晶体三极管详细说明
晶体三极管的主要参数
晶体三极管的主要参数晶体三极管是一种重要的电子器件,被广泛应用于电子电路中。
它具有许多主要参数,这些参数对于了解晶体三极管的性能和应用非常重要。
本文将介绍晶体三极管的几个主要参数,并详细解释它们的含义和作用。
1. 最大集电极电流(ICmax)最大集电极电流是指晶体三极管能够承受的最大电流。
超过这个电流值,晶体三极管可能会损坏。
因此,在使用晶体三极管时,需要确保集电极电流不超过ICmax。
2. 最大集电极功耗(PCmax)最大集电极功耗表示晶体三极管能够承受的最大功耗。
当晶体三极管的功耗超过这个值时,会导致晶体三极管过热,甚至损坏。
因此,在设计电路时,需要确保集电极功耗不超过PCmax。
3. 最大集电极-基极电压(VCEmax)最大集电极-基极电压是指晶体三极管能够承受的最大电压差。
当集电极-基极电压超过这个值时,晶体三极管可能会击穿,造成损坏。
因此,在使用晶体三极管时,需要确保集电极-基极电压不超过VCEmax。
4. 最大基极-发射极电压(VBEmax)最大基极-发射极电压是指晶体三极管能够承受的最大电压差。
当基极-发射极电压超过这个值时,晶体三极管可能会击穿,造成损坏。
因此,在使用晶体三极管时,需要确保基极-发射极电压不超过VBEmax。
5. 最大集电极-发射极电流放大倍数(hFEmax)最大集电极-发射极电流放大倍数表示晶体三极管的放大能力。
它是指在特定工作条件下,晶体三极管输入电流与输出电流之间的比值。
hFEmax越大,表示晶体三极管具有更好的放大能力。
6. 截止频率(fT)截止频率是指晶体三极管在放大作用下,输出信号的频率达到-3dB 的点。
截止频率越高,表示晶体三极管具有更好的高频特性。
7. 饱和电流(ICsat)饱和电流是指晶体三极管在饱和工作区时的集电极电流。
当晶体三极管处于饱和状态时,集电极电流不再随输入信号的变化而变化,保持在一个稳定的值。
总结:晶体三极管的主要参数包括最大集电极电流、最大集电极功耗、最大集电极-基极电压、最大基极-发射极电压、最大集电极-发射极电流放大倍数、截止频率和饱和电流。
《晶体三极管》课件
晶体三极管的分类
有两种主要的晶体三极管 类型:PNP和NPN。
2. 晶体三极管的工作原理
1
简单电路
晶体三极管可以作为放大器、开关和振荡器在各种电路中发挥作用。
2
放大器电路
晶体三极管可以放大信号的幅度,使其更适合其他电路的输入。
3
开关电路
晶体三极管可以控制电流的通断,用于构建开关电路。
3. 晶体三极管的应用
5. 晶体三极管的优缺点
1 优点
小巧、高频响应、低功耗、可靠性高、成 本低。
2 缺点
温度敏感、容易受到噪声干扰、容易烧毁。
6. 结论
总结
晶体三极管是一种重要的电子元器件,广泛应用于各种电路和电子设备中。
展望
随着科技的发展,晶体三极管不断改进,将在更广泛的领域发挥作用。
《晶体三极管》PPT课件
晶体三极管是电子学中重要的元器件之一,本课件将介绍晶体三极管的结构、 工作原理、应用、特性以及优缺点,帮助您全面了解晶体三极管。
1. 介绍晶体三极管
ห้องสมุดไป่ตู้
什么是晶体三极管?
晶体三极管是一种半导体 器件,可用作放大,开关 和振荡器。
晶体三极管的结构
晶体三极管由三个不同掺 杂的半导体区域构成:发 射区,基区和集电区。
放大器
晶体三极管可用于构建各类放 大器,如音频放大器、射频放 大器等。
开关
晶体三极管可以用于构建数字 电路和模拟电路中的开关。
振荡器
晶体三极管可以作为振荡器的 关键元件,产生无线电频率信 号。
4. 晶体三极管的特性
基本参数
• 电流放大倍数 • 最大可承受电压 • 最大可承受功率
变化规律
• 输入特性曲线 • 输出特性曲线 • 电流-电压关系
晶体三极管的工作原理详解
PN 结的本质:在 P 型半导体和 N 型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为 PN 结。
1、切入点:要想很自然地说明问题,就要选择恰当地切入点。
讲三极管的原理我们从二极管的原理入手讲起。
二极管的结构与原理都很简单,内部一个 PN 结具有单向导电性,如示意图B。
很明显图示二极管处于反偏状态, PN 结截止。
我们要特殊注意这里的截止状态,实际上 PN 结截止时,总是会有很小的漏电流存在,也就是说 PN 结总是存在着现象, PN 结的单向导电性并非百分之百。
为什么会浮现这种现象呢?这主要是因为PN 结反偏时,能够正向导电的多数载流子被拉向电源,使PN 结变厚,多数载流子不能再通过 PN 结承担起载流导电的功能。
所以,此时漏电流的形成主要靠的是少数载流子,是少数载流子在起导电作用。
反偏时,少数载流子在电源的作用下能够很容易地反向穿过 PN 结形成漏电流。
漏电流之所以很小,是因为少数载流子的数量太少。
很明显,此时漏电流的大小主要取决于少数载流子的数量。
如果要想人为地增加漏电流,只要想办法增加反偏时少数载流子的数量即可。
