式可化为:222222216(24)9(0)(04)(24)(03)x x x x +=-+=-+-+-+-,即可理解为(,0)A x 到(0,4)B 、(24,3)C 的距离的最⼩值.如图:22169x y +++的最⼩值即B C '的长度.2272425B C '=+=Q ,∴22169x y +++的最⼩值为25.故答案为:25.16.如图,正⽅形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为622- .【分析】过点F 作FG BC ⊥交BC 延长线于G ,根据正⽅形性质可得:2BD =,45CBD ∠=?,再由菱形性质可得://CE BD,2BF BD ==,45FCG CBD ∠=∠=?,因此CFG ?是等腰直⾓三⾓形,设CG FG m ==,则2CF m =,由勾股定理可列⽅程求解.解:如图,过点F 作FG BC ⊥交BC 延长线于G ,则90CGF ∠=? Q 四边形ABCD 是正⽅形1BC CD ∴==,90BCD ∠=?,45CBD ∠=?,2BD ∴=Q 四边形BFED 为菱形 //CE BD ∴,2BF BD ==45FCG CBD ∴∠=∠=?,CFG ∴?是等腰直⾓三⾓形,设CG FG m ==,则2CF m =1BG m ∴=+,Q 在Rt BFG ?中,222BG FG BF += 222(1)(2)m m ∴++=,解得:1132m +=-(舍去),2312m -=, 3162222CF --∴=?=.故答案为:622-.三、解答题(本⼤题共8⼩题,共72分) 17.计算:(1)+-(2)+÷.【分析】(1)先把各⼆次根式化为最简⼆次根式,然后去括号后合并即可;(2)先把各⼆次根式化为最简⼆次根式,然后进⾏⼆次根式的除法运算.解:(1)原式=+-+=+(2)原式=÷2=+. 18.阅读下列材料,并解决相应问题:==应⽤:⽤上述类似的⽅法化简下列各式:(1(2)若a 的⼩数部分,求3a的值.【分析】(1)直接找出分母有理化因式进⽽化简求出答案;(2)直接表⽰出a 的值,进⽽化简求出答案.解:(1==-;(2)由题意可得:1a =,33a ==. 19.如图,在77?⽹格中,每个⼩正⽅形的边长都为1.(1)建⽴适当的平⾯直⾓坐标系,使点(3,4)A 、(4,2)C ,则点B 的坐标为 (0,0) ;(2)求图中格点ABC ?的⾯积;(3)判断格点ABC ?的形状,并说明理由.(4)在x轴上有⼀点P,使得PA PC+最⼩,则PA PC+的最⼩值是.【分析】(1)⾸先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利⽤矩形的⾯积减去三个直⾓三⾓形的⾯积求解;(3)利⽤勾股定理的逆定理即可作出判断;(4)作点C关于x轴的对称点C'连接AC'交x轴与点P,连接PC,依据轴对称图形的性质可得到PC PC =',然后依据两点之间线段最短可知当点A,P,C'在⼀条直线上时,AP PC+有最⼩值.解:(1)B的坐标是(0,0).故答案是(0,0);(2)111444234125222ABCS=?-??-??-??=,(3)222125AC=+=Q,2222420BC=+=,2224325AB=+=,222AC BC AB∴+=,ABC∴?是直⾓三⾓形.(4)如图1所⽰:作点C关于x轴的对称点C'连接AC'交x轴与点P,连接PC.Q点C与点C'关于x轴对称,PC PC∴='.AP PC AP PC∴当A,P,C'在⼀条直线上时,AP PC+有最⼩值,最⼩值为AC'的长.226137AC'=+=Q.AP PC∴+的最⼩值为37.故答案为:17.20.如图,正⽅形ABCD中,点P,Q分别为AD,CD边上的点,且DQ CP=,连接BQ,AP.求证:BQ AP=.【分析】直接利⽤正⽅形的性质得出AQ DP=,再利⽤全等三⾓形的判定与性质得出答案.【解答】证明:Q四边形ABCD是正⽅形,90BAQ ADP∴∠=∠=?,AB DA=,DQ CP=Q,AQ DP∴=,在ABQ和DAPAQ DPBAQ ADPAB AD=∠=∠=,()ABQ DAP SAS∴,BQ AP∴=.21.如图,在四边形ABCD中,//AB DC,AB AD=,对⾓线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.【分析】(1)先判断出OAB DCA ∠=∠,进⽽判断出DAC DAC ∠=∠,得出CD AD AB ==,即可得出结论;(2)先判断出OE OA OC ==,再求出1OB =,利⽤勾股定理求出OA ,即可得出结论.