脱氮除磷原理
污水脱氮除磷的原理及其工艺
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
脱氮除磷物体的作用原理
脱氮除磷物体的作用原理
脱氮除磷物体是用于处理废水中高浓度氮和磷的污染物的设备。
它的作用原理是通过物理、化学或生物方法将废水中的氮和磷转化为无害的物质,从而减少对环境的影响。
脱氮主要采用生物方法,常用的是生物脱氮工艺,如硝化反硝化过程。
硝化是指将废水中的氨氮经过细菌作用转化为硝酸盐的过程,而反硝化是指将废水中的硝酸盐还原为氮气的过程。
通过这两个过程,废水中的氮可以转化为气体形式释放到大气中,从而实现脱氮的效果。
除磷可以采用化学方法或生物方法。
化学方法主要是利用化学药剂与废水中的磷形成沉淀物或溶液中的磷与药剂反应生成不溶性盐类,从而使磷被移除。
常用的化学药剂有金属盐类等。
生物方法主要是通过细菌的作用将废水中的磷转化为无机磷,然后利用沉淀沉淀的方式将磷从废水中去除。
总而言之,脱氮除磷物体的作用原理是通过不同的物理、化学或生物过程将废水中的氮和磷转化为无害物质或者使其沉淀,从而达到净化水体的目的。
具体的方法选择取决于废水的特性和处理要求。
工艺方法——生物脱氮除磷技术
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
简述生物脱氮和生物除磷的基本原理和过程
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
污水生物脱氮除磷的基本原理
污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
脱氮除磷原理
脱氮除磷原理脱氮除磷是指通过一系列工艺手段,将废水中的氮和磷去除,以达到净化水质的目的。
脱氮除磷是水处理工程中非常重要的一环,也是保护水环境的关键步骤。
下面我们将介绍脱氮除磷的原理及其常见的处理方法。
首先,我们来介绍脱氮的原理。
氮在废水中的主要形式有氨氮、硝态氮和有机氮等。
脱氮的原理主要包括生物脱氮和化学脱氮两种方式。
生物脱氮是通过好氧条件下的硝化和厌氧条件下的反硝化作用,将氨氮和硝态氮还原成氮气的方式去除。
而化学脱氮则是通过添加化学药剂,将氨氮和硝态氮转化成氮气,达到脱氮的效果。
其次,我们来介绍除磷的原理。
废水中的磷主要以无机磷和有机磷的形式存在。
除磷的原理主要包括化学沉淀法、生物吸附法和生物除磷法等。
化学沉淀法是通过添加化学药剂,将废水中的磷沉淀下来,达到除磷的效果。
生物吸附法则是利用微生物对磷的吸附作用,将废水中的磷去除。
生物除磷法则是通过生物体内的磷释放和磷吸收过程,将废水中的磷去除。
综合来看,脱氮除磷的原理主要是通过生物作用和化学作用,将废水中的氮和磷去除,从而达到净化水质的目的。
在实际的水处理工程中,通常会采用生物处理和化学处理相结合的方式,以达到更好的脱氮除磷效果。
除了上述介绍的脱氮除磷原理,还有一些新型的脱氮除磷技术正在不断发展和应用。
例如,膜生物反应器、生物接触氧化法等技术,都在脱氮除磷领域取得了一定的应用效果。
这些新技术的出现,为脱氮除磷提供了更多的选择和可能性,也为水环境的保护和治理提供了新的思路和方法。
总之,脱氮除磷是水处理工程中非常重要的一环,其原理主要包括生物脱氮和化学脱氮、化学沉淀法、生物吸附法和生物除磷法等方式。
随着新技术的不断发展和应用,相信脱氮除磷技术将会在未来取得更大的突破和进步,为保护水环境作出更大的贡献。
4.3生物脱氮除磷技术
NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,
脱氮除磷原理
脱氮除磷原理
脱氮除磷原理是指通过特定的方法去除水体中的氮和磷,以减少污染物质对水体的危害。
