八年级数学培优第十三讲平行四边形与一次函数

合集下载

八年级数学培优学案(13)一次函数综合

八年级数学培优学案(13)一次函数综合

八年级数学培优学案(13)----一次函数综合一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限 (B )二象限 (C )三象限 (D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四7. 无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-14 (B )m>5 (C )m=-14(D )m=5 9.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<1310.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作( )(A )4条 (B )3条 (C )2条 (D )1条11.当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a ≠0 (D )-4<a<212.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个13.关于x 的一次函数y=kx+k 2+1的图像可能是( )14.已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >215.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( )A. 1x <-B. 1x >-C. 1x >D.1x <16.设min {x ,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y=min{2x ,x+2},y 可以表示为( )A. ()()2222x x y x x <⎧⎪=⎨+≥⎪⎩ B. ()()2222x x y x x +<⎧⎪=⎨≥⎪⎩ C. y =2x D. y =x +2二、填空题 1.已知一次函数y=-6x+1,当-3≤x ≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.4.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.5.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.6.设直线kx+(k+1)y-1=0(k 为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______.7.已知关于x 的一次函数y mx n =+的图象如图所示,则||n m-____.8. 求与直线y x =平行,并且经过点P(1,2)的一次函数解析式.9. 已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是________。

北师大版八年级上册数学提高第13-14讲:一次函数的性质和计算

北师大版八年级上册数学提高第13-14讲:一次函数的性质和计算

初二数学(秋季)讲义第十三讲一次函数的性质➢课前预习1.甲、乙、丙三人在一次赛跑中,路程s(m)与时间t(s)之间的关系如图所示,则=_____v甲,=______v乙,=______v丙,通过比较发现,速度越大,对应的图象越______(填“陡峭”或“平缓”).2.如图,在平面直角坐标系xOy中,描出下列点的坐标:A(1,2),B(2,4),C(-1,-2),D(1,1),E(-1,3),F(1,-3).(1)作出直线AB;(2)C,D,E,F四点中,在直线AB上的是___________.➢精讲精练1.下列各曲线中,不能表示y是x的函数的是()A.B.D.2.已知下列函数关系式:①y=2x+1;②1yx=;③y=x2-1;④y=-8x;⑤y=3.其中表示一次函数的有()A.1个B.2个C.3个D.4个3.已知函数y=(k-2)x+2k+1,当k_______时,它是正比例函数;当k________时,它是一次函数.4.已知函数y=(m-2)x2n+1-m+n,当m=______,n=______时,它是正比例函数;当m____,n=___时,它是一次函数.5.(1)点(1,-1)______(填“在”或“不在”)直线y=2x-3上;试写出直线y=2x-3上任意一点的坐标____________.(2)满足关系式y=2x-3的x,y所对应的点(x,y)都在一次函数_____________的图象上;一次函数y=2x-3的图象上的点(x,y)都满足关系式_________________.6.下列四个点,在正比例函数25y x=-的图象上的是()A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)7.若点(m,n)在函数y=2x+1的图象上,则2m-n的值是()A.2 B.-2 C.1 D.-18.一次函数y=x+2的图象经过_____________象限;一次函数y=-5x-3的图象经过_____________象限.9.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-2 B.-1 C.0 D.210.已知一次函数y=kx+b的图象如图所示,下列结论正确的是(A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<011.一次函数y=kx+b中,若k<0,b>0,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.下列一次函数:①y=5x-6;②y=-0.3x+3;③y-3;④y=x.其中y的值随x的增大而减小的是________.(填写序号)13.若y=kx-4的函数值y随x的增大而增大,则k的值可能是()A.-4 B.12-C.0 D.314.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,则对k和b的符号判断正确的是()A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<015.已知一次函数y=kx-k,若y随x的增大而增大,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限16.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限17.已知函数y=kx+b的图象如图所示,则函数y=2kx+b的图象可能是()A.B.18.直线y=-x与y=-x+5的位置关系是_______,直线y=-x的图象可以看作是由直线y=-x+5__________________.19.若直线y=(2m-1)x+m-2与直线y=-3x-1平行,则m=_______.20.将直线y=2x向上平移两个单位,所得的直线是()A.y=2x+2 B.y=2x-2C.y=2(x-2) D.y=2(x+2)21.对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向上平移2个单位得到y=-2x的图象D.函数的图象与y轴的交点坐标是(0,4)初二数学(秋季)讲义第十四讲一次函数计算➢课前预习1.要画出一次函数y kx b=+的图象,需要______个点的坐标,通常找________,________;正比例函数图象经过坐标原点,因此只需再确定____点即可,通常找________.2.计算下列各式:①204k bb-+=⎧⎨=⎩②235y xy x=-+⎧⎨=-+⎩3.x轴上的点____坐标等于零;y轴上的点____坐标等于零;平行于x轴的直线上的点____坐标相同;平行于y轴的直线上的点____坐标相同.4.一次函数y=3x+4与y轴的交点坐标是__________,若一次函数y=3x+b与y轴的交点为(0,4),则b=______,一次函数的表达式为_______________.5.如图,直线y=x-2和直线y=-x+2与坐标轴围成△ABC,①A(____,____),B(____,____),C(____,____);②S△ABC=_________.yxO BCA➢ 精讲精练1. 若点M 在函数y =2x -1的图象上,则点M 的坐标可能是( )A .(-1,0)B .(0,-l)C .(1,-1)D .(2,4)2. 若直线y =2x +1经过点(m +2,1-m ),则m =______.3. 一次函数y =-2x +3的图象与x 轴交于点_______,与y 轴交于点__________.4. 在一次函数2121+=x y 的图象上,到y 轴的距离为1的点的坐标为__________________. 5. 若点(3,-4)在正比例函数y =kx 的图象上,那么这个函数的解析式为( )A .43y x =B .43y x =-C .34y x =D .34y x =-6. 若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)7. 已知某个一次函数的图象经过点A (-2,0),B (0,4),求这个函数的表达式.8. 已知某个一次函数的图象经过点A (3,0),B (0,-2),求这个函数的表达式.9. 如图,直线l 是一次函数y =kx +b 的图象,填空:(1)k =______,b =______; (2)当x =4时,y =______;(3)当y =2时,x =______.10. 已知y 是x 的一次函数,下表给出了部分对应值:11.若一次函数y=kx+3的图象经过点A(1,2),则其解析式为____________.12.若一次函数y=2x+b的图象经过点A(-1,1),则b=______,该函数图象经过点B(1,_____ )和点C( _____,0).13.若直线y=kx+b平行于直线y=3x+4,且过点(1,-2),则将y=kx+b向下平移3个单位得到的直线的表达式是_______________.14.在同一平面直角坐标系中,一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为()A.(-1,4) B.(-1,2) C.(2,-1) D.(2,1)15.若直线y=2x+b经过直线y=x-2与直线y=3x+4的交点,则b的值为()A.-11 B.-1 C.1 D.616.当b=______时,直线y=2x+b与y=3x-4的交点在x轴上.17.直线y=3x-1与两坐标轴围成的三角形的面积为_________.18.已知直线y=kx+b经过点(5,0),且与坐标轴所围成的三角形的面积为20,则该直线的表达式为______________________.19.若一次函数y=kx+3的图象与坐标轴的两个交点间的距离为5,则k的值为__________.20.点A,B,C,D的坐标如图所示,求直线AB与直线CD的交点E的坐标.21.如图,已知直线l1:y=2x+3,直线l2:y=-x+5,直线l1,l2与x轴分别交于点B,C,l1,l2相交于点A.(1)求A,B,C三点的坐标;(2)S△ABC =________.。

