第七节方向导数与梯度
第七节 方向导数与数量场的梯度
定理1 若u u( x , y , z )在点M ( x , y , z )处可微, 方向l的单 位向量l 0 cos , cos , cos , 则u沿 l方向的方向导数
u u u u 0 gradu( M ) l cos cos cos l x y z
' '
例4 : 设 r x i y j z k , r r , 求 1 (1) gradr; ( 2) grad ( r 0). r
练习 : 设f ( r ) C (1) , r x 2 y 2 z 2 , 求f ( r ).
下面的两个例子是梯度 在热学和电学中的应用 .
在(1.1)中给常数c不同的值, 就得到 不同的等值面, 如图2 1
这族等值面充满了数量 场所在的 空间, 这是因为场中每一点 M 0 ( x0 , y0 , z 0 )都有一个 等值面 u( x , y , z ) u( x0 , y0 , z 0 ) 通过,由于u是单值函数, 一个点只能在一个等值 面上.
第七节 方向导数与数量场的梯度
• 场的概念 • 方向导数和梯度 • 梯度的物理意义与几何意义 • 梯度的运算性质
10 场 : 场是物理量在空间和时间的分布。
20 数量场:若它的值取数量, 如温度、电位等, 可表示为u u( x , y , z , t )等;
30 矢量场:若它的值取矢量, 可表示为 A A( x , y , z , t )等.其中x , y , z刻划空间位置, t 表示时间;
M M0
它刻划了u( M ) u( x , y, z )在点沿l方向的变化率.
记x x x0 , y y y0 , z z z0 , u u( M ) u( M 0 ),
第八章第7节方向导数与梯度
一、梯度 二、方向导数
1
一. 梯度
三元函数 f (x, y, z) 在点 P 处的梯度(gradient),
grad
f
(
f x
,
f y
,
f) z
f x
i
f y
j
f z
k
曲面 f (x , y , z)=0 在 P 点的一个法向量
n (fx(x,y,z), fy(x, y,z), fz(x, y,z)) g r a df(x ,y ,z)
指向外侧 的法向量,求函数 u
方向 n的方向导数.
6x2 8y2
z
在点P 处沿
解: gra d u (
6x
,
8y
6x2 8y2
,
)
z 6x2 8y2 z 6x2 8y2
z2
grad u ( 1 , 1 , 1 ) (
6, 14
8 , 14) 14
曲面 在点 P处 指向外侧 的法向量
n
n( 4 x , 6 y , 2 z ) P 2(2,3,1)
表示 f (x, y) 在点 P 沿l方向 的变化速度,
f y
空间射线 l 的起点为 P0(x0,y0,z0),方向角为 , ,
三元函数 f(x,y,z)在点P 0 沿l 方向 的方向导数
f l
P
0
lim
0
f(x0cos,y0cos,z0cos)f(x0,y0,z0)
l 定理 设与射线l 同方向的单位向量
•P
l 0 ( c o s,c o s,c o s)
f l
(
x
0
,
y
0
高等数学讲义课件 第7节 方向导数及梯度
u z P
6x2 8 y2 14. z2
P
故 u (ucos ucos ucos ) 11.
n P x
y
z
7
P
三、梯度的概念
方向导数公式 f f cos f cos f cos
l x
y
z
令向量 G f , f , f x y z
l 0 (cos , cos , cos )
| gradf ( x, y) |
f
2
f
2
.
gradf
x y
当 f 不为零时, x
P gradf
x轴正向与梯度方向的夹角的正切为
tan f / f
y x
在几何上 z f ( x, y) 表示一个曲面
曲面被平面 z c
所截得
z z
f c
(
x,
y) ,
所得曲线在xoy面上投影如图
第七节 方向导数与梯度
一、问题的提出 二、方向导数的定义 三、梯度的概念
一、问题的提出
实例:一块长方形的金属板,四个顶点的坐标是 (1,1),(5,1),(1,3),(5,3).在坐标原点处有一个 火焰,它使金属板受热.假定板上任意一点处的 温度与该点到原点的距离成反比.在(3,2)处有一 个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快 到达较凉快的地点?
y f ( x, y) c2 gradf ( x, y)
P 梯度为等高线上的法向量
f ( x, y) c 等高线
f ( x, y) c1
o
x
梯度与等高线的关系:
函数 z f ( x, y) 在点 P( x, y)的梯度的方向与点 P 的等高线 f ( x, y) c 在 这点的法线的一个方向相 同,且从数值较低的等高 线指向数值较高的等高线, 而梯度的模等于函数在这 个法线方向的方向导数.