所以,如图B漏电流就会人为地增加。
其实,光敏二极管的原理就是如此。
光敏二极管与普通光敏二极管一样,它的 PN 结具有单向导电性。
因此,光敏二极管工作时应加之反向电压,如图所示。
当无光照时,电路中也有很小的反向饱和漏电流,普通为1×10-8 —1×10-9A(称为暗电流),此时相当于光敏二极管截止;光敏二极管工作在反偏状态,因为光照可以增加少数载流子的数量,于是光照就会导致反向漏电流的改变,人们就是利用这样的道理制作出了光敏二极管。
既然此时漏电流的增加是人为的,那末漏电流的增加部份也就很容易能够实现人为地控制。
2、强调一个结论:讲到这里,一定要重点地说明 PN 结正、反偏时,多数载流子和少数载流子所充当的角色及其性质。
为什么呢?这就导致了以上我们所说的结论:反偏时少数载流子反向通过 PN 结是很容易的,甚至比正偏时多数载流子正向通过 PN 结还要容易。
晶体三极管的结构、特性与参数
一、三极管的结构类型与工作原理半导体三极管又称为晶体管、三极管、双极型晶体管、BJT 。
它由2个背靠背的PN结组成,分为NPN型、PNP型。
由制造的材料又分为硅三极管、锗三极管。
NPN型三极管:c:collector 集电极;b:base 基极;e:emitter 发射极采用平面管制造工艺,在N+型底层上形成两个PN结。
工艺特点:三个区,二个结,引出三根电极杂质浓度(e区掺杂浓度最高,b区较高,c 区最低);面积大小( c区最大,e区大,b区窄)。
PNP型三极管:在P+型底层上形成两个PN结。
NPN管的工作原理:为使NPN管正常放大时的条件:射结正偏(VBE>0),集电结反偏(VCB>0)。
发射区向基区大量发射电子(多子),进入基区的电子成为基区的少子,其中小部分与基区的多子( 空穴)复合,形成IB电流,绝大部分继续向集电结扩散并达到集电结边缘。
因集电结反偏,这些少子将非常容易漂移到集电区,形成集电集电流的一部分ICN。
而基区和集电区本身的少子也要漂移到对方,形成反向饱和电流ICBO。
,,晶体管的四种工作状态:1、发射结正偏,集电结反偏:放大工作状态用在模拟电子电路2、发射结反偏,集电结反偏:截止工作状态3、发射结正偏,集电结正偏:饱和工作状态用在开关电路中4、发射结反偏,集电结正偏:倒置工作状态较少应用三种基本组态:集电极不能作为输入端,基极不能作为输出端。
1、共基组态(CB)输入:发射极端:基极公共(此处接地) 。
输出:集电极。
VBE>0,发射结正偏,VCB>0(∵VCC>VBB),集电结反偏。
所以三极管工作在放大状态。
发射极组态(CE):共集电极组态(CC):共基组态时电流关系(放大状态):,,称为共基极直流电流放大系数,0.98~0.998。
ICBO称为集电结反向饱和电流,其值很小,常可忽略。
其中穿透电流,。
当时,称为共射极直流电流放大系数, 穿透电流ICEO ,其值较小,也常可忽略。
所以有和之间的关系:共集组态时电流关系(放大状态):无论哪种组态,输入电流对输出电流都具有控制作用,因此三极管是一种电流控制器件(CCCS)。
晶体三极管_结构及放大原理
晶体三极管又称晶体管、双极型晶体管;在晶体管中有两类不同的载流子参与导电。
一、晶体管的结构和类型
1.晶体管的结构
在同一个硅片上制造出三个掺杂区域,并形成两个PN结,就形成三极管。
2.晶体管的类型
基极为P的称为NPN型,基极为N的称为PNP型。
二、晶体管的电流放大作用
晶体管的放大状态的外部条件:发射结正偏且集电结反偏。
发射结正偏:发射区的载流子可以扩散到基区
集电结反偏:基区的非平衡少子(从发射区扩散到基区的载流子)可以漂移到集电区。
如果发射结正偏,集电结也正偏,出现的情况将是发射区的载流子扩散到基区,同时集电区的载流子也漂移到基区。
1.晶体管内部载流子运动
①发射结正偏:发射区载流子向基区扩散,基区空穴向发射区漂移
②集电极反偏,非平衡少子运动:从发射区过来的载流子到达基区后,称为非平衡少子(基区是P带正电,载流子是电子,所以是非平衡少子;基区空穴虽然是多子,但是数量比较少),一方面与基区的空穴复合(少量);另一方面,由于集电极反偏,会产生非平衡少子的漂移运动,非平衡少子从基区漂移到集电极,从而产生漂移电流。
由于集电极面积非常大,所以可以产生比较大的漂移电流(到达基区的载流子,由于集电极反偏,所以对基区的非平衡少子有吸引,集电极带正电,非平衡少子带负电)
③集电极反偏,少子漂移电流:由于集电结反偏,处于基区的少子(电子)会漂移运到到集电区;集电区的少子(空穴)会漂移运动到基区
2.晶体管中的电流分关系
三、共射电路放大系数
1.直流放大系数:放大系数:I c=(1+β)I B
2.交流放大系数:直流电流放大系数可以代替交流电流放大系数
四、结语
希望本文对大家能够有所帮助。
晶体三极管具有能量放大作用
晶体三极管具有能量放大作用晶体三极管是一种能够对电流进行放大的电子器件。
它是由三个不同类型的半导体材料组成的结构,常用的是N型半导体、P型半导体和N型半导体的组合。
