拉氏变换及其反变换

合集下载

拉氏变换与反变换

拉氏变换与反变换

拉氏变换与反变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。

按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。

拉普拉斯变换的定义如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯变换定义为()()()0e d st F s L f t f t t ∞-=∆⎡⎤⎣⎦⎰式中, s 是复变数, ωσj +=s (σ、ω均为实数), ⎰∞-0e st称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。

式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数)(s F 。

几种典型函数的拉氏变换1.单位阶跃函数 )(1t 的拉氏变换单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为⎩⎨⎧≥<∆)0(1)0(0)(1t t t单位阶跃函数如图所示,它表示在 0=t 时刻突然作用于系统一个幅值为1的不变量。

单位阶跃函数的拉氏变换式为0e 1d e )(1)](1[)(0∞-===-∞-⎰stst st t t L s F 当 0)Re(>s ,则 0e lim →-∞→st t 。

所以[]s s s t L st 1)1(00e 1)(1=⎥⎦⎤⎢⎣⎡--=∞-=-()图 单位阶跃函数 2.指数函数的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。

令则与求单位阶跃函数同理,就可求得()3.正弦函数与余弦函数的拉氏变换 设,,则由欧拉公式,有所以⎥⎦⎤⎢⎣⎡-=-∞--∞⎰⎰t t s F st t stt d e e d e e j 21)(0j 0j 1ωω ⎥⎦⎤⎢⎣⎡-=-∞+-∞--⎰⎰t t stt s t s d e e d e j 210)j (0)j (ωω⎥⎥⎦⎤⎢⎢⎣⎡∞+-∞--=+---0e j 10e j 1j21)j ()j (t s t s s s ωωωω22j 1j 1j 21ωωωω+=⎪⎪⎭⎫ ⎝⎛+--=s s s) 同理)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间期间幅值为的矩形波。

拉氏变化及反变换

拉氏变化及反变换
0
t 0
1
2 单位阶跃函数
f (t )
1
0, t 0 1(t ) 1, t 0
0
t
L[1(t )]

0
1 st 1 1(t )e dt e 0 s s
st
3 单位斜坡函数
f (t )
f (t )
0, t 0 f (t ) t, t 0
1 1 1(t ) 1(t T ) T T
L[ f (t )]
1 1 sT 1 e (1 e sT ) Ts Ts Ts
T T f (t ) f1 (t ) f1 (t ) f1 (t ) f1 (t T ) 2 2 4 4 T 4 T 4 2 t 2 (t ) 2 (t ) 2 (t T ) T T 2 T 2 T
1 jt sin t (e e jt ) 2j
st
Hale Waihona Puke e j cos j sin e j cos j sin
L[sin t ] sin t e dt
0
0
1 jt jt st e e e dt 2j
10.像函数的微分性质
设L[ f (t )] F (s)
dF ( s) Ltf (t ) ds
11.像函数的积分性质
设L[ f (t )] F (s)
1 L f (t ) F ( s)ds t s
例 求图示方波和三角波的拉氏变换
方波: f (t ) f1 (t ) f1 (t T )


1 1 1 s 2 2 s j s j s 2

拉普拉斯变换及反变换1

拉普拉斯变换及反变换1
方法一: 方法一:利用拉氏反变换定义求
——不常用解
方法二: 方法二:查拉氏变换表求解 ——对简单的象函数适用 方法三: 方法三:部分分式法——象函数为有理分式函数时适用
第21页 页
黄河科技学院
控制工程基础
应用部分分式展开式计算拉氏逆变换的 一般步骤 : 的极点; (1)计算有理分式函数F(s)的极点; (2)根据极点把F(s)的分母多项式进行因 式分解、 展开成部分分式; 式分解、并进一步把F(s)展开成部分分式; (3)对F(s)的部分分式展开式两边同时进 行拉氏逆变换。 行拉氏逆变换。
(11)卷积定理 11)
f (t ) * g (t ) = ∫
+∞
−∞
f (τ ) g (t − τ )dτ
= ∫ f (τ ) g (t − τ )dτ
0
t
L[ f (t ) * g (t )] = F ( s ) ⋅ G ( s ) = G ( s ) F ( s )
第19页 页
黄河科技学院
控制工程基础
s +1 c2 = ( s + 3) ( s + 2)( s + 3)
s = −3
(2)对F(s)的分母多项式进行因式分解、并把 (s)展开 ) ( )的分母多项式进行因式分解、并把F( ) 成部分分式
=2
第24页 页
黄河科技学院
控制工程基础
s +1 1 2 F ( s) = 2 =− + s + 5s + 6 s+2 s+3
− st
单位阶跃函数,记作 单位阶跃函数,记作1( t )
t<0 t≥0
1 L[1(t )] = s