(整理)第七节方向导数与梯度
第七节 方向导数与梯度要求:了解方向导数与梯度的概念,会计算方向导数与梯度方法。
重点:方向导数与梯度的计算。
难点:梯度的几何意义,方向导数与梯度的联系。
作业:习题8-7(60P )2,4,6,8,10一.方向导数问题提出:在许多实际问题中,常常需要知道函数),(y x f z =在点(,)P x y 沿任意方向或某个方向的变化率.例如预报某地的风向和风力就必须知道气压在该处沿着哪个方向的变化率,在数学上就是多元函数在一点沿给定方向的方向导数问题.1.方向导数定义设函数),(y x f z =在点(,)P x y 的某一邻域内有定义,自P 点引有向直线L ,x 轴正向与直线L 夹角为ϕ,在L 上任取一点'(,)P x x y y +∆+∆,若'P 沿着L 趋近于P 时,即当0)()(22→∆+∆=y x ρ时,极限ρρ),(),(limy x f y y x x f -∆+∆+→ 存在则称此极限值为函数在点P 沿着L 方向的方向导数.记作ρρ),(),(lim 0y x f y y x x f L f -∆+∆+=∂∂→. 说明(1)规定逆时针方向旋转生成的角是正角0>ϕ,顺时针方向旋转生成的角是负角0<ϕ;2.方向导数的计算定理 若函数),(y x f z =在点(,)P x y 可微分,那么函数),(y x f z =在点(,)P x y 沿任一方向L 的方向导数都存在,且有计算公式ϕϕsin cos y f x f L f ∂∂+∂∂=∂∂{},cos ,sin ,f f f f e x y x y ϕϕ⎧⎫⎧⎫∂∂∂∂=⋅=⋅⎨⎬⎨⎬∂∂∂∂⎩⎭⎩⎭. 其中ϕ为x 轴到方向L 的转角,e 是与L 同方向的单位向量.证明:因为函数),(y x f z =在点(,)P x y 可微分,所以有()f ff x y o x yρ∂∂∆=∆+∆+∂∂, 上式两边同除以ρ,得()()cos sin ff x f y o f f o x y x y ρρϕϕρρρρρ∆∂∆∂∆∂∂=++=++∂∂∂∂,则0lim cos sin f f f f L x yρϕϕρ→∂∆∂∂==+∂∂∂ 例1.求函数yxe z 2=在点(1,0)P 处沿从点(1,0)P 到点)1,2(-Q 的方向的方向导数.解 这里方向L 即向量{}1,1PQ =-的方向,因此x 轴到L 方向的转角4πϕ=,又因为y e x z 2=∂∂,y xe y z 22=∂∂,所以在点)0,1(处,1=∂∂xz,2=∂∂y z ,于是方向导数为22)4sin(2)4cos(1-=-+-⋅=∂∂ππL z . 另一方法.例2. 设由原点到点),(y x 的向径为r ,x 轴到r的转角为θ,x 轴到射线L 的转角为ϕ,求Lr ∂∂,其中22y x r r +== )0(≠r . 解 因为θcos 22==+=∂∂r x y x x xr ,θsin 22==+=∂∂ryy x y yr 所以)cos(sin sin cos cos ϕθϕθϕθ-=+=∂∂Lr, 讨论:当θϕ=时,1=∂∂L r,即沿着向径本身方向的方向导数为1,当2πθϕ±=时,0=∂∂Lr,即沿着与向径垂直的方向导数为零.3.三元函数的方向导数三元函数),,(z y x f u =在空间一点(,,)P x y z 沿方向L (设方向L 的方向角为γβα,,)的方向导数,同样定义为ρρ),,(),,(lim 0z y x f z z y y x x f L f -∆+∆+∆+=∂∂→.其中222)()()(z y x ∆+∆+∆=ρ,γρβραρcos ,cos ,cos =∆=∆=∆z y x .若函数),,(z y x f 在点(,,)P x y z 可微分,则在该点方向导数计算公式为cos cos cos {,,}{cos ,cos ,cos }f f f f f f fL x y z x y zαβγαβγ∂∂∂∂∂∂∂=++=⋅∂∂∂∂∂∂∂ {,,}f f fe x y z∂∂∂=⋅∂∂∂. 其中{cos ,cos ,cos }e αβγ=是与L 同方向的单位向量.例3.求函数u xyz =在点(5,1,2)P 处沿从点(5,1,2)P 到点(9,4,14)Q 的方向的方向导数.解 因为u yz x ∂=∂,,u u xz xy y z ∂∂==∂∂,所以2,10,5PPPu uu xyz∂∂∂===∂∂∂,而且{95,41,142}{4,3,12}PQ =---=,2||413PQ ==,于是 4312cos ,cos ,cos 131313αβγ===,从而431298cos cos cos 210513131313f f f f L x y z αβγ∂∂∂∂=++=⨯+⨯+⨯=∂∂∂∂. 二.梯度1.梯度定义设函数),(y x f z =在平面区域D 内具有一阶连续偏导数,则对于每一点(,)P x y D∈都可确定出一个向量j yf i x f∂∂+∂∂,这个向量称为函数),(y x f z =在点(,)P x y D ∈的梯度,记作⎭⎬⎫⎩⎨⎧∂∂∂∂=∂∂+∂∂=x f x f j y f i x f y x gradf ,),( . 2.梯度与方向导数关系设cos sin e i j ϕϕ=+是与L 同方向的单位向量,则由方向导数的计算公式得{}cos sin ,cos ,sin f f ff f L x y x y ϕϕϕϕ⎧⎫∂∂∂∂∂=+=⋅⎨⎬∂∂∂∂∂⎩⎭(,)(,)cos(^)gradf x y e gradf x y e gradf e =⋅=⋅),(y x gradf prj L =. 