解:(1)//AB CD Q , OAB DCA ∴∠=∠, AC Q 为DAB ∠的平分线, OAB DAC ∴∠=∠, DCA DAC ∴∠=∠, CD AD AB ∴==, //AB CD Q ,∴四边形ABCD 是平⾏四边形,AD AB =Q , ABCD ∴Y 是菱形;(2)Q 四边形ABCD 是菱形, OA OC ∴=,BD AC ⊥,CE AB ⊥Q , OE OA OC ∴==,2BD =Q , 112OB BD ∴==,在Rt AOB ?中,AB =,1OB =,2OA ∴==,2OE OA ∴==.22.阅读下⾯内容:我们已经学习了《⼆次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,Q 20a b =-+…,∴a b +…,当且仅当a b =时取等号.请利⽤上述结论解决以下问题:(1)当0x >时,1x x +的最⼩值为 2 ;当0x <时,1x x+的最⼤值为.(2)当0x >时,求2316x x y x++=的最⼩值.(3)如图,四边形ABCD 的对⾓线AC ,BD 相交于点O ,AOB ?、COD ?的⾯积分别为4和9,求四边形ABCD ⾯积的最⼩值.【分析】(1)当0x >时,按照公式a b ab +…(当且仅当a b =时取等号)来计算即可;0x <时,由于0x ->,10x->,则也可以按照公式2a b ab +…a b =时取等号)来计算;(2)将2316x x y x ++=的分⼦分别除以分母,展开,将含x 的项⽤题中所给公式求得最⼩值,再加上常数即可;(3)设BOC S x ?=,已知4AOB S ?=,9COD S ?=,则由等⾼三⾓形可知:::BOC COD AOB AOD S S S S =,⽤含x 的式⼦表⽰出AOD S ?,四边形ABCD 的⾯积⽤含x 的代数式表⽰出来,再按照题中所给公式求得最⼩值,加上常数即可.解:(1)当0x >时,1122x x x x+=g …;当0x <时,11()x x x x+=--- 112()()2x x x x ----=Q g …1()2x x ∴----…∴当0x >时,1x x +的最⼩值为2;当0x <时,1x x+的最⼤值为2-.故答案为:2;2-;(2)由2316163x x y x x x ++==++, 0x >Q ,∴16163311y x x x x=+++=g …,当16x x=时,最⼩值为11.(3)设BOC S x ?=,已知4AOB S ?=,9COD S ?= 则由等⾼三⾓形可知:::BOC COD AOB AOD S S S S =。

湖北省武汉市二中广雅中学2016-2017学年八年级下期中数学试题(无答案)

湖北省武汉市二中广雅中学2016-2017学年八年级下期中数学试题(无答案)

武汉二中广雅中学&武汉市第二初级中学2016-2017学年度下学期期中考试八年级数学试卷一、选择题(每小题3分,共30分)1.实数2的值在( )A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.函数y=1-x 中自变量x 的取值范围是( )A.x >1B.x >0C.x ≠0D.x ≥13.下列计算,其中正确的是( ) A.22-22= B.725252222=+=+ C.33235=- D.()()15252=-+4.下列条件能判定四边形ABCD 是平行四边形的是( )A.∠A=∠B,∠C=∠DB.AB=AD, BC=CDC.AB ∥CD,AD=BCD.AB=CD,AD=BC 5.若x-1x x -1x =成立,则x 的取值范围为( ) A.x ≥0 B.0≤x <1 C.x <1 D.X ≥0或x <16.如图,菱形ABCD 的边长为5,过点A.C 作对角线AC 的垂线分别交CB 和AD 的延长线于点E 、F,AE=6,则四边形AECF 的面积为( )第6题 第7题 第8题A.32B.24C.48D.307.如图,在△ABC 中,∠ABC=90°,AB=8,BC=6,若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F,则线段DF 的长为( )A.7B.8C.9D.108.如图,正方形ABCD 的边长为a,动点P 从点A 出发,沿折线A →B →D →C →A 的路径运动,回到点A 时运动停止,设点P 运动的路程长为x,AP 长为y,则关于x 的函数图象大致是( )A.B.C. D.9.如图,矩形纸片ABCD 中,AB=8,BC=12.将该矩形纸片剪去三个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.24B.12C.10D.810.