拉氏变换及拉氏反变换

拉氏变换及拉氏反变换




t dt 1 ,且δ(t)有如下

t f t dt f 0
式中f(0)——t=0时刻的f(t)的函数值。
由拉氏变换的定义得


L t t e st dt e st
0
t 0
1
2.2.2 几种典型函数的拉氏变换
L f at
1 s F a a
2.2.3 拉氏变换主要定理
微分定理

设f(n)(t)表示f(t)的n阶导数,n=1,2,3,……正整数, f(t)的拉氏变换为F(s),则
L f t s F s sf 0 f 0
F s
s 1 s 1 k k 1 2 s 2 5s 6 s 2s 3 s 2 s 3
s 1 s 2 s 1 1 k1 s 2s 3 s 2 s 3 s 2 s 1 s 3 s 1 2 k2 s 2s 3 s 3 s 2 s 3 2 1 1 1 2 f t L1 F s L1 L1 L 2e 3t e 2t s 2 s 3 s 2 s 3

拉氏变换亦与此相似,即把微分方程变换为代数方程 求解。
2.2.1 拉氏变换的定义
定义

对于时间函数f(t),如果满足
当t<0时,f(t)=0; 当t≥0时,实函数f(t)的积分
f t e
0

st
dt 在s的某一域内收敛,则定义f(t)的拉氏变换

F s f t e st dt

附-拉氏变换与拉氏反变换_图文

附-拉氏变换与拉氏反变换_图文

件求解微分方程的方法------拉氏变换法。
2、 拉普拉斯变换的定义
南昌大学机电学院
设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边
函数,且积分
在s的某一域内收敛,则
由此积分所确定的函数可记为:
式中:s = + jω (复数),称为复频率或拉氏算

f(t) 称为原函数,是 t 的函数。 F(s) 称为象函数,是s 的函数。
南昌大学机电学院
b)拉氏变换和拉氏反变换可以利用公式和图表简 化其运算,而不必求上述积分运算。
3、拉氏变换存在定理
若函数f(t)满足下列条件, 1)当t <0时,f(t)=0; 2)f(t)是连续的或只有有限个极值点,并且能找 到适当的s=σ +jω 值,使下述积分存在。
控制工程中常见的一些函数一般都能满足上述条件。
利用此定理可求信号的稳态值。
例如:求信号
的稳态值。
南昌大学机电学院
拉氏变换的基本性质(1)
线性
微分 积分
时移 频移
四、拉普拉斯反变换
1、一般公式
南昌大学机电学院
上式可由傅里叶变换推导而得,是由F(s)求 f(t)的一般公式,右边积分称为拉氏反演积分,是 一种复变函数积分,计算较困难,但当F(s)满足一 定条件时,可以用留数的方法来计算这个反演积 分,特别当F(s)为有理函数时,就是将F(s)展开为 部分分式,再利用 拉氏变换表确定其原 函数。
,则上式右边只
若对上式对s求 右边只剩下
次导,并令 。
,则上式
解:
南昌大学机电学院
自测题:
南昌大学机电学院
五、利用拉氏变换求解常系数微分方程
南昌大学机电学院

第3讲 拉氏反变换

第3讲  拉氏反变换

用拉氏变换解常系数线性微分方程
第一章 绪论
§2.2 拉氏变换及反变换
第一章 绪论
§2.2 拉氏变换及反变换
(s 2)(s 3) F ( s) s 1
练习:
第一章 绪论
§2.2 拉氏变换及反变换
(2)有共轭复数极点。
[ F ( s)( s s1 )(s s2 )]|ss1 ( s s2 ) (k1s k2 ) |s s1 ( ss2 ) k3 F ( s)( s s3 ) |s s 3 kn F ( s)( s sn ) |s s n
第一章 绪论
§2.2 拉氏变换及反变换