可见,方向导数Lf∂∂就是梯度在方向L 上的投影. 当L 方向与梯度方向一致时,有1)^cos(=e gradf,从而方向导数(,)f gradf x y L∂=∂有最大值,所以沿梯度方向的方向导数达到最大值,也就是说,梯度的方向是函数),(y x f 在这点增长最快的方向.结论:函数在某点的梯度方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值,即(,)max()f gradf x y L∂=∂ 3.梯度的计算梯度的模为 22)()(),(xfx f y x gradf ∂∂+∂∂=, 梯度方向为 当0≠∂∂xf时,x 轴到梯度转角的正切xf y f∂∂∂∂=θtan . 4.梯度的几何意义曲面),(y x f z =被平面c z =所截得曲线L 的方程为⎩⎨⎧==c z y x f z ),(这条曲线L 在xoy 面上的投影是一条平面曲线*L ,它在xoy 平面上的直角坐标方程为c y x f =),(对于曲线*L 上一切点,对应的函数值都是c ,所以称曲线*L 为函数),(y x f z =的等高线, 等高线*L 上任一点(,)P x y 处法线斜率为11tan ()y x x yf dy f f dx f θ-=-==-,梯度j yf i x f ∂∂+∂∂为等高线上点P 处的法向量.梯度与等高线关系:函数),(y x f z =在点),(y x p 的梯度的方向与过点p 的等高线c y x f =),(在该点的法线方向相同,且从数值较低的等高线指向数值较高的等高线,而梯度的模等于函数在这个法线方向的方向导数,这个法线方向就是方向导数取得最大值的方向.5.三元函数的梯度k zf j y f i x f z y x gradf∂∂+∂∂+∂∂=),,(等高线对应等量面.例3.求221y x grad+.解 因为221),(yx y x f +=,所以22)(2y x x x f +-=∂∂,22)(2y x yy f +-=∂∂, 于是j y x yi y x x y x grad 22222222)(2)(21+-+-=+.例4.设222),,(z y x z y x f ++=,求)2,1,1(-gradf .解 因为k z j y i x z y x gradf222),,(++=,所以k j i gradf422)2,1,1(+-=-.6.数量场与向量场如果对于空间区域G 内的任一点M ,都有一个确定的数量)(M f ,则称在这空间区域G 内确定了一个数量场,一个数量场可由一个数量函数)(M f 来确定,如果与点M 相对应的是一个向量()F M ,则称在空间区域内确定了一个向量场,一个向量场可用一个向量函数()F M 来确定.思考题1.2.方向导数与梯度有何区别?又有何联系?(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高等数学同济版下第七节方向导数与梯度
f f f f cos cos cos l x y z
其中 , , 为 l 的方向角 .
对于二元函数 f (x 向角 ,y ), 在点 P ( x ,y ) 处沿方向 l( 方
为, ) 的方向导数为
f f ( x x , y y ) f ( x , y ) lim l 0 l
2
l x f f • 当 l 与 x 轴反向 , 时 ,有 2 l x
例1. 求函数 u x2yz 在点 P(1, 1, 1) 沿向量 l ( 2 , 1 , 3 )
的方向导数 .
6 14
2 2 在点P(2, 3)沿曲线 y x2 1 3 x y y 例2. 求函数 z
, y) 在点 P(x, y) 处的梯度 同样可定义二元函数 f (x
f f f f grad f i j , x y x y
说明: 函数的方向导数为梯度在该方向上的投影. 2. 梯度的几何意义
z f( x ,y ) 对函数 z f ( x , y ) , 曲线 在 xoy 面上的 z C
第七节 方向导数与梯度
一、方向导数 二、梯度
三、物理意义
一、方向导数
x ,y ,z )在点 P 定义: 若函数 f( (x, y, z) 处
, ,) 存在下列极限: 沿方向 l (方向角为
记作 f f f ( x x , y y , z z ) f ( x , y , z ) lim lim l 0 0
朝 x 增大方向的方向导数.
60 17
2 2 2 在点 P(1, 1, 1 )处 是曲面 n 2 x 3 y z 6 例3. 设
高等数学第八章多元微分第七节方向导数与梯度
证 由于函数可微,
j
P
故增量
o
x
f(x x ,y y ) f(x ,y ) f x f y o () x y 两边同除以 , 得到
上页 下页 返回 结束
f( x x ,y y ) f( x ,y ) f x f y o () x y
分析:在(3,2)点处,沿不同方向温度的变化率不同, 蚂蚁应沿由热变冷变化最快的方向(梯度方向)
爬行. 如何确定这个方向? 利用方向导数!
上页 下页 返回 结束
一、方向导数的定义与计算
意义:确定函数 zf(x,y)在点 P 处沿某一方向
的变化率.