脱氮除磷的原理主要包括物理方法和化学方法两种。
物理方法主要是通过过滤、沉淀和吸附等方式来去除水中的氮和磷。
其中,过滤是利用过滤介质将水中的悬浮颗粒、藻类等物质截留下来,从而去除水体中的氮和磷。
沉淀是利用重力作用使水中的氮、磷等物质沉降到底部,进而实现去除的效果。
吸附则是通过吸附剂吸附水中的氮、磷等物质,将其从水体中分离出来。
这些物理方法能够有效地降低水体中的氮、磷浓度,从而减少对水环境的污染。
化学方法主要是利用化学反应原理,通过添加特定的化学药剂来将水体中的氮和磷转化成不溶于水的固体物质,从而实现脱氮除磷的效果。
常用的化学方法包括加氢氧化镁、加铁盐、加铝盐等。
这些化学药剂能够与水中的氮、磷等物质发生化学反应,形成不溶于水的沉淀物,从而将其分离出来。
综上所述,脱氮除磷的原理主要包括物理方法和化学方法两种。
这些方法能够有效地去除水体中的氮和磷,降低水体的污染程度,保护水环境的安全和健康。
微生物在污水处理中的应用—废水的生物脱氮除磷技术
废水脱氮
1.微生物脱氮原理 2.生物脱氮的影响 因素 3.生物脱氮工艺及 应用
废水除磷
1.微生物除磷原理 2.典型的除磷工艺
同步脱 氮除磷
1.同步脱氮除磷典 型工艺 2.废水同步脱氮除 磷技术的工程应用
53
1.生物脱氮除磷的原理
在生物脱氮除磷工艺中,厌氧池的主要功能是释放磷, 使污水中的磷浓度升高,溶解性的有机物被微生物细胞吸收 而是无水肿的BOD下降,另外,氨氮因细胞的合成而被去除 一部分,是水中氨氮浓度下降,但硝态氮含量没有变化。
无机氮 N.H,N.O
NH3 铵盐(NH4+) 硝酸盐
7
1.3废水中氮的来源、状态
状态
污染物
有机氮 复杂蛋白质、尿 素、核酸等
无机氮 NH3、铵盐等 硝酸盐等
污染来源
生活污水、农业固体废物 (养殖粪便)和食品加工 等工业废水
农田灌溉、化肥厂等工业 废水
8
1.4水中氮磷的危害
(1)过量氮、磷容易导致水体富营养化; (2)增加水处理成本、降低消毒、脱色等处理效率, (3)增加药剂药剂用量; (4)氨氮消耗水中溶解氧; (5)含氮化合物对人、生物有毒害作用。
小结
废水生物除磷原理 废水生物除磷影响因素 废水生物除磷工艺及应用
废水同步生物脱氮除磷 原理及工艺
主要内容
生物同步脱氮除磷的原理 生物同步脱氮除磷工艺及应用
随着经济的发展,大量含氮、磷物质排入环境,导致水 体污染日益加剧,给水体生态系统和人群健康造成极大的危 害,当磷大与0.01mg/l,氮大于0.1 mg/l,水体开始发生富营 养化。因此,需对废水脱氮除磷,以保护水生生态系统。
40
2.生物除磷原理
因此,在好氧厌氧交替条件下,活性污泥中的聚磷 菌以“厌氧释磷”和“好氧聚磷” 的机制,将磷最终以 剩余污泥的形式排出,彻底去除水中的磷。
脱氮除磷原理
脱氮除磷原理
脱氮除磷是一种常用的废水处理方法,它通过一系列化学过程将废水中的氮和磷去除掉。
脱氮除磷的原理主要包括生物处理和化学处理两个方面。
生物处理是脱氮除磷的主要手段之一。
在生物处理中,利用好氧和厌氧两种微生物的作用来降低废水中的氮和磷含量。
在好氧条件下,氨氮可以被氨氧化细菌氧化为亚硝酸盐,然后亚硝酸盐可被亚硝酸盐氧化细菌进一步氧化为硝酸盐。
通过这个过程,废水中的氮被转化为氨氮、亚硝酸盐和硝酸盐。
在厌氧条件下,通过一系列反应,废水中的磷可被还原成无机磷。
化学处理也是脱氮除磷的重要手段之一。
在化学处理中,常用的方法包括加入化学药剂和利用吸附剂去除废水中的氮和磷。
常用的化学药剂有聚合氯化铝、硫酸铁等。
这些药剂可与废水中的氮和磷反应,形成沉淀物或沉淀物颗粒,从而使废水中的氮和磷得以去除。
吸附剂则通过其表面特性和吸附能力去除废水中的氮和磷。