晶体三极管的放大作用主要体现在它对输入信号的电流进行放大并产生相应的输出信号。
晶体三极管的能量放大作用是通过引入外部电流控制器实现的。
在晶体三极管中,将输入信号加到基级,然后通过控制集电极和发射极之间的电流来控制输出信号。
晶体三极管的工作原理是由于输入信号的变化,引起了电流在两个不同类型的半导体材料之间的移动。
这个过程被称为晶体三极管的自动增益。
晶体三极管的放大作用具有以下几个方面的优点。
首先,晶体三极管的放大作用能够使输入信号的幅度增加,从而提供更大的输出信号。
这对于电信号的传输和处理来说非常重要,尤其是在需要长距离传输信号或者需要对信号进行进一步处理的场合。
其次,晶体三极管具有良好的线性放大特性,即输入信号的变化能够准确地对应于输出信号的变化。
这使得晶体三极管在模拟电子电路中得到了广泛的应用。
再次,晶体三极管的输出电流能够达到几个毫安至几十毫安的高电流水平,这使得它可以驱动其他电子器件,如电磁线圈、电动机等。
最后,晶体三极管的功耗相对较低,能够在较小的体积和重量下提供强大的放大能力。
晶体三极管的能量放大作用也存在一些限制。
首先,晶体三极管的输出电流和电压都受到一定的限制,这会影响到放大信号的幅度。
其次,晶体三极管的放大作用容易受到温度变化的影响,可能导致输出信号的不稳定。
此外,晶体三极管的工作速度有限,对高频信号的放大效果较差,限制了它在高频电子电路中的应用。
总之,晶体三极管的能量放大作用使得它成为了电子器件中最常用的放大器件之一、它在各种电子设备中得到了广泛的应用,如收音机、电视机、计算机等。
随着科技的发展,晶体三极管的工作原理也得到了不断的改进和完善,使得它具备了更强大的放大能力和更稳定的性能。
但是随着新的电子器件的出现,如场效应晶体管和集成电路等,晶体三极管的应用正逐渐减少,但其作为电子学重要的历史地位始终不会被取代。
大电流npn型三极管-概述说明以及解释
大电流npn型三极管-概述说明以及解释1.引言1.1 概述大电流npn型三极管是一种常用的半导体器件,用于控制电流和放大信号。
它由三个控制电极组成,分别是发射极、基极和集电极。
在工作时,通过控制基极电流,可以控制集电极之间的电流放大,从而实现对电路的控制作用。
本文将介绍npn型三极管的基本原理,重点讨论大电流npn型三极管的特点以及在实际应用中的重要性。
通过深入了解这些内容,读者可以更好地理解和应用大电流npn型三极管,为电子领域的设计和研究提供参考。
1.2 文章结构本文将分为引言、正文和结论三个部分来进行阐述。
在引言部分,将概述大电流npn型三极管的重要性和应用背景,并明确文章的目的。
在正文部分,将详细介绍npn型三极管的基本原理、大电流npn型三极管的特点以及在实际应用中的重要性。
最后,在结论部分将对全文的内容进行总结,阐明本文的意义,并展望大电流npn型三极管在未来的发展方向。
通过这样清晰的结构,读者可以更好地理解和掌握大电流npn型三极管的相关知识。
1.3 目的本文旨在深入探讨大电流npn型三极管的特点及在实际应用中的重要性。
通过对npn型三极管的基本原理进行分析,了解其大电流特性,并探讨其在各种电子设备中的应用情况。
通过本文的研究,旨在帮助读者更加全面地了解大电流npn型三极管,为电子工程师和电子爱好者提供参考和借鉴,进一步推动电子领域的发展和应用。
2.正文2.1 npn型三极管的基本原理npn型三极管是一种常用的双极型晶体管,由三个掺杂不同的半导体材料层组成,包括一个n型掺杂的基区和两个p型掺杂的发射极和集电极。
在正常工作状态下,npn型三极管的发射结极性连接正电压,集电结极性连接负电压,而基区则控制着输出电流的大小。
当在基区施加正向偏置电压时,使得基区与发射极之间形成正向偏置电压,从而导致基区的电子被注入到发射区,并在发射区与集电区之间形成导通通道。
这使得集电区能够吸收来自发射区的电子,并将其流入外部电路。
晶体三极管
2.1.6 三极管的简单测试 一、硅管或锗管的判别
当V=0.6~0.7V时, 为硅管
当V=0.1~0.3V时 为锗管。
图2.1.11判别硅管和锗管的测试电路
图2.1.14基极b的判断
五、e、b、c三个管脚的判断 首先确定三极管的基极和管型,然后采用估测β值的 方法判断c 、e极。方法是先假定一个待定电极为集电极 (另一个假定为发射极)接入电路,记下欧姆表的摆动幅 度,然后再把两个待定电极对调一下接入电路,并记下欧 姆表的摆动幅度。摆动幅度大的一次,黑表笔所连接的管 脚是集电极c,红表笔所连接的管脚为发射极e,如图 2.1.12所示。测PNP管时,只要把图2.1.12电路中红、黑表 笔对调位置,仍照上述方法测试。
能力
IC
IB
4.通常 ,IC IB ,所以可表示为
(2.1.4)
考虑ICEO,则
IC IB IC I B ICEO
(2.1.5) (2.1.6)
2.1.4 三极管的输入和输出特性
一、共发射极输入特性曲线 集射极之间的电压VCE一定时,发射结电压VBE与基极电流 IB之间的关系曲线。
1.74
2.33
2.91
IE/mA
0