已知a,b,c 是直角三角形的三边,且c 为斜边,h 为斜边上的高,下列说法:①c b a 、、能组成三角形;②222c b a 、、能组成三角形;③c+h,a+b,h 能组成直角三角形;④222h 1b 1a 1、、 能组成直角三角形,其中错误结论的个数是( )A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.化简:计算()._____5-______412____182===;; 12.观察下列各式:①2112111122=++;②6113121122=++;③12114131122=++,…, 根据规律写出第n 个式子:_______________________.13.已知x=2-7,则23x 4x ++x-1的值为________.14.如图,在ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ′E 处,AD 与CE 交于点F.若∠B=50°,∠DAE=20°,则∠FFD ′的大小为________.第14题 第15题 15.一个装有进水管和出水管的容器,从某时刻起只打开进水答进水,经过一段时间后再打开出水管放水至12分钟时,关停进水管在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过______分钟容器中的水恰好放完.16.四边形ABCD 对角线AC=83,BD=62,P 、Q 、R 、S 分别是AB 、BC 、CD 、DA 的中点,则22QS PR +的值为__________.三、解答题(共8题,共72分)17.(本题8分)计算: (1)()863321--+ (2)311322531⨯÷18.(本题8分)如图,在平行四边形ABCD中,点E、F分别是AD、BC上的点,且AE=CF. 求证:四边形BFDE是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考答案与试题解析一.选择题(共10小题)1.若在实数范围内有意义,则x的取值范围是()A.x>0B.x>3C.x≥3D.x≤3【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.2.下列二次根式中的最简二次根式是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A.3.下列计算正确的是()A.2B.C.5D.【分析】利用二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、C进行判断;根据分母有理化对D进行判断.【解答】解:A、原式=6×3=18,所以A选项错误;B、与不能合并,所以B选项错误;C、5与﹣2不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.4.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是()A.4B.C.4或D.以上都不正确【分析】根据勾股定理的逆定理,可设第三条边长为x,如果满足32+52=x2或32+x2=52,即为直角三角形,解出x的值即可解答;【解答】解:设第三条边长为x,∵三角形是直角三角形,∴可得,32+52=x2或32+x2=52,解得,x=或x=4.故选:C.5.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1B.﹣1C.2D.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.6.下列命题:①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在同一个三角形中,等边对等角.其中逆命题成立的个数为()A.1个B.2个C.3个D.4个【分析】分别写出命题的逆命题,判断即可.【解答】解:①同旁内角互补,两直线平行,逆命题是:两直线平行,同旁内角互补,正确;②如果两个角是直角,那么它们相等,逆命题是:如果两个角相等,那么他们是直角,不成立;③如果两个实数相等,那么它们的平方相等,逆命题是:如果两数的平方相等,那么这两个数相等,不成立;④在同一个三角形中,等边对等角,逆命题是:在同一个三角形中,相等的角对相等的边,成立.故成立的有2个.故选:B.7.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.8.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D.9.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④【分析】由题意,①﹣②可得2xy=45记为③,①+③得到(x+y)2=94由此即可判断.