2022-2023学年初二数学第二学期培优专题13 一次函数与正方形

2022-2023学年初二数学第二学期培优专题13 一次函数与正方形

2022-2023学年初二数学第二学期培优专题13 一次函数与正方形【例题讲解】如图,已知一次函数y=﹣34x+6的图象与坐标轴交于A、B两点,点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(67,0);②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(67,0)或(6,0).【综合演练】1.如图,在平面直角坐标系中,正方形ABCD的边长为3,点A的坐标为(1,1).若直线y=x+b与正方形有两个公共点,则b的取值范围是______.2.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B 在第一象限,若点B在直线y=kx+3上,则k的值为___.3.如图所示,在平面直角坐标系中,已知一次函数112y x=+的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求正方形ABCD的面积;(2)求点C和点D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,一次函数12125y x=-+的图象交x轴、y轴于A、B两点,以AB为边在直线右侧作正方形ABCD,连接BD,过点C作CF⊥x轴于点F,交BD于点E,连接AE.(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.5.如图,已知一次函数y=﹣12x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=13MP,MB=13OM,OE=13ON,ND=13 NP.(1)b=;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣12x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.6.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣12x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.7.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,BQOP的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H 的坐标.8.如图,在平而直角坐标系中.直线l :()2100y x k =-+≠经过点()3,4C ,与x 轴,y 轴分别交于点A ,B ,点D 的坐标为(8,4),连接OD ,交直线l 于点M ,连按OC ,CD ,AD .(1)填空:点A 的坐标为_________;点M 的坐标为______;(2)求证:四边形OADC 是菱形;(3)直线AP :5y x =-+与y 轴交于点P .①连接MP ,则MP 的长为_______;②已知点E 在直线AP 上,在平面直角坐标系中是否存在一点F ,使以O ,A ,E ,F 为顶点的四边形是正方形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.9.直线2y kx =+(0)k <与x 轴、y 轴分别交于,A B 两点,以AB 为边向外作正方形ABCD ,对角线,AC BD 交于点E ,则过,O E 两点的直线的解析式是__________.10.如图,四边形OABC 和四边形ODEF 都是正方形,点F ,O ,A 在一条直线上,点D 在OC 边上,以FA 为x 轴,OC 为y 轴建立平面直角坐标系xOy ,直线132y x =+经过点B ,E .(1)求正方形OABC 和正方形ODEF 的边长;(2)若点P 是BE 的中点,试证明:点C ,P ,A 三点在同一条直线上.11.在平面直角坐标系xOy 中,点A (0,4),B (3,0),以AB 为边在第一象限内作正方形ABCD ,直线l :y =k (x +3).(1)点D 的坐标是 ;(2)当直线l 经过D 点时,求k 的值;(3)该直线l 一定经过一个定点,其坐标是 ;(4)当直线l 与正方形的四边有两个交点时,求k 的取值范围.12.在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:如果存在以点P 为端点的一条射线与图形W 有且只有2个公共点,那么称点P 是图形W 的“相关点”.已知点(),2A m ,()2,0B m -,()2,0C m +.(1)当0m =时,①在点()11,0P -,()21,1P,()34,0P ,()43,1P -中,是折线BA AC -的“相关点”的是______; ②点M 是直线24y x =+上一点,如果点M 是折线BA AC -的“相关点”,求点M 的横坐标M x 的取值范围;(2)正方形DEFG 的各边都平行于坐标轴,对角线的交点N 的坐标是()24,0m -.如果正方形的边长是2,正方形DEFG 上的任意一点都是折线BA AC -的“相关点”,请直接写出m 的取值范围.13.如图,在平面直角坐标系中,直线y =﹣2x +8与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴负半轴于点C ,且OC =6.(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 左侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标.答案与解析【例题讲解】如图,已知一次函数y=﹣34x+6的图象与坐标轴交于A、B两点,点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM 于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(67,0);②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(67,0)或(6,0).【综合演练】1.如图,在平面直角坐标系中,正方形ABCD的边长为3,点A的坐标为(1,1).若直线y=x+b与正方形有两个公共点,则b的取值范围是_________.【答案】-3<b<3【分析】当直线y=x+b过D,B时,求得b,即可得到结论.【解答】解:∵正方形ABCD的边长为3,点A的坐标为(1,1),∴D(1,4),B(4,1)当直线y=x+b经过点D时,4=1+b,此时b=3,当直线y=x+b经过点B时,1=4+b,此时b=-3.∴直线y=x+b与正方形有两个公共点,则b的取值范围是-3<b<3.故答案是:-3<b<3.【点评】此题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.2.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B 在第一象限,若点B在直线y=kx+3上,则k的值为___.【答案】﹣2【分析】根据正方形的对称性得到点B坐标,代入直线解析式即可求出k.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴点B坐标为(1,1),∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2【点评】本题考查了正方形的对称性,一次函数的性质,熟知相关知识点,求出点B的坐标是解题关键.3.如图所示,在平面直角坐标系中,已知一次函数112y x =+的图象与x 轴,y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD .(1)求正方形ABCD 的面积;(2)求点C 和点D 的坐标;(3)在x 轴上是否存在点M ,使△MDB 的周长最小?若存在,请求出点M 的坐标;若不存在,请说明理由. 【答案】(1)5(2)C (-1,3),D (-3,2)(3)()1,0M -,理由见解答【分析】(1)由一次函数112y x =+,可求出A 和B 点坐标,即得出OA 和OB 的长,再根据勾股定理求出AB 的长,最后由正方形面积公式计算即可;(2)作CE y ⊥轴,DF x ⊥轴.根据正方形的性质结合所作辅助线易证(AAS)BCE DAF ABO ≌≌,即得出2BE DF OA ===,1CE AF OB ===,从而可求出3OE =,3OF =,即得出C 、D 两点坐标; (3)找出点B 关于x 轴的对称点B ',连接B D ',与x 轴交于点M ,根据轴对称的性质可知此时BMD 周长最小.由B (0,1),得出B '(0,-1),利用待定系数法可求出直线B D '的解析式为=1y x --,从而可求出M 点坐标.(1)对于直线112y x =+,令0x =,得到1y =;令0y =,得到2x =-, ∴A (-2,0),B (0,1),∴在Rt AOB △中,2OA =,1OB =,∴根据勾股定理得:22215AB =+=,∴正方形ABCD 面积为5;(2)如图,作CE y ⊥轴,DF x ⊥轴,∴90CEB AFD AOB ∠=∠=∠=︒.∵四边形ABCD 是正方形,∴BC AB AD ==,90DAB ABC ∠=∠=︒, ∴90DAF BAO ∠+∠=︒,90ABO CBE ∠+∠=︒, ∵90DAF ADF ∠∠=+︒,90BAO ABO ∠+∠=︒, ∴BAO ADF CBE ∠=∠=∠,∴(AAS)BCE DAF ABO ≌≌,∴2BE DF OA ===,1CE AF OB ===,∴213OE OB BE =+=+=,213OF OA AF =+=+=, ∴C (-1,3),D (-3,2);(3)如图,找出点B 关于x 轴的对称点B ',连接B D ',与x 轴交于点M ,则此时BMD 周长最小. ∵B (0,1),∴B '(0,-1)设直线B D '的解析式为(0)y kx b k =+≠,把B '与D 坐标代入得:132b k b =-⎧⎨-+=⎩, 解得:11k b =-⎧⎨=-⎩, ∴直线B D '的解析式为=1y x --.对于=1y x --,令0y =,得到=1x -,∴M (-1,0).【点评】本题考查正方形的性质,勾股定理,坐标与图形,三角形全等的判定和性质,一次函数的应用以及轴对称变换等知识.正确的作出辅助线并利用数形结合的思想是解题关键.4.如图,在平面直角坐标系中,一次函数12125y x=-+的图象交x轴、y轴于A、B两点,以AB为边在直线右侧作正方形ABCD,连接BD,过点C作CF⊥x轴于点F,交BD于点E,连接AE.(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.【答案】(1)AB=13;(2)见解析;(3)△AEF周长为24.【分析】(1)根据一次函数解析式,令x、y分别为0,即可求出A、B两点坐标,再利用勾股定理即可算出AB的长;(2)证明△CDE和△ADE中,可得∠DCE=∠DAE,根据三角形内角和和对顶角的性质可得∠DCM=∠MAF,等量代换得∠MAF=∠EAM;(3)过点C作y轴垂线交y轴于点N,构造三角形全等即可推出点C的坐标;将AE+EF转换为CF即可求出△AEF的周长.【解答】解:(1)∵一次函数y=﹣125x+12的图象交x轴、y轴与A、B两点,∴当x=0,则y=12,故B(0,12),当y =0,则x =5,故A (5,0),即OA =5,OB =12,∴AB =22OA OB +=22512+=13,故AB =13;(2)∵四边形ABCD 是正方形,∴CD =AD ,∵BD 是正方形的对角线,∴∠CDE =∠ADE ,在△CDE 和△ADE 中,CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△ADE (SAS ),∴∠DCE =∠DAE ,设FC 与AD 交点为M ,∵∠EMD =∠AMF (对顶角相等),∠DCM +∠EMD =∠MAF +∠AMF ,∴∠DCM =∠MAF ,∴∠MAF =∠EAM ,∴AD 平分∠EAF ;(3)过点C 作y 轴垂线交y 轴于点N ,如图所示:∵∠CBN +∠NCB =∠CBN +ABO =90°,∴∠NCB =∠ABO ,在△CNB 和△BOA 中,90NCB OBA CNB BOA CB BA ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CNB ≌△BOA (AAS ),∴BN =AO =5,CN =BO =12,又∵CF ⊥x 轴,∴CF =BO +BN =12+5=17,∴C 的坐标为(12,17);∵△CDE ≌△ADE ,∴AE =CE ,∴AE +EF =CF =17,AF =OF -AO =12-5=7,∴C △AEF =AE +EF +AF =CF +AF =17+7=24.【点评】本题考查一次函数图象与坐标轴的交点,勾股定理,正方形的性质,全等三角形的判定与性质,对顶角的性质,以及三角形内角和的应用,正确作出辅助线,构造全等三角形是解题关键.5.如图,已知一次函数y=﹣12x+b 的图象过点A (0,3),点p 是该直线上的一个动点,过点P 分别作PM 垂直x 轴于点M ,PN 垂直y 轴于点N ,在四边形PMON 上分别截取:PC=13MP ,MB=13OM ,OE=13ON ,ND=13NP . (1)b= ;(2)求证:四边形BCDE 是平行四边形;(3)在直线y=﹣12x+b 上是否存在这样的点P ,使四边形BCDE 为正方形?若存在,请求出所有符合的点P 的坐标;若不存在,请说明理由.【答案】(1)3;(2)证明见解析;(3)在直线y=﹣12x+b 上存在这样的点P ,使四边形BCDE 为(3)设P 点坐标(x ,y ),当△OBE ≌△MCB 时,四边形BCDE 为正方形,OE=BM ,当点P 在第一象限时,即13y=13x ,x=y . P 点在直线上,132y x y x⎧=+⎪⎨⎪=⎩, 解得22x y =⎧⎨=⎩, 当点P 在第二象限时,﹣x=y132y x y x⎧=+⎪⎨⎪=-⎩, 解得66x y =-⎧⎨=⎩在直线y=﹣12x+b 上存在这样的点P ,使四边形BCDE 为正方形,P 点坐标是(2,2)或(﹣6,6). 点评:本题考查了一次函数的综合题,利用了全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,注意数形结合.6.在平面直角坐标系中,直线y =2x+4与两坐标轴分别交于A ,B 两点.(1)若一次函数y =﹣12x+m 与直线AB 的交点在第二象限,求m 的取值范围;(2)若M 是y 轴上一点,N 是x 轴上一点,直线AB 上是否存在两点P ,Q ,使得以M ,N ,P ,Q 四点为顶点的四边形是正方形.若存在,求出M ,N 两点的坐标,若不存在,请说明理由.【答案】(1)m <4;(2)M (0,87),N (﹣47,0)或M (0,﹣83),N (43,0)或M (0,﹣4),N (﹣163,0); 【分析】(1)根据题意联立一次函数解析式与直线AB 的解析式,据此进一步用m 表示出x ,最后根据第二象限的点的坐标特征加以分析即可;(2)首先求出A 、B 两点坐标,然后根据题意分图1、图2、图3共三种情况结合相似三角形性质进一步分析求解即可.【解答】(1)联立24y x =+与12y x m =-+,得:1242x x m +=-+, ∴()245x m =-, ∵交点位于第二象限,∴()2405m -<, ∴4m <;(2)当0x =时,244y x =+=,∴A (0,4),当0y =时,024x =+,即:2x =-,∴B (2-,0),∴OA =4,OB =2.如图1,过点Q 作QH ⊥x 轴于H ,∵MN ∥AB ,∴△NMO~△BAO ,∴12ON OB OM OA ==, 设ON =a ,则OM =2a ,∵∠MNQ =90°,∴∠QNH+∠MNO =∠MNO+∠NMO =90°,∴∠QNH =∠NMO ,在△QNH 和△NMO 中,∵∠QNH =∠NMO ,∠QHN=∠NOM ,QN=MN ,∴△QNH ≅△NMO (AAS ),∴QH=ON=a,HN=OM=2a,易得:△BQH~△BAO,∴12 BH OBQH OA==,∴BH=12a,∵OB=BH+HN+ON,∴2=122a a a++,解得47a=,∴M(0,87),N(47-,0);如图2,过点P作PH⊥x轴于H,易证△PNH~△BAO,∴12 PH OBOH OA==,设PH=b,则NH=2b,同理证得△PNH≅△NMO,∴PH=ON=b,HN=OM=2b,∴OH=HN−OH=b,易得:△BPH~△BAO,∴12 BH OBPH OA==,∴BH=12 b,∵OB=BH+OH,∴2=12b+b,解得b=43,∴M(0,83-),N(43,0);如图3,过点P作PH⊥x轴于H,PE⊥y轴于E,QF⊥y轴于F,易得:△PAE~△BAO,∴12 PE OBAE OA==,设PE=c,则AE=2c,同理证得△PNH≅△PME,∴PH=PE=OE=c,则AE=2c,∵OA=AE+OE,∴4=2c+c,解得c=43,∵△MQF≅△PME,∴MF=PE=OE,EM=FQ,∴EM=OF=FQ,设EM=OF=FQ=m,则Q(﹣m,﹣m),代入y=2x+4中,得﹣m=﹣2m+4,解得m=4,∴NO=NH+OH=163,∴N(163-,0),∵OF=m=4,∴M(0,﹣4).综上所述M(0,87),N(47-,0)或M(0,83-),N(43,0)或M(0,﹣4),N(163-,0).【点评】本题主要考查了一次函数与相似三角形的判定及性质的综合运用,熟练掌握相关方法是解题关键. 7.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,BQOP的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.【答案】(1)y=x+4;(2)BQOP的值不变,理由见解析;(3)点H的坐标为(42243,22)----或(0,0)或(628,22)-.【分析】(1)利用待定系数法转化为解方程组解决问题.(2)如图1中,结论:BQOP的值不变.连接BM,设PB交OM于G.想办法证明∠PBM=90°,利用直角三角形斜边中线的性质以及等腰直角三角形的性质即可解决问题.(3)分三种情形:如图2﹣1中,当四边形PBNH是菱形时,如图2﹣2中,当点P与A重合时.得到四边形PNMO是正方形(是菱形),此时H与原点O重合.如图2﹣3中,当四边形PBNH是菱形时,分别求解即可解决问题.【解答】解:(1)∵y=kx+b的图象经过点(﹣2,2)、(3,7),∴22 37k bk b-+=⎧⎨+=⎩,解得14kb=⎧⎨=⎩,∴一次函数的解析式为y=x+4.(2)如图1中,结论:BQOP的值不变.理由:连接BM,设PB交OM于G.∵直线y=x+4与坐标轴相交于点、B两点,∴A(﹣4,0),B(0,4),∴OA=OB=4,∵四边形POMN是正方形,∴∠POM=∠AOB=90°,OM=OP,∴∠AOP=∠BOM,∵OA=OB,∴△AOP≌△BOM(SAS),∴∠OPG=∠GMB,∵∠OGP=∠BGM,∴∠GBM=∠GOP=90°,∴QM=QP,∴QB=QP=QM,∵△POQ是等腰直角三角形,∴OP=2QP,∴22 BQ PQOP OP==.(3)如图2﹣1中,当四边形PBNH是菱形时,∵BH 垂直平分线段PN ,BH 垂直平分线段OM ,∴BM =OB =4,∴M (﹣22,4+22),∴P (﹣4﹣22,﹣22),∴BN =BP =()()2242242243++-=,∴PH =BN =43,∵QB =QN =OQ ,∴∠NBO =90°,∴BN ∥OA ∥PH ,∴H (﹣4﹣2243-,﹣22).如图2﹣2中,当点P 与A 重合时,得到四边形PNMO 是正方形(是菱形),此时H 与原点O 重合,H (0,0).如图2﹣3中,当四边形PBNH 是菱形时,设PH 交OB 于J ,在JO 上取一点F ,使得PJ =JF .∵BP =BN ,∴∠BPN =∠BNP =22.5°,∵∠OPN =90°,∠P AO =45°,∴∠APO =67.5°,∴∠AOP =67.5°,∴∠POJ =22.5°,∵∠PFJ =∠FPO +∠POF =45°,∴∠FPO =∠POF =22.5°,∴PF =OF ,设PJ =BJ =JF =x ,则PB =BN =PF =OF =2x ,∴2x +2x =4,∴x =4﹣22,∴BN =PH =42﹣4,P (22﹣4,22),∴H (62﹣8,22),综上所述,满足条件的点H 的坐标为(﹣4﹣22﹣43,﹣22)或(0,0)或(62﹣8,22).【点评】本题考查的是一次函数与几何的综合,难度系数较大,第三问比较容易忽略的点在于当点P 与A 重合时.得到四边形PNMO 是正方形,此时是特殊的菱形.8.如图,在平而直角坐标系中.直线l :()2100y x k =-+≠经过点()3,4C ,与x 轴,y 轴分别交于点A ,B ,点D 的坐标为(8,4),连接OD ,交直线l 于点M ,连按OC ,CD ,AD .(1)填空:点A 的坐标为_________;点M 的坐标为______;(2)求证:四边形OADC 是菱形;(3)直线AP :5y x =-+与y 轴交于点P .①连接MP ,则MP 的长为_______;②已知点E 在直线AP 上,在平面直角坐标系中是否存在一点F ,使以O ,A ,E ,F 为顶点的四边形是正方形?若存在,请直接写出点F 的坐标;若不存在,请说明理由. 【答案】(1)(5,0),(4,2)(2)见解析(3)①5;②存在,点F 的坐标为(5,5)或(52,-52).【分析】(1)利用一次函数图象上点的坐标特征,可得出点A 的坐标,又点D 的坐标,利用待定系数法可求出直线OD 的解析式,再联立两函数解析式,可求出交点M 的坐标;(2)过点C 作CQ ⊥x 轴于点Q ,利用勾股定理可得出OC =5,又点C ,D 的坐标可得出CD =5,CD ∥x 轴,结合点A 的坐标,可得出CD =OA ,进而可得出四边形OADC 为平行四边形,再结合OC =OA ,即可证出四边形OADC 是菱形;(3)①过点M 作MN ⊥y 轴于点N ,利用一次函数图象上点的坐标特征,可求出点P 的坐标,结合点M 的坐标可得出MN ,PN 的长,再利用勾股定理,即可求出MP 的长;②存在,分OA 为边及OA 为对角线两种情况考虑,(i )当OA 为边时,点E 与点P 重合,利用正方形的性质可求出点F 的坐标;(ii )当OA 为对角线时,点E 在线段AP 的中点,结合点A ,P 的坐标可得出点E 的坐标,再利用正方形的性质,即可求出点F 的坐标.(1)解:当y=0时,-2x+10=0,解得:x=5,∴点A的坐标为(5,0);设直线OD的解析式为y=kx(k≠0),将D(8,4)代入y=kx,得:4=8k,解得:k=12,∴直线OD的解析式为y=12x.联立两函数解析式得:21012y xy x=-+⎧⎪⎨=⎪⎩,解得:42xy=⎧⎨=⎩,∴点M的坐标为(4,2),故答案为:(5,0);(4,2);(2)证明:过点C作CQ⊥x轴于点Q,如图1所示.∵点C的坐标为(3,4),∴OQ=3,CQ=4,∴OC= 222234OQ CQ+=+=5.∵点C的坐标为(3,4),点D的坐标为(8,4),∴CD=5,CD∥x轴,即CD∥OA.∵点A的坐标为(5,0),∴OA=5=CD,∴四边形OADC为平行四边形,又∵OA=OC=5,∴四边形OADC是菱形;(3)解:①过点M作MN⊥y轴于点N,如图2所示.当x=0时,y=-1×0+5=5,∴点P的坐标为(0,5).∵点M的坐标为(4,2),∴MN=4,ON=2,∴PN=5-2=3,∴MP=2222+=+=5.34PN MN故答案为:5;②存在,分两种情况考虑,如图3所示.(i )当OA 为边时,∵OA =OP =5,∠AOP =90°,∴点E 与点P 重合,∴点F 的坐标为(5,5);(ii )当OA 为对角线时,∵OA =OP =5,∠AOP =90°,∴△AOP 为等腰直角三角形,又∵四边形AEOF 为正方形,∴点E 为线段AP 的中点,∴点E 的坐标为(52,52), ∴点F 的坐标为(0+5-52,0+0-52),即(52,-52). ∴在平面直角坐标系中存在一点F ,使以O ,A ,E ,F 为顶点的四边形是正方形,点F 的坐标为(5,5)或(52,-52). 【点评】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、勾股定理、平行四边形的判定、菱形的判定以及正方形的性质,解题的关键是:(1)利用待定系数法,求出直线OD 的解析式;(2)利用邻边相等的平行四边形为菱形,证出四边形OADC 是菱形;(3)①利用勾股定理,求出MP 的长;②分OA 为边及OA 为对角线两种情况,求出点F 的坐标.9.直线2y kx =+(0)k <与x 轴、y 轴分别交于,A B 两点,以AB 为边向外作正方形ABCD ,对角线,AC BD 交于点E ,则过,O E 两点的直线的解析式是__________.【答案】y x=【分析】分别过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,再证明△BEG≌△AEF,得出EG=EF,从而可得出结论.【解答】解:过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,∵四边形ABCD为正方形,∴BE=AE,且∠AEB=90°,∴∠BEG+∠AEG=∠AEG+∠AEF,∴∠BEG=∠AEF,又∠BGE=∠AFE=90°,∴△BEG≌△AEF(ASA),∴EF=EG.所以设过OE两点的直线的函数解析式为y=kx(k≠0),点E的坐标为(a,a),代入可得a=ak,解得k=1,∴过,O E两点的直线的解析式是为y=x.故答案为:y=x.【点评】本题主要考查解析式的求法,正方形的性质以及全等三角形的判定与性质,正确构造全等三角形是解题的关键.10.如图,四边形OABC和四边形ODEF都是正方形,点F,O,A在一条直线上,点D在OC边上,以FA为x轴,OC为y轴建立平面直角坐标系xOy,直线132y x=+经过点B,E.(1)求正方形OABC和正方形ODEF的边长;(2)若点P是BE的中点,试证明:点C,P,A三点在同一条直线上.【答案】(1)6和2;(2)见解答【分析】(1)设B(a,a),A(-b,b),代入132y x=+,即可求解;(2)先写出P(2,4),A(6,0),C(0,6),从而求出直线AC的解析式,把P的坐标代入AC的解析式,即可得到答案.【解答】解:(1)设正方形OABC和正方形ODEF的边长分别为:a,b,∴B(a,a),A(-b,b),∵直线132y x=+经过点B,E,∴132132a ab b⎧+=⎪⎪⎨⎪-+=⎪⎩,解得:62ab=⎧⎨=⎩,∴正方形OABC和正方形ODEF的边长分别为:6和2;(2)∵B(6,6),A(-2,2),点P是BE的中点,∴P(2,4),∵A(6,0),C(0,6),设AC的解析式为:y=kx+b,∴606k bb+=⎧⎨=⎩,解得:16kb=-⎧⎨=⎩,∴AC的解析式为:y=-x+6,∵x=2时,y=-2+6=4,∴P点在直线AC上,即点C,P,A三点在同一条直线上.【点评】本题主要考查一次函数的性质和图像以及正方形的性质,掌握待定系数法,是解题的关键.11.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=k(x+3).(1)点D的坐标是;(2)当直线l经过D点时,求k的值;(3)该直线l一定经过一个定点,其坐标是;(4)当直线l与正方形的四边有两个交点时,求k的取值范围.【答案】(1)(4,7);(2) k=1;(3)(-3,0);(4)4 0k3 <<【分析】(1)过D点作DE⊥y轴,证△AED≌△BOA,根据全等求出DE=AO=4,AE=OB=3,即可得出D 的坐标;(2)把D的坐标代入解析式即可求出k的值;(3)y=k(x+3)是经过(-3,0)的直线系,故经过定点(-3,0);(4)把A的坐标代入求出k的值,即可得出答案.【解答】解:(1)如图,过D点作DE⊥y轴,则∠AED=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,12.在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:如果存在以点P 为端点的一条射线与图形W 有且只有2个公共点,那么称点P 是图形W 的“相关点”.已知点(),2A m ,()2,0B m -,()2,0C m +.(1)当0m =时,①在点()11,0P -,()21,1P,()34,0P ,()43,1P -中,是折线BA AC -的“相关点”的是______; ②点M 是直线24y x =+上一点,如果点M 是折线BA AC -的“相关点”,求点M 的横坐标M x 的取值范围;(2)正方形DEFG 的各边都平行于坐标轴,对角线的交点N 的坐标是()24,0m -.如果正方形的边长是2,正方形DEFG 上的任意一点都是折线BA AC -的“相关点”,请直接写出m 的取值范围.最大值,进而即可求解;(2)根据题意求得直线AB 的解析式为2y x m =-+,直线AC 的解析式为2y x m =-++,正方形DEFG 上的任意一点都不在BA AC -所围成的锐角之内以及边上(除线段AB ,AC 外),当正方形有一点在AB 或AC 上时,根据点N 的坐标以及正方形的性质求得点F 的坐标,分别代入直线,AB AC 的解析式即可求得点F 的坐标,结合函数图像即可求解.(1)当0m =时,()()()0,2,2,0,2,0A B C -,①如图,在平面直角坐标系中描出点()()()0,2,2,0,2,0A B C -,()11,0P -,()21,1P,()34,0P ,()43,1P -连接,AB AC ,由图像可知,23,P P 为折线BA AC -的“相关点”;②如图,点M 是直线24y x =+上一点,根据定义可知:点M 为折线BA AC -的“相关点”当M 与点()2,0B -重合时,此时M x 取得最小值,为2-,当M 在直线AC 上时,M x 取得最大值,设直线AC 解析式为y kx b =+()()0,2,2,0A C则202k b b +=⎧⎨=⎩解得12k b =-⎧⎨=⎩∴直线AC 解析式为2y x =-+联立224y x y x =-+⎧⎨=+⎩ 解得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩即M x 的最大值为23- 223M x ∴-≤<- (2)点(),2A m ,()2,0B m -,()2,0C m +.设直线AB 的解析式为y cx d =+,AC 解析式为y ex f =+,则()220mc d m c d +=⎧⎨-+=⎩,()220me f m e f +=⎧⎨++=⎩, 解得12c d m =⎧⎨=-+⎩,12e f m =-⎧⎨=+⎩∴直线AB 的解析式为2y x m =-+,直线AC 的解析式为2y x m =-++,当正方形DEFG 上的任意一点都是折线BA AC -的“相关点”;∴正方形DEFG 上的任意一点都不在BA AC -所围成的锐角之内以及边上(除线段AB ,AC 外), 当正方形有一点在AB 或AC 上时,如图,当点F 在AB 上时,()24,0N m -,正方形的边长为2,则()23,1F m --, 代入直线AB 解析式,可得()1232m m -=--+,解得0m =;当点F 在AC 上时,()24,0N m -,正方形的边长为2,则()25,1F m --,代入直线AC 解析式,可得()1252m m -=--++,解得8m =,结合图像可知,当正方形DEFG 上的任意一点都是折线BA AC -的“相关点”,0m <或8m >.【点评】本题考查了新定义问题,待定系数法求一次函数解析式,正方形的性质,坐标与图形,两直线交点问题,理解新定义是解题的关键.13.如图,在平面直角坐标系中,直线y =﹣2x +8与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴负半轴于点C ,且OC =6.(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 左侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标.【答案】(1)483y x =+ (2)122455M ⎛⎫- ⎪⎝⎭, (3)4607G ⎛⎫ ⎪⎝⎭,或()02G -,【点评】本题考查了用待定系数法求解析式、正方形的性质、一次函数的图像与解析式等知识,涉及到了分类讨论的思想方法,解题关键是能正确进行面积转化以及通过作辅助线构造全等三角形对图中的线段进行数量关系上的转化.。