第一章 绪论
§2.2 拉氏变换及反变换
f (t ) L
1
F (s) 1 e
0.5t
3 3 0.5t 3 cos t e sin t 2 3 2
第一章 绪论
§2.2 拉氏变换及反变换

2( s 1) 10 F ( s) 2 ( s 1) 4 ( s 1) 2 4 2( s 1) 2 5 ( s 1) 2 4 ( s 1) 2 4 f (t ) 2e t cos 2t 5e t sin 2t


求系统的微分方程 拉氏变换的求法 拉氏变换的性质
第一章 绪论
§2.2 拉氏变换及反变换
二、拉氏反变换及其计算方法
1.定义
2.计算方法 查表法与部分分式法相结合的方法。
第一章 绪论
§2.2 拉氏变换及反变换
(1)极点为互不相同的的实数。
第一章 绪论
§2.2 拉氏变换及反变换
第一章 绪论
§2.2 拉氏变换及反变换

拉氏变换与反变换

拉氏变换与反变换

2.5 拉氏变换与反变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。

按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。

2.5.1 拉普拉斯变换的定义如果有一个以时间 为自变量的实变函数 ,它的定义域是 ,那么 的拉普拉斯变换定义为(2.10)式中, 是复变数, (σ、ω均为实数), 称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称 为 的象函数,而称为 的原函数;L 是表示进行拉普拉斯变换的符号。

式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域与之等价的复变函数。

2.5.2 几种典型函数的拉氏变换1.单位阶跃函数的拉氏变换单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为单位阶跃函数如图2.7所示,它表示在 时刻突然作用于系统一个幅值为1的不变量。

单位阶跃函数的拉氏变换式为t ()t f 0≥t ()t f ()()()0e d stF s L f t f t t ∞-=∆⎡⎤⎣⎦⎰s ωσj +=s ⎰∞-0e st )(s F )(t f )(s F )(t f )(t f )(s F )(s F )(1t ⎩⎨⎧≥<∆)0(1)0(0)(1t t t 0=t当 ,则 。

所以(2.11)图2.7 单位阶跃函数2.指数函数的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。

令则与求单位阶跃函数同理,就可求得(2.12)3.正弦函数与余弦函数的拉氏变换设,,则0e 1d e )(1)](1[)(0∞-===-∞-⎰stst st t t L s F 0)Re(>s 0e lim →-∞→st t []s s s t L st 1)1(00e 1)(1=⎥⎦⎤⎢⎣⎡--=∞-=-由欧拉公式,有所以(2.13)同理(2.14)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间期间幅值为的矩形波。

2.2拉氏变换及反变换

2.2拉氏变换及反变换
( n 1) s
n 1
x

s
n!
n 1
应记住的 一些简单函数的 拉氏变换
原函数 1t
t
象函数 1 s
e
1t
1 s -
sin t 1 t cos t 1 t
n

s
2 2
s s
2 2
t
1t
dt

s
e
s t
0
s
3、正弦函数 和余弦函数
根据欧拉公式:
j
sin t 1 t cos t 1 t
e
j
cos j sin cos j sin
sin 则 cos
1 , 0 t t0 lim t t 0 0 t 0 0 , t 0或 t t0
1 t0
1t 1t t 0 1 1 t 1 t t 0 解: t lim lim0 t0 0 t0 t0 t0 t0
s 0
使 用 条 件 :x t 的 终 值 存 在 , 即 x t 有 稳 态 解 。
例 :求
lim s in t
t
当 t 时 ,s in t 的 值 也 始 终 在 1 之 间 不 定
s in t 无 终 值 。
例2-1 求单位脉冲函数的象函数
1 1 1 2 s j s j
2
4 .幂函数
设 ( ) 则 ( n 1)
n
t
e
x
1t
0

拉氏变换和反变换公式

拉氏变换和反变换公式

拉氏变换和反变换公式拉氏变换和反变换公式,这可真是数学领域里相当重要且有点“烧脑”的一部分内容。

咱先来说说拉氏变换,它就像是一个神奇的魔法工具,能把在时域里看起来复杂得让人头疼的函数,给变到复频域里,让咱们能更方便地分析和处理。

比如说,一个随时间变化得乱七八糟的信号,经过拉氏变换之后,可能就会变得有规律、好理解多啦。

我记得有一次给学生们讲拉氏变换的时候,有个学生瞪着大眼睛问我:“老师,这拉氏变换到底有啥用啊?感觉好难啊!”我笑着跟他说:“你就想象你要跑一段很长很乱的路,这路一会儿上坡一会儿下坡,一会儿还有石头挡着。