0.01
0.57
1.16
1.77
பைடு நூலகம்
2.37
2.96
由表2.1.1可见,三极管中电流分配关系如下:
IE IC IB
(2.1.1)
因IB很小,则
IC IE
(2.1.2)
第三讲 晶体三极管
§2.2.3 三极管的主要参数
电流放大系数 三极管的参数是 用来表征管子性 能优劣适应范围 的,是选管的依 据,共有以下三 大类参数。
极间反向电流ICBO 、 ICEO
极限参数
• 极限参数:ICM、PCM、U(BR)CEO
最大集电 极电流 c-e间击穿电压 最大集电极耗散功 率,PCM=iCuCE
4.下列NPN型三极管各个极的电位,处于放 大状态的三极管是( ) A VC=0.3V,VE=0V, VB=0.7V B VC=-4V, VE=-7.4V,VB=-6.7V C VC=6V, VE=0V, VB=-3V D VC=2V, VE=2V, VB=2.7V 5.如果三极管工作在截止区,两个PN结状 态( ) A.均为正偏 B.均为反偏 C.发射结正偏,集电结反偏 D.发射结反偏,集电结正偏
三极管符号
结构特点:
基区很薄且杂质浓度很低;
发射区掺杂浓度高; 集电区面积很大。
二.分类
(1)按半导体结构不同:NPN 型和 PNP 型。
(2)按功率分:小功率管和大功率管。
(3)按工作频率分:低频管和高频管。
(4)按管芯所用半导体材料分:锗管和硅管。
(5)按结构工艺分:合金管和平面管。
(6)按用途分:放大管和开关管。
放大区:发射结正向偏置,集电结反向偏置。
饱和区:发射结和集电结均正向偏置。
截止区:发射结电压小于开启电压,集电结 在电路中的连接方式
共发射极连接 共基极连接 共集电极连接
三极管的特性曲线
概 念
特性曲线是 指各电极之 间的电压与 电流之间的 关系曲线
输入特性曲线
输出特性曲线
(1)三极管的电流放大作用,实质上是用较小的基极电 流信号控制集电极的大电流信号,是“以小控大”的作用。 (2)三极管的放大作用,需要一定的外部条件。
晶体三极管
三极管的基本结构是两个反向连结的PN结面,可有PNP和NPN两种组合。
三个接出来的端点依序称为发射极(emitter,E)、基极(base,B)和集电极(collector,C)。
晶体三极管具有正向受控作用。
⇒组成放大电路正向受控作用:集电极电流和发射极电流只受正向发射结电压控制而几乎不受反向集电结电压控制。
前提:正向电压加到发射结上,反向电压加到集电结上。
三极管放大状态时,导通能力大小由基极电流I b决定,因此三极管是电流控制型元件。
★三极管工作状态NPN型:当B与E之间电压V be>0.5V时,如果三个管脚电压关系是V c>V b>V e,则会处于放大状态;(发射结正偏,集电结反偏)如果是V b>V c>V e则会处于饱和状态(相当于开关);(发射结正偏,集电结正偏)如果此时V e>V c则仍会处于截止状态。
PNP型:当B和E之间电压V eb>0.5V时,如果三个管脚电压关系是V e>V b>V c,则会处于放大状态;(发射结正偏,集电结反偏)如果是V e>V c>V b则会处于饱和状态(相当于开关);(发射结正偏,集电结正偏)如果此时V c>V e则仍会处于截止状态。
发射极电流 I E = I EN + I EP I EN :电子电流 I EP :空穴电流集电极电流 I C = I CN + I CBO I CN :电子电流 I CBO :集电极反向饱和电流 I CN 受发射结正向电压控制,是I C 中可控成分;I CBO 不受发射结正向电压的控制,是I C 中不可控成分。
基极电流 I B = I EP -I CBO + (I EN -I CN ) ⇒ I B = I E -I C在众多载流子流中间,仅有发射区的多子自由电子通过发射结注入、基区扩散和复合、集电区收集三个环节,将I EN 转化为I CN ,成为产生正向受控作用的载流子流,而其它载流子流只能分别产生两个结的电流,它们对于正向受控作用来说都是无用的,是晶体三极管的寄生电流。
三极管知识简介
3)极间反向饱和电流
ICBO:发射极开路时,集电极—基极间的反向饱和电流。一般锗管的 ICBO 在 µA 数量级,硅管的 ICBO 在 nA 数量级。 ICEO:基极开路时,集电极—发射极间的穿透电流。
IEBO:集电极开路时,发射极—基极间的反向饱和电流。
由于直流参数 、 、ICBO 和 ICEO 等受温度影响较大,所以出于稳定性考虑, 也不要过大。
1.载流子的传输过程
在放大状态下,晶体三极管内部载流子的传输过程可归纳为发射结的注入、 基区中的输运与复合和集电区的收集。对此,我们以 NPN 管为例,参照图 2—37 作如下讨论:
