煤田测井资料解释介绍-完整版

合集下载

煤田地球物理测井技术

煤田地球物理测井技术

煤田地球物理测井技术引言煤炭作为我国的主要能源之一,在能源开发和利用中起着重要的作用。

而煤田地球物理测井技术则是煤炭勘探和开采中的一项重要技术,通过测量地下煤层的物理参数,可以帮助煤炭公司评价煤层的质量、确定储量、分析构造条件等,为煤炭勘探和开采提供重要的依据。

本文将介绍煤田地球物理测井技术的基本原理、常见方法以及应用领域。

基本原理煤田地球物理测井技术基于地球物理学的基本原理,通过测量煤层中的物理参数,推断地下煤层的性质。

常见的物理参数包括声波速度、密度、自然伽马射线强度等。

这些物理参数与煤层的含矿量、孔隙度、强度等性质相关联,通过测量和分析这些物理参数,可以了解煤层的状况。

常见方法1. 声波测井声波测井是煤田地球物理测井技术中常用的方法之一。

它利用地下介质对声波的传播特性进行测量,在煤层中传播的声波会受到煤层孔隙度、含矿量等因素的影响。

通过测量声波的传播速度和衰减程度,可以推断煤层的孔隙度、强度等信息。

2. 密度测井密度测井是另一种常见的煤田地球物理测井方法。

它通过测量地下介质对射线的吸收程度,推断出地下介质的密度。

煤层中的密度与含矿量和孔隙度等因素有关,通过测量和分析密度数据,可以推断出煤层的煤质和储量等信息。

3. 自然伽马测井自然伽马测井是测井方法中最常用的一种方法之一。

它利用地下介质中的放射性元素发射的伽马射线进行测量,通过测量伽马射线的强度,可以推断地下有害元素的含量、分布以及煤层性质等。

煤层中的含矿量和放射性元素含量有关,通过测量自然伽马射线的强度,可以了解煤层的性质。

应用领域煤田地球物理测井技术在煤炭勘探和开采中有广泛的应用。

它可以为煤炭公司提供以下方面的信息:1.煤层质量评价:通过测量和分析煤层的物理参数,可以评价煤层的质量,包括含矿量、灰分、硫分等指标,为选择合适的采矿方法和制定开采方案提供依据。

2.储量估算:通过测量和分析煤层的物理参数,可以推断煤层的厚度、面积和体积,从而估算煤田的储量,为资源评价和开发提供依据。

测井资料解释

测井资料解释
泥质含量和其存在状态对砂岩产生的扩散 吸附电动势有直接影响,因此可以利用自然电 位曲线估计泥质含量。 计算公式为:
PSP SSP PSP SH 1 SSP SSP
Vsh
2
GCUR*SH
1
2
GCUR
1
SSP-本地区含水纯砂岩的静自然电位,mV; PSP-含泥质砂岩的静自然电位,mV。 Vsh-地层泥质含量,小数; GCUR-经验系数,第三系地层,GCUR=3.7;老地层 GCUR=2。
井径曲线是由井径仪测量的。井径仪是 由四支可活动的井径探臂构成,井径活 动探测臂在井下仪器马达总成的控制下 可以自动的张开和收拢。两对对称的井 径探测臂独立地分别控制两套电路转换 系统,提供井眼直径的大小。
①计算井眼体积
Vc
CALS 2
4HBiblioteka 式中:Vc:井眼体积; CALS:井径测量值,单位为m。 当CALS > BITS时,CALS = CALS; 当CALS < BITS时,CALS = BITS。 H:测量井段,单位为m。 BITS:钻头直径。
碳酸岩剖面:自然伽马曲线读值在纯石灰 岩、白云岩最低,泥岩、页岩段最高。泥 灰岩、泥质石灰岩、泥质白云岩介于前二 者之间,也随着泥质含量的增加而升高。 膏岩剖面:岩盐、石膏岩读值最低,泥岩 最高,砂岩介于二者之间。读值靠近泥岩 高数值的砂岩其泥质含量较高,是储集性 较差的砂岩,而读值靠近石膏低数值的砂 岩则是储集性较好的砂岩。因此,利用自 然伽马曲线可以在膏岩剖面中划分岩性, 并找出砂岩储集层。
①进行地层对比,了解全井段的地 质剖面 ②划分岩性和确定岩层界面 ③近似估算地层电阻率 2.5米梯度(R2.5)测量侵入带电阻 率,4米梯度(RT)测量原状地层电 阻率。