设函数 zf(x,y)在点 P(x, y) y
l
r rr ( 2 x 3 ) i ( 4 y 2 ) j 6 z k ,
rr r 故 gu r( 1 ,1 a ,2 ) d 5 i 2 j 1 k .2
在
P0
(
3 2
,
1 2
,0)处梯度为0.
上页 下页 返回 结束
内容小结
1. 方向导数
• 三元函数 f(x,y,z)在点 P(x,y,z)沿方向 l (方向角
2 l x
推广: 若三元函数 u = f (x, y, z) 在点 P(x, y, z) 可微,
则函数在该点沿任意方向 l 的方向导数存在 ,
l
且 ffco sfco sfco s
l x
y
z
P(x,y,z)
其中 , , 为 l 的方向角.
上页 下页 返回 结束
f(x,y)c1
而梯度的模等于函数在该法线 o
方向导数与梯度
三、物理意义
数性函数) 数量场 (数性函数 数性函数 函数 场 温度场, 如: 温度场 电位场等 向量场(矢性函数 矢性函数) 向量场 矢性函数 如: 力场 速度场等 力场,速度场等 可微函数 f (P) (势) 梯度场 grad f (P) (向量场 向量场) 向量场 (物理量的分布 物理量的分布) 物理量的分布
∂f ∂f ∂f , , = ∂ x ∂ y ∂z
同样可定义二元函数 在点P( x, y)处的梯度
说明: 函数的方向导数为梯度在该方向上的投影. 说明 函数的方向导数为梯度在该方向上的投影 方向导数为梯度在该方向上的投影 2. 梯度的几何意义
12
z = f ( x, y) 对函数 z = f ( x, y), 曲线 在 xoy 面上的投 z =C * 影L : f ( x, y) = C 称为函数 f 的等值线 .
二.梯度
, 方向导数取最大值: 当l 0 与G方向一致时 方向导数取最大值: ∂f )= G m ( ax ∂l 方向: 方向:f 变化率最大的方向 这说明 G : 模 : f 的最大变化率之值
11
1. 定义 向量 G 称为函数 f (P) 在点 P 处的梯度 (gradient), 处的梯度 记作 grad f , 即
grad f (r) = f ′(r)r 0
gradu = (
q 4π ε r
)′
r =−
0
q 4π ε r
r 0 = −E 2
这说明场强: 垂直于等位面, 这说明场强 垂直于等位面 且指向电位减少的方向. 且指向电位减少的方向
19
2. 梯度 • 三元函数
在点
处的梯度为
∂f ∂f ∂f grad f = , , ∂x ∂ y ∂z • 二元函数 在点 处的梯度为 grad f = ( f x ( x, y) , f y ( x, y))
(整理)07第七节方向导数与梯度.
第七节 方向导数与梯度分布图示★ 引例 ★ 数量场与向量场的概念 ★ 方向导数的概念 ★ 例1 ★ 例2★ 例3 ★ 例4 ★ 例5★ 梯度的概念★ 例6 ★ 例7 ★ 例8★ 梯度的运算性质及应用(例9) ★ 例10 ★ 等高线及其画法 ★ 内容小结 ★ 课堂练习 ★ 习题9—7 ★ 返回内容要点一、场的概念: 数量场 向量场 稳定场 不稳定场二、方向导数.),(),(lim 0ρρy x f y y x x f l f -∆+∆+=∂∂→ 定理1 如果函数),(y x f z =在点),(y x P 是可微分的,则函数在该点沿任一方向l 的方向导数都存在,且,sin cos ϕϕyf x f l f ∂∂+∂∂=∂∂ (7.1) 其中ϕ为x 轴正向到方向l 的转角(图8-7-2).三、梯度的概念:.),(j yf i x f y x gradf∂∂+∂∂=}sin ,{cos ,sin cos ϕϕϕϕ⋅⎭⎬⎫⎩⎨⎧∂∂∂∂=∂∂+∂∂=∂∂y f x f y fx f l f ,cos |),(|),(θy x gradf e y x gradf =⋅= 函数在某点的梯度是这样一个向量, 它的方向与取得最大方向导数的方向一致, 而它的模为方向导数的最大值.梯度运算满足以下运算法则:设v u ,可微,βα,为常数,则(1) grad αβα=+)(v u grad β+u grad v ; (2) grad u v u =⋅)( grad v v + grad u ; (3) grad )()(u f u f '= grad u . 四、等高线的概念例题选讲方向导数例1(E01)求函数y xe z 2=在点)0,1(P 处沿从点)0,1(P 到点)1,2(-Q 的方向的方向导数.解 这里方向l即为→PQ },1,1{-=故x 轴到方向l 的转角.4πϕ-=)0,1(xz ∂∂)0,1(2ye =,1=)0,1(yz ∂∂)0,1(22yxe =,2=所求方向导数l z ∂∂⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=4sin 24cos ππ.22-=例2 求函数22),(y xy x y x f +-=在点)1,1(沿与x 轴方向夹角为α的方向射线l的方向导数. 并问在怎样的方向上此方向导数有(1) 最大值; (2) 最小值; (3) 等于零? 解 由方向导数的计算公式知)1,1(lf ∂∂ααsin )1,1(cos )1,1(y x f f +=ααsin )2(cos )2()1,1()1,1(x y y x -+-=ααsin cos +=,4sin 2⎪⎭⎫ ⎝⎛+=πα故(1) 当4πα=时,方向导数达到最大值;2(2) 当45πα=时,方向导数达到最小值;2- (3) 当43πα=和47πα=时,方向导数等于0.