拉氏变换就像是给你变出一双翅膀,让你能从空中看这段路,一下子就清楚路的走向和特点啦!”这孩子似懂非懂地点点头。

那拉氏变换的公式呢,一般是对于一个函数 f(t) ,它的拉氏变换 F(s) 等于从 0 到正无穷对 e 的 -st 次方乘以 f(t) 进行积分。

这里的 s 是个复数,这公式看起来可能有点复杂,但其实只要多做几道题,多练习练习,也就慢慢熟悉了。

再来说说反变换,它就是把在复频域里的函数变回时域里的原来的样子。

就像是你把东西变到了另一个世界,现在又要把它给变回来。

反变换的公式也有不少方法可以求解,像部分分式展开法、留数法等等。

给大家举个例子啊,比如说有一个函数 F(s) = (s + 1) / (s^2 + 2s + 2) ,咱们要把它通过反变换变回时域里的函数 f(t) 。

首先,把 F(s) 进行部分分式展开,得到 F(s) = 1 / (s + 1 + i) + 1 / (s + 1 - i) ,然后根据反变换的公式和一些常见函数的拉氏变换对,就能求出 f(t) = e^(-t) cos(t) 。

在学习拉氏变换和反变换公式的过程中,大家可别着急,一步一个脚印,多做练习,多思考,慢慢地就能掌握这个神奇的工具啦!相信大家都能在数学的世界里越走越远,越学越厉害!。

拉普拉氏变换与反变换

拉普拉氏变换与反变换
理:
L[e x(t )] X (s a)
5、延时定理:
at
L[ x(t a) 1(t a)] eas X (s)
6、初值定理:
t 0
lim x(t ) lim sX ( s )
s
7、终值定理:
lim x(t ) lim sX ( s )
分解因式,根据不同情况,利用待定系数法求反拉 氏变换
拉氏变换的运用
求解微分方程
X (s) L[ x(t )] x(t )est dt ˆ
0

式中:s为复变量;x(t)为原函数;X(s)为象函数

二、简单拉氏变换: 1、单位阶跃函数1(t) 2、指数函数 e at 3、正弦函数sinωt和余弦函数cosωt 利用欧拉公式 e j cos j sin
e j cos j sin e j e j sin 2j e j e j cos 2j
4、幂函数tn 利用Γ(gama)函数的性质:
(a ) x a 1e x dx ˆ
0
(n 1) n(n) n! u st u t s 1 dt du s L[t ] t e dt
拉普拉氏变换与反变换
一、定义: 对于函数 x(t ),如果满足下列条件: x (1)当t<0时, (t ) =0; 当t>0时,x(t)在每个有限区间上是分段连续的。 (2) x(t )et dt ,其中σ为正实数,即x(t)为指数级的; 0 则可定义x(t)的拉氏变换X(s):
n n st
s n 1
1
n! u e du n 1 s
n u

拉氏变换及反变换

拉氏变换及反变换

0
t

F(s)=L[f(t)]=
te
0
st
dt
t st 1 st e e dt 0 s 0 s
1 2 s
机械工程控制基础
拉普拉斯变换及反变换
5. f (t ) t
ℒ [t ]
n
n
n


(幂函数)

0
t e dt 0
n st



t n st de s
例1 例2
1 1 ) ℒ [ A(1 e )] A( s s 1 j t [sin t ] ℒ ℒ [ (e e j t )] 2j 1 1 1 [ ] 2 2j s j s j s 2
t
机械工程控制基础
二、微分定理
拉普拉斯变换及反变换
1 d (sin t )] ℒ [cos t ] ℒ [ dt s 1 [s 2 si nt 0 ] 2 2 s 2 s
机械工程控制基础
•例3 某动态电路的输入—输出方程为
拉普拉斯变换及反变换
d2 d d r ( t ) a r ( t ) a r ( t ) b e (t ) b0 e (t ) 1 0 1 2 dt dt dt
拉普拉斯变换及反变换



(t )dt 1
0
t
ℒ [ ( t )]