寒假八年级数学培优学案一次函数图像与性质

寒假八年级数学培优学案一次函数图像与性质

八年级数学培优学案(4)-----一次函数及其性质知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 及时练习1:1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 2. 下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3. 已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.4. 已知函数221(43)3a a y a a x --=-++是一次函数,则a 的值为知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.及时练习2:1. 如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.3. 一次函数y=kx+k+1的图象不经过第三象限,那么k 的取值范围为( )A.0< k < 1B.-1< k < 0C. -1≤ k < 0D.k < 04.图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,0mn ≠)图象的是( )5.若直线23y x =+与32y x b =-相交于X 轴,则b 的值是 () A 、3- B 、32-C 、6D 、94- CD6. 已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .知识点三:一次函数的增减性⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. 及时练习3:1. 点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是:( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定.2. 已知点(-4,y 1),(2,y 2)都在直线y=- 12x+2上,则y 1 y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较3. 一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4. 已知正比例函数x m y )12(-= 的图象上两点A (1x ,1y ),B (2x ,2y ),当21x x < 时,有21y y >,那么m 的取值范围是_________________5. 已知,函数()1321y k x k =-+-,试回答: (1)k 为何值时,图象交x 轴于点(34,0)(2)k 为何值时,y 随x 增大而增大?知识点四:一次函数y kx b =+的图象、性质与k 、b 的符号(1) k 决定函数趋势。

八年级数学培优学案(11)--函数、一次函数

八年级数学培优学案(11)--函数、一次函数

八年级数学培优学案(11)-----函数、一次函数一、 函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 练习:1.如下图所示,不可能表示函数的是2.求下列函数的定义域3.(1)f (x )=x +2x -1;(2)f (x )=4-x 2x -1;(3)f (x )=x -1+1-x .3.小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款数y (元)与从现在开始的月份数x 之间的函数关系式是 。

自变量x 的取值范围是________4.甲、乙两地相距100千米,汽车以每小时40千米的速度由甲地开往乙地,汽车离乙地的路程s (千米)与时间t (小时)之间的函数关系是______________,自变量的取值范围是__________ 。

二、 一次函数1.一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

初中数学八下一次函数、平行四边形综合提高(1)

初中数学八下一次函数、平行四边形综合提高(1)

一次函数、平行四边形综合提高学生姓名年级学科授课教师日期时段核心内容一次函数、平行四边形知识的综合运用课型一对一/一对N教学目标1.能解决一次函数中平行四边形的存在问题2.能解决一次函数中的面积问题3.能解决一次函数中的长度问题重、难点对条件综合分析,有函数参数思想,结合平行四边形与一次函数相关知识进行综合解题课首沟通1.了解学生在校学习情况和进度2.检查作业知识导图课首小测1.[单选题] (2012年从化市一模)已知正比例函数y=kx(k≠0)函数值随x的增大而增大,则一次函数y=-kx+k的图象大致是()A. B. C. D.2.(2012 番禺期末)如图,直线:与直线:相交于点P(,2),则关于的不等式的解集为.3.[单选题] (2015番禺区一模)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.cm B.2cm C.3cm D.4cm4.[单选题] (2015 青岛中考)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF= ,BD=4,则菱形ABCD的周长为()A.4B.C.D.285.[单选题] (2015天河区期末)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()。

A. B.2 C. D.导学一:一次函数中的一般平行四边形存在问题知识点讲解 1:一次函数中一般平行四边形的存在问题——三定一动型例 1. (2014校级期末)如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2 交于点C.(1)求直线l2的函数关系式;(2)求△ADC的面积;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由。

平行四边形和一次函数教案

平行四边形和一次函数教案

19.1.1 平行四边形及其性质(一)一、教学目的:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会实行相关的论证.3.培养学生发现问题、解决问题的水平及逻辑推理水平.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:使用平行四边形的性质实行相关的论证和计算.三、例题的意图分析例1是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能使用平行四边形的性质实行相关的计算,讲课时,能够让学生来解答.例2是补充的一道几何证明题,即让学生学会使用平行四边形的性质实行相关的论证,又让学生从较简单的几何论证开始,提升学生的推理论证水平和逻辑思维水平,学会演绎几何论证的方法.此题应让学生自己实行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生理解清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的准确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,能够把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(见教材例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,因为四边形ABCD是平行四边形,所以有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习18.1.1 平行四边形的性质(二)一、教学目的:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合使用平行四边形的性质解决平行四边形的相关计算问题,和简单的证明题.3.培养学生的推理论证水平和逻辑思维水平.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合使用平行四边形的性质实行相关的论证和计算.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接使用,然后对例1实行了引申,能够根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有协助的.例2是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和360).是︒②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH重合吗?你能从子中看出前面所得︒到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA =OC(平行四边形的对角线互相平分),∴ △AOE ≌△COF (ASA ).∴ OE =OF ,AE=CF (全等三角形对应边相等).∵ ABCD ,∴ AB=CD (平行四边形对边相等).∴ AB —AE=CD —CF . 即 BE=FD .※【引申】若例1中的条件都不变,将EF 转动到图b 的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),例1的结论是否成立,说明你的理由.解略 例2已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积.分析:由平行四边形的对边相等,可得BC 、CD 的长,在Rt △ABC 中,由勾股定理可得AC 的长.再由平行四边形的对角线互相平分可求得OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD 的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都能够作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略.六、随堂练习1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在 ABCD中,AC=6、BD=4,则AB的范围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.18.1.2(一)平行四边形的判定教案总序号:18 时间:2014年3月11日星期二一、教学目的:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合使用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点3.重点:平行四边形的判定方法及应用.4.难点:平行四边形的判定定理与性质定理的灵活应用.三、例题的意图分析本节课安排了3个例题,例1是是平行四边形的性质与判定的综合使用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地使用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,能够让学生动起来,边拼图边说明道理,即能够提升学生的动手水平和学生的思维水平,又能够提升学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

最新一次函数与平行四边形综合讲课稿

最新一次函数与平行四边形综合讲课稿

一.解答题(共3小题)1.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O 顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程的根.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.参考答案与试题解析一.解答题(共3小题)1.(2015•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB ﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD∽△AOB,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),BM1中点坐标为(﹣,1),BM1中点同时也是AP1中点,则有,解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m=﹣4或m=0(舍去),∴M2(﹣4,﹣2),AB中点坐标为(﹣4,3),AB中点同时也是P2M2中点,则有,解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).2.(2015•黑龙江)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S=××=;△OFH(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).3.(2015•龙沙区一模)如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程的根.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.【解答】解:(1)∵直线y=﹣x+8分别交两轴于点A、B,∴点A的坐标是(8,0),点B的坐标是(0,8),∵点C为线段AB的中点,∴点C的坐标是(4,4),解得x=5,∴CD=5,设点D的坐标是(m,0)(m>0),则,解得m=1或m=7,∴点D的坐标是(1,0)或(7,0).(2)①当点D的坐标是(1,0)时,设直线CD的解析式是y=ax+b,则解得∴直线CD的解析式是y=x﹣.②当点D的坐标是(7,0)时,设直线CD的解析式是y=cx+d,则解得∴直线CD的解析式是y=﹣x.(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形.①当直线CD的解析式是y=x﹣时,设AF所在的直线的解析式是y=+m,∵点A的坐标是(8,0),解得m=﹣,∴AF所在的直线的解析式是y=﹣.Ⅰ、如图1,,设点F的坐标是(p,),则DF的中点E的坐标是(),∵点A的坐标是(8,0),点C的坐标是(4,4),∴AC的中点E的坐标是(6,2),∴=6,解得p=11,∴点F的坐标是(11,4).Ⅱ、如图2,,设点F的坐标是(p,),则CF的中点G的坐标是(),∵点A的坐标是(8,0),点D的坐标是(1,0),∴AD的中点G的坐标是(4.5,0),∴,解得p=5,∴点F的坐标是(5,﹣4).Ⅲ、如图3,当CF∥AD时,,设点F的坐标是(p,4),则AF的中点E的坐标是(,2),∵点D的坐标是(1,0),点C的坐标是(4,4),∴CD的中点E的坐标是(2.5,2),∴=2.5,解得p=﹣3,∴点F的坐标是(﹣3,4).②当直线CD的解析式是y=﹣x+时,设AF所在的直线的解析式是y=﹣+n,∵点A的坐标是(8,0),∴,解得n=,∴AF所在的直线的解析式是y=﹣+.Ⅰ、如图4,,设点F的坐标是(p,﹣),则DF的中点M的坐标是(),∵点A的坐标是(8,0),点C的坐标是(4,4),∴AC的中点M的坐标是(6,2),∴=6,解得p=5,∴点F的坐标是(5,4).Ⅱ、如图5,,设点F的坐标是(p,﹣),则CF的中点N的坐标是(,),∵点A的坐标是(8,0),点D的坐标是(7,0),∴AD的中点N的坐标是(7.5,0),∴,解得p=11,∴点F的坐标是(11,﹣4).Ⅲ、如图6,当CF∥AD时,,设点F的坐标是(p,4),则AF的中点E的坐标是(,2),∵点D的坐标是(7,0),点C的坐标是(4,4),∴CD的中点E的坐标是(5.5,2),∴=5.5,解得p=3,∴点F的坐标是(3,4).综上,可得点F的坐标是(11,4),(5,﹣4),(﹣3,4),(5,4),(11,﹣4)或(3,4).。