例3(E02)求函数)ln(22z y x u ++=在点A (1,0,1)处沿点A 指向点)2,2,3(-B 方向的方向导数.解 这里l 为}1,2,2{-=的方向,向量的方向余弦为,32cos =α,32cos -=β,31cos =γ又x u ∂∂,122z y x ++=y u ∂∂,12222zy y z y x +⋅++=z u∂∂,12222zy z z y x +⋅++=所以Axu ∂∂,21=Ayu ∂∂,0=Azu ∂∂.21=于是 Alu ∂∂21313203221⨯+⎪⎭⎫ ⎝⎛-⨯+⨯=.21=例4 求zx yz xy z y x f ++=),,(在点)2,1,1(沿方向l 的方向导数, 其中l的方向角分别为60℃, 45℃, 60℃.解 与l同向的单位向量l e }60cos ,45cos ,60{cos ︒︒︒=.21,22,21⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=因为函数可微分,且)2,1,1(x f )2,1,1()(z y +=,3= )2,1,1(y f )2,1,1()(z x +=,3=)2,1,1(z f )2,1,1()(x y +=.2=故)2,1,1(lf∂∂212223213⋅+⋅+⋅=).235(21+=例5(E03)设n是曲面632222=++z y x 在)1,1,1(P 处的指向外侧的法向量,求函数2122)86(1y x zu +=在此处方向n 的方向导数.解 令,632),,(222-++=z y x z y x F pxF p x 4=,4=pyF py6=,6=pzF p z 2=,2=故 n},,{z y x F F F =},2,6,4{=||n 222264++=,142=方向余弦为αcos ,142=βcos ,143=γcos .141=px u ∂∂pyx z x 22866+=;146=pyu ∂∂pyx z y 22868+=;148=pzu ∂∂pz y x 22286+=.14-=所以pnu ∂∂pz u y u x u ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=γβαcos cos cos .711=例6(E04)(1) 求.122yx grad +(2) 设222),,(z y x z y x f ++=, 求)2,1,1(-gradf .解 (1)这里.1),(22y x y x f +=因为 x f∂∂,)(2222y x x +-=y f ∂∂,)(2222y x y +-= 所以 221y x g r a d +.)(2)(2222222j y x y i y x x +-+-=(2)gradf },,{z y x f f f =},2,2,2{z y x =于是 )2,1,1(-g r a d f }.4,2,2{-=例7 求函数y x z y x u 2332222-+++=在点)2,1,1(处的梯度, 并问在哪些点处梯度为零?解 由梯度计算公式得),,(z y x gradu k z u j y u i x u∂∂+∂∂+∂∂=,6)24()32(k z j y i x +-++= 故)2,1,1(gradu .1225k j i ++=在⎪⎭⎫⎝⎛-0,21,230P 处梯度为.0例8(E05)求函数xyz z xy u -+=32在点)1,1,1(0P 处沿哪个方向的方向导数最大?最大值是多少.解 由x u ∂∂,2yz y -=y u ∂∂,2xz xy -=z u∂∂,32xy z -=得 ,00=∂∂P xu,10=∂∂P yu .20=∂∂P zu从而)(0P gradu },2,1,0{=)(0P u grad 410++=.5= 于是u 在点0P 处沿方向}2,1,0{的方向导数最大,最大值是.5例9(E07) 设)(r f 为可微函数,.|,|k z j y i x r r r++==求),(r gradf解 由上述公式(3)知grad )()(r f r f '= grad .)(⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂'=k z r j y r i x r r f r因为,,,rz z r r y y r r x x r =∂∂=∂∂=∂∂所以grad .)(||)()()(0r x f r r x f k r z j r y i rx r f r f'='=⎪⎭⎫⎝⎛++'=注:利用场得概念,我们可以说向量函数grad )(M f 确定了一个向量场-梯度场,它是由数量场)(M f 产生的. 通常称函数)(M f 为这个向量场的势,而这个向量场又称为势场. 必须注意,任意一个向量场不一定势势场,因为它不一定是某个数量函数的梯度场.例10(E06)试求数量场rm所产生的梯度场, 其中常数,0>m 222z y x r ++=为原点O 与点),,(z y x M 间的距离.解⎪⎭⎫ ⎝⎛∂∂r m x x r r m ∂∂-=2,3r mx -= 同理⎪⎭⎫ ⎝⎛∂∂r m y ,3r my -=⎪⎭⎫ ⎝⎛∂∂r m z .3rmz-= 从而 r mg r a d .2⎪⎭⎫ ⎝⎛++-=k r z j r y i rx r m如果用r e表示与同方向的单位向量,则r e k r z j r y i r x ++= .2r e rmr m grad -=上式右端在力学上可解析为,位于原点O 而质量为m 的质点对位于点M 而质量为 1 的质点的引力.该引力的大小与两质点的质量的乘积成正比、而与它们的距离平方成反比,该引力的方向由点M 指向原点.课堂练习1. 函数22),(y x y x f z +==在)0,0(点处的偏导数是否存在? 方向导数是否存在?2. 求函数xz yz xy u ++=在点)3,2,1(P 处沿P 点的向径方向的方向导数.。