0
( t )e st dt 0 (t )dt

0
=1
机械工程控制基础
4. f (t ) t (单位斜坡函数)
f(t)
拉普拉斯变换及反变换

拉氏变换常用公式

拉氏变换常用公式

拉氏变换常用公式拉氏变换是一种重要的数学工具,广泛应用于信号处理、控制系统分析和电路设计等领域。

本文将介绍拉氏变换常用的公式,包括重要的拉氏变换和反变换公式,以及一些常见的拉氏变换性质。

1. 拉氏变换公式拉氏变换公式是将一个时间域函数变换成复频域的函数。

以下是一些常用的拉氏变换公式:(1)常数信号的拉氏变换:如果输入信号为常数,即f(t)=A,其拉氏变换为F(s) = A/s,其中A 为常数。

(2)指数信号的拉氏变换:指数信号的拉氏变换公式为:f(t) = e^(at) -> F(s) = 1/(s-a),其中a为常数。

(3)单位冲激信号的拉氏变换:单位冲激信号的拉氏变换公式为:f(t) = δ(t) -> F(s) = 1,其中δ(t)表示单位冲激函数。

(4)正弦信号的拉氏变换:正弦信号的拉氏变换公式为:f(t) = sin(ωt) -> F(s) = ω/(s^2 + ω^2)。

其中ω为正弦信号的频率。

2. 拉氏反变换公式拉氏反变换是将复频域函数转换回时间域函数的过程,以下是一些常用的拉氏反变换公式:(1)常数信号的拉氏反变换:对于F(s) = A/s,其拉氏反变换为f(t) = A。

(2)指数信号的拉氏反变换:对于F(s) = 1/(s - a),其拉氏反变换为f(t) = e^(at),其中a为常数。

(3)单位冲激信号的拉氏反变换:对于F(s) = 1,其拉氏反变换为f(t) = δ(t)。

(4)正弦信号的拉氏反变换:对于F(s) = ω/(s^2 + ω^2),其拉氏反变换为f(t) = sin(ωt)。

3. 拉氏变换的性质拉氏变换具有一些重要的性质,其中包括线性性质、时间平移性质、频率平移性质、频率缩放性质、卷积定理等,这些性质对于信号处理和系统分析非常有用。

(1)线性性质:拉氏变换具有线性性质,即对于输入信号f1(t)和f2(t),以及相应的拉氏变换F1(s)和F2(s),有以下性质成立:a1*f1(t) + a2*f2(t) -> a1*F1(s) + a2*F2(s)。

拉氏变换

拉氏变换
趋于无穷大时,其函数值也始终是在 ±1之间的不定
值,则不能对正弦函数使用终值定理,用终值定理求 出的结果是虚假现象。
该定理与初值定理对偶存在。
(8)相似定理
证:令
Lx
t a
aX
as
t
a
衰减因子 变为as

t
a
L
x
t a
x t est dt 0 a
x eas d a 0
a x eas d 0
t t0 0 0
t0
1
=
lim
t0 0
t0
[1(t)
1(t
t0
)]
L[ (t)] lim 1 [1 1 et0s ]
t t0 0 0 s s
= lim 1 [1 et0s ]
t0 0 t0s
=1
应用罗比 塔法则
例2 试求
L[et cos t]
解:已知 L[cos t] s s2 2
根据s域平移定理,则可直接得出
...
xn (0 ) s
(2)在零初始条件下,
X (s)
L[ ... x(t)dt...dt] sn
该性质与微分定理对偶存在应用。
(4)衰减定理(s域平移定理)
L[eat x(t)] X (s a)
证:
L[eat x(t)] eat x(t)est dt 0 x(t)e(sa)dt 0 X (s a)
利用以上拉氏变换的性质以及已知典型函数的 象函数,经常可以推导其他函数的象函数,也 可以简化计算。
例1 单位脉冲函数的数学表达式可表达为
(t
)
lim t0 0
1 t0
[1(t)
1(t

拉氏变换

拉氏变换

拉氏变换和反变换拉氏变换的作用: 用拉氏变换求解线性微分方程可将微分运算转化为代数运算;可将系统的微分运动方程转化为传递函数,并由此发展出用传递函数的零点分布、频率特性等间接地分析和设计控制系统的工程方法。

一、 拉氏变换的定义⎰∞-==0)()]([)(dt e t f t f L s F st (0≥t )其中 ωσj s += 是一复变函数,F(s)称为象函数,f(t)称为原函数。