2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形

2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形

2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形 【例题讲解】如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A . (1)求A 点坐标;(2)在平面直角坐标系xOy 中,是否存在一点M ,使得以O ,A ,M ,C 为顶点的四边形是平行四边形?如果存在,试写出所有符合条件的点M 的坐标;如果不存在,请说明理由;【分析】分三种情况:①当AC 是对角线时,②当AO 是对角线时,③当CO 是对角线时,分别求解即可. 解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩,A ∴点坐标是(2,3); (2)存在;令y =0代入27y x =-+,得027x =-+,解得:x =72,∴C (72,0),设M (x ,y )如图所示:①当AC 是对角线时,x =2+72-0=72,y =3,∴点M 坐标是(5.5,3);②当AO 是对角线时,x =2+0-72=-1.5,y =3,∴点M 坐标是(-1.5,3);③当CO 是对角线时,x =0+72-2=1.5,y =-3,∴点M 坐标是(1.5,-3),综上所述:点M 坐标是(5.5,3),(-1.5,3),(1.5,-3).【综合演练】1.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)求证:AC ⊥BC ;(2)若以A 、B 、C 及点D 为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标 .2.如图,直线l 1:y =2x +2与x 轴交于点A ,与y 轴交于点C ;直线l 2:y =kx +b 与x 轴交于点B (3,0),与直线l 1交于点D ,且点D 的纵坐标为4.(1)不等式kx +b >2x +2的解集是 ;(2)求直线l 2的解析式及△CDE 的面积;(3)点P 在坐标平面内,若以A 、B 、D 、P 为顶点的四边形是平行四边形,求符合条件的所有点P 的坐标. 3.如图,在平面直角坐标系中.一次函数y =-2x + 12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M .且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)在直线AM 上有一点P ,且ABP AOM S S ∆∆=,求点P 的坐标;(3)在坐标平面内是否存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形?若存在,请直接写出点C 的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中,直线1:1l y x =+与y 轴交于点A ,过()6,1B 的直线2l 与直线1l 交于点(),5C m -.(1)求直线2l 的解析式;(2)若点D 是第一象限位于直线2l 上的一动点,过点D 作DH y ∥轴交1l 于点H .当10DH =时,试在x 轴上找一点E ,在直线1l 上找一点F ,使得DEF 的周长最小,求出周长的最小值;(3)如图2,直线2l 与x 轴交于点M ,与y 轴交于点N ,将直线2l 绕点O 逆时针旋转90︒得到直线3l ,点P 是直线3l 上一点,且横坐标为2-.在平面内是否存在一点Q ,使得以点M ,C ,P ,Q 为项点的四边形是平行四边形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.5.已知矩形ABCD ,6AB =,10BC =,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)如图1,点B 与点O 重合时,在平面内找一点G ,使得以A 、O 、F 、G 为顶点的四边形是平行四边形,请直接写出点G 的坐标;(3)如图2,将图1翻折后的矩形沿y 轴正半轴向上平移(0)m m >个单位,在平面内找一点G ,若以A 、O 、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标.6.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(16,0)、C(0,12),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为______;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系xOy中,直线y=52x+b交x轴负半轴于点A,交y轴正半轴于点B(0,5),点C在x轴正半轴上,OC=4.(1)求直线BC的解析式;(2)若P为线段BC上一点,且△ABP的面积等于△AOB的面积,求点P的坐标;(3)在(2)的条件下,E为直线AP上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.8.如图1,平面直角坐标系中,一次函数132y x=+的图象分别交x轴、y轴于点A,B,一次函数y x b=-+的图象经过点B,并与x轴交于点C,点P是直线AB上的一个动点.(1)直线BC 的表达式为___________,并直接写出点C 的坐标___________; (2)若点P 在x 轴上方,且ACP △的面积为18,求P 点坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线,交直线BC 于点Q .M 是x 轴上一点,在直线AB 上是否存在点N ,使以P 、Q 、M ,N 为顶点的四边形是以.PQ 为边..的平行四边形?若存在,直接写出点N 的坐标;若不存在,说明理由.9.如图,在平面直角坐标系中,直线1l :112y x =+与x 轴交于点B ,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫⎪⎝⎭、点()4,0C .(1)求直线2l 的解析式;(2)若点D 和点E 分别是直线2l 和y 轴上的动点,是否存在点D 、E ,使得以点A 、B 、D 、E 为顶点、AB 为一边的四边形是平行四边形?若存在,请求出点D 的坐标;若不存在,请说明理由. 10.如图,在平面直角坐标系中直线l 1:32y x m =+与直线l 2交于点A (﹣2,3),直线l 2与x 轴交于点C (4,0),与y 轴交于点B ,过BD 中点E 作直线l 3⊥y 轴.(1)求直线l 2的解析式和m 的值;(2)点P 在直线l 1上,当S △PBC =6时,求点P 坐标;(3)点P 是直线l 1上一动点,点Q 是直线l 3上一动点,当以P 、Q 、B 、C 为顶点的四边形是平行四边形时,求Q 点坐标.11.如图1,在平面直角坐标系中,直角梯形OABC 的顶点A 的坐标为()4,0,直线134=-+y x 经过顶点B ,与y 轴交于顶点C ,AB OC ∥.(1)求顶点B 的坐标.(2)如图2,直线l 经过点C ,与直线AB 交于点M ,点O '与点O 关于直线l 对称,连接'CO 并延长交直线AB 于第一象限的点D ,当5CD =时,求直线l 的解析式;(3)在(2)条件下,点P 在直线l 上运动,点Q 在直线OD 上运动,当四边形PBCQ 是平行四边形时,求点P 的坐标.12.如图,在平面直角坐标系xOy 中,直线1l 经过点()0,1A 、()2,2B .将直线1l 向下平移m 个单位得到直线2l ,已知直线2l 经过点()1,2--,且与x 轴交于点C .(1)求直线2l 的表达式及m 的值;(2)若点Q 是x 轴上一点,连接BQ ,当CBQ △面积等于4时,求点Q 的坐标; (3)点D 为直线2l 上一点,如果A 、B 、C 、D 四点能构成平行四边形,求点D 的坐标.13.如图,在平面直角坐标系中,过点(4,0)A -和(0,2)B 的直线与直线32y x =+相交于点C ,直线32y x =+与x轴相交于点D,点E在线段AB上,连接DE,CDE的面积为158.(1)求直线AB的解析式;(2)求点E的坐标;(3)点M是直线CD上的动点,点N在y轴上,是否存在点M、N,使得以点B、E、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.答案与解析【例题讲解】如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标; (2)在平面直角坐标系xOy 中,是否存在一点M ,使得以O ,A ,M ,C 为顶点的四边形是平行四边形?如果存在,试写出所有符合条件的点M 的坐标;如果不存在,请说明理由;【分析】分三种情况:①当AC 是对角线时,②当AO 是对角线时,③当CO 是对角线时,分别求解即可. 解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩,A ∴点坐标是(2,3); (2)存在;令y =0代入27y x =-+,得027x =-+,解得:x =72,∴C (72,0),设M (x ,y )如图所示:①当AC 是对角线时,x =2+72-0=72,y =3,∴点M 坐标是(5.5,3);②当AO 是对角线时,x =2+0-72=-1.5,y =3,∴点M 坐标是(-1.5,3);③当CO 是对角线时,x =0+72-2=1.5,y =-3,∴点M 坐标是(1.5,-3),综上所述:点M 坐标是(5.5,3),(-1.5,3),(1.5,-3).【综合演练】1.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)求证:AC ⊥BC ;(2)若以A 、B 、C 及点D 为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标 .【答案】(1)证明见解析;(2)作图见解析,点D 坐标为(0,4)或(4,2)或(-4,-4). 【分析】(1)根据勾股定理求出BC AB AC 、、,再根据勾股定理逆定理即可求证;(2)过A C 、、B 分别作BC AB AC 、、的平行线,分别相交于123D D D 、、,再根据平行四边形的性质即可求得D 点的坐标.【解答】解:(1)由勾股定理可得:22215BC =+=、22(22)35AB =++=、222425AC =+=, 又∵222(5)(25)5+=,即222AC BC AB +=, ∴ABC 为直角三角形,90ACB ∠=︒, ∴AC ⊥BC ;(2)过A C 、、B 分别作BC AB AC 、、的平行线,分别相交于123D D D 、、,如下图:①以AC BC 、为邻边时, 则//AC BD 、AC BD =又∵A 点坐标为(2,3),C 点坐标为(0,﹣1), C 点向右平移了2个单位,向上平移了4个单位,∴点D 可以由点B 右平移了2个单位,向上平移了4个单位得到, 又∵B 点坐标为(﹣2,0) 得到点D 坐标为(0,4); ②以AB BC 、为邻边时, 则//AB CD 、AB CD =又∵A 点坐标为(2,3),B 点坐标为(﹣2,0) B 点向右平移了4个单位,向上平移了3个单位∴点D 可以由点C 右平移了4个单位,向上平移了3个单位 又∵C 点坐标为(0,﹣1) 得到点D 坐标为 (4,2); ③以AB AC 、为邻边时, 则//AB CD 、AB CD =又∵A 点坐标为(2,3),B 点坐标为(﹣2,0) A 点向左平移了4个单位,向下平移了3个单位∴点D 可以由点C 左平移了4个单位,向下平移了3个单位 又∵C 点坐标为(0,﹣1)得到点D坐标为(-4,-4).综上所述,点D坐标为(0,4)或(4,2)或(-4,-4).【点评】此题主要考查了勾股定理以及逆定理的应用、平行四边形的性质,熟练掌握相关基本性质,利用平行四边形的性质求解点的坐标是解题的关键.2.如图,直线l1:y=2x+2与x轴交于点A,与y轴交于点C;直线l2:y=kx+b与x轴交于点B(3,0),与直线l1交于点D,且点D的纵坐标为4.(1)不等式kx+b>2x+2的解集是;(2)求直线l2的解析式及△CDE的面积;(3)点P在坐标平面内,若以A、B、D、P为顶点的四边形是平行四边形,求符合条件的所有点P的坐标.【答案】(1)x<1(2)2(3)P(-3,4)或(5,4)或(1,-4)【分析】(1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;(2)将点B、D的坐标代入y=kx+b,再求出点E,点C的坐标,再由三角形面积公式即可求解;(3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.(1)对于直线l1:y=2x+2,交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),从图象看,当x<1时,kx+b>2x+2,故答案为:x<1;(2)将点B (3,0)、D (1,4)代入y =kx +b 得:034k b k b +⎧⎨+⎩==, 解得:26k b -⎧⎨⎩==, 故直线l 2:y =-2x +6,当x =0时,y =6,(0,6)E对于直线l 1:y =2x +2,当x =0时,y =2,∴(0,2)C∴624EC =-=∴1141222CDE D S CE x ∆=⨯⨯=⨯⨯= (3)分别过点A 、B 作l 2、l 1的平行线交于点P ″,交过点D 作x 轴的平行线于点P 、P ′,对于直线l 1:y =2x +2,当y =0时,x =-1,∴(1,0)A -∵B (3,0)3(1)4AB =--=①当AB 是平行四边形的一条边时,此时符合条件的点为下图中点P 和P ′,则AB =4=P A =P ′D ,故点P 的坐标为(-3,4)或(5,4);②当AB 是平行四边形的对角线时,此时符合条件的点为图中点P ″,DA 平行且等于BP “,由平移可知,点P ″(1,-4);综上,点P (-3,4)或(5,4)或(1,-4).【点评】本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3)要注意分类求解,避免遗漏.3.如图,在平面直角坐标系中.一次函数y =-2x + 12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M .且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)在直线AM 上有一点P ,且ABP AOM S S ∆∆=,求点P 的坐标;(3)在坐标平面内是否存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形?若存在,请直接写出点C 的坐标;若不存在,请说明理由. 【答案】(1)6y x =-+(2)点P 的坐标为(0,6)或(12,-6)(3)存在,点C 的坐标为(6,-6)或(6,6)或(-6,18)【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,由点M 为线段OB 的中点可得出点M 的坐标,根据点A ,M 的坐标,利用待定系数法即可求出直线AM 的函数解析式;(2)分两种情况:①由点M 为线段OB 的中点.可得ABM AOM S S =△△,即可得出点P 于点M 重合,②根据ABP PBM ABM PBM AOM S S S S S =-=-,即可得答案;(3)存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形,分三种情况:①以AM ,BC 为对角线;②以AB ,CM 为对角线;③以AC ,BM 为对角线,根据平移的性质求解即可.(1)解:当x =0时,y =-2x +12=12,∴点B 的坐标为(0,12),当y =0时,-2x +12=0,解得:x =6,∴点A 的坐标为(6,0).∵点M 为线段OB 的中点,∴点M 的坐标为(0,6).设直线AM 的函数解析式为y =kx +b (k ≠0),将A (6,0),M (0,6)代入y =kx +b ,得606k b b +=⎧⎨=⎩,解得:16k b =-⎧⎨=⎩ ∴直线AM 的函数解析式为y =-x +6;(2)解:①∵点M 为线段OB 的中点.∴ABM AOM S S =△△,∴点P 于点M 重合,∴点P 的坐标为(0,6);②如图,∵点A 的坐标为(6,0).点M 的坐标为(0,6).∴12AOM S =△×6×6=18, ∵ABP AOM S S =△△,∴18ABP PBM ABM PBM AOM S S S S S =-=-=,设点P 的坐标为:(x , -x +6),∴12×6x -18=18,解得x =12, ∴点P 的坐标为(12,-6);∴点P 的坐标为(0,6)或(12,-6);(3)解:分三种情况考虑(如图所示):存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形,∵A (6,0),B (0,12),M (0,6),①以AM ,BC 为对角线,根据平移的性质,得点C (6,-6),②以AB ,CM 为对角线,根据平移的性质,得点C (6,6),③以AC ,BM 为对角线,根据平移的性质,得点C (-6,18),综上,点C 的坐标为(6,-6)或(6,6)或(-6,18).【点评】本题是一次函数综合题,考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及平行四边形的性质,解题的关键是注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4.如图1,在平面直角坐标系中,直线1:1l y x =+与y 轴交于点A ,过()6,1B 的直线2l 与直线1l 交于点(),5C m -.(1)求直线2l 的解析式;(2)若点D 是第一象限位于直线2l 上的一动点,过点D 作DH y ∥轴交1l 于点H .当10DH =时,试在x 轴上找一点E ,在直线1l 上找一点F ,使得DEF 的周长最小,求出周长的最小值;(3)如图2,直线2l 与x 轴交于点M ,与y 轴交于点N ,将直线2l 绕点O 逆时针旋转90︒得到直线3l ,点P 是直线3l 上一点,且横坐标为2-.在平面内是否存在一点Q ,使得以点M ,C ,P ,Q 为项点的四边形是平行四边形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由. D ,关于1l D 的坐标和点,进而求得DEF 的最小值为(3)求出点旋转后的对应点的坐标,从而求出情况,结合根据平行四边形的性质,求得点)5-代入y =设点D 的坐标为1,22x x ⎛⎫- ⎪⎝⎭, ∵DH y ∥轴,∴点(),1H x x +,∵10DH =,∴()112102x x ⎛⎫+--= ⎪⎝⎭,解得:14x =, ∴()14,5D ,()14,15H ,作点D 关于x 轴的对称点()14,5D '-,关于1l 的对称点D '',连接D D ''',D H ''交x 轴于E ,交1l 于F ,则()4,15D '',,10AHD D HF D H DH ''''∠=∠==,DEF 的周长最小,最小值为∶ '"D D ,∵直线1:1l y x =+由直线y x =沿y 轴向上平移1个单位得到的,且直线y x =为第一三象限的角平分线, ∴直线1:1l y x =+与坐标的夹角都为45︒,∴45AHD D HF ''∠=∠=︒,∴90D HD ''∠=︒,∵DH y ∥轴,∴点D ''的横坐标为14104-=,∴点D ''的坐标为()4,15,∴()()22144155105D D '''=-++=,∴DEF 的周长最小值为∶105;(3)如图,∵点()()4,0,0,2M N -,∴点M 和点N 旋转后的对应点()()0,4,2,0M N '',∴直线3l 的解析式为∶24y x =-+,当2x =-时,()2248y =-⨯-+=,∴()2,8P -,当PCMQ 时,∵()()24610,80513⎡⎤⎡⎤-+--=+--=⎣⎦⎣⎦,∴()10,13Q ,当CMPQ 时,∵()21012,853--=--=,∴()12,3Q -,当PCQM 时,∵()46202---=,5021822-+-=-, ∴210,2Q ⎛⎫- ⎪⎝⎭, 综上所述∶点()10,13Q 或()12,3Q -或210,2Q ⎛⎫- ⎪⎝⎭. 【点评】本题考查了用待定系数法求一次函数的解析式,平行四边形的分类,勾股定理等知识,解决问题的关键是作对称,确定点E ,F 的位置.5.已知矩形ABCD ,6AB =,10BC =,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)如图1,点B 与点O 重合时,在平面内找一点G ,使得以A 、O 、F 、G 为顶点的四边形是平行四边形,请直接写出点G 的坐标;(3)如图2,将图1翻折后的矩形沿y 轴正半轴向上平移(0)m m >个单位,在平面内找一点G ,若以A 、O 、F 、G 为顶点的四边形为菱形,请求出m 的值并写出点G 的坐标. 