煤田煤层气测井资料解释介绍

煤田煤层气测井资料解释介绍

煤重要参数
煤的煤层气含量、镜质体反射率、水分、灰分、挥发分等参数是研究煤 层组分,作为评价煤层气勘探、工业分析、经济效果的依据。 1. 煤层含气量 解吸:在未开采之前,煤层气以分子状态吸附在煤颗粒表面。随着储层 压力的降低(如抽水),地层能量的衰减,压力降到解吸压力以下,以分子状 态存在的解吸气变为游离气。 扩散:煤层甲烷解吸之后,在煤基质与割理之间的浓度不一致。由浓度 差异引起甲烷气体扩散,气体从基质进入割理。 流动:由于气体的解吸、扩散,割理与井眼之间的压力梯度发生了变化。 由于压力不同,引起气体由割理向井眼流动。 直接法测定含气量包括三部分,即散失气量、解吸气量和残余气量,煤层含 气量为三者之和。煤层含气量的单位为m3/t。 散失气量:指煤心快速取出,现场直接装入解吸罐之前释放出的气量。 根据散失时间的长短及实测解吸气量的变化速率进行理论计算。 解吸气量指煤心装入解吸罐之后解吸出的气体总量。实验过程中求出气 量随时间的变化规律,结合一些基础数据计算解吸气量。解吸过程一般延续 两周至四个月,根据解吸气量大小而定,一般在一周内每克煤样的解吸量小 于0.05cm3/d时可终止解吸。 残余气量:指终止解吸后仍留在煤中的那部分气体。需将煤样加热真空脱 气,再粉碎、加热真空脱气,测定其解吸总量。
体积模型法:
DEN=W11Vw+W12Va+W13Vc AC=W21Vw+W22Va+W23Vc
CNL=W31Vw+W32Va+W33Vc
1=Vw+Vb+Vc
Hale Waihona Puke 概率模型法:DEN=A1Qw+A2Qa+A3Qh+A4Qc AC=B1Qw+B2Qa+B3Qh+B4Qc

测井解释基础知识-概述说明以及解释

测井解释基础知识-概述说明以及解释

测井解释基础知识-概述说明以及解释1.引言1.1 概述测井是石油工程中一项重要的技术手段,它通过使用特殊的工具和设备在钻井过程中获取井内的各种数据,以评估地下地层的性质和含油气性能。