意义: 在一定条件下把一实数域中的实变函数f(t)转换为一个在复数域内与之等价的复变函数F(s)。

二、几种典型函数的拉氏变换1、单位阶跃函数1(t)定义:⎩⎨⎧≥<=)0(1)0(0)(1t t tss e s dt e t t L s F stst 1)1(01)(1)](1[)(0=--=-===∞-∞-⎰2、指数函数at e t f -=)((a 为常数)as e as dt e dt e e e L s F ta s t a s st at at +=+-====∞+-∞+-∞---⎰⎰11][)(0)(0)(03、正、余弦函数t t f ωsin )(1=,t t f ωcos )(2=⎰∞-⋅==01sin ][sin )(dt e t t L s F st ωω由欧拉公式: je e t tj t j 2sin ωωω--=220)(0)(0)(0)(001)11(21)11(21)(21)(21)(ωωωωωωωωωωωω+=+--=++--=-=-=∞+-∞--∞+-∞--∞--∞-⎰⎰⎰⎰s j s j s j e j s e j s j dt e dt e j dt e e dt e e j s F tj s t j s t j s t j s st t j st t j同理: 222][cos )(ωω+==s st L s F4、单位脉冲函数)(t δ的拉氏变换定义: ⎪⎩⎪⎨⎧≤≤><=→)0(1lim ),0(0)(0εεεδεt t t t1)!2(1lim )]!21(1[1lim )1(1lim 1lim 1lim1lim)]([)(2202200000=+-=-+--=-=-⋅====∆→→-→-→-→-∞→⎰⎰ s s s s s s e ss e dt e dt et L s s st st stεεεεεεεεεεδεεεεεεεεε5、单位速度函数的拉氏变换定义: ⎩⎨⎧<≥=)0(0)0()(t t t t ff(t)ε1200001101][)(s dt e s dt e s e s tde s t dt te t L s F st st stst st =+=+-=-===⎰⎰⎰⎰∞-∞∞-∞--∞-6、单位加速度函数的拉氏变换定义:⎪⎩⎪⎨⎧≥<=)(21)0(0)(2t t t t f321]21[)(st L s F ==通常用查表法求解象函数和原函数三、拉氏变换的主要定理对于标准函数可用拉氏变换定义或查表法进行拉氏变换和反变换;而对于一般的函数可以利用以下定理使运算简化。

拉氏变换及反变换

拉氏变换及反变换

初值定理
拉氏反变换方法
部分分式法的求取拉氏反变换
B( s) b0 s m b1s m 1 .... bm 1s bm F ( s) ,m n n n 1 A( s) a0 s a1s .... an 1s bn
L-1[F(s)] = L-1[F1(s)]+L-1[F2(s)]+…+L-1[Fn(s)] = f1(t) + f2(t) + … + fn(t) F(s)= F1(s)+F2(s)+…+Fn(s)
e
at at
te
sin(wt) cos(wt)
常见时间函数拉氏变换表 序号 f(t) F(s)
n! s n1
n! s a n1
9
10 11 12
tn(n=1,2,3….)
t e e e
n at
(n=1,2,3….)
at
sinwt coswt
s a 2 w 2
拉氏变换的定义
设函数f(t)满足: 1、f(t)实函数; 2、当t<0时,f(t)=0; 3、当t0时,f(t)的积分 f (t )est dt 在s的某一域内收敛。
0
则函数f(t)的拉普拉氏变换存在,并定义为: s=σ+jω(σ,ω均为实数)
拉氏反变换的定义
F(s)称为函数f(t)的拉普拉氏变换或象函数;
2e t e 2t
t0
例2 求 解
的Laplace1 ( s 2) 2
1 1 1 f (t ) L [ ] L [ ] 2 s 1 ( s 2)
1
e te
t
2t

拉氏变换与拉氏反变换

拉氏变换与拉氏反变换

16
n
1 2
e n t sinn 1 2 t
序号
f(t)
F(s)
1
17
1
2
e
n t
sin n 1 2 t 1
2


2
s s 2 n s
2 n
arctan
1 1 1
2

e n t sin n 1 2 t 1 2
二、拉氏反变换及其计算方法
(一)拉氏反变换的定义
已知象函数F(s),求出与之对应的原函数f(t)就 称为拉氏反变换,计作 L1 F (s) f (t )
L [ F ( s )] f ( t )
1
2 j r j
1
r j
F ( s )e st ds
式中,r为大于F(s)的所有奇异点实部的实常数。 所谓奇异点,即F(s)在该点不解析,也就是F(s) 在该点及其邻域不处处可导。
1 1 1 L1 1 2 tt L1 2 t L 2 ss s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式
B( s ) bm s m bm 1 s m 1 bm 2 s m 2 b1 s b0 F ( s) A( s ) an s n an1 s n1 an 2 s n 2 a1 s a0
1 s 2
( s pi )( s p j )