【答案】(1)103EF = (2)点G 的坐标为()8,6-或()8,6或()8,6-(3)4m =,点G 的坐标为:()8,6-或73m =,点G 的坐标为328,3⎛⎫ ⎪⎝⎭或6m =,点G 的坐标为()8,6-【分析】(1)由矩形的性质得AD =BC =OC =10,CD =AB =OA =6,∠AOC =∠ECF =90°,由折叠性质得EF =DE ,AF =AD =10,则CE =6-EF ,由勾股定理求出BF =OF =8,则FC =OC -OF =2在Rt △ECF 中,由勾股定理得出方程,解方程即可;(2)分三种情况,当AB 为平行四边形的对角线时;当AF 为平行四边形的对角线时;当BF 为平行四边形的对角线时,分别去点G 的坐标即可;(3)分三种情况讨论,由菱形的性质得OA =AF =10,则矩形ABCD 平移距离m =OA -AB =4,即OB =4,设FG 交x 轴于H ,证出四边形OBFH 是矩形,得FH =OB =4,OH =BF =8,则HG =6,即可得出答案.(1)四边形ABCD 是矩形, 10AD BC OC ∴===,6CD AB OA ===,90AOC ECF ∠=∠=︒,由折叠性质得:EF DE =,10AF AD ==,6CE CD DE CD EF EF ∴=-=-=-,由勾股定理得:22100368BF OF AF OA ==-=-=,1082FC OC OF ∴=-=-=,在Rt ECF △中,由勾股定理得:222EF CE FC =+, 即:222(6)2EF EF =-+,解得:103EF =; (2)如图1所示:当AB 为平行四边形的对角线时,8AG BF ==,AG BF ∥, ∴点G 的坐标为:()8,6-;当AF 为平行四边形的对角线时,8AG BF ==,AG BF ∥, ∴点G 的坐标为:()8,6;当BF 为平行四边形的对角线时,6FG AB ==,FG AB ∥, ∴点G 的坐标为:()8,6-;综上所述,点G 的坐标为()8,6-或()8,6或()8,6-;(3)如图2,OA FG∥∴∠=FBO∴四边形∴=FH OB10∴=HG6.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(16,0)、C(0,12),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB 的长度为______;(2)求直线BD 所对应的函数表达式;(3)若点Q 在线段BD 上,在线段BC 上是否存在点P ,使以D ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由. 【答案】(1)20(2)直线BD 所对应的函数表达式为220y x =-(3)存在,满足条件的点P 的坐标是(10,12)【分析】(1)由矩形的性质可得出点B 的坐标及OA ,AB 的长,利用勾股定理可求出OB 的长;(2)设AD a =,则DE a =,8OD a =-,1064OE OB BE =-=-=,利用勾股定理可求出a 值,进而可得出点D 的坐标,再根据点B ,D 的坐标,利用待定系数法可求出直线BD 所对应的函数表达式; (3)过点E 作EF x ⊥轴于点F ,由90BED BAD ∠=∠=︒,可得出18090OED BED ∠=︒-∠=︒,利用面积法可求出EF 的长,在Rt ΔOEF 中,利用勾股定理可求出OF 的长,进而可得出点E 的坐标,根据PE BD ∥,求出直线PE 的解析式,根据点E 的纵坐标求出其横坐标即可.(1)解:由题意,得:点B 的坐标为(16,12),16OA =,12AB OC ==,2222161220OB OA AB ∴=+=+=,故答案为:20;(2)解:设AD a =,则DE a =,16OD a =-,20128OE OB BE =-=-=,222OD OE DE =+,即222(16)8a a -=+,6a ∴=,10OD ∴=,∴点D 的坐标为(10,0).设直线BD 所对应的函数表达式为(0)y kx b k =+≠,将(16,12)B ,(10,0)D 代入y kx b =+,得:1612100k b k b +=⎧⎨+=⎩, 解得:220k b =⎧⎨=-⎩, ∴直线BD 所对应的函数表达式为220y x =-;(3)解:存在,理由:过点E 作EF x ⊥轴于点F ,如图所示.90BED BAD ∠=∠=︒,18090OED BED ∴∠=︒-∠=︒1122ODE S OD EF OE DE ∆∴=⋅=⋅, 8624105OE DE EF OD ⋅⨯∴===, 在Rt ΔOEF 中,222224328()55OF OE EF =-=-=, ∴点E 的坐标为32(5,24)5, 由PE BD ∥,设直线PE 的解析式为:2y x b =+,把32(5E ,24)5代入得:2432255b =⨯+,解得:8b =-, ∴直线PE 的解析式为:28y x =-,令12y =,则1228x =-,解得:10x =,∴存在,点P 的坐标为(10,12).【点评】本题属于一次函数综合题,考查了矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是灵活运用性质解决问题.7.如图,在平面直角坐标系xOy 中,直线y =52x +b 交x 轴负半轴于点A ,交y 轴正半轴于点B (0,5),点C 在x 轴正半轴上,OC =4.(1)求直线BC的解析式;(2)若P为线段BC上一点,且△ABP的面积等于△AOB的面积,求点P的坐标;(3)在(2)的条件下,E为直线AP上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【答案】(1)y=﹣54x+5(2)P(43,103)(3)D的坐标为(1,0)或(﹣11,0)或(7,0)【分析】(1)由点C在x轴正半轴上,OC=4,得C(4,0),用待定系数法即得直线BC的解析式;(2)过P作PH⊥AC于H,设P(n,﹣54n+5),PH=﹣54n+5,将B(0,5)代入y=52x+b可得y=52x+5,A(﹣2,0),根据△ABP的面积等于△AOB的面积,列方程计算即可;(3)由A(﹣2,0),P 410 33(,)代入得直线AP解析式为y=x+2,设E(p,p+2),D(q,0),又B(0,5),C(4,0),分3种情况:①若ED,BC为对角线,则ED,BC的中点重合,可得425p qp+=⎧⎨+=⎩,即可解得D(1,0);②若EB,DC为对角线,4250p qp=+⎧⎨++=⎩,D(﹣11,0);③若EC,DB为对角线,425p qp+=⎧⎨+=⎩,D(7,0).(1)∵点C在x轴正半轴上,OC=4,∴C(4,0),由B(0,5)设直线BC解析式为y=mx+5,将C(4,0)代入得:0=4m+5,解得m=﹣54,∴直线BC 的解析式为y =﹣54x +5; (2)过P 作PH ⊥AC 于H ,如图:设P (n ,﹣54n +5),则PH =﹣54n +5, 将B (0,5)代入y =52x +b 得: b =5,∴y =52x +5, 在y =52x +5中,令y =0得x =﹣2, ∴A (﹣2,0),∴AC =6,∴S △ABC =12AC •OB =12×6×5=15,S △APC =12AC •PH =12×6×(﹣54n +5)=﹣154n +15, ∵△ABP 的面积等于△AOB 的面积,∴15﹣(﹣154n +15)=12×2×5, 解得n =43, ∴P 41033(,);(3)存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形,理由如下:设直线AP 解析式为y =kx +t ,将A (﹣2,0),P 41033(,)代入得: 2041033k t k t -+=⎧⎪⎨+=⎪⎩, 解得12k t =⎧⎨=⎩,∴直线AP 解析式为y =x +2, 设E (p ,p +2),D (q ,0),又B (0,5),C (4,0),①若ED ,BC 为对角线,则ED ,BC 的中点重合,如图:∴425p q p +=⎧⎨+=⎩, 解得31p q =⎧⎨=⎩, ∴D (1,0);②若EB ,DC 为对角线,同理可得:4250p q p =+⎧⎨++=⎩, 解得711p q =-⎧⎨=-⎩, ∴D (﹣11,0);③若EC ,DB 为对角线,∴425p q p +=⎧⎨+=⎩, 解得37p q =⎧⎨=⎩, ∴D (7,0),综上所述,D 的坐标为(1,0)或(﹣11,0)或(7,0).【点评】本题考查一次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用等知识,解题的关键是利用平行四边形对角线互相平分列方程解决问题.8.如图1,平面直角坐标系中,一次函数132y x =+的图象分别交x 轴、y 轴于点A ,B ,一次函数y x b =-+的图象经过点B ,并与x 轴交于点C ,点P 是直线AB 上的一个动点.(1)直线BC 的表达式为___________,并直接写出点C 的坐标___________;(2)若点P 在x 轴上方,且ACP △的面积为18,求P 点坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线,交直线BC 于点Q .M 是x 轴上一点,在直线AB 上是否存在点N ,使以P 、Q 、M ,N 为顶点的四边形是以.PQ 为边..的平行四边形?若存在,直接写出点N 的坐标;若不存在,说明理由. 【答案】(1)3y x =-+,(3,0);(2)P (2,4);(3)存在,点N 的坐标为(0,3)或(-12,-3).【分析】(1)求出x =0时,1332y x =+=可得点B 坐标,然后利用待定系数法求出直线BC 的表达式,令y =0,求出x 的值,即可得到点C 的坐标; (2)求出点A 坐标可得AC =9,设P (x ,132x +),根据ACP △的面积为18构建方程求出x 的值即可; (3)求出点Q 坐标,可得PQ =3,根据平行四边形的性质可得PQ MN ∥且PQ =MN =3,进而可得点N 的纵坐标为3或-3,然后代入直线BC 的解析式即可求出点N 的坐标.(1)解:在一次函数132y x =+中,当x =0时,y =3, ∴B (0,3),∵一次函数y x b =-+的图象经过点B ,并与x 轴交于点C ,∴3b =,∴直线BC 的表达式为3y x =-+,当y =0时,即03x =-+,解得:x =3,∴C (3,0),故答案为:3y x =-+,(3,0);(2)9.如图,在平面直角坐标系中,直线1l :112y x =+与x 轴交于点B ,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫ ⎪⎝⎭、点()4,0C .(1)求直线2l 的解析式;(2)若点D 和点E 分别是直线2l 和y 轴上的动点,是否存在点D 、E ,使得以点A 、B 、D 、E 为顶点、AB 为一边的四边形是平行四边形?若存在,请求出点D 的坐标;若不存在,请说明理由. 【答案】(1)122y x =-+ (2)存在,D 点坐标为73,2⎛⎫- ⎪⎝⎭或13,2⎛⎫ ⎪⎝⎭【分析】(1)由待定系数法求直线的解析式即可;(2)设1,22D t t ⎛⎫-+ ⎪⎝⎭,()0,E m ,再分两种情况讨论:当AD 为平行四边形对角线时;当AE 为平行四边形的对角线时;利用平行四边形对角线互相平分的性质求解即可.(1)解:设直线2l 的解析式为y kx b =+,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫ ⎪⎝⎭、点()4,0C , 3240k b k b ⎧+=⎪∴⎨⎪+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩,直线2l 的解析式为122y x =-+; (2)解:存在,直线1l :112y x =+与x 轴交于点B , ()2,0B ∴-,设1,22D t t ⎛⎫-+ ⎪⎝⎭,()0,E m , 当AD 为平行四边形对角线时,31,2A ⎛⎫ ⎪⎝⎭,()2,0B -, 2012213202222t t m -++⎧=⎪⎪∴⎨-++⎪+=⎪⎩,解得35t m =-⎧⎨=⎩, 73,2D ⎛⎫∴- ⎪⎝⎭; ③当AE 为平行四边形的对角线时,31,2A ⎛⎫ ⎪⎝⎭,()2,0B -, 0122231202222t m t +-+⎧=⎪⎪∴⎨+-++⎪=⎪⎩,解得31t m =⎧⎨=-⎩, 13,2D ⎛⎫∴ ⎪⎝⎭; 综上所述:存在,73,2⎛⎫- ⎪⎝⎭或13,2⎛⎫ ⎪⎝⎭ . 【点评】本题是一次函数综合题,考查待定系数法求函数的解析式,一次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.10.如图,在平面直角坐标系中直线l 1:32y x m =+与直线l 2交于点A (﹣2,3),直线l 2与x 轴交于点C (4,0),与y 轴交于点B ,过BD 中点E 作直线l 3⊥y 轴.(1)求直线l2的解析式和m的值;(2)点P在直线l1上,当S△PBC=6时,求点P坐标;(3)点P是直线l1上一动点,点Q是直线l3上一动点,当以P、Q、B、C为顶点的四边形是平行四边形时,求Q点坐标.【答案】(1)y=12-x+2;m=6;(2)P点坐标为(12-,214)或(72-,34);(3)Q点坐标为(283,4)或(203-,4)或(4,4)【分析】(1)由待定系数法求直线的解析式即可;(2)分点P在线段F A上和在线段DA上时,两种情况讨论,利用分割法和三角形面积公式列方程,再分别求P点坐标即可;(3)设P(t,32t+6),Q(m,4),再分三种情况讨论:①当PQ为平行四边形的对角线时;②当PB为平行四边形对角线时;③当PC为平行四边形的对角线时;利用平行四边形对角线互相平分的性质求解即可.(1)解:∵A(-2,3)在y=32x+m上,∴-3+m=3,∴m=6,∴y=32x+6,设直线l2的解析式为y=kx+b,∴4023k bk b+=⎧⎨-+=⎩,解得122kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=12-x+2;(2)解:由(1)可得B(0,2),D(0,6),F(-4,0),∵C(4,0),∴S△DBC=12×4×4=8>6,S△FBC=12×8×2=8>6,∴点P一定在线段FD上,当点P在线段F A上时,连接PO,设点P的坐标为(a,32a+6),S△PBC=S△POB+S△COB-S△POC=12×2a+12×2×4-12×4×362a+=6,整理得362a+=-12a-1,即362a+=-12a-1或362a+=12a+1,解得:a=-72或a=-5(舍去),∴点P的坐标为(-72,34);当点P 在线段DA 上时,连接PO ,设点P 的坐标为(a ,32a +6),S △PBC = S △POC -S △POB -S △COB =12×4×362a +-12×2a -12×2×4=6,整理得362a +=5-12a , 即362a +=5-12a 或362a +=12a -5, 解得:a =-12或a =-11(舍去),∴点P 的坐标为(-12,214);综上所述:P 点坐标为(-12,214)或(-72,34);(3)解:由(1)可得B (0,2),D (0,6), ∴E (0,4),∴直线l 3的解析式为y =4, 设P (t ,32t +6),Q (m ,4),①当PQ 为平行四边形的对角线时, 436422t m t +=⎧⎪⎨++=⎪⎩,解得163283t m ⎧=-⎪⎪⎨⎪=⎪⎩, ∴Q (283,4); ②当PB 为平行四边形对角线时, 436242t m t =+⎧⎪⎨++=⎪⎩,解得83203t m ⎧=-⎪⎪⎨⎪=-⎪⎩,∴Q (-203,4); ③当PC 为平行四边形的对角线时,43662t mt +=⎧⎪⎨+=⎪⎩,解得04t m =⎧⎨=⎩, ∴Q (4,4);综上所述:Q 点坐标为(283,4)或(-203,4)或(4,4). 【点评】本题考查一次函数的图象及性质、平行四边形的性质、坐标与图形,熟练掌握一次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.11.如图1,在平面直角坐标系中,直角梯形OABC 的顶点A 的坐标为()4,0,直线134=-+y x 经过顶点B ,与y 轴交于顶点C ,AB OC ∥.(1)求顶点B 的坐标.(2)如图2,直线l 经过点C ,与直线AB 交于点M ,点O '与点O 关于直线l 对称,连接'CO 并延长交直线AB 于第一象限的点D ,当5CD =时,求直线l 的解析式;(3)在(2)条件下,点P 在直线l 上运动,点Q 在直线OD 上运动,当四边形PBCQ 是平行四边形时,求点P 的坐标. 【答案】(1)()4,2B (2)132y x =-+(3)15,2⎛⎫⎪⎝⎭【分析】(1)根据AB OC ∥,可得点B 的横坐标为4,再代入134=-+y x ,即可求解;(2)过C 点作CN AB ⊥于N ,可得到DCM DMC ∠=∠,从而得到5CD MD ==,再求出3OC =,DN =3,从而得到532NM =-=,继而得到AM =1,可得到点()4,1M ,即可求解; (3)连接OD ,先求出D 点坐标为()4,6,可得直线OD 解析式为32y x =,设P 点坐标为1,32a a ⎛⎫-+ ⎪⎝⎭,Q点坐标为3,2b b ⎛⎫⎪⎝⎭,然后根据平行四边形对角线互相平分,即可求解.(1)解:∵()4,0A ,AB OC ∥, ∴点B 的横坐标为4,把4x =代入134=-+y x 中,得2y =,∴()4,2B . (2)解:如图,过C 点作CN AB ⊥于N ,∵AB OC ∥, ∴OCM DMC ∠=∠,∵点O '为点O 关于直线l 的对称点, ∴DCM OCM ∠=∠, ∴DCM DMC ∠=∠, ∴5CD MD ==, ∵134=-+y x ,当0x =时,3y =, ∴点C (0,3), ∴3OC =, ∵4CN OA ==,∴2222543DN CD CN =-=-=, ∴532NM =-=,∴321AM AN NM =-=-=, ∴()4,1M ,设直线l 解析式y kx b =+把()0,3C ,()4,1M 代入得: 341b k b =⎧⎨+=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线l 的解析式为:132y x =-+.(3)解:如图,连接OD ,∵156AD AM MD =+=+=,AD OC ∥,A 点坐标为()4,0, ∴D 点坐标为()4,6,设OD 直线解析式为y kx =,将()4,6代入可得46k =,解得32k , ∴直线OD 解析式为32y x =, ∵点P 在直线l 上运动,点Q 在直线OD 上运动,∴设P 点坐标为1,32a a ⎛⎫-+ ⎪⎝⎭,Q 点坐标为3,2b b ⎛⎫⎪⎝⎭,∵四边形PBCQ 是平行四边形, ∴平行四边形对角线互相平分, 4022312332222b a b a ++⎧=⎪⎪⎨+-++⎪=⎪⎩,解得51a b =⎧⎨=⎩, 当5a =时,111353222a -+=-⨯+=,∴P 点坐标为15,2⎛⎫⎪⎝⎭.【点评】本题主要考查了一次函数与四边形的综合题,熟练掌握一次函数的图象和性质,平行四边形的性质是解题的关键.12.如图,在平面直角坐标系xOy 中,直线1l 经过点()0,1A 、()2,2B .将直线1l 向下平移m 个单位得到直线2l ,已知直线2l 经过点()1,2--,且与x 轴交于点C .(1)求直线2l 的表达式及m 的值;(2)若点Q 是x 轴上一点,连接BQ ,当CBQ △面积等于4时,求点Q 的坐标; (3)点D 为直线2l 上一点,如果A 、B 、C 、D 四点能构成平行四边形,求点D 的坐标. 【答案】(1)52m =, 直线2l 为1322y x =- (2)()1,0Q -或()7,0.Q(3)点D 的坐标为(5,1)或(1,-1).【分析】(1)根据待定系数法先求解1l 的解析式,再写出2l 的解析式为112y x m =+-,再利用待定系数法即可得到答案;(2)由2l 的解析式,令y =0,即可求得C 的坐标,设(),0,Q x 由4,CBQS = 可得1324,2x -⨯= 再解方程可得答案;(3)分两种情况,根据平行四边形的性质以及平移的规律即可求得D 的坐标. (1)解:设直线1l 的表达式为y =kx +b , ∵直线1l 经过点A (0,1)、B (2,2),∴122b k b =⎧⎨+=⎩,解得121k b ⎧=⎪⎨⎪=⎩, ∴直线1l 的表达式为112y x =+; 将直线1l 向下平移m 个单位得到直线2l ,则直线2l 为112y x m =+-,∵直线2l 经过点(-1,-2),∴()12112m -=⨯-+-,解得52m =,∴直线2l 为1322y x =-, (2)令y =0,则130,22x -= 解得x =3,∴点C 的坐标为(3,0);设(),0,Q x ∵4,CBQS =∴1324,2x -⨯= 解得:=1x -或7,x = ∴()1,0Q -或()7,0.Q (3)由题意可知AB CD ∥,如图,当A 、B 、C 、D 四点构成平行四边形1ABD C 时,1AB CD =,。