这些数据对于油气田的勘探、开发和生产起着至关重要的作用。

测井技术在油气勘探和开发中扮演着关键的角色。

通过测井可以准确地了解油气藏中地层的性质,包括储集层的厚度、孔隙度、渗透率等。

同时,测井数据可以获得地层的物理性质,如密度、声波速度、电阻率等,从而可以计算出地层的含油气饱和度和产能。

测井数据的获取方法包括电测井、声测井、密度测井、核磁共振测井等多种技术手段。

这些测井工具可以通过装备在钻井井筒中的测井仪器进行数据采集。

测井数据的获取主要依靠钻井过程中向井内发送的信号与地层反射或吸收的物理现象产生的信号之间的相互作用。

测井解释是对测井数据进行分析和解释的过程,以得出地层性质和含油气信息,并为油气田的开发提供决策依据。

通过对测井数据的解释,可以确定油气藏的储量、底部流压、裂缝分布等重要参数,为决策者提供合理的勘探和开发方案。

总之,测井是一项通过获取井内数据进行地层评价的重要技术。

它对于优化勘探开发策略,提高油气田的产能和经济效益具有重要意义。

测井解释作为测井技术的核心环节,为油气田的勘探与开发提供科学依据,为石油工程的发展做出了重要贡献。

1.2文章结构1.2 文章结构本文按以下结构进行组织和讨论:(1)引言:首先介绍本文的背景和目的,概述测井解释的基本概念和重要性。

(2)正文:本部分将详细介绍测井的定义和作用,以及获取测井数据的方法。

其中,关于测井的定义和作用部分,将探讨测井在勘探和开发油气田中的重要作用,以及其对油气储层评价和井筒工程的意义。

关于测井数据的获取方法部分,将介绍目前常用的测井工具及其原理,如电测井、声波测井、核子测井等。

(3)结论:在本节中,将强调测井解释的重要性,并讨论其在油气勘探开发、地质研究及工程应用领域的具体应用。

煤田测井资料解释介绍

煤田测井资料解释介绍

煤田测井资料解释介绍1. 引言煤田测井是煤炭勘探和开采过程中的重要技术之一。

通过测井技术,可以获取地下煤层的物理、化学等相关信息,用于评估煤层资源、确定开采方案以及预测煤田的地质条件等。

本文将介绍煤田测井资料的解释方法和常用测井曲线,帮助读者更好地理解和应用煤田测井技术。

2. 煤田测井资料的解释方法2.1 孔隙度孔隙度是指煤层中孔隙空间的比例,是煤层储层性质的重要指标。

常用的测井曲线中,密度曲线(Density Log)和中子孔隙度曲线(Neutron Porosity Log)可以用于计算孔隙度。

其中,密度曲线通过测量岩石的密度来反映孔隙度,而中子孔隙度曲线则利用了煤层中的氢含量与孔隙度之间的线性关系。

2.2 含气量含气量是指煤层中所含天然气的比例,是评估煤层气资源潜力的重要指标。

常用的测井曲线中,自然伽马曲线(Natural Gamma Log)可以用于估算含气量。

自然伽马曲线通过测量煤层中的放射性元素的辐射强度来反映含气量的变化。

2.3 渗透率渗透率是指煤层中液体(如水)通过孔隙流动的能力,是评估煤层开采条件和调整开采参数的重要指标。

常用的测井曲线中,声波时差曲线(Acoustic Log)和电阻率曲线(Resistivity Log)可用于计算渗透率。

声波时差曲线通过测量声波通过岩石的速度来反映渗透率,而电阻率曲线则利用岩石的电导率与渗透率之间的关系进行计算。

3. 常用测井曲线介绍3.1 密度曲线(Density Log)密度曲线通过测量煤层岩石的密度来计算孔隙度。

密度曲线的单位一般为克/立方厘米(g/cm³)。

密度曲线中的高低值反映了煤层孔隙度的变化情况,数值越高表示孔隙度越小,数值越低表示孔隙度越大。

3.2 中子孔隙度曲线(Neutron Porosity Log)中子孔隙度曲线利用煤层中的氢含量与孔隙度之间的线性关系来计算孔隙度。

中子孔隙度曲线的单位一般为百分比(%)。

中子孔隙度曲线中的高低值反映了煤层孔隙度的变化情况,数值越高表示孔隙度越大,数值越低表示孔隙度越小。

测井基础知识简介

测井基础知识简介

04
测井技术设备
测井设备的基本组成
测井仪器:用于测量地层物理参数的设备,如电阻率、声波、中子等 测井电缆:连接测井仪器与地面设备的电缆,用于传输测量数据 地面设备:处理测量数据、控制测井仪器工作的设备 辅助设备:包括电源、冷却系统等辅助设备,确保测井设备的正常运行
测井设备的选型与使用
测井设备种类:电阻率、声波、中子、密度等 选型依据:地质需求、井况、设备性能等 使用方法:设备安装、调试、操作规范等 注意事项:安全保障、数据解释、误差控制等
05
测井技术应用案例
石油测井案例
案例名称:某油田的测井应用
应用效果:准确识别储层厚度和 岩性
添加标题
添加标题
添加标题
添加标题
测井技术:高分辨率阵列声波测 井技术
结论:测井技术在石油勘探中具 有重要作用
煤田测井案例
测井技术应用在煤田勘 探中,通过对煤层厚度、 煤质、含气量等参数的 测量,为煤田开发提供 准确的地质资料。
测井技术是石油勘探的重要手段 测井技术能够提供丰富的地层信息 测井技术的发展趋势是高分辨率、高精度和高效率 测井技术的应用前景广阔,未来将更加智能化和自动化
对测井技术的建议与展望
加强技术创新和研发:不断推动测井技术的进步,提高测井效率和准确性
推广应用新技术:将先进的测井技术应用于实际生产中,提高生产效率和 质量
测井技术不断向自动化、智能 化方向发展
测井技术不断向环保、安全方 向发展
测井技术的未来展望
测井技术发展趋势:高分辨率、高效率、高精度 测井技术应用领域拓展:石油、天然气、地热等 测井技术创新方向:智能化、自动化、数字化 测井技术未来展望:提高勘探效率、降低成本、提高资源利用率