【解答】解:由题意,①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴①②③正确,④错误.故选:B.10.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.二.填空题(共6小题)11.计算:(1)=;(2)(2)2=20;(3)=.【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案.【解答】解:(1)==;(2)(2)2=4×()2=4×5=20;(3)===.故答案为:(1);(2)20;(3).12.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式(n≥2且n为整数).【分析】观察可发现整数部分与分子相同,分母为整数的平方减1,据此可解.【解答】解:观察可发现整数部分与分子相同,分母为整数的平方减1,∴用n(n为正整数,且n≥2)表示的等式为:=n.故答案为:=n(n为正整数,且n≥2).13.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【解答】解:如图所示,路径一:AB==13;路径二:AB==;路径三:AB==;∵>13>,∴cm为最短路径.14.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.15.在△ABC中,AB=15,AC=13,AD为△ABC的高,且AD=12,则S△ABC=24或84.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的面积求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的面积求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD==9,在Rt△ACD中,CD==5∴BC=5+9=14∴△ABC的面积为:;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的面积为:∴当△ABC为锐角三角形时,△ABC的面积为84;当△ABC为钝角三角形时,△ABC 的面积为24.综上所述,△ABC的面积是84或24.故答案为:84或24.16.如图,∠AOB=30°,点C、D分别在边OA、OB上,且OC=2,OD=4,点M、N 分别在OB、OA上,则CM+MN+ND的最小值是2.【分析】作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接C′D′,与OB、OA分别交于点M、N,连接CM、DN,此时CM+MN+ND=C′M+MN+ND′=C′D′最小,根据勾股定理即可求得CM+MN+ND的最小值.【解答】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接C′D′,与OB、OA分别交于点M、N,连接CM、DN,此时CM+MN+ND=C′M+MN+ND′=C′D′最小,∴CM+MN+ND的最小值是C′D′的长.连接OC′、OD′,由对称性可知:∠C′OB=∠COB=∠COD′=30°,OC′=OC,OC′=OC,∴∠COC′=DOD′=60°,∴△OMC,△ODN为等边三角形,∴∠D′OC′=90°,OC′=2,OD′=4由勾股定理得,C′D′==2.所以CM+MN+ND的最小值是2.故答案为2.三.解答题(共8小题)17.计算:【分析】在二次根式的加减运算中,先对各个二次根式化成最简二次根式,再把同类二次根式合并.【解答】解:原式===14.18.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.【分析】(1)根据完全平方公式可以解答本题;(2)根据平方差公式可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,∴x2+2xy+y2=(x+y)2=(2)2=12;(2)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,x﹣y==2,x2﹣y2=(x+y)(x﹣y)==4.19.如图,一根竹子高10尺,折断后竹子的顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?【分析】杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解答】解:设杆子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=.