Ak An s pk s pn
Br ,1 , Ak ,, An 为实数,称留数
留数的方法可分为下面三种情况研究。

拉氏变换与反拉氏变换

拉氏变换与反拉氏变换

机械平移系统
fi(t) m 0 xo(t) K C fK(t) fC(t) m fi(t) fm(t) 0 xo(t) 静止(平衡)工作点作为 零点,以消除重力的影响
机械平移系统及其力学模型
d2 f i (t ) − f C (t ) − f K (t ) = m 2 xo (t ) dt f K (t ) = Kxo (t ) d f C (t ) = C xo (t ) dt
3
从输入端开始,按照信号传递变换过程,依据 各变量遵循的物理学定律,依次列写出各元件、 部件的动态微分方程; 消去中间变量,得到描述元件或系统输入、 输出变量之间关系的微分方程; 标准化:右端输入,左端输出,导数降幂排列
3、 控制系统微分方程的列写 机械系统 机械系统中以各种形式出现的物理现象,都可 简化为质量、弹簧和阻尼三个要素:
∂f y = f ( x10 , x20 ) + ∂x1
x1 = x10 x2 = x20
∂f ( x1 − x10 ) + ∂x2
增量方程: y − y0 = ∆y = K1∆x1 + K 2 ∆x2 静态方程: y0 = f ( x10 , x20 )
∂f 其中: K1 = ∂x1
x1 = x10 x2 = x20
各个输入产 生的输出互 不影响。 不影响。
19
叠加
节流阀 qi(t)
液体系统 设液体不可压缩, 通过节流阀的液流 是湍流。
H(t)
dH (t ) = qi (t ) − qo (t ) A dt q (t ) = α H (t ) o
节流阀 qo(t)
液位系统
A:箱体截面积;
根据托里拆利定理, 根据托里拆利定理,出水量与 水位高度平方根成正比。 水位高度平方根成正比。

拉氏变换和反变换

拉氏变换和反变换

式中:s=σ+jω(σ,ω均为实数) F(s)称为函数f(t)旳拉普拉氏变换或象函数; f(t)称为F(s)旳原函数; L为拉氏变换旳符号。
拉氏反变换旳定义
其中L-1为拉氏反变换旳符号。
序号
1 2 3 4 5 6 7
常见时间函数拉氏变换表
f(t)
F(s)
单位脉冲函数:d(t)
单位阶跃函数:1(t) 单位速度函数:t
由线性性质可得
假如 f (t) 旳拉普拉斯变换 F (s) 可分解为 F (s) F1 (s) Fn (s)
并假定 Fi (s) 旳拉普拉斯变换轻易求得,即
Fi (s) L[ fi (t)]
则 L1[F (s)] L1[F1(s)] L1[Fn (s)]
f1(t) fn (t)
例1 求
F(s) s 3 s 2 3s 2
旳Laplace 反变换

F (s)
s2
s
3 3s
2
(s
s3 1)(s
2)
2 1 s 1 s 2
f (t) L1[F (s)] L1[ 2 ] L1[ 1 ]
s 1
s2
2et e2t t 0
例2 求
旳Laplace 反变换
解 F (s) 1 1 s 1 (s 2)2
线性定理
叠加定理
百分比定 理
多重微分 原函数旳高阶导数 像函数中s旳高次代数式
积分定理
多重积分 原函数旳n重积分像函数中除以sn
位移定理 原函数乘以指数函数e-at像函数d在复数域中作位移a
延时定理 原函数平移 像函数乘以 e-s
终值定理
原函数f(t)旳稳态性质
sF(s)在s=0邻域内旳性质