(完整版)(精品)测井资料处理解释(测井监督培训200801)

(完整版)(精品)测井资料处理解释(测井监督培训200801)

测井监督培训课程测井资料处理解释蔡文渊中国石油测井有限公司华北事业部2008年1月内容⏹测井资料综合解释基础⏹测井资料数据处理基本方法⏹砂泥岩地层测井解释方法⏹碳酸盐岩裂缝性储层测井解释方法⏹测井资料地质应用⏹测井资料工程应用⏹生产测井解释方法简介第一部分测井资料综合解释基础⏹测井是应用地球物理方法(包括重、磁、电、震、测井)之一。

是利用岩层的电化学、电、磁、声学、放射性及核物理等地球物理响应特性,测量物理参数的方法。

⏹用物理学的原理解决地质学的问题。

第一部分测井资料综合解释基础⏹测井方法众多。

电、声、放射性是三种基本方法。

特殊方法(如电缆地层测试、地层倾角测井、成像测井、核磁共振测井),其他形式如随钻测井。

⏹各种测井方法基本上是间接地、有条件地反映岩层地质特性的某一侧面(岩石物理性质)。

第一部分测井资料综合解释基础测井资料综合解释就是按照地质任务选择多种测井方法组成综合测井系列,根据测井解释原理和方法,结合地质、钻井、开发等资料,进行测井资料数据处理,作出综合性的地质解释,解决地层和储层划分、油气层和有用矿藏的识别与评价、以及勘探开发中的其他地质问题。

一、测井解释的主要任务✓地层评价✓地质解释及应用✓工程检测及应用✓产吸剖面解释裸眼井(地层评价)测井系列套管井(地层评价)测井系列生产测井及工程测井系列1、地层评价裸眼井、套管井地层评价:➢岩性识别与评价——泥质、矿物成分及含量,岩性剖面➢储层划分及参数计算——孔、渗、饱及厚度等➢油气层(其他矿藏)识别与评价常规地层评价(单井)主要任务——划分单井地质剖面——储集层评价1)储层划分2)岩性评价3)物性评价4)含油性评价5)油气层及产能评价2、地质解释及应用➢综合录井剖面成图、岩心归位、地层对比➢构造解释与沉积相分析➢油藏描述➢储量参数计算3、工程检测及应用➢井斜、方位、井径等井眼几何形态➢地层(孔隙流体)压力➢岩石力学参数——地应力剖面➢固井质量评价➢套管工程检测➢射孔质量、酸化和压裂效果检查4、产吸剖面解释➢产液剖面解释➢吸水剖面解释➢确定出水、串槽层位二、测井解释模型测井信息地质信息测井记录的各种岩石物理参数:电阻率、声波时差、体积密度、自然电位…解释成果:岩性(矿物成分含量)、泥质含量、孔隙度、渗透率、含水饱和度…二、测井解释模型测井信息与地质信息的对应关系广义上:测井信息与地质信息客观关系的形象化描述,如岩电关系等。