第七节 方向导数与梯度
第七节 方向导数与梯度 ㈠本课的基本要求理解方向导数和梯度的概念并掌握其计算方法 ㈡本课的重点、难点方向导数和梯度的概念为重点、其计算方法为难点 ㈢教学内容 一.方向导数偏导数反映的是函数沿坐标轴方向的变化率。
但许多物理现象告诉我们,考虑函数沿坐标轴方向的变化率是不够的。
例如,热空气是向冷的地方流动,气象学中就是确定大气温度、气压沿着某些方向的变化率。
因此我们有必要来讨论函数沿任一指定方向的变化率问题。
设l 是xoy 平面上以),(000y x P 为始点的一条射线,)cos ,(cos βα=l e 是与l 同方向的单位向量。
射线l 的参数方程为)0(,cos ,cos 00≥+=+=t t y y t x x βα。
设函数),(y x f z =在点),(000y x P 的某个邻域)(0P U 内有定义,)cos ,cos (00βαt y t x P ++为l 上另一点,且)(0P U P ∈。
如果函数增量),()cos ,cos (0000y x f t y t x f -++βα与P 到0P 的距离t PP =0的比值ty x f t y t x f ),()cos ,cos (0000-++βα,当P 沿着l 趋于0P (即+→0t )时的极限存在,则称此极限为函数),(y x f 在点0P 沿方向l 的方向导数,记作),(00y x lf ∂∂,即lim0),(00+→=∂∂t y x lf ty x f t y t x f ),()cos ,cos (0000-++βα。
⑴注意 在方向导数中,由于ρ总是正的,因此是单向导数,即方向导数是函数沿射线方向的变化率。
而在偏导数中,x ∆与y ∆的值则可正可负,因此,如果函数),(y x f z =在点P 沿着x 轴正向}0,1{=i ,y 轴正向}1,0{=j 的方向导数存在,其值就是y x f f ,;如果函数),(y x f z =在点P 沿着x 轴负向}0,1{-=-i ,y 轴负向}1,0{-=-j 的方向导数存在,其值就是y x f f --,。
第七节方向导数与梯度
f
( x0
x,
y0
y)
f
(x0 , y0 )
fx (x0 , y0 )
x
f y (x0 ,
y
y0 )
o( )
fx (x0 , y0 ) cos
f y (x0 , y0 ) cos
o( )
令 ,0 对上式两端同时取极限, 就得
f l
图7-7
即
f
lim
l ( x0 , y0 )
0
在点 P(x0 , y0 ) 沿方向l的
方向导数,
记作
f l
, ( x0 , y0 )
f (P1) f (P) lim f (x0 x, y0 y) f (x0, y0 ) .
0
(1)
定理1 如果函数 z f (x, y) 在点P(x0, y0 )可微, 则函数
即 grad f (x, y) fx(x, y)i fy (x, y) j fx(x, y), fy (x, y)
(4)
f (x, y) 在点P (x, y)沿l方向的方向导数可表示为
f l
fx (x, y) cos
f y (x, y) cos
{ fx (x, y), f y (x, y)}{cos, cos }
(x0 ,y0 ) f x (x0 , y0 ) cos f y (x0 , y0 ) cos
例1:求函数
z
x2
y2在点P(1,
1)沿与x轴正向夹角
3
的方向l的方向导数.
方向导数与梯度ppt课件
lim φ( ρ) φ(0)
ρ0
ρ
φ (0).
本质上,方向导数计算可归结 为一元函数导数计算
例1 求f ( x, y) xy 在点 (1, 2) 处沿方向
el (cos m,cos n) 的方向导数. 解 ( x0, y0 ) (1,2), cosα cos m, cos β cos n,
P
o
x
f ( x ρcos π, y ρcos π ) f ( x, y)
lim
2
ρ0
ρ
– lim
ρ0
f (x
ρ, y) –ρ
f (x, y)
(
f x
)
f x
但
f 存在
x
f i
(el
i)
存在
f (
i
)
(el
i )
y
Pl
证 由函数
f ( x, y) 在点 可P微0 ,
f fx ( x0, y0) x f y( x0, y0)
得
y o( ρ)o P0
el y
x x
[
] o( ρ)
f [
故
f
lim f
l ( x0 , y0 ) ρ0 ρ
] o( ρ)
l ( x0 , y0 ) ρ0
ρ
注 1º方向导数的其他形式:
f l
( x0 , y0 )
lim
ρ0
f ( x0
ρcos α, y0 ρcos β) ρ
f ( x0, y0 )
lim f ( x Δx, y Δy) f ( x, y)
第七节方向导数与梯度
8; 14
u zP
6x2 8y2
z2
14.