拉普拉斯变换及反变换ppt课件

拉普拉斯变换及反变换ppt课件
补充 拉普拉斯变换及反变换 重点 知识
一、拉氏变换及其特性 1、 拉氏变换定义
如果有一个以时间 t为自变量的实变函数 f t ,它的定义域是 t 0 ,那么 f t 的拉普
拉斯变换定义为
F
s
L
f
t
0
f
t estdt
式中,s是复变数,s j( 、
均为实数), est 称为拉普拉斯积分;F s 0
>> p=[1 -120 25 126
用num和den分别表示F(s)的分子和分母多项式, 即:num = [b0 b1 … bm]
den = [a0 a1 … an] MATLAB提供函数residue用于实现部分分式展 开,其句法为:
[r, p, k] = residue(num, den)
f (t) L1(F (s)) 1
c
j
F
(s)e
st
ds
2j c j
式中 L1 表示拉普拉斯反变换的符号
2、拉氏反变换的计算方法 由象函数求原函数的方法:
方法一:利用拉氏反变换定义求 ——不常用解
方法二:查拉氏变换表求解——对简单的象函数适用 方法三:部分分式法——象函数为有理分式函数时适用
p1)r ]}s p1
br j
1 dj
{ j!
ds
j
[F
s
(s
p1)r ]}s p1
b1
1
d r1
(r
{ 1)!
ds
r
1
[
F
s
(s
p1)r ]}s p1

F(s)
(s
s 1 2)3 ( s
3)
解:F (s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓如果所有的初始条件为零,微分方程的拉氏变换可以简单 地用sn代替dn/dtn得到。
Part 2.1 拉氏变换的定义
设函数f(t)满足:
1f(t)实函数;
2当t<0时 , f(t)=0;
3当t0时,f(t)的积分

0
f
(t)est dt
在s的某一域内收敛
则函数f(t)的拉普拉氏变换存在,并定义为:
式中:s=σ+jω(σ,ω均为实数);
F(s)称为函数f(t)的拉普拉氏变换或象函数; f(t)称为F(s)的原函数; L为拉氏变换的符号。
➢将微分方程通过拉氏变换变为 s 的代数方程; ➢解代数方程,得到有关变量的拉氏变换表达式; ➢应用拉氏反变换,得到微分方程的时域解。
微分方程式的解
a、 A、B、
指数函数 Aeat 正弦函数 Bsin(t+)
微分方程式的各系数
外部条件
起始条件
✓应用拉氏变换法求解微分方程时,由于初始条件已自动地 包含在微分方程的拉氏变换式中,因此,不需要根据初始 条件求积分常数的值就可得到微分方程的全解。
位移定理
原函数乘以指数函数e-at像函数d在复数域中作位移a
延时定理
原函数平移 像函数乘以 e-s
终值定理
值定理
变量置换法
其它方法
Part 2.3拉氏反变换方法 部分分式法的求取拉氏反变换
F(s)

B(s) A(s)
单位脉冲函数拉氏变换
洛必达法则
单位加速度函数拉氏变换
抛物线函数
Part 2.2拉氏变换的主要运算定理
线性定理 微分定理 积分定理 位移定理 延时定理 卷积定理 初值定理 终值定理
线性定理 叠加定理
比例定理
多重微分
原函数的高阶导数 像函数中s的高次代数式
积分定理
多重积分
原函数的n重积分像函数中除以sn

b0sm a0sn
b1sm1 a1sn1
.... bm1s .... an1s
bm bn
,m

n
L-1[F(s)] = L-1[F1(s)]+L-1[F2(s)]+…+L-1[Fn(s)] = f1(t) + f2(t) + … + fn(t)
F(s)= F1(s)+F2(s)+…+Fn(s)
条件: 分母多项式能分解成因式
F (s) B(s) K (s z1)(s z2 )...( s zm ) A(s) (s p1)(s p2 )...( s pn )
多项式极点
p1, p2 ,..., pn
多项式零点
z1,z2 ,..., zm
Part 2.4拉氏变换求解线性微分方程
拉氏反变换的定义 其中L-1为拉氏反变换的符号。
拉氏变换的计算
➢指数函数 ➢三角函数 ➢单位脉冲函数 ➢单位阶跃函数 ➢单位速度函数 ➢单位加速度函数 ➢幂函数
高等函数初等函数
指数函数的拉氏变换
三角函数的拉氏变换
(尤拉公式)
阶跃函数的拉氏变换
幂函数的拉氏变换
单位速度函数的拉氏变换
斜坡函数
相关文档
最新文档