测井资料综合解释

测井资料综合解释
已知:孔隙度、油气水的界线值,则可求出RTMIN 2)统计法
根据岩心电阻率和岩心观察(或试油资料的)统计。该方 法的局限性,在于忽略了岩性、物性、的变化。
测井资料综合解释
储集层的评价
(二)标准水层对比法 1、找出标准水层(岩性均匀、物性好、厚度大)
2、Rt=(3~5)R0 油气水层
Rt>5R0
油气层
且对△t、ρ 和φ N均有明显影响。在含泥质地层情况下,可用GR来排 除含泥质地层(其GR值超过阈值)资料点的影响。
Pickett 交会图法
这种在双对数坐标中绘制的电阻率-孔隙度交会图 称为Pickett 交会图法。
100%含水线在φ =100%的纵坐标轴上的截距为aRw, 设a=1,则可求出Rw。
2)油层对比(小层对比) 多用在油田的开发阶段,主要用来研究油气层的岩性、 物性、厚度以及含油气性在油田范围内的变化规律。
测井资料综合解释
地层对比
2、进行地层对比的步骤 (1)选剖面、排列对比曲线 根据对比区域的井位分布图选定对比剖面线,找出位于剖 面线上各井的曲线,并按剖面上的顺序和相对位置排列。
2、地层对比方法分类
主要有:岩性对比法、沉积韵律对比法、古生物对 比法、测井曲线对比法等。
测井资料综合解释
地层对比
3、测井资料对比的优点
形象直观、工作简便、尤其是在油田勘探进行到一定阶 段积累了大量的测井资料后,在用这种方法更方便,对 进一步勘探开发油田有重大意义。
4、建立在以下地质和地球物理基础上的 1)在一定勘探范围内,同时代、相似沉积环境下形成的 地层具有大致相同的特征。
测井资料综合解释
岩性的定性解释
2、M---N交会图 (1)M、N的意义
M=0.01*(Δtf-Δtma) / (ρma-ρf) 定义式 =0.01*(Δtf-Δt) / (ρb-ρf) 关系式

煤田地球物理测井技术

煤田地球物理测井技术
4-1 1-1
1.30 131.79
1.75 140.17
0.63 143.03
0.58 178.58
0.83 180.24
0.18 185.13
1.24 190.08
1.65 198.18
0.33 200.83
0.12 222.70 0.57 223.38
0.37 232.10
0.72 238.94
质构造及沉积环境; • 5、测量地温,评价地温变化特征; • 6、测算地层孔隙度和地层含水饱和度;确定含水
层位置及含水层间的补给关系;
煤田地球物理测井可解决的地质问题
• 7、测算煤岩层力学参数; • 8、初步估算目的煤层的煤层气含量、孔隙度、渗
透率,定性评价其顶底板岩层的渗透率; • 9、确定钻孔顶角和方位角; • 10、固井质量检查评价和套管校深; • 11、对其他有益矿产提供信息或作出评价。
三侧向电阻率
解释点 半幅值点
厚度等于大于原距时用三分之一幅值点, 厚度小于源距时用三分之二幅值点。
根部拐点
煤田地球物理测井资料解释
四、煤岩层解释实例
煤田地球物理测井资料解释
五、正断层解释 正断层在测井曲线上的特征:与相邻钻孔测井曲线对比, 层间距减小,曲线明显出现缺失段。
煤田地球物理测井资料解释
0.22 181.40
0.75 186.02
0.75 187.62
0.20 194.43
1.30 199.35
1.79 206.86
0.52 209.37
0.15 231.48 0.72 232.36
0.53 240.90
煤田地球物理测井报告编制方法
• 一、文字结构 根据现行《煤田地球物理测井规范》(DZ/T 0080 2010)9.3.2节要求,测井部分文字报告主要 包括: a. 地质概况及地球物理特征; b. 工作方法及测井仪器; c. 资料处理、解释; d. 地质成果; e. 结论与建议;