P
u n
P
6283(1)4 1 11
14141414
147
.
二、一梯个度二概元函念数与在给计定算的点处沿不同方向
的方(g向ra导di数en是t)不一样的.
问题 函数z = f (x, y)沿什么方向的方向导数为最大
已知方向导数公式 ffcosfcos
f(x,y)c表示一条平面曲线,
所其以参g任数r意形a点式处d:的fxy切向xy(量x)为:1,yfxx f1y,yffxxy
0
1
fx
(
fx fy
)
fy 0 gr afx d ,fyf gradf
所以梯度为曲线 f(x,y)c上点( x, y) 处的法向量.
梯度与等高线的关系:
函数 z f ( x , y ) 在点 P ( x , y )
zlP fxPco s fyPcos gr zP a (c d ,c oo s )s grzP al0 d 19
沿梯度方向,
函数的增长最快!
gradzP
f x
,
f y
P
结论 函数在某点的梯度是这样一个向量,
它的方向与取得最大方向导数的方向一致, 而它 的模为方向导数的最大值(最大的变化率).
8.7 方向导数与梯度
一、 方向导数的概念 二、 梯度的定义和方向导数的计算 三、 小结 思考题
一、方向导数定义与计算公式
y
实例
(1, 3)
(5, 3)
TT(x,y) k x2 y2
(1, 1)
o
(5, 1)
x
问这只蚂蚁应沿什么方向爬行才能最快 到达较凉快的地点?
高等数学高数课件 9.7方向导数与梯度
u
1 z
(6
x2
8
y2
1
)2
解
u
6;
x p
14
u
8;
y p
14
例5
设
n
是曲面
2x2
3
y2
z2
6
在点
P(1,1,1)
处的指向外侧的法向量, 求函数
在此处沿方向
n
的方向导数.
u
1 z
(6
x2
8
y2
1
)2
解
u x
p
6; 14
u y
p
8; 14
u z p
6x2 8y2
z2
14.
p
所以
u n
p
解 由方向导数的计算公式知
f l
(1,1)
fx (1,1)cos
f y (1,1)sin
(2x y) cos (2 y x) sin
(1,1)
(1,1)
cos sin
2
sin
4
,
解 由方向导数的计算公式知
f l
(1,1)
2
sin
4
,
解 由方向导数的计算公式知
f l
(1,1)
2 sin
在此处沿方向
n
的方向导数.
u
1 z
(6
x2
8
y2
1
)2
解
Fx p
4,
Fy p
6, Fz p
2,
n
{4,6,2},
|n|
2 14,
cos 2 , cos 3 , cos 1 .
14
高数讲义第七节方向导数与梯度
故
对于三元函数 u = f ( x , y , z ) ,它在点
处沿方向
的方向导数定义为
如果 u = f ( x , y , z ) 在点
处可微,则
例3 设 是曲面
在点
处的指向外侧的法向量,求函数 在此处沿方向 的方向导数.
解: 令 则曲面上任意一点 P ( x , y , z ) 处的法向量可取为
(2)等值线与梯度 等值线在点 P ( x , y ) 处的一 个法向量可取为
梯度与等值线的关系:
梯度的概念可以推广到三元函数
三元函数 在空间区域G内具有一阶连续偏导数,则对于每一点
,都可定义一个向量(梯度)
类似于二元函数,此梯度也是一个向量, 其方向与取得最大方向导数的方向一致,其模 为方向导数的最大值.
一、问题的提出
考虑二元函数 z = f ( x , y ) 的偏导数
仅反映函数在水平方向 (横轴方向)上的变化率。 同理,偏导数 仅反映函数在垂直平方向 上的变化率。 在实际问题中,还需要考虑函数在斜方向上的变化 率问题,如冷热空气的流动,温度场的变化等。
实例:一块长方形的金属板,四个顶点的坐标是 (1,1),(5,1),(1,4),(5,4).在坐标原点处有一个 火焰,它使金属板受热.假定板上任意一点处的 温度与该点到原点的距离成反比.在(4,3)处有一 个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快 到达较凉快的地点?
解 由梯度计算公式得 故
例5:设在 xo y 平面上,各点的温度与点的位置关系为
解 故
例5:设在 xo y 平面上,各点的温度与点的位置关系为 解
例5:设在 xo y 平面上,各点的温度与点的位置关系为
解 (3)沿梯度方向温度变化率最大,最大值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故 f lim f f cos f cos f cos
l 0 x
y
z
目录 上页 下页 返回 结束
例1. 求函数
在点 P(1, 1, 1) 沿向量
3) 的方向导数 .
解: 向量 l 的方向余弦为
u l
P
2xyz
2 14
x2y 3 14
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
1. 定义
G
f, x
f, y
f z
向量 G 称为函数 f (P) 在点 P 处的梯度 (gradient),
记作 grad f (P), 或 f (P), 即
其中
fx(P), fy(P), fz (P)
称为向量微分算子或 Nabla算子.