答:折断处离地面的高度是尺.20.如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB=,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为2.【分析】(1)由AB==、AD==,结合网格与勾股定理可确定点A;(2)求出BC2、CD2、BD2,再利用勾股定理逆定理即可判断;(3)设点C到BD的距离为d,根据S△BCD=BC•CD=BD•d求解可得.【解答】解:(1)如图所示,四边形ABCD即为所求,其面积为5×5﹣×5×1﹣×2×4﹣×1×4﹣×(1+3)×1=14;(2)是,∵BC2=22+42=20,CD2=12+22=5,BD2=32+42=25,∴BC2+CD2=BD2,∴△BCD是直角三角形,且∠BCD=90°,(3)设点C到BD的距离为d,由(2)知,BC=2,CD=,BD=5,根据S△BCD=BC•CD=BD•d,则d===2.故答案为:2.21.等腰Rt△ABC中,∠ACB=90°且CA=CB.(1)如图1,若△ECD也是等腰Rt△且CE=CD,△ACB的顶点A在△ECD的斜边DE 上,求证:AE2+AD2=2AC2;(2)如图2,点M是△ACB外一点,CM∥AB,且BM=BA,求的值.【分析】(1)连结BD,由等腰直角三角形的性质得出∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,得出2AC2=AB2.由SAS 证明△AEC≌△BDC,得出AE=BD,∠E=∠BDC=45°,CE=CD,证出∠BDA=∠BDC+∠ADC=90°,在Rt△ADB中.由勾股定理即可得出结论;(2)过M作MH⊥BC交BC的延长线于H,设AC=BC=a,求得AB=BM=a,根据平行线的性质得到∠HCM=∠ABC=45°,设MH=CH=x,根据勾股定理得到CM=CH=a,于是得到结论.【解答】(1)证明:连接BD,如图所示:∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,∴2AC2=AB2.∠ECD﹣∠ACD=∠ACB﹣∠ACD,∴∠ACE=∠BCD在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD,∠E=∠BDC.∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴AD2+BD2=AB2,∴AD2+AE2=2AC2;(2)过M作MH⊥BC交BC的延长线于H,设AC=BC=a,∵∠ACB=90°,∴AB=BM=a,∵CM∥AB,∴∠HCM=∠ABC=45°,∴MH=CH,设MH=CH=x,∴x2+(x+a)2=()2,解得x=a(负值舍去),∴CM=CH=a,∴==.22.“武黄城际铁路”是武汉市城市圈内一条连通武汉市和黄石市的快速城际铁路,如图1,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你解决以下问题:(1)求A、C之间的距离;(参考数据≈4.6);(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,应该选择哪种乘车方案?请说明理由.(不计候车时间)(3)“为了安全,请勿超速”.如图2,武黄城际列车通车后,在某直线路段MN限速180千米/小时,为了检测列车是否超速,铁路有关部门在铁路MN旁设立了观测点S,从观测点S测得列车从点P到达点Q行驶了1.5秒钟,已知∠SPN=45°,∠SQN=60°,SQ =200米,此列车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【分析】(1)根据勾股定理解答即可;(2)根据路程与速度的关系得出时间即可;(3)根据三角函数得出PQ,进而判断即可.【解答】解:(1)过点C作AB的垂线,交AB的延长线于E点,∵∠ABC=120°,BC=20,∴BE=10,CE=10,在△ACE中,∵AC2=8100+300,∴AC=20=20×4.6=92km;(2)乘客车需时间t1==1(小时);乘列车需时间t2=+=1(小时);∴选择城际列车.(3)作SH⊥MN于H,如图,∵∠SPN=45°,∠SQN=60°,SQ=200米,∴HS=PH=100,QH=100,∴PQ=100(﹣1)≈73,则速度为m/s<180千米/小时,故为超速.23.已知△ABC中,AB=AC,∠BAC=2a,∠ADB=a(1)如图1,若a=30°,则线段AD、BD、CD之间的数量关系为DC2=DA2+DB2;(2)若a=45°①如图2,线段AD、BD、CD满足怎样的数量关系?