测井资料综合解释

测井资料综合解释

较均匀。
(2)裂缝性储集层 因裂缝较发育而具有储集性。 裂缝发育程度有限、孔隙度很 低(5-7%),较高者10%左右, 裂缝性储集层,对测井技术的 要求较高。
4、岩性评价
(1)岩石类别 测井类别。一般为:砂岩、石灰岩、 白云岩、硬石膏、石膏、盐岩、花 岗岩、灰质砂岩、灰质白云岩等。 (2)泥质含量和矿物含量 泥质含量是岩石中颗粒很细的细粉 砂(小于0.1mm)和湿粘土的体积 占岩石体积的百分数。
10、测井系列 1、裸眼井地层评价测井系列:未下套管的 裸眼井中,一套测井方法。 2、 套管井地层评价测井系列:已下套管的 井中一套综合测井方法。 3、生产动态测井系列:地层产出或吸入流 体的情况下,一套综合测井方法, 4、工程测井系列:裸眼井或套管井中,确 定井斜状态、固井质量、酸化或压裂效果、 射孔质量等测井方法
8
9
地层倾角
双感应—八侧向(上古)
表2 油探井测井系列
1:500测井项目 (全井 ) 双感应 声波时差 自然电位 自然伽马 井径 井斜 1:200测井项目 (目的层段) 双感应—八侧向 声波时差 补偿中子 补偿密度 自然伽马 自然电位 微电极 4米 井径 选测项目 地层倾角 自然伽马能 谱
1 2 3 4 5 6
环空测井仪、生 产测井组合仪
DDL生产组合测 井仪
3
4 5 6 7
气井产气剖面测井
注水井吸水剖面测 井 注水井吸水剖面测 井 注气井吸水剖面测 井 注气井吸水剖面测 井
流体密度/持水率、流量、自然 DDL生产组合测 伽马、磁定位、井温、压力 井仪
自然伽马、磁定位 井温 流体密度/持水率、流量、自然 伽马、磁定位、井温、压力 流体密度/持水率、流量、自然 伽马、磁定位、井温、压力 125自然伽马磁定 位 井温、噪声井温 仪 DDL生产组合测 井仪 DDL生产组合测 井仪

测井解释 测井资料综合解释

测井解释 测井资料综合解释
对于储层的岩性、物性、 对于储层的岩性、物性、地层水矿化度相 对稳定时,可用此方法。包括两种: 对稳定时,可用此方法。包括两种:
2、统计法 根据岩层电阻率与岩心观察(或试油资料) 根据岩层电阻率与岩心观察(或试油资料) 的统计,确定油层最小电阻率。 的统计,确定油层最小电阻率。
二、标准水层对比法
在解释层段用测井曲线找出渗透层, 在解释层段用测井曲线找出渗透层,并将 岩性均匀、物性好、 岩性均匀、物性好、深探测电阻率最低的渗 透层作为标准水层,然后, 透层作为标准水层,然后,将解释层的电阻 率与标准水层相比较,凡电阻率大于3 率与标准水层相比较,凡电阻率大于3—4倍 标准水层电阻率者可判断为油气层
K = f (φ , S wi )
饱和度(saturation) 三、饱和度
1、利用阿尔奇(Archie)公式求取饱和度 利用阿尔奇(Archie)公式求取饱和度 (Archie)
F =
a
φ
m
Ro = Rw
Rt b = I = n Sw Ro S
w
=
n
a ⋅b ⋅ R m R tφ
w
四、储层厚度
二、利用微电极曲线划层
微电极测井曲线反映泥饼的性质; 微电极测井曲线反映泥饼的性质;通常在 泥饼的性质 渗透层有泥饼存在 有泥饼存在。 渗透层有泥饼存在。 砂泥岩剖面中的渗透层 微电极视电阻率 渗透层, 砂泥岩剖面中的渗透层,微电极视电阻率 Ra一般小于 一般小于20Rm;且微电位与微梯度有正的 一般小于 ; 微电位与微梯度有 幅度差。 幅度差。 好渗透层, 好渗透层,Ra<=10Rm,较大的正幅度差; ,较大的正幅度差; 较差的渗透层, 较差的渗透层,Ra=(10-20)Rm,较小的正 ( ) , 幅度差;非渗透层, , 幅度差;非渗透层,Ra>20Rm,曲线呈尖锐 的锯齿状幅度差的大小、正负不确定。 的锯齿状幅度差的大小、正负不确定。

测井基础知识概述

测井基础知识概述

测井根底知识概述1. 引言测井是指在钻井过程中利用各种测量方法和设备来获取地层信息的技术手段。

通过测井可以获取地层中的物理、化学和工程性质的参数,对地层进行评价和分析,从而为油气勘探和开发提供重要的参考依据。

本文将概述测井的根底知识,包括测井的意义、测井方法和设备、测井参数解释等内容。

2. 测井的意义测井作为一种获取地层信息的重要手段,具有以下几个方面的意义:2.1. 地层评价通过测井可以获取地层中的物理、化学和工程性质的参数,如孔隙度、渗透率、饱和度等,从而评价地层的含油气能力、储层性质等。