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

参考答案
2.(1)100 ; 80 (2) y 40t 20 ,教官们领取装备所用的时间 0.5h ; (3)客车第二次出发时的速度至少是 60km/h .
3 即按原路返回,结果比货车早一个小时到达甲地.如图是两车距各自出发地的距离 y( km ) 与货车行驶时间 x(h)之间的函数图象,结合图象回答下列问题:
(1)图中 a 的值是______;
(2)求轿车到达乙地再返回甲地所花费的时间; (3)轿车在返回甲地的过程中与货车相距 30km ,直接写出货车已经从乙地出发了多长时间? 15.小聪和小慧沿图 1 中的风景区游览,约好在飞瀑见面.小聪驾驶电动汽车从宾馆出发, 小慧也于同一时间骑电动自行车从塔林出发:图 2 中的图象分别表示两人离宾馆的路程 y(km) 与时间 x(h) 的函数关系,试结合图中信息回答:
8.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用 时 30 分钟,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度
为 60km / h .两车之间的距离 y km 与慢车行驶的时间 x h 的函数图象如图所示.
(1)求出图中线段 AB 所表示的函数表达式; (2)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
(1) a ________, b __________; (2)求出姐姐从家出发直到返回家的过程中,姐姐离家的距离 y1 与时间 t 之间的关系式; (3)在姐姐去体育场的过程中,直接写出 t 为何值时,两人相距 400m .
4.港口 A 、 B 、 C 依次在同一条直线上,甲、乙两艘船同时分别从 A 、 B 两港出发,匀速 驶向 C 港,甲、乙两船与 B 港的距离 y (海里)与行驶时间 x (时)之间的关系如图所 示.

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。

八年级数学培优资料word版(全年级全章节培优_保证经典)

八年级数学培优资料word版(全年级全章节培优_保证经典)

目录第01讲全等三角形的性质与判定1经典·考题·赏析1演练巩固·反馈提高5培优升级·奥赛检测7第02讲角平分线的性质与判定10经典·考题·赏析10培优升级·奥赛检测13第3讲轴对称及轴对称变换15经典·考题·赏析15演练巩固·反馈提高18培优升级·奥赛检测20第4讲等腰三角形23经典·考题·赏析23培优升级·奥赛检测30第五讲等边三角形33经典考题赏析33巩固练习反馈提高36第06讲实数38经典·考题·赏析38演练巩固反馈提高39培优升级奥赛检测41第7讲变量与函数43经典·考题·赏析43演练巩固·反馈提高46第8讲一次函数的图象与性质48经典·考题·赏析48演练巩固·反馈提高52培优升级·奥赛检测55第9讲一次函数与方程、不等式56经典·考题·赏析56演练巩固·反馈提高59第10讲一次函数的应用61经典·考题·赏析61演练巩固反馈提高68第11讲幂的运算71经典·考题·赏析71演练巩固反馈提高72培优升级奥赛检测73第12讲整式的乘除75经典·考题·赏析75演练巩固·反馈提高77第13讲因式分解及其应用80经典·考题·赏析80演练巩固反馈提高83培优升级奥赛检测83第14讲分式的概念•性质与运算85经典•考题•赏析85演练巩固反馈提高89培优升级奥赛检测90第15讲分式的化简求值与证明92经典•考题•赏析92演练巩固反馈提高96培优升级奥赛检测98第16讲分式方程及其应用99经典·考题·赏析100演练巩固·反馈提高103培优升级·奥赛检测105第17讲反比例函数的图象与性质106经典·考题·赏析107演练巩固·反馈提高112培优升级·奥赛检测115第18讲反比例函数的应用118经典·考题·赏析118演练巩固反馈提高121培优升级奥赛检测123第19讲勾股定理125经典·考题·赏析125演练巩固·反馈提高130培优升级•奥赛检测132第20讲平行四边形135经典•考题•赏析135演练巩固反馈提高139培优升级奥赛检测141第21讲菱形与矩形143经典·考题·赏析143演练巩固反馈提高147培优升级奥赛检测150第22讲正方形154经典•考题•赏析154演练巩固·反馈提高159培优升级·奥赛检测161第23讲梯形163经典•考题•赏析163演练巩固反馈提高. 165培优升级奥赛检测167第24讲数据的分析171经典·考题·赏析171演练巩固·反馈提高175培优升级·奥赛检测177模拟测试卷(一)180模拟测试卷(二) 183模拟测试卷(三)186AF CEDB B AC DE F第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90.在△ABC 和△DCB 中 AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C .【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \AE第1题图A BCDEBCDO第2题图A B C D O F E A C EFBD03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCA 【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90° .EC =CF得到两种三角形纸片,再将这两张三角形纸片摆成如下B (E )OC F 图③DAAFECB DEFB ACDG第2题图图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2.在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC , ∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .02.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am21ABC P Q E F D03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA 的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC 05将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于第1题图a αc ca50° b72°58°AECBA 75° C45° BNM第2题图第3题图DN ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09AE +DE =______10AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E . ⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB 分别是E 、F .求证:CE =DF .D A C .QP.BD B AC EFAE BF D C16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.F 第6题图 21A B C E N M 321 A D E B C F A D E CO AE O BF C D 第1题图 B 第2题图 第3题图 A B CD A 1 B 1C 1D 1AEFC D B A B C DEA EB DC08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

八年级数学培优-八年级数学培优记录表

八年级数学培优-八年级数学培优记录表

目录第1讲全等三角形的性质与判定(P2----11)第2讲角平分线的性质与判定(P12----16)第3讲轴对称及轴对称变换(P17----24)第4讲等腰三角形(P25----36)第5讲等边三角形(P37----42)第6讲实数(P43----49)第7讲变量与函数(P50----54)第8讲一次函数的图象与性质(P55----63)第9讲一次函数与方程、不等式(P64----68)第10讲一次函数的应用(P69----80)第11讲幂的运算(P81----86)第12讲整式的乘除((P87----93)第13讲因式分解及其应用(P94----100)第14讲分式的概念?性质与运算(P101----108)第15讲分式的化简求值与证明(P109----117)第16讲分式方程及其应用(P118----125)第17讲反比例函数的图像与性质(P126----138)第18讲反比例函数的应用(P139----146)第19讲勾股定理(P147-----157)第20讲平行四边形(P158-----166)第21讲菱形矩形(P167-----178)第22讲正方形(P179-----189)第23讲梯形(P190-----198)第24讲数据的分析(P199-----209)模拟测试一模拟测试二模拟测试三第01讲全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS,ASA,AAS,SSS,对于两个直角三角形全等的判定方法,除上述方法外,还有HL法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.A F CED B B A C D EF 经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明. 03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格). 【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE . 【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF A BC D O FE A CEFBD在△ABE 和△DCF 中, AB DC AE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( )A .2B .3C .4D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗请说明理由_____________.AFE CB DA E第1题图ABC DE BCDO第2题图【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCA 【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.EFB ACDG第2题图B (E ) OCF 图③DA【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQ ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 02.直距离MA 为am ,此时梯子的倾斜角为75°,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为A .2a b m +B .2a b m - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°AECBA 75° C 45°B NM第2题图第3题图D21ABC P QE F D02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______第1题图a αcc a50b725810.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于交DE 于点F , 加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直从另两个顶点A 、B 分别作l 的垂线,垂足分别为⑴找出图中的全等三角形,并加以证明;⑵若DE =a ,求梯形DABE 的面积.形法) 15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB 垂足分别是E 、F .求证:CE =DF . 16全等,那么在什么情况下,它们会全等 ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全对于这两个三角形均为钝角三角形,可证明它们明略);对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)DAC.QP.BAEF CDBAEB DC⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE ,则OE 平分∠AOB ,正确的是( )A .①②B .②③C .①③D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗证明你的判定. 08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE=90°, ∠BAC =∠EAD .求证:∠CED =90°.ABEDC F第6题图 21A BC E NM 321ADE BCFA DECOA EO BFCD 第1题图 B 第2题图 第3题图 AB CDA 1B 1C 1D 1A B C D E10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

部编数学八年级下册专题29一次函数与平行四边形结合(解析版)含答案

部编数学八年级下册专题29一次函数与平行四边形结合(解析版)含答案

专题29 一次函数与平行四边形结合1.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数(0)y x m m =+>的图象,直线PB 是一次函数3()y x n n m =-+>的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点.若四边形PQOB 的面积是5.5,且:1:2CQ AO =,若存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形,则点D 的坐标为________.2.已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M 的坐标.考点:一次函数综合题.3.已知直线1l :y 1=34x +m 与直线2l :y 2=2x +n 相交于点A (2,3).(1)求m ,n 的值;(2)请在所给坐标系中画出直线1l 和2l ,并根据图像回答:当x 满足____时,12y y <.(3)设1l 交x 轴于点B ,2l 交y 轴于点C ,若点D 与点A ,B ,C 能构成平行四边形,则点D 的坐标为_____.由函数图象得:当x >2时12y y <.故答案为:x >2;(3)当133042y x =+=时,解得:2x =-,∴B (-2,0),在221y x =-中,当x =0时,y =-1,∴C (0,-1),如图,当BC 是平行四边形的边时,【点睛】本题考查待定系数法,画一次函数图象,一次函数图象的交点与不等式的关系,平行四边形的判定等知识,解题关键是通过数形结合分类讨论.4.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的坐标为()2,m .(1)直接写出b 和m 的值:b =______,m =______.(2)在x 轴上有一动点(),0P a (其中2a >),过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图象于点C 、D .①若2OB CD =,求a 的值;②是否存在这样的点P ,使以B 、O 、C 、D 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.5.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2对应的函数解析式;(2)求△ABC的面积;(3)请你找到图象中直线l1在直线l2上方的部分,直接写出此时自变量x的取值范围;(4)在坐标平面内是否存在点P,使以点A、B、C、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.当y=0时,x+3=0,解得∴B(﹣3,0),又A(3,0),∴AB=6,∵C(1,4),∴CD=4,11∴33122 00422mn-++ì=ïïí++ï=ïî,解得14mn=-ìí=-î,同理可得:3132204022mn+-+ì=ïïí++ï=ïî,解得:74mn=ìí=î,∴P(7,4);③以AP、BC为对角线,如图:同理可得:33122 00422mn+-+ì=ïïí++ï=ïî,解得:54mn=-ìí=î,∴P(﹣5,4);综上所述:以点A、B、C、P6.已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )AB C.D.故选B .【点睛】本题考查了一次函数与平行四边形的综合题,解本题的关键是找到何时CD 最短.7.如图,在同一平面直角坐标系中,直线1:3l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2:2l y x =与直线1l 交于点P .(1)求P 点的坐标.(2)设直线1l 与直线2l 在第一象限内的图象为G ,若直线x m =与图象G 只有两个交点,请写出m 的取值范围.(3)在平面内是否存在一点Q ,使得以点O ,A ,B ,Q 为顶点的四边形是平行四边形,若存在请直接写出Q 点的坐标,若不存在请说明理由.【答案】(1)点P 的坐标为(1,2)(2)01m <<或13m <<.(03m <<且1m ¹)(3)存在,1(3,3)Q ;2(3,3)Q -;3(3,3)Q -【分析】(1)联立二元一次方程组求解即可;(2)根据图像判断即可;(3)如图,分别过点A ,B ,O 点作y 轴,x 轴,直线AB 的平行线,交点分别为123,,Q Q Q ,则点123,,Q Q Q 即为所求作的点.【详解】(1)解:根据题意,得32y x y x=-+ìí=î解得12x y =ìí=î∴点P 的坐标为(1,2).(2)解:如图,把y =0代入3y x =-+得,03x =-+,解得,3x =,\点A 的坐标为(3,0),由点P 的坐标为(1,2),01m \<<或13m <<.(03m <<且1m ¹)(3)解:存在Q ,使得以点O ,A ,B ,Q 为顶点的四边形是平行四边形,如图,分别过点A ,B ,O 点作y 轴,x 轴,直线AB 的平行线,交点分别为123,,Q Q Q ,则点123,,Q Q Q 即为所求作的点,Q 点A 的坐标为(3,0),点B 的坐标为(0,3),\ 1(3,3)Q ,2(3,3)Q -,3(3,3)Q -【点睛】本题考查了一次函数与几何的综合题,一次函数的交点坐标,一次函数与坐标轴的交点,一次函数与二元一次方程组,一次函数与不等式,正确理解一次函数的相关性质是解本题的关键.8.如图,Rt OAB V 的两直角边OA 、OB 分别在x 轴和y 轴上,()4,0A -,()0,8B ,将OAB V 绕O 点顺时针旋转90°得到OCD V ,直线AC 、BD 交于点E .点M 为直线BD 上的动点,点N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边,则符合条件的点M 的坐标为______.【答案】(4,4)或(8,−4).【分析】由A 、B 的坐标可求得AO 和OB 的长,由旋转的性质可求得OC 、OD 的长,由B 、D 坐标可求得直线BD 解析式,当M 点在x 轴上方时,则有CM ∥AN ,则可求得M 点纵坐标,代入直线BD 解析式可求得M 点坐标,当M 点在x 轴下方时,同理可求得M 点纵坐标,则可求得M 点坐标.【详解】解:∵()4,0A -,()0,8B ,∴OA =4,OB =8,∵将△OAB 绕O 点顺时针旋转90°得△OCD ,∴OC =OA =4,OD =OB =8,AB =CD ,∵OD =OB =8,∴D (8,0),且B (0,8),∴直线BD 解析式为y =−x +8,当M 点在x 轴上方时,则有CM ∥AN ,即CM ∥x 轴,∴M 点到x 轴的距离等于C 点到x 轴的距离,∴M 点的纵坐标为4,在y =−x +8中,令y =4可得x =4,∴M (4,4);当M 点在x 轴下方时,同理可得M 点的纵坐标为−4,在y =−x +4中,令y =−4可求得x =8,∴M 点的坐标为(8,−4);综上可知M 点的坐标为(4,4)或(8,−4),故答案为:(4,4)或(8,−4).【点睛】本题考查了平行四边形的判定和性质,旋转的性质、掌握平行四边形的判定和性质,进行分类讨论,是解题的关键.9.在平面直角坐标系中,已知(6,0)A -,(0,8)B ,(a,a)C ,D 是平面内的一点,以A ,B ,C ,D 为顶点的四边形是平行四边形,则CD 的最小值是___________.∵(6,0)A -,(0,8)B ,由平行四边形的性质,点F 为AB 的中点,∴点F 为(-3,4),∵CF ⊥直线y x =,∴CD=AB=226810+=;∵7210<,∴CD 的最小值为:72;三、解答题(共0分)10.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.∵OE ∥AC ,所以直线OE 的解析式为y =-2x ,联立OE 、AB ,得12y x y x =+ìí=-î,解得1323x y ì=-ïïíï=ïî,12∵OD ∥AB ,∴直线OD 的解析式为y =x ,联立OD 、AC ,得24y x y x =ìí=-+î解得4343x y ì=ïïíï=ïî,11.如图,在平面直角坐标系中,直线142y x=-+交x轴于点A,交y轴于点B.点C为OB的中点,点D在线段OA上,OD3AD=,点E为线段AB上一动点,连接CD、CE、DE.(1)求线段CD的长;V的面积为4,求点E的坐标;(2)若CDE(3)在(2)的条件下,点P在y轴上,点Q在直线CD上,是否存在以D、E、P、Q为顶点的四边形为平行四边形.若存在,直接写出点Q坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,直线y=52x+5与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于C,且△ABC面积为15.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,且△ABM的面积等于△AOB的面积,求M的坐标;(3)在(2)的条件下,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C 为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.∵B(0,5),BE∥CD,BE=CD,∴点E的纵坐标是5,∵点E为直线AM上一动点,直线AM的表达式为:y=x+2.∴x+2=5,解得:x=3,∴E(3,5),∴BE=CD=3,∵C(4,0),∴D(7,0);②当BC为平行四边形的边,四边形BDEC为平行四边形时,如图:过点E作EF⊥x轴于F,∵四边形BDEC为平行四边形,∴BC=ED,∠DBC=∠CED,BD=EC,∴△BDC≌△ECD(SAS),∴EF=OB,∵B(0,5),∴EF=OB=5,∴点E的纵坐标是﹣5,∵点E 为直线AM 上一动点,直线AM 的表达式为:y =x +2.∴x +2=﹣5,解得:x =﹣7,∴OF =7,在Rt △BOC 和Rt △EFD 中,BC ED OB FE=ìí=î∴Rt △BOC ≌Rt △EFD (HL ),∴DF =OC ,∵C (4,0),∴DF =4,∴OD =4+7=11,∴D (﹣11,0);③当BC 为平行四边形的对角线时,∵B (0,5),BE ∥CD ,BE =CD ,∴点E 的纵坐标是5,∵点E 为直线AM 上一动点,直线AM 的表达式为:y =x +2.∴x +2=5,解得:x =3,∴E (3,5),∴BE =CD =3,∵C (4,0),∴D (1,0).综上,存在,满足条件的点D 的坐标为(7,0)或(﹣11,0)或(1,0).【点睛】本题主要考查了一次函数的综合题,待定系数法求一次函数解析式,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,直线 y =-2x +4分别与 y 轴、x 轴交于点 A 、点 B ,点 C 的坐标为(-2,0),D 为线段 AB 上一动点,连接 CD 交 y 轴于点 E .(1)求出点 A 、点 B 的坐标;(2)若COE ADE S S D =V ,求点 D 的坐标;(3)在(2)的条件下,点 N 在 x 轴上,直线 AB 上是否存在点 M ,使以 M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出 M 点的坐标;若不存在,请说明理由.过E作EF∥OB交AB于点F,∵点F在直线y=-2x+4上,同理:BN=EF=43,∴ON=2+43=103,∴点N 的坐标为(103,0),设直线MN 的解析式为123y x n =+,14.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A ,B 的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x=173-+=2,y=573+=4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.。