综上所述,脱氮除磷是通过利用生物处理和化学处理的方式,将废水中的氮和磷去除,从而达到净化废水的目的。
这些原理的应用可以在废水处理中起到重要作用,降低废水对环境的污染。
废水生物脱氮除磷原理
废水生物脱氮除磷原理
废水生物脱氮除磷是一种利用微生物代谢作用的方法,通过生物碳、氮、磷循环,去除废水中的氨氮和磷的过程。
其原理可以分为以下几
个方面:
1. 生物脱氮原理
废水中的氨氮通过硝化、反硝化等微生物代谢过程,最终转化为氮气
释放到大气中。
具体过程如下:
硝化菌利用氨氮和氧气生成亚硝酸盐,反应式为:NH4++2O2→NO2^-
+2H++H2O。
亚硝酸盐在氧气存在下被反硝化菌还原为氮气,反应式为:2NO2^-
+O2→2NO3^-。
2. 生物除磷原理
废水中的磷通过生物吸附、释放等方式去除。
具体过程如下:
生物体内的磷酸盐被菌体代谢,通过吸附释放等过程沉积到废水处理
系统,从而实现磷的去除。
同时,选择合适的填料并维持水体曝气,可以提高微生物的附着能力
和生长条件,使生物脱氮除磷效果更好。
3. 优化废水处理过程
为了使废水生物脱氮除磷过程更加高效、稳定,需要注意以下几个方面:
(1)控制废水中的C/N/P比例,一般适宜比例为100:5:1。
(2)生物反应器运行过程中,维持一定的曝气量,保证氧气充足。
(3)监测废水中的温度、pH、DO等关键参数,及时调整水质和操作
方式。
(4)在废水生物脱氮除磷过程中,加入一定的外源碳源和磷去除剂,
有助于提高去除效果。
废水生物脱氮除磷技术是一种效果良好、操作简单的处理废水的方法,具有很大的应用前景。
脱氮除磷原理
用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N 逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
A-A-O脱氮除磷系统的工艺参数及控制A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。
如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在一般应控制在8-15d。
2.水力停留时间。
水力停留时间与进水浓度、温度等因素有关。
厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间好氧段水力停留时间一般应在6h。
脱氮除磷原理及过程
脱氮除磷原理及过程脱氮除磷是指将水中的氮和磷等营养盐去除,以达到净化水体的目的。
其原理和过程如下:脱氮原理:脱氮主要是通过微生物的作用来实现的。
在水体中,氮主要以氨氮、硝态氮和有机氮的形式存在。
在底泥和有机物的分解过程中,产生的氨氮(NH3)被硝化细菌氧化成亚硝酸盐(NO2-),然后再被另一类硝化细菌氧化成硝酸盐(NO3-)。
硝酸盐是稳定的氮化合物,不易向大气中释放。
但通过特定条件下的反硝化作用,脱氮可以发生。
反硝化是一种厌氧细菌作用,将水中的硝酸盐还原成氮气(N2),释放到大气中,从而实现去除氮的目的。
脱磷原理:脱磷主要是通过化学沉淀和吸附等方式来实现的。
在水体中,磷主要以无机磷(溶解态磷)和有机磷(悬浮态磷、溶解态磷)的形式存在。
添加化学物质如铝盐、铁盐等能与磷发生反应生成固体沉淀,从而将磷从水中去除。
此外,还可以使用一些吸附性材料,如活性炭等,将水中的磷物质吸附到材料表面,实现去除磷的目的。
脱氮过程:脱氮过程通常涉及两个主要步骤:硝化和反硝化。
在硝化过程中,氨氮被氧化成亚硝酸盐和硝酸盐,通过微生物的作用完成。
然后,在反硝化过程中,硝酸盐被厌氧细菌还原成氮气,从而从水体中去除氮。
脱磷过程:脱磷过程通常包括化学沉淀和吸附等步骤。