1)发射结的注入 由于发射结正偏,使发射结变窄,扩散运动占优势,高掺杂发射区的大量电子注 入到基区,形成电子电流 IEn。与此同时,基区中的空穴也向发射区注入,形成 空穴电流 IEp。IEn 和 IEp 电流方向一致,由基区指向发射区,构成发射极电流 IE。 即 (2—42) 2)基区中的扩散与复合 注入到基区的电子,成为基区的非平衡少子,将继续向集电结方向扩散,在 扩散的过程中,除有少部分的电子会与基区中的多子空穴复合、形成基极复合电 流 IBn 外,大部分电子到达集电结边界,并在集电结电场作用下,漂移到集电区 形成集电极电子电流 ICn。 3)集电区的收集 由于集电结处于反偏状态,集电结势垒区中电场很强,其方向是由集电区指 向基区,因此,到达集电结边界的电子在此强电场的作用下,几乎全部收集到集 电区,形成集电极电子电流 ICn。此外,在该强电场的作用下,集电区内的少子 —空穴将漂移到基区;基区内的少子—电子也将漂移到集电区,它们形成集电结 的反向漂移电流 ICBO,ICBO 的方向与 ICn 方向是一致的。所以,总的集电极电流 IC 为 (2—43) 由图 2—37 可知,晶体管基极电流 IB 为 (2—44)
5.晶体三极管
5、晶体三极管的主要参数 1)、共发射极直流放大倍数HFE 共发射极直流放大倍数HFE是指在没有交流信号输入时,共发 射极电路输出的集电极直流电流与基极输入的直电流之比。这 是衡量晶体三极管有无放大作用的主要参数,正常三极管的 HFE应为几十至几百倍。常用的三极管的外壳上标有不同颜色 点,以表明不同的放大倍数。 放大倍数:-15-25-40-55-80-120-180-270-400 色标点: 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 例如:色点为黄色的三极管的放大倍数是40~55倍之间,色点 是灰色的三极管的放大倍数为180~270倍之间等等。
iB 30A
iB 20A
iB 10 A
放大区
iB 0A
0 VCE(sat)
截止区
V(BR)CEO
v CE
它分为四个区域: 放大区 截止区 饱和区 击穿区
称为击穿电压。
操作2: 三极管各个极的对地电压及其判断 根据表中给出的在放大电路中测得的三极管各个极对地的电压, 判断各个极的名称、管型和材料。 表 三极管的各个极的对地电压及其判断
晶体管在放大状态下内部载流子的传递
N+ IE E IEP
注入空穴
P 扩散电子 IB1 IB B IB2
N
收集电子
IEN 注入电子
ICN1
IC C
ICN2 ICBO ICP
发射结 复合电子
集电结
漂移空穴 漂移电子
VBE
VCB
8、三极管的工作状态 半导体三极管在工作时,根据各引脚所施加的工作电压大小,可以 使晶体三极管工作在饱合、截止、放大等状态下。 依据晶体管的发射结(EBJ)和集电结(CBJ)的偏置情况,晶体管的工 作状态如表所示: 注:VBE=VB-VE VBC=VB-VC VB-晶体三极管基极电压 VC-晶体三极管集电极电压 VE-晶体三极管发射极电压
超详细的晶体三极管原理讲解和应用分析,以水龙头比喻太恰当了
超详细的晶体三极管原理讲解和应用分析,以水龙头比喻太恰当了什么是三极管?三极管,全称为半导体三极管、双极型晶体管或者晶体三极管,是一种控制电流的半导体器件。
其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
晶体三极管是一种三端器件,内部含有两个相距很近的PN结(发射结和集电结),两个PN结加上不同极性、不同大小的偏置电压时,晶体三极管呈现不同的特性和功能。
晶体三极管由于结构不同,可以分为NPN型三极管和PNP型三极管,NPN型三极管和PNP型三极管的逻辑符号如下图1所示。
图1 NPN型三极管和PNP型三极管逻辑符号三极管的三种工作状态是非常重要的,是无线电基础中的基础。
对此我是这样理解的。
无论是NPN型三极管还是PNP型三极管,当发射结加正向偏置电压,而集电结加反向偏置电压时,那么该三极管就工作在放大模式;而当其发射结和集电结都加正向偏置电压时,该三极管就工作在饱和模式;而当发射结和集电结同时加反向偏置电压时,那么该三极管就工作在截止模式。
为此我编了一句顺口溜:发正集反是放大;全正饱和全反截,希望对大家理解有用。
既然晶体三极管那么重要,那么我们改如何正确理解三极管的工作原理,并正确使用三极管呢?小何下面就跟大家一一分享。
三极管的工作原理三极管的放大原理如下图2所示,晶体管中大小与输入信号呈正比的输出信号可以认为是从电源来的,他们的输入信号从基级进入而从发射级出来,晶体管只是吸收此时输入信号的振幅信息,由电源重新产生输出信号,这就是放大的原理。
图2 三极管放大原理值得注意的是,对于三极管放大作用的理解,必须切记一点:根据能量守恒定律,能量不会无缘无故的产生,所以,三极管一定不会产生能量。
晶体管的内部工作原理就是对流过基极与发射极之间的电流进行不断地监视,并控制集电极-发射极间电流源,使基极-发射极间电流的数十至数百倍(因晶体管种类而异)的电流在集电极与发射极之间流动。
晶体三极管及基本放大电路
目录
• 晶体三极管简介 • 基本放大电路 • 晶体三极管在基本放大电路中的应用 • 晶体三极管放大电路的性能指标 • 晶体三极管放大电路的应用 • 晶体三极管放大电路的设计与制作