八年级数学培优第十三讲平行四边形与一次函数.doc

八年级数学培优第十三讲平行四边形与一次函数.doc

第十二讲 平行四边形与一次函数考点.方法.破译1. 理解并掌握平行叫边形的定义、性质、和判定方法,并运用它们进行计算与证明.2. 理解三角形中位线定理并会应用.3. 了解平行四边形是屮心对称阁形.经典.考题.赏析【例3】(南昌)如图:在平面直角坐标系巾,有(0,1) ,B(-1,0) ,C (1,0)三点. ⑴若点£>与A 、B 、C 三点构成平行四边形,请写出所 有符合条件的点D 的坐标; ⑵选择⑴中符合条件的一点求直线的解析式.【解法指导】已知固定的三个点,作平行叫边形应有三种 可能性,如图所示,因而本题D 点坐标应有三种可能性.【解】⑴D/ (2,1) D 2(-2, 1) D 3 (0, —1)⑵若选择£)3(0,一1),可求得解析式:y=—x —\ 【变式题组】已知固定的三个点,作平行叫边形吋应有三种 可能性,如图所示,因而本题D 点坐标应有三种可能性.【解】(1)£>/(2,1) D 2(-2, 1) D 3 (0, —1)⑵若选择£b(0, — 1),可求得解析成:y= —x — 1【变式题组】301.如图,直线^7=— 一;V+3与y 轴交于点与直线/2交于X 轴上同一点B ,直线/2交y 轴于点C 1,且点C*与点A 关于x 轴对称.(1)求直线/2的解析式 :⑵设D(0, — 1),平行于y 轴的直线分别交直线6和/2于点E 、F.是否存在f 的值,使得以A 、£>、£、F 为顶点的四边形 是平行叫边形,若存在,求出f 的值;若不存在,请说明理由.1 r v2 1 -2 -1 0 ■>4 1 2 . T 「,1 * C .2 ■ •V02.如图,在直角坐标系中,(1,0),B (3,0), P是>,轴上一动点,在直线jdx • - 2上是否存在点2,使4、6、P、0为顶点的四边形为平行四边形?若存在,求出对应的0 点的坐标;若不存在,请说明理由.03.(四川资阳)若一次函数y=2^-l和反比例函数>,=—的图象都经过点(1,1).2x(1)求反比例函数的解析式;⑵已知点在第三象限,且同时在两个函数的图象上,求点的坐标;⑶利用⑵的结果,若点B的坐标为(2, 0),且以点A、0、B、P为顶点的叫边形是平行四边形,请你直接写出点P的坐标.【例4】(齐齐哈尔)如图1.在叫边形MCD巾,/U?=CD,£、F分别是BC、4D的中点,连接£F并延长,分别与凡4、C£>的延长线交于点似、况则(不耑证明)(温馨提示:在阁1屮,连接6D,取的屮点H,连接HE、根据三角形屮位线定理,证明从而Z1 = Z2,再利用平行线性质,可证得)问题一:如图2,在叫边形中MB与C7)相交于点分别是BC、AD的巾点,连接£厂,分别交DC、AB于A/、判断AOM/V的形状,请直接写出结论.问题二:如图3,在中,点在AC上,AB=CD,E、F分别是BC、AZ)的屮点,连接并延长,与的延长线交于点G,若Z£FC=60°,连接GD,判断MGD的形状并证明.【解法指导】出现屮点,联想到三角形屮位线是常规思路,因为三角形屮位线不仅能 进行线段的替换,也可通过平行进行角的转移.【解】⑴为等腰三角形.⑵AAGD 为含有30°的直角三角形.证明:连接取的屮点连接™、EM. 9:AF=FD f BM=MD 丄 AB同理MEli - CD. *:AB=CD :.MF=ME,-2又•••Z2=Z1=6O° , 为等边三角形,•••Z4=Z3 = 60°,Z5 = 60••.△AG/7 为等边三角形:.FG=FD ••.ZAZ)G=30°••.△ACT)为含有30°的直角三角形.【变式题组】01.(扬州)如图,己知四边形A5CD 中,/?、P 分别是5C 、CZ )上的点,E 、F 分别是的屮点,当点P 在CD 上从C 向D 移动而点不 动时,那么下列结论成立的是 () 4、线段的长逐渐增大线段的长逐渐减小 C 、线段£F 的长不变 D 、线段£F 的长与点P 的位置有关02.如亂在A/1BC 中,A/是BC 的中点,AZ )是ZA 的平分线,丄火£> 于 £>,AB=12,AC=22,则 A/D 的长为( ).儿3 BA C.5 D.6【例5】(浙江竞赛)如图1,在ZV1BC 中,ZC=90°,点M 在价?上,且Z?A/=z4C ,点yv 在AC 上,且儿与z?yv 相交于点P,求证:ZBPM=45°.【解法指导】题屮相等线段关联性不强,能否把相等的线段(或角)通过改变位置, 将B图2 £ 3C囲1分散的条件集中,从而构造全等三角形解决问题.=EN 在 AAMC 和 AB£A/屮,AC=BN ,ZBNE= ZC=^)0,ME=MC :./\AMC^/\BEM :.BE=AM=EN, Z3=Z4 VZ1 = Z2, Zl + Z4=90° •••Z2+Z3 = 90°, 为等腰直角三角形,ZBNE=45° , /.ZBPM=45°方法2:如图3,过B 作连接AF,™也可证得.【变式题组】01.如图,在等腰A/1BC 中,延长边到点/),延长C4到点£,连接£>£,若 AD=BC=CE=DE,求ZBAC 的度数.演练巩固反馈提高05.(浙江金华)某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫6 得颜色的花,如果有71B//EF//DC ,BC//GH//AD,那么下列说法错误的是 A.红花,绿花种植而积一定相等及紫花,橙花种植而积一定相等 C*.红花,蓝花种植面积一定相等 D.蓝花,黄花种植面积一定相等06.(陕西)如图,Z; // /2BE// CF, BA丄// DC丄Z2,下面叫个结论中①=②BE=CF ADE =、DCF④其巾正确的有()九4个 B . 3个 C. 2个Z) . 1个07.(成都)己知四边形ABCD ,有以下四个条件:①AB//CD ②③BC///U ) ④从这四个条件中任选两个,能使四边形ABCD 为平行四边形的选法种数 有( )A. 6 种B. 5 种C. 4 种 £>. 3 种 08.(廈门)如图,在四边形ABCD 中,户是对角线BZ )的中点,£,厂分别是/15,€/)的中 点,/!£>二BC ,ZP£F=18fl ,则 ZPFE 的度数为 ___________第鄕图 策10题图 策11超图09..如图,平行四边形ABCD 中,点£在边中,以为折痕,将向上翻折, 点A 恰好落在CD 上的F 点,若AFDE 的周长为8, AFCS 的周长为22,则FC 的长 为10.如图,在沁AABC 中,ZBAC=90°,AB=3,AC=4,将AABC 沿直线BC 向右平移2. 5 个单位得到△D£F,/1C 与相交于点G ,连接AD ,A£,则下列结论巾成立的是 ________________①四边形ABED 是平行四边;②③△?!£>£为等腰三角形④AC 平分ZEAD11.(长春)如图04价?£>巾,E 是BC 边上一点,且 求证:△ABC2AEAZ)若泌£平分ZDAB ,ZE4C=25°,求ZA££>的度数.Il第6题AE12.(荆州)如阁,A—点£ 满足££>丄似于£>,且Z£BC=Z£DC,Z£CB=4f°,找出阁中一条与相等的线段,并加以证明.已知,如图,AA价:是等边三角形,D是边上的点,将线段£>权绕点£)顺时针旋转60°得到线段£>£,延长££>交/1(7于点F,连接£>C,A£.⑴求证:iWDE^LDFC⑵过点£作EH//DC^DB于点G,交BC于点H,连接AH,求ZAH£的度数.。

八年级(上)培优讲义第13讲一次函数1

八年级(上)培优讲义第13讲一次函数1

第1讲一次函数(1)一、新知建构1. 体验在一个过程中有些量固定不变,有些量不断地变化。

用一根长为20厘米的铁丝围成一个长方形,请根据表中围成的长方形的长计算长方形的宽:长方形的长9cm8cm7cm6cm5cm长方形的宽在上述过程中,哪些量在改变,哪些量不变?2.了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。

3.学会在简单的过程中辨别常量和变量。

说说下列问题情境中,哪些是常量,哪些是变量?(1)小明去买水果,苹果2.5元每斤,他买了x斤苹果花了y元钱。

(2)小明去买水果,他花了10元钱,买了m斤冬枣,冬枣的价格为n元每斤。

(3)小刚在400米的跑道上跑步,他跑第一圈的时间t秒,他跑第一圈的平均速度是v米每秒。

(4)汽车以60千米的速度从学校出发匀速行驶,汽车行驶了t小时行驶了s千米。

4.通过实例,了解函数的概念.5.了解函数的三种表示法:(1)解析法;(2)列表法;(3)图象法..(1)小明利用暑假去某公司打工,报酬按15元/小时计算。

设小明在整个假期工作时间为t小时,应得报酬为m元,填写下表:时间t(小时) 10 20 30 40 50 ……t……报酬m(元)在上述过程中,有哪几个变量?怎样用t的代数式表示m ?(2)下表是一年内某城市月份m与平均气温T的统计表:月份 1 2 3 4 5 6 7 8 9 10 11 12气温** ** ** ** ** ** ** ** ** ** ** **在这一年中,该城市的平均气温与月份的变化情况是怎样的?在这一过程中,有哪几个变量?你能用月份m表示平均气温T吗?(3)居民月用水费用与用水量如图所示,横轴表示一个月的用水量,纵轴表示该月的水费。