在化学沉淀中,将适当的化学物质添加到水体中,与磷发生反应生成固体沉淀,从而将磷从水中去除。
而在吸附过程中,将具有较强吸附性的材料,如活性炭,放入水体中,吸附水中的磷,实现脱磷的目的。
总的来说,脱氮除磷是通过微生物的作用(硝化和反硝化)和化学物质的处理(化学沉淀和吸附)来实现的。
这些过程能有效去除水体中的氮和磷,从而净化水体。
脱氮除磷的原理
脱氮除磷的原理脱氮除磷是指将水中的氮、磷等营养物质去除,以减少对水环境的污染。
这是一项重要的环保工作,对于保护水资源、维护生态平衡、改善人类居住环境具有重要意义。
本文将从脱氮和除磷两个方面探讨其原理。
一、脱氮的原理氮素是生物体中不可缺少的元素之一,但高浓度的氮素会导致水体富营养化,引发藻类过度生长,从而破坏水体生态平衡。
脱氮的方法主要包括生物法、物理法和化学法三种。
1. 生物法生物法是利用微生物将水中的氮素转化为气态氮,从而实现脱氮的过程。
该方法主要有生物滤池法、反硝化法、植物吸收法等。
生物滤池法是将水流经滤池,滤池内填充有高效微生物群落,微生物可以利用水中的氨氮、硝酸盐等氮源进行生长,将氮素转化为气态氮,从而实现脱氮的过程。
反硝化法是利用反硝化菌将水中的硝酸盐还原为气态氮,从而实现脱氮的过程。
该方法适用于有机负荷较高的废水处理。
植物吸收法是利用水生植物吸收水中的氮素,从而实现脱氮的过程。
水生植物可以将水中的氮素转化为植物体内的有机氮,从而减少水中的氮素浓度。
2. 物理法物理法是通过物理手段将水中的氮素去除,主要包括曝气法、超滤法、电解法等。
曝气法是将水流经曝气池,通过人工或机械的方式将氧气注入水中,促进水中的微生物进行生长,从而实现脱氮的过程。
超滤法是利用超滤膜将水中的氮素去除,超滤膜可以有效地过滤掉水中的微生物和颗粒物质,从而实现脱氮的过程。
电解法是利用电解将水中的氮素去除,该方法适用于高浓度氨氮的废水处理。
3. 化学法化学法是通过化学反应将水中的氮素去除,主要包括硝化法、硝酸盐还原法、氧化还原法等。
硝化法是利用硝化菌将水中的氨氮转化为硝酸盐,从而实现脱氮的过程。
硝酸盐还原法是利用还原剂将水中的硝酸盐还原为气态氮,从而实现脱氮的过程。
氧化还原法是利用氧化剂将水中的氨氮氧化为亚硝酸盐,再通过反硝化将亚硝酸盐还原为气态氮,从而实现脱氮的过程。
二、除磷的原理磷是植物生长的必需元素,但高浓度的磷会导致水体富营养化,引发水华等问题,从而破坏水体生态平衡。
生物膜法脱氮除磷原理
生物膜法脱氮除磷原理
生物膜法脱氮除磷是一种相对较新的处理废水的技术,将生物膜巧妙地应用在废水处理过程中,可以除去有害物质,保护环境。
生物膜法脱氮除磷是一种有效的方法,它将具有污染物质的废水经过生物技术处理后,可以彻底把有害物质(主要是氮和磷类物质)移除,达到净水的效果。
生物膜法脱氮除磷是由一层生物活性物质夹层叠加和穿孔生物膜而形成的。
穿孔生物膜可以阻滞胞外污染物,而生物活性物质夹层在形成生物膜夹层的同时,也可以吸附污染物并将其阻滞。
由于水分子和有机物分子的大小穿过穿孔生物膜的比例不同,水分子的穿过速度往往快于有机物分子,有机分子则得不到有效的清除。
同时,由于生物夹层上表面能位的存在,可以有效的吸附污染物,进一步减少污染物的浓度。
生物膜法脱氮除磷不但占用空间少,耗能量低,而且可以有效的除去氮和磷类物质,不会造成二次污染。
随着环境保护意识的增强,人们对污染物处理技术提出了更高的要求。
生物膜法脱氮除磷技术能够有效地去除水中的污染物,在废水处理领域有着崭新而有效地技术。
污水脱氮除磷原理
污水脱氮除磷原理
污水脱氮除磷是一种常见的污水处理方法,旨在降低污水中的氮和磷含量,以减少对水环境的污染。
脱氮的原理通常采用生物脱氮方法,其中最常见的是硝化-反硝化过程。