这对于油气勘探和开发来说至关重要,可以指导油气田的选址和开发方案的制定。

2.2. 钻井工艺控制在钻井过程中,测井可以提供有关井眼稳定性、岩石力学性质、井壁质量等信息,指导钻井工艺的控制和井壁的完整性保护,减少钻井事故的发生。

2.3. 油藏管理测井还可以为油气田的开发和管理提供重要的数据支持,如油藏压力分布、水驱效果、油藏动态变化等。

这些数据可以帮助油田管理人员了解油田的生产状况,做出相应的调整和决策。

3. 测井方法和设备测井方法是指测井的具体操作方法,而测井设备是指用于测量的仪器和工具。

常用的测井方法和设备包括:3.1. 电测井电测井是利用测井仪器在井中测量电性参数来获得地层信息的方法。

常用的电测井设备包括电阻率测井、自然电位测井和电导率测井等。

3.2. 孔隙度测井孔隙度测井是利用测井仪器测量地层中的孔隙体积的方法。

常用的孔隙度测井设备包括密度测井和中子测井等。

3.3. 岩性测井岩性测井是通过测井仪器来测量地层岩石的物理性质和组成,从而判断岩石的类型和性质的方法。

常用的岩性测井设备包括声波测井和伽马射线测井等。

3.4. 流体识别测井流体识别测井是用于判断油气层位和识别流体类型的方法。

常用的流体识别测井设备包括声波测井、密度测井和中子测井等。

4. 测井参数解释测井仪器测得的数据需要经过解释和分析,才能得到有意义的地层信息。

煤层气钻井地质录井与测井技术讲解

煤层气钻井地质录井与测井技术讲解


干照 颜色

级别
定 量

三、重点录井项目
3. 气测录井 探井气测录井项目
随钻气体检测: 在钻进过程中连续进行,内容包括全烃和组份;非烃类气
体检测,包括二氧化碳、硫化氢等。 后效气体检测:
钻遇煤层或气体显示后,每次起下钻均应循环钻井液1个 周期以上,进行后效气测录井。 热真空蒸馏分析:
在目的层之前要进行两次,一次为钻井液基值样品分析, 另一次为进入目的层之前50m内样品分析。进入目的层后每一班 (8-12h或100 m井段之内)应进行一次分析;气测出现明显的异常 应进行分析;钻井取心每筒后进行一次分析;完钻后循环钻井液进 行一次分析。
四、煤层气录井综合解释
煤层厚度解释: 根据钻时、岩屑,参考测井曲线和测井解释成果,可作如下解释:
煤层单层厚度小于20cm可解释为夹层; 大于20cm,小于50cm可扩大解释为整0.5m; 大于50cm,小于1m,解释为整1m。 含气性解释: 根据岩心、岩屑含气性观察、气测录井、槽面观察,做如下解释: 岩心、岩屑气泡强烈,持续时间长,气测见明显异常,槽面见 显示,解释为煤层气层; 岩心、岩屑见气泡,持续时间不超过1小时,气测异常不超过 5%,槽面未见明显显示,解释为含气煤层 岩心、岩屑未见气泡,气测异常不明显,槽面无显示,解释为 干层
视密度、等温吸附、煤岩孔 隙度、比表面-孔分布、压汞、扫描 电镜 (3)顶底板分析项目
突破压力、三轴应力测定
吸附量(m3/t)
1. 绳索取心
快速解吸仪
40 35 30 25 20 15 10
5 0
0
等温吸附曲线
空气干燥基 干燥基无灰基
2
4
6
8
10