同样可定义二元函数
在点P(x, y) 处的梯度
例2. 求函数
在点P(2, 3)沿曲线
朝 x 增大方向的方向导数.
解: 将已知曲线用参数方程表示为
xx y x2 1
它在点 P 的切向量为 (1, 2x) x2 (1, 4)
cos 1 , cos 4
17
17
y
P
O 1 2 x
60 17
目录 上页 下页 返回 结束
例3. 设 n 是曲面
说明: 函数的方向导数为梯度在该方向上的投影:
f l
grad
f
el
( el 为方向l 上的单位向量)
目录 上页 下页 返回 结束
2. 梯度的几何意义
对函数 z
f
(x, y), 曲线
z
f (x, zc
y)在
xOy
面上的投影
L* : f (x, y) c 称为函数 f 的等值线或等高线 . 举例
时为零时, 其上点 P 处的法向量为 grad f P f P .
目录 上页 下页 返回 结束
例4. 设函数
(1) 求等值面 f (x, y, z) 2 在点 P(1,1,1) 处的切平面方程. (2) 求函数 f 在点 P (1,1,1) 沿增加最快方向的方向导数.
解: (1) 点P处切平面的法向量为
设 f x , f y 不同时为零 , 则L*上点P 处的法向量为
( fx , f y ) P grad f P f P y
f c3
函数在一点的梯度垂直于该点等值线,
f c2
指向函数增大的方向.
P f c1
同样,
称为
O
x
的等值面(等量面). 当其各偏导数不同 (设 c1 c2 c3)
这里x cos, y cos .
目录 上页 下页 返回 结束
若函数f ( x, y)在P存在偏导数,则函数在点P
1,0} {0,1}的方向导数分别为
(
fx
,
0,
fy;
2
)、
y
轴正向
(2)沿着 x轴负向、 y 轴负向的方向导数是 f x , f y.
第七节
第九章
方向导数与梯度
一、方向导数 二、梯度及其物理意义
目录 上页 下页 返回 结束
一、方向导数
讨论函数z f ( x, y)在一点 P0沿某一方
向的变化率问题. 设函数 z f ( x, y) 在点 P0 ( x0 , y0 ) 的
某一邻域 U (P0 )内有定义,自点 P0 引射线 l.
在点 P(1, 1, 1 )处
指向外侧的法向量, 求函数
在点P 处沿
方向 n 的方向导数.
解: n (4x , 6 y , 2z) P 2(2 , 3 , 1)
方向余弦为 cos 2 , cos 3 , cos 1
14
14
14
而
u x P z
6x 6x2 8y2
P
6 14
同理得
u 1 6 2 8 3 141 11
l 0
( 其中 (x)2 (y)2 (z)2 )
设方向l 的方向角为 , ,
x cos , y cos , z cos ,
目录 上页 下页 返回 结束
定理: 若函数 f (x, y, z) 在点 P(x, y, z) 处可微 ,
则函数在该点沿任意方向 l 的方向导数存在 , 且有
PP0
), 如当
P 沿着
l 趋于 P0时,
lim f ( x0 x, y0 y) f ( x0 , y0 )
0
存在, 称此极限为函数 f(x,y) 在点 P0沿方向 l
的方向导数.
记为 f
lim f ( x0 x, y0 y) f ( x0 , y0 ) .
l x0 , y0 0
f f cos f cos f cos
l x
y
z
l
P
证明: 由函数 f (x, y, z) 在点 P 可微 , 得
f f x f y f z o( )
x
y
z
P(x, y, z)
当P x x, y y, z z在以x, y, z为始点的射线l上时,
f
o( )
目录 上页 下页 返回 结束
二、梯度
方向导数公式 f f cos f cos f cos
l x
y
z
令向量
G
f, x
f, y
f z
l (cos , cos , cos )
当 l 与 G 方向一致时, 方向导数取最大值:
max f G
l
这说明
G:
方向:f 变化率最大的方向 模 : f 的最大变化率之值
反之不然。
讨论函数z f ( x, y) x2 y2 在(0,0)点处
的偏导数是否存在?方向导数是否存在?
目录 上页 下页 返回 结束
推广可得三元函数方向导数的定义
对于三元函数u f ( x, y, z),它在空间一点 P( x, y, z)沿着方向l 的方向导数 ,可定义为
f lim f ( x x, y y, z z) f ( x, y, z) ,
n P 14
7
目录 上页 下页 返回 结束
例. 函数 u ln(x y2 z2 )在点A( 1 , 0 , 1) 处沿点A
指向 B( 3, -2 , 2) 方向的方向导数是
1 2
. (1996考研)
提示:
其单位向量为
(cos , cos , cos )
ln(x 1)
ln(1 y2 1)
1 2
设ulr的方向角分别为 , , 即el (cos , cos )
是与l同方向的单位向量。
并设 P( x0 x, y0 y)
y
l
•P
y
P0•• x
为 l 上的另一点且 P U(P0 ).
o
x
则若令 | P0P | ,则x cos, y cos .
目录 上页 下页 返回 结束
考虑
z (