在这个过程中,通过微生物的作用,将污水中的氨氮逐步转化为亚硝酸盐,然后再转化为硝酸盐。
同时,硝化过程中产生的氮气可以通过通气系统排出。
除磷的原理主要是通过化学反应将溶解性磷酸盐转化成不溶性磷酸盐沉淀,从而达到除磷的效果。
常用的除磷方法包括化学除磷和生物除磷。
化学除磷通常采用加入金属盐溶液(如氯化铁、氯化铝等)的方式,金属离子与磷酸盐发生反应生成不溶性的金属磷酸盐沉淀。
这些沉淀物随后通过沉淀池或沉淀池被除去。
生物除磷主要是利用某些特殊的细菌和微生物,在厌氧条件下将污水中的磷酸盐转化为多聚磷酸盐,这些多聚磷酸盐可以沉积在活性污泥中。
在后续的污泥处理过程中,这些磷酸盐有机体可以被分解,从而达到除磷的效果。
综上所述,污水脱氮除磷的原理一般是通过生物反应和化学反应,将污水中的氮和磷转化成沉淀物或沉积在活性污泥中,从而达到减少水环境污染的目的。
脱氮除磷原理
A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
A-A-O脱氮除磷系统的工艺参数及控制A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。
如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
1.F/M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。
污水生物法脱氮除磷技术及应用
3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。
sbr工艺脱氮除磷原理
sbr工艺脱氮除磷原理SBR工艺脱氮除磷原理SBR工艺(Sequencing Batch Reactor)是一种常用的生物处理技术,可以高效地去除废水中的氮和磷。
它是一种周期性操作的工艺,包括一系列不同的步骤,如进水、曝气、沉淀、排水和静息。
通过合理地控制这些步骤,可以实现废水中氮和磷的有效去除。
SBR工艺的脱氮除磷原理主要包括生物吸附、生物吸附-脱附和生物转化等过程。
废水中的氮和磷会通过生物吸附的方式被生物颗粒物吸附。
在SBR 反应器中,有大量的生物颗粒物存在,它们表面有丰富的微生物菌群。
当废水进入反应器时,氮和磷会被这些菌群吸附在颗粒物表面。
接下来,生物颗粒物会在曝气阶段经历生物吸附-脱附的过程。
在曝气阶段,系统向反应器中通入氧气,通过曝气作用使废水中的溶解氧浓度升高,并提供足够的氧气供给微生物呼吸代谢。
在这个过程中,生物颗粒物上的氮和磷会被微生物菌群吸附,而随着曝气的进行,部分颗粒物会从菌群表面脱附下来。
脱附下来的颗粒物会经过生物转化过程,将吸附的氮和磷转化为氮气和磷酸盐。
生物转化是一种微生物代谢过程,通过这个过程,废水中的氮和磷可以被微生物菌群转化为无害的产物。
在SBR反应器中,通过合理控制曝气和静息时间,可以使得生物转化过程达到最佳效果。
SBR工艺脱氮除磷的原理主要是通过生物吸附、生物吸附-脱附和生物转化等过程来实现。
这些过程的顺序和时间控制非常重要,可以通过合理的操作和控制,使废水中的氮和磷得到高效去除。
SBR工艺具有操作简单、投资成本低、去除效果好等优点,因此在废水处理领域得到了广泛应用。
总的来说,SBR工艺的脱氮除磷原理是基于生物吸附、生物吸附-脱附和生物转化等过程。
通过合理地控制这些过程,可以实现废水中氮和磷的高效去除。
这种技术在废水处理中具有重要的应用价值,对于保护水环境、实现可持续发展具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱氮除磷原理文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。
?