01
CATALOGUE
晶体三极管简介
晶体三极管的基本结构
01
02
03
三个电极
集电极、基极和发射极, 是晶体三极管的主要组成 部分。
THANKS
感谢观看
总结词
通频带和最高频率响应是衡量放大电路 对不同频率信号的放大能力的参数。
VS
详细描述
通频带表示放大电路能够正常工作的频率 范围,其宽度由晶体三极管的截止频率和 放大倍数决定。最高频率响应表示放大电 路能够处理的最高频率信号,其大小由晶 体三极管的截止频率决定。通频带和最高 频率响应是晶体三极管放大电路的重要性 能指标,决定了电路的应用范围和性能表 现。
05
CATALOGUE
晶体三极管放大电路的应用
在音频信号处理中的应用
音频信号放大
晶体三极管放大电路可以用于放 大音频信号,如麦克风、扬声器 等设备中的信号放大。
音频效果处理
在音频信号处理中,晶体三极管 放大电路可以用于实现各种音效 效果,如失真、压缩、均衡等。
音频功率放大
在音响系统中,晶体三极管放大 电路可以作为功率放大器使用, 将音频信号放大到足够的功率以 驱动扬声器发声。
共发射极放大电路
总结词
共发射极放大电路是晶体三极管最常用的放大电路,具有电压和电流放大作用。
详细描述
共发射极放大电路由晶体三极管、输入信号源、输出负载和偏置电路组成。输入信号加在 基极和发射极之间,通过晶体三极管的放大作用,将信号电压或电流放大后,从集电极和 发射极之间输出。
晶体三极管的结构和类型
晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
晶体三极管
31
四、三极管的电压放大作用
将 IE= IC + IB 代入 得:
IC
中 I C I E I CBO
IB 1 1 I CBO
1
28
此时定义:
称为共射电流放大系数
1
上式变为:
同时:
I C I B (1 ) I CBO
I E I C I B (1 ) I B (1 ) I CBO
19
结论:
→→发射区的电子源源不断越过PN结到 达基区形成 IEN
→→基区的空穴电子源源不断越过PN结 到达发射区形成 IEP 则:发射极电流 IE = IEN + IEP
≈IEN ( IEP<< IEN )
20
② 电子在基区扩散和复合的情况: (形成 IBN = IEN – ICN ,IB=IBN + IEP - ICBO )
:
这两个公式中令
ICEO称为穿透电流,又叫ICEO(pt),即基极开路(IB=0)时
由集电极直通到发射极的电流。
29
一般地: 故:忽略 ICEO 的影响 使得:
注意: 这两个式子是以后我们在分析运算中常用的近
似关系。
30
三、三极管的电流放大作用
从三极管中载流子的运动情况可知,我们
晶体三极管及其放大电路
能量转换
在放大过程中,电能转换 为信号能量,实现信号的 放大。
晶体三极管放大电路的特性
电压放大倍数
晶体三极管放大电路的电压放大倍数取决于电路参数和晶体三极 管特性。
输入电阻与输出电阻
适当选择电路参数,可以提高放大电路的输入电阻和降低输出电阻, 提高电路性能。
稳定性与失真
在实际应用中,需要考虑放大电路的稳定性,避免自激振荡和失真 现象。
晶体三极管及其放大 电路
目 录
• 晶体三极管基础 • 晶体三极管放大电路 • 晶体三极管放大电路的应用 • 晶体三极管放大电路的调试与优化
01
晶体三极管基础
晶体三极管的结构
晶体三极管由三个半导体区域组 成,分别是发射区、基区和集电
区。
晶体三极管内部有两个PN结, 分别是集电极-基极PN结和发射
视频放大
总结词
视频放大电路利用晶体三极管的高频放大性能,对视频信号进行放大,以驱动 显示屏等输出设备。
详细描述
视频放大电路主要用于电视机、显示器等视频设备的信号处理。它能够将微弱 的视频信号放大并传输到显示屏上,确保图像清晰、色彩鲜艳。视频放大电路 对提高视频设备的性能和图像质量具有重要作用。
信号放大
பைடு நூலகம்
03
晶体三极管放大电路的 应用
音频放大
总结词
音频放大是晶体三极管放大电路的重要应用之一,用于将微 弱的音频信号放大,满足扬声器等输出设备的驱动需求。
详细描述
音频放大电路通常采用音频信号作为输入,通过晶体三极管 将信号放大后驱动扬声器或其他音频输出设备。这种电路广 泛应用于音响设备、麦克风、耳机等音频产品中,提供清晰 、动态的音质效果。
总结词
晶体三极管
vCE较大时,特性 曲线进入与vCE轴 基本平行的区域
当集电结反偏电压较大时,扩散到基区的电子基本 上都可以被集电区收集,此后 v CE 再增加,电流也 没有明显的增加 ,故特性曲线与 v C E 轴基本平行
BJT输出特性曲线的三个工作区
vCB= vCE - vBE
(1) 饱和区
特征: : 判断依据 iB 0 iB 0 范围 : 或 偏或反偏(但反偏电压很小 发射结正偏,集电结正 ); v v V vCE VCC BE vBECE vCE CC vCE 或 i 随 v 的增加而增加, iC iB ; C CE vBE Vth vBE Vth vCE 很小,称为“饱和管压 降vCES ”