测井基础知识概述

测井基础知识概述

测井资料的采集
测井资料的采集-下井仪器
下井仪器主体是探测器,还有电子线路、机 械部件及钢外壳。探测器将地层的物理性质 转换成电信号。
测井资料的采集-地面记录仪
地面记录仪是在地面给井下仪器供电,对井 下仪器实行测量控制,接受和处理井下仪器传来 的测量信号,并将测量信号转换成测井物理参数 加以记录。 多线记录仪
目录
一、测井的起源及发展历程 二、测井资料的现场采集与处理 三、测井仪器的介绍和基本用途 四、南海西部海域测井情况介绍 五、南海西部海域测井资料的应用 六、结束语
测井的起源及发展历程
测井起源于法国,1927年法国人斯仑贝谢兄弟发明了电 测井,开始在欧洲用于勘探煤和气。中国使用电测井勘探石 油和天然气,始于1939年12月,奠基人是原中国科学院院士 、著名地球物理学家翁文波教授,测的第一口是四川巴县石 油沟油矿1号井。
2、全波列测井
单极子声源在快速地层中记录的典型波形 T
R1 R2 R3
R4
R5
R6
R7
包括:纵波、横波、斯通利波
R8
记录时间窗长内所有的声波波列信号,包括纵波、横波和斯通利波等多种波成分的速度、幅度、 频率等信息。通过对波列信号的分析和处理,可准确提取纵、横波和斯通利波时差,求取各种 地层弹性模量参数,判断裂缝、指示含气层段、估算渗透率、评价地层各向异性等地质应用
因此纵波首波与斯通利波受到抑
制,从而可确保准确地识别挠曲
数字磁带测井仪
数控测井仪
测井资料的采集-电缆等辅助设备
由导电缆芯、绝缘层和钢丝编织层组成的单芯 或多芯电缆,是向井内传送下井仪、给下井仪供电 、在下井仪和地面仪间传送信息的设备。电缆测井 之名由此而来。为了适应大斜度井,逐渐发展了钻 杆传输测井PCL/TLC、随钻测井LWD技术。

测井资料综合解释

测井资料综合解释

测井资料综合解释测井是油田勘探开发中非常重要的技术手段之一。

通过测井可以获取井筒内地层的物理性质和地质信息,帮助油田工程师和地质学家做出准确的解释和预测。

本文将全面介绍测井资料的综合解释方法和技巧。

一、测井资料的分类与应用范围测井资料按测井方法可分为电测井、声测井、核子测井等多种类型。

不同类型的测井方法能提供不同的地层信息。

电测井主要用于测量地层的电性质,如电阻率、自然电位等;声测井则用于测量地层的声学性质,如声波传播速度、衰减系数等;核子测井则用于测量地层的核辐射特性,如自然伽马辐射强度、中子散射截面等。

测井资料的应用范围十分广泛。

在勘探阶段,测井资料可以帮助确定油藏的存在与分布情况;在开发阶段,测井资料可以评价油层的产能、储量和岩石物理性质;在油井改造和采油过程中,测井资料可以指导井筒的完井和油藏的增产措施。

二、测井资料的解释方法1. 初步解释:初步解释是对测井曲线进行质量控制和基本分析的过程。

通过检查测井曲线的合理性、对比相邻测井曲线的关系,可以初步了解地层的特征和可能存在的问题。

初步解释的目的是将测井曲线的主要特征进行定性和定量描述,为后续的综合解释提供基础。

2. 地层分类解释:地层分类解释是根据测井数据中的地层识别信息,将井段划分为不同的地层单元。

通过对测井曲线的综合分析,结合岩心分析结果和模拟数据,确定地层的划分标准和解释模型。

地层分类解释的目的是将复杂的测井数据转化为可操作的地层单元,为后续的油藏评价和井筒设计提供基础。

3. 物性解释:物性解释是根据测井曲线的响应特征,定量计算地层的物理性质。

通过建立地层物性与测井响应之间的关系模型,可以推测地层的孔隙度、饱和度、渗透率等物理性质。

物性解释的目的是为油田工程师提供关键的地层参数,为油藏开发和生产决策提供依据。

4. 地质解释:地质解释是将测井资料与地质模型进行对比和综合,揭示地层的地质特征和构造特征。

通过将测井曲线与地质模型进行匹配,可以推断地质界面的位置、断层的存在以及油藏分布的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档