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作
用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧
段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
A-A-O脱氮除磷系统的工艺参数及控制?
A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。
如能有效地
脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
?
M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在一般应控制在8-15d。
?
2.水力停留时间。
水力停留时间与进水浓度、温度等因素有关。
厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间好氧段水力停留时间一般应在6h。
?
3.内回流与外回流。
内回流比r一般在200-500%之间,具体取决于进水TKN浓度,以及所要求的脱氮效率。
一般认为,300-500%时脱氮效率最佳。
内回流比r与除磷关系不大,因而r的调节完全与反硝化工艺一致。
?
4.溶解氧(DO)。
厌氧段DO应控制在L以下,缺氧段DO应控制在L以下,而好氧DO应控制在2-3mg/L之间。
因生物除磷本身并不消耗氧,所以A-A-O脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。
?
TKN与BOD5/TP。
对于生物脱氮来说,BOD5/TKN至少应大于,而生物除磷则要求BOD5/TP﹥20。
运行中应定期核算入流污水水质是否满足BOD5/TKN﹥,BOD5/TP﹥20。
如果其中之一不满足,则应投加有机物补充碳源。
为了提高BOD5/TKN值,宜投加甲醇做补充碳源。
为了提高BOD5/TP值,则宜投加乙酸等低级脂肪酸。
?
控制及碱度核算。
A-A-O生物除磷脱氮系统中,污泥混合液的PH 应控制在之上;如果PH﹤,应外加石灰,补充碱度不足。
工艺运行异常问题的分析与排除?
传统活性污泥工艺的故障诊断及排除技术,一般均适用于A-A-O 脱氮除磷系统。
如果某处理厂控制水质目标为:BOD5≦25mg/L;SS ≦25mg/L;NH3-N≦3mg/L;NO3-N≦7mg/L;TP≦2mg/L。
则当实际水质偏离以上数值时,属异常情况。
?
现象一:TP﹤2mg/L,NH3-N﹤2mg/L,NO3N﹥7mg/L。
?
其原因及解决对策如下:?
1.内回流比太小。
增大内回流。
?
2.缺氧段DO太高。
如果DO﹥L,则首先检查内回流比r是否太大。
如果太大,则适当降低。
另外,还应检查缺氧段搅拌强度是否太大,形成涡流,产生空气复氧。
?
现象二:TP﹤2mg/L,NH3-N﹥3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
?
其原因及解决对策如下:?
1.好氧段DO不足。
如果﹤DO﹤L,则可能只满足BOD5分解的需要,而不满足硝化的需要,应增大供气量,使DO处于2-
3mg/L。
?
2.存在硝化抑制物质。
检查入流中工业废水的成分,加强上游污染源管理。
?
现象三:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
?
其原因及解决对策如下:?
1.入流BOD5不足。
检查BOD5/TKN是否大于4,BOD5/TP是否大于20,否则应采取增加入流BOD5的措施,如跨越初沉池或外加碳源。
2.外回流比太小,缺氧段DO太高。
检查缺氧段DO值,如果DO﹥L,则应采取措施,见“现象一”。
外回流比太大,把过量的NO3-N 带入了厌氧段,应适当降低回流比。
?
现象四:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹤5mg/L,BOD5﹤25mg/L。
?
其原因及解决对策如下:?
1.泥龄太长。
可适当增大排泥,降低SRT。
?
2.厌氧段DO太高。
如果DO﹥L,则应寻找DO升高的原因并予以排除。
首先检查是否搅拌强度太大,造成空气复氧,否则检查回流污泥中是否有DO带入。
3.入流BOD5不足。
检查BOD5/TP值。
如果BOD5/TP﹤20,则应外加碳源。