BJT中的电流分配关系
I C I CN I CBO I B I B I CBO I E I B I C I I I B CN E
(2) 电流放大系数
(a) 电流控制作用
I CN 定义:= ,称为 IE
IC IE
IC IB
三个电极电流之间满 “共基极直流电流放大 足一定的比例分配关 系数”, 1但接近1 系,一个电极电流发 I CN 定义: = , 称为 生改变,另两个电流 I B 都会发生变化,因此 “共射极直流电流放大 I C I CN I CBO 可实现电流控制和放 I B I B I CBO I E I B I C 系数”, = 1 大作用 I I I 1 - E B CN
BJT安全工作区示意图
PCM=iCvCE 双曲线
集电极最大允许电流ICM
当集电极电流增加时, 即 I B 和 I C 增加, 就要 下降,当 值下降到线 性放大区 值的 70 ~ 30 %时,所对应的集电极 电流称为集电极最大允 许电流ICM。至于值下 降多少,会随三极管的 型号以及生产厂家而有 所差别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体三极管晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
目录[隐藏]∙ 1 工作原理∙ 2 主要作用∙ 3 主要参数∙ 4 特性曲线∙ 5 产品检测∙ 6 工作状态∙7 产品分类∙8 主要类别∙9 基极判别∙10 判断口诀∙11 基本放大电路∙12 判断好坏∙13 主要特点∙14 判断故障∙15 注意事项∙16 产品展示∙17 相关词条18 参考资料晶体三极管-工作原理晶体三极管晶体三极管(以下简称三极管)按材料分有两种:储管和硅管。
而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN 结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β=△Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
晶体三极管-主要作用晶体三极管三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB 越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。
但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。
IC 的变化量与IB变化量之比叫做三极管的放大倍数β(β=ΔIC/ΔIB, Δ表示变化量。
),三极管的放大倍数β一般在几十到几百倍。
三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置,否则会放大失真。
在三极管的集电极与电源之间接一个电阻,可将电流放大转换成电压放大:当基极电压UB 升高时,IB变大,IC也变大,IC 在集电极电阻RC的压降也越大,所以三极管集电极电压UC会降低,且UB越高,UC就越低,ΔUC=ΔUB。
晶体三极管-主要参数晶体三极管1、直流参数(1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流。
良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo可达数毫安,而硅管的Icbo则非常小,是毫微安级。
(2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。
Iceo大约是Icbo的β倍即Iceo=(1+β)IcbooIcbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大。
(3)发射极---基极反向电流Iebo集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。
(4)直流电流放大系数β1(或hEF)这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与基极输入的直流电流的比值,即:β1=Ic/Ib2、交流参数(1)交流电流放大系数β(或hfe)这是指共发射极接法,集电极输出电流的变化量△Ic 与基极输入电流的变化量△Ib之比,即:β=△Ic/△Ib一般晶体管的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定。
(2)共基极交流放大系数α(或hfb)这是指共基接法时,集电极输出电流的变化是△Ic 与发射极电流的变化量△Ie之比,即:α=△Ic/△Ie因为△Ic<△Ie,故α<1。