证明你的结论;②如图3,点E在线段BD上,且∠BAE=45°,AD=5,BD=4,则DE=.【分析】(1)结论:DC2=DA2+DB2.如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.首先证明△DCM是等边三角形,再证明△ADM是直角三角形即可解决问题.(2)①结论:DC2=DB2+2DA2.如图2中,作AM⊥AD交DB的延长线于M,连接CM.由△DAB≌△MAC,推出BD=CM,∠ADB=∠AMC=45°推出∠DMC=90°,推出DC2=CM2+DM2,由CM=DB,DM=AD,即可证明.②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4﹣x,由AD=AM=5,推出DM=5,BM=DG=5﹣4,在Rt△DEG中,根据DG2+DE2=EG2,列出方程即可解决问题.【解答】解:(1)结论:DC2=DA2+DB2.理由:如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.∵CD=CM,∠DCM=60°,∴△DCM是等边三角形,∴DM=CD=CM,∵∠ADB=30°,∴∠DAB+∠DBA=150°,∵∠MAC=∠DBC,∴∠MAC+∠DAB=∠DBC+∠DAB=∠DBA+∠ABC+∠DAB=150°+60°=210°,∴∠DAM=360°﹣210°﹣60°=90°,∴DM2=DA2+AM2,∵AM=DB,DM=DC,∴DC2=DA2+DB2.故答案为DC2=DA2+DB2.(2)①结论:DC2=DB2+2DA2.理由:如图2中,作AM⊥AD交DB的延长线于M,连接CM.∵∠ADM=45°,∠DAM=90°,∴∠ADM=∠AMD=45°,∴DA=AM,DM=DA,∵∠DAM=∠BAC,∴∠DAB=∠MAC,∵AB=AC,∴△DAB≌△MAC,∴BD=CM,∠ADB=∠AMC=45°∴∠DMC=90°,∴DC2=CM2+DM2,∵CM=DB,DM=AD,∴DC2=DB2+2DA2.②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4﹣x,∵AD=AM=5,∴DM=5,BM=DG=5﹣4,在Rt△DEG中,∵DG2+DE2=EG2,∴(5﹣4)2+x2=(4﹣x)2,解得x=.故答案为=.24.在Rt△ABC中,∠C=90°,AC=BC,O是AB的中点,∠EOF=90°,(1)如图1,点E、F分别在线段AC和线段BC上.试确定EF、AE、BF之间的数量关系,并给出证明.(2)如图2,点E、F分别在线段AC和线段CB的延长线上,且OP平分∠EOF交直线CB于P点,试确定CP、PF、BF之间的数量关系,并加以证明.(3)如图3,在(2)的条件下,连接OC,过P作PM⊥OC于点M,过F作FN⊥OB 于点N,直线PM、FN交于D点,请判断DP、PM、NF之间的数量关系,并证明.【分析】(1)由“ASA”可证△CEO≌△BFO,可得CE=BF,由勾股定理可得结论;(2)连接OC,EP,由“ASA”可证△CEO≌△BFO,可得BF=CE,OE=OF,由“ASA”可证△EOP≌△FOP,可得PE=PF,由勾股定理可得结论;(3)由题意可证△PDF,△BNF均为等腰直角三角形,可得PF=DP,CP=PM,BF=NF,代入(2)的结论可求解.【解答】解:(1)AE2 +BF2 =EF2,理由如下:连接OC,EF,∵∠ACB=90°,AC=BC,点O是AB中点,∴AO=BO=CO,AB⊥CO,∠ACO=∠B=45°,∴∠COB=∠EOF=90°,∴∠EOC=∠FOB,且BO=CO,∠ECO=∠B=45°,∴△CEO≌△BFO(ASA)∴CE=BF,∵AC=BC,∴AE=CF,∵CE2+CF2=EF2,∴AE2 +BF2 =EF2;(2)CP2+BF2=PF2;理由如下:连接OC,EP,∵∠ACB=90°,AC=BC,点O是AB中点,∴AO=BO=CO,AB⊥CO,∠ACO=∠ABC=45°,∴∠COB=∠EOF=90°,∠OCE=∠OBF=135°,∴∠EOC=∠FOB,且BO=CO,∠OCE=∠OBF,∴△CEO≌△BFO(ASA)∴BF=CE,OE=OF,∵OP平分∠EOF,∴∠EOP=∠FOP=45°,且OE=OF,OP=OP,∴△EOP≌△FOP(ASA),∴PF=PE,∴CP2+BF2=CP2+CE2=PE2=PF2;(3)PM2+NF2=DP2.理由如下:∵∠OBC=∠NBF=∠DPF=45°,∴△PDF,△BNF均为等腰直角三角形,∴PF=DP,CP=PM,BF=NF,由(2)可知CP2+BF2=PF2,∴2PM2+2NF2=2DP2,即PM2+NF2=DP2.。

相关文档
最新文档