高频三极管的α>0.90就可以使用α与β之间的关系:α=β/(1+β)β=α/(1-α)≈1/(1-α)(3)截止频率fβ、fα当β下降到低频时0.707倍的频率,就是共发射极的截止频率fβ;当α下降到低频时的0.707倍的频率,就是共基极的截止频率fαofβ、fα是表明管子频率特性的重要参数,它们之间的关系为:fβ≈(1-α)fα(4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映晶体管的高频放大性能的重要参数。
3、极限参数(1)集电极最大允许电流ICM当集电极电流Ic增加到某一数值,引起β值下降到额定值的2/3或1/2,这时的Ic值称为ICM。
所以当Ic超过ICM时,虽然不致使管子损坏,但β值显著下降,影响放大质量。
(2)集电极----基极击穿电压BVCBO当发射极开路时,集电结的反向击穿电压称为BVEBO。
(3)发射极-----基极反向击穿电压BVEBO当集电极开路时,发射结的反向击穿电压称为BVEBO。
(4)集电极-----发射极击穿电压BVCEO当基极开路时,加在集电极和发射极之间的最大允许电压,使用时如果Vce>BVceo,管子就会被击穿。
(5)集电极最大允许耗散功率PCM集电流过Ic,温度要升高,管子因受热而引起参数的变化不超过允许值时的最大集电极耗散功率称为PCM。
管子实际的耗散功率于集电极直流电压和电流的乘积,即Pc=Uce×Ic.使用时庆使Pc<PCM。
PCM与散热条件有关,增加散热片可提高PCM。
晶体三极管-特性曲线晶体三极管1、输入特性其特点是:1)当Uce在0-2伏范围内,曲线位置和形状与Uce有关,但当Uce高于2伏后,曲线Uce 基本无关通常输入特性由两条曲线(Ⅰ和Ⅱ)表示即可。
2)当Ube<UbeR时,Ib≈O称(0~UbeR)的区段为“死区”当Ube>UbeR时,Ib随Ube增加而增加,放大时,三极管工作在较直线的区段。
3)三极管输入电阻,定义为:rbe=(△Ube/△Ib)Q点,其估算公式为:rbe=rb+(β+1)(26毫伏/Ie毫伏)rb为三极管的基区电阻,对低频小功率管,rb约为300欧。
2、输出特性输出特性表示Ic随Uce的变化关系(以Ib为参数),它分为三个区域:截止区、放大区和饱和区。
截止区当Ube<0时,则Ib≈0,发射区没有电子注入基区,但由于分子的热运动,集电集仍有小量电流通过,即Ic=Iceo称为穿透电流,常温时Iceo约为几微安,锗管约为几十微安至几百微安,它与集电极反向电流Icbo的关系是:Icbo=(1+β)Icbo常温时硅管的Icbo小于1微安,锗管的Icbo约为10微安,对于锗管,温度每升高12℃,Icbo数值增加一倍,而对于硅管温度每升高8℃,Icbo数值增大一倍,虽然硅管的Icbo随温度变化更剧烈,但由于锗管的Icbo值本身比硅管大,所以锗管仍然受温度影响较严重的管,放大区,当晶体三极管发射结处于正偏而集电结于反偏工作时,Ic随Ib近似作线性变化,放大区是三极管工作在放大状态的区域。
饱和区当发射结和集电结均处于正偏状态时,Ic基本上不随Ib而变化,失去了放大功能。
根据三极管发射结和集电结偏置情况,可能判别其工作状态。
截止区和饱和区是三极管工作在开关状态的区域,三极管和导通时,工作点落在饱和区,三极管截止时,工作点落在截止区。
晶体三极管-产品检测晶体三极管大功率晶体三极管的检测利用万用表检测中、小功率三极管的极性、管型及性能的各种方法,对检测大功率三极管来说基本上适用。
但是,由于大功率三极管的工作电流比较大,因而其PN结的面积也较大。
PN结较大,其反向饱和电流也必然增大。
所以,若像测量中、小功率三极管极间电阻那样,使用万用表的R×1k挡测量,必然测得的电阻值很小,好像极间短路一样,所以通常使用R ×10或R×1挡检测大功率三极管。
普通达林顿管的检测用万用表对普通达林顿管的检测包括识别电极、区分PNP和NPN类型、估测放大能力等项内容。
因为达林顿管的E-B极之间包含多个发射结,所以应该使用万用表能提供较高电压的R×10K挡进行测量。
大功率达林顿管的检测检测大功率达林顿管的方法与检测普通达林顿管基本相同。
但由于大功率达林顿管内部设置了V3、R1、R2等保护和泄放漏电流元件,所以在检测量应将这些元件对测量数据的影响加以区分,以免造成误判。
具体可按下述几步骤进行晶体三极管A 用万用表R×10K挡测量B、C之间PN结电阻值,应明显测出具有单向导电性能。
正、反向电阻值应有较大差异。
B 在大功率达林顿管B-E之间有两个PN结,并且接有电阻R1和R2。
用万用表电阻挡检测时,当正向测量时,测到的阻值是B-E结正向电阻与R1、R2阻值并联的结果;当反向测量时,发射结截止,测出的则是(R1+R2)电阻之和,大约为几百欧,且阻值固定,不随电阻挡位的变换而改变。
但需要注意的是,有些大功率达林顿管在R1、R2、上还并有二极管,此时所测得的则不是(R1+R2)之和,而是(R1+R2)与两只二极管正向电阻之和的并联电阻值。
带阻尼行输出三极管的检测将万用表置于R×1挡,通过单独测量带阻尼行输出三极管各电极之间的电阻值,即可判断其是否正常。