(1)点A 表示小王家的用水情况,A 坐标为( , ) 说明了 (2)点B 表示小李家的用水情况,B 坐标为( , ) 说明了 (3)在该问题中,有那些变量?6.理解函数值的概念.7.学会在简单情况下,根据函数的表示式求函数的值. 8.会根据实际问题构建数学模型并列出函数解析式;9.掌握根据函数自变量的值求对应的函数值,或是根据函数值求对应自变量的值; 10.会在简单的情况下根据实际背景对自变量的限制求出自变量的取值范围. 二、经典例题例1.函数y =xx -1中,自变量x 的取值范围是___________.例2.已知y =-2x +4,且-1≤x <3,求函数值y 的取值范围.例3.已知函数f (x )=1x 2+1,那么f (-1)=________.例4.如图,科技小组准备用材料围建一个面积为60m 2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12m ,设AD 的长为x m ,DC 的长为y m . (1)求y 与x 之间的函数关系式;(2)若围成矩形科技园ABCD 的三边材料总长不超过26m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.CB A Y (元)X(吨)O60402010 20 30例5.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)例6.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?例7.在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下a、b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a、b所对应的函数图像分别为_____,_____.(填写序号)(2)请你为剩下的函数图像写出一个适合的情境.三、基础演练a 的值为1.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则b()溶质质量溶剂质量=溶解度100克.A.33B.-33C.-7D.72.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)3.点P(a,a﹣3)在第四象限,则a的取值范围是.4.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)A.x>-1B.x<-1C.x≠-1D.x≠05.小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A B C D6.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x 的函数关系的是()A B C D7.在一定温度下的饱和溶液中,溶质、溶剂质量和溶解度之间存在下列关系:A .y =0.316xB .y =31.6xC .y =0.316xD .y =x0.316已知20℃时,硝酸钾的溶解度是31.6克,在此温度下,设x 克水可溶解硝酸钾y 克,则y 关于x 的函数关系式是( )8.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是 ( ) A .①②③B .仅有①②C .仅有①③D .仅有②③ 四、直击中考1.(2014济宁)函数y =中的自变量x 的取值范围是( ) A . x ≥0 B .x ≠﹣1 C .x >0 D .x ≥0且x ≠﹣12. (2014汕尾)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )A .B .C .D .3.(2014德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( ) A . 体育场离张强家2.5千米 B . 张强在体育场锻炼了15分钟 C . 体育场离早餐店4千米D . 张强从早餐店回家的平均速度是3千米/小时4.(2014孝感)函数的自变量x 的取值范围为 .5.(2013新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系 . 五、能力提升1.写出下列函数的自变量的取值范围:(1)x y 2-= ; (2)1xy x-= ; (3)2+=x y ; (4)24x y x -=-2.已知长方体容器的底面是边长为2cm 的正方形(高度不限),容器内盛有10cm 高的水,现将底面为边长是1cm 的正方形、高是xcm 的长方体铁块竖直放入容器内,容器内的水高y 关于x 的函数关系式为1041+=x y ,则x 的取值范围是( ) A .0<x <340 B .x >0 C .0<x ≤10 D .以上均错3.两个变量y 与x 之间的函数图象如图所示,则y 的 取值范围是____________.4.已知点A (8,0),点P 是第一象限内的点,P 的坐标为(x ,y ),且2x +y =10,设△POA 的面积为S ,求S 与x 的函数解析式,并求当x =3时,S 的值。

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.51一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•道里区开学)若把直线y=2x+3向上平移3个单位长度,得到图象对应的函数解析式是()A.y=2x+9 B.y=2x﹣3 C.y=2x+6 D.y=2x解:由“上加下减”的原则可知,将直线y=2x+3,向上平移3个单位所得的直线的解析式是y=2x+3+3,即y=2x+6.故选:C.2.(2分)(2023春•丰润区期末)若k<0,则一次函数y=﹣2x﹣k的图象大致是()A.B.C.D.解:∵k<0,∴﹣k>0,∴直线y=﹣2x﹣k的图象经过第第一、二、四象限,∴该直线不经过第三象限;故选:A.3.(2分)(2022秋•平遥县期末)如图,直线与x轴,y轴分别交于点A和点B,点C在线段AB 上,且点C坐标为(m,2),点D为线段OB的中点,点P为OA上一动点,当△PCD的周长最小时,点P 的坐标为()A.(﹣3,0)B.C.D.解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选:B.4.(2分)(2022秋•相山区校级期末)一次函数y1=mx+n(m,n是常数)与y2=nx+m在同一平面直角坐标系中的图象可能是()A.B.C.D.解:由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n<0,m=0,矛盾,故A不合题意;由一次函数y1=mx+n图象可知m>0,n<0,由一次函数y2=nx+m可知n<0,m>0,一致,故B符合题意;由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n>0,m>0,矛盾,故C不合题意;由一次函数y1=mx+n图象可知m>0,n>0,由一次函数y2=nx+m可知n<0,m>0,矛盾,故D不合题意;故选:B.5.(2分)(2022秋•兴化市期末)若点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣x+1图象上的点,则()A.y3<y2<y1B.y1<y2<y3C.y1<y3<y2D.y2<y3<y1解:∵k=﹣1<0,∴y随x的增大而减小,∵﹣1<1<2,∴y3<y2<y1,故选:A.6.(2分)(2021秋•沂源县期末)关于函数y=(k﹣3)x+k,给出下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(﹣1,3);③若图象经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是0<k<3.其中正确结论的序号是()A.①②③B.①③④C.②③④D.①②③④解:①根据一次函数定义:k≠0函数为一次函数,故正确;②y=(k﹣3)x+k=k(x+1)﹣3x,故函数过(﹣1,3),故正确;③图象经过二、三、四象限,则k﹣3<0,k<0,解得:k<0,故正确;④函数图象与x轴的交点始终在正半轴,则x=>0,解得:0<k<3,故正确.故选:D.7.(2分)(2020秋•苏州期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A.若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1 B.3或C.2或D.3或+1解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故选:D.8.(2分)(2020•鹿城区校级模拟)如图,平面直角坐标系中,直线l:y=﹣x+2分别交x轴、y 轴于点B、A,以AB为一边向右作等边△ABC,以AO为一边向左作等边△ADO,连接DC交直线l于点E.则点E的坐标为()A.(,)B.(,)C.(,)D.(,)解:y=﹣x+2①,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(0,2)、(2,0),即OB=2,AO=2=OD,则AB=4=BC,tan∠ABO==,故∠ABO=60°,而△ABC为等边三角形,则BC与x轴的夹角为180°﹣∠ABC﹣∠ABO=180°﹣60°﹣60°=60°,则y C=BC sin60°=4×=2,x C=x B+BC cos60°=2+4×=4,故点C(4,2),同理可得点D的坐标为:(﹣3,),设直线CD的表达式为y=kx+b,则,解得:,故直线CD的表达式为:y=x+②,联立①②并解得:x=,y=,故点E的坐标为:(,),故选:A.9.(2分)(2023•灞桥区校级模拟)已知直线l1:y=kx+b(k≠0)与直线l2:y=k1x﹣6(k1<0)在第三象限交于点M,若直线l1与x轴的交点为B(3,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2解:∵直线l1与x轴的交点为B(3,0),∴3k+b=0,∴y=kx﹣3k,直线l2:y=k1x﹣6(k1<0)与y轴的交点坐标为(0,﹣6),若直线l1与x轴的交点为B(3,0),则l1与y轴交点(0,﹣3k)在原点和点(0,﹣6)之间,即:﹣6<﹣3k<0,解得:0<k<2,故选:D.10.(2分)(2019秋•龙岗区校级期末)如图,已知直线AB:y=分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE.当BD+BE 的值最小时,则H点的坐标为()A.(0,4)B.(0,5)C.D.解:由题意A(0,),B(﹣3,0),C(3,0),∴AB=AC=8,取点F(3,8),连接CF,EF,BF.∵C(3,0),∴CF∥OA,∴∠ECF=∠CAO,∵AB=AC,AO⊥BC,∴∠CAO=∠BAD,∴∠BAD=∠ECF,∵CF=AB=8,AD=EC,∴△ECF≌△DAB(SAS),∴BD=EF,∴BD+BE=BE+EF,∵BE+EF≥BF,∴BD+BE的最小值为线段BF的长,∴当B,E,F共线时,BD+BE的值最小,∵直线BF的解析式为:y=x+4,∴H(0,4),∴当BD+BE的值最小时,则H点的坐标为(0,4),故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋中期末)已知在平面直角坐标系中,点A(3,m),B(5,n)是直线y=﹣2x上的两点,则m,n的大小关系是m n.(填“<”,“>”或“=”)解:∵点A(3,m),B(5,n)是直线y=﹣2x上的两点,又∵k=﹣2<0,∴y随着x增大而减小,∵3<5,∴m>n,故答案为:>.12.(2分)(2022秋•磁县期末)如图,在平面直角坐标系中,点A(3,m)在第一象限,若点A关于x 轴的对称点B在直线y=﹣x+1m的值为.解:∵点A(3,m),∴点A关于x轴的对称点B(3,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣3+1=﹣2,∴m=2,故答案为:2.13.(2分)(2023春•昌吉市期末)已知一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,则k的值是.解:∵一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,∴当x=﹣1时,函数有最大值5,∴﹣k+3=5,解得k=﹣2.故答案为:﹣2.14.(2分)(2022秋•法库县期末)关于一次函数y=kx﹣k(k≠0)有如下说法:①当k>0时,y随x的增大而减小;②当k>0时,函数图象经过二、三、四象限;③函数图象一定经过点(1,0);④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=(k﹣2)x﹣k(k≠0).其中说法正确的序号是.解:①当k>0时,y随x的增大而增大;不符合题意;②当k>0时,则﹣k<0,函数图象经过一、三、四象限,不符合题意;③当x=1时,则y=0,∴函数图象一定经过点(1,0),符合题意;④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=kx﹣k﹣2(k≠0),不符合题意;故答案为:③.15.(2分)(2023春•漳平市期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A,若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故答案为1+或3.16.(2分)(2023春•昌吉市期末)如图,直线与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将△ABC沿BC折叠,点A恰好落在x轴上的A处,若P是y轴负半轴上一动点,且△BCP 是等腰三角形,则P的坐标为.解:当x=0时,=8,∴点A的坐标为(0,8);当y=0时,=0,解得:x=﹣6,∴点B的坐标为(﹣6,0).∴AB==10.∵AB=A′B,∴OA′=10﹣6=4.设OC=m,则AC=A′C=8﹣m.在Rt△A′OC中,A′C2=A′O2+OC2,即(8﹣m)2=42+m2,解得:m=3,∴点C的坐标为(0,3),∴BC==3,∴当BC=BP时,P1(0,﹣3);当BC=CP时,则OP+OC=3,∴OP=3﹣3,∴P2(0,3﹣3);当CP=BP时,设P(0,﹣n),则BP=CP=3+n,∴(3+n)2=62+n2,解得n=,∴此时P3(0,﹣);综上,P点的坐标为(0,﹣3)或(0,3﹣3)或(0,﹣);故答案为:(0,﹣3)或(0,3﹣3)或(0,﹣).17.(2分)(2022秋•丹徒区期末)如图,平面直角坐标系中,x轴上一点A(4,0),过点A作直线AB ⊥x轴,交正比例函数的图象于点B.点M从点O出发,以每秒1个单位长度的速度沿射线OB运动,设其运动时间为t(秒),过点M作MN⊥OB交直线AB于点N,当△MBN≌△ABO时,t=秒(写出所有可能的结果).解:如图1所示,当点M在线段OB上时,∵A(4,0),AB⊥x,∴点B的横坐标为4,当x=4时,,∴B(4,3),∴OA=4,OB=3,∴,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB﹣BM=2,∴t=2;如图2所示,当点M在OB延长线上时,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB+BM=8,∴t=8;综上所述,当t=2或t=8时△MBN≌△ABO,故答案为:2或8.18.(2分)(2022秋•南京期末)如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,将直线AB顺时针旋转90°,则旋转后的直线的函数表达式为.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,∴A(2,0),B(0,4),∴AO=2,BO=4,将直线AB绕点A顺时针旋转90°,交y轴于C,根据旋转的性质得到△BAO∽△ACO,∴=,即=,∴OC=1.∴C(0,1),设直线AC为y=kx﹣1,代入A(2,0)得2k﹣1=0,解得k=,∴旋转后的直线的函数表达式为y=x﹣1.故答案为:y=x﹣1.19.(2分)(2022秋•成华区期末)如图,直线y=x+4与x轴,y轴分别交于点A,B,点C是AO的中点,点D,E分别为直线y=x+4和CDE的周长最小时,线段DE的长是.解:在y=x+4中,令y=0得x=﹣4,∴A(﹣4,0),∵C是OA中点,∴C(﹣2,0),作C(﹣2,0)关于y轴的对称点G(2,0),作C(2,0)关于直线y=x+4的对称点F,连接AF,连接FG交AB于D,交y轴于E,如图:∴DF=CD,CE=GE,∴CD+CE+DE=DF+GE+DE=FG,此时△CDE周长最小,由y=x+4得A(﹣4,0),B(0,4),∴OA=OB,△AOB是等腰直角三角形,∴∠BAC=45°,∵C、F关于AB对称,∴∠FAB=∠BAC=45°,∴∠FAC=90°,∵AC=OA﹣OC=2=AF,∴F(﹣4,2),由F(﹣4,2),G(2,0)可得直线FG解析式为y=﹣x+,在y=﹣x+中,令x=0得y=,∴E(0,),由得,∴D(﹣,),∴DE==,故答案为:.20.(2分)(2022秋•锦江区期末)如图,在平面直角坐标系xOy中,已知∠AOB=90°,∠A=60°,点A的坐标为(﹣2,2),若直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是.解:过点A作AE⊥x轴于点E,过点B作BF⊥x于点F,如图,∵,∴,根据勾股定理得,,∴∠AOE=30°,∵∠AOB=90°,∠CAO=60°,∴∠ABO=30°,∴AB=2AO=8,∴,又∠BOF=180°﹣∠AOE﹣∠AOB=60°,∴∠OBF=30°,∴,∴,∴,对于y=﹣2x+2,当y=0时,﹣2x+2=0,∴x=1,∴直线y=﹣2x+2与x轴的交点坐标为(1,0);设过点A且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+p,把代入y=﹣2x+p,得:,∴,∴,当y=0时,,∴,∴直线与x轴的交点坐标为,设过点B且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+q,把代入y=﹣2x+q,得:,∴,∴,当y=0时,,∴,∴与x轴的交点坐标为,∴直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是,即.故答案为:.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023春•柘城县期末)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△PAB=S△OCD,∴S△PAB=××6×8=12.∵点P在y轴上,S△PAB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).22.(6分)(2022秋•沙坪坝区校级期末)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x 轴、y轴分别交于点A和点B(0,3),直线l2:y=2x+6与x轴交于点C,且与直线l1交于点D(﹣1,m).(1)求直线l1的表达式;(2)将直线l1向下平移4个单位长度得到直线l3,直线l2、l3交于点E,连接AE,求△ADE的面积.解:(1)把点D(﹣1,m)代入y=2x+6得,m=﹣2+6=4,∴点D的坐标为(﹣1,4),把点D(﹣1,4)和点B(0,3)代入y=kx+b得:,∴,∴直线l1的表达式为:y=﹣x(2)将直线l1向下平移4个单位长度得到直线l3的解析式为y=﹣x﹣1,解得,∴E(﹣,),在y=﹣x+3中,令y=0,则x=3,∴A(3,0),在直线l2:y=2x+6中,令y=0,则x=﹣3,∴C(﹣3,0),∴AC=6,∴△ADE的面积=S△ADC﹣S△ACE=×6×4﹣×6×=8.23.(8分)(2022秋•顺德区期末)一次函数y=x+1.(1)画出函数的图象;(2)当x时,的值大于0;(3)对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,求b的取值范围.解:(1)列表:画图如下:(2)由图可知:函数图象在x轴上方的部分对应的x的范围是x>﹣2,∴当x>﹣2时,的值大于0;(3)若对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,则当x≤﹣2时,y=﹣x+b必然大于0,∴﹣(﹣2)+b=4+b>0,解得b>﹣2.∴b的取值范围为:b>﹣2.24.(8分)(2023•花都区一模)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣,故答案为:﹣;(2)①如图1,由(1)可知直线AB的解析式为y=﹣x+4.∴设C(m,﹣m+4)(0<m<8),∵点D的坐标为(6,0),点E的坐标为(0,1),∴OD=6,OE=1,∴OM=m,CM=﹣m+4,∵四边形OECD的面积是9,∴S梯形CEOM+S△CDM=(1﹣m+4)•m+(﹣m+4)•(6﹣m)=9,整理得2m=6,解得m=3,∴点C的坐标为(3,);②∵CE平行于x轴,CD平行于y轴,∴四边形CEOD是矩形,∵四边形OECD的周长是10,∴2(m﹣m+4)=10或2(﹣m+4﹣m)=10,解得m=2或m=6,点C的坐标为(2,3)或(﹣,).25.(8分)(2023•南山区校级三模)图象对于探究函数性质有非常重要的作用,下面我们就一类特殊的函数展开探究.画函数y1=3|x|的图象,经历分析表达式、列表、描点、连线过程得到函数图象如图所示:在同一平面直角坐标系中,经历同样的过程画出函数y2=3|x﹣2|的图象如图所示.(1)观察发现:两个函数的图象都是由两条射线组成的轴对称图形,且图象的开口方向和形状完全相同,只有最低点和对称轴发生了变化.所以可以将函数y1的图象向右平移2个单位得到y2的图象,则此时函数y2的图象的最低点A的坐标为.(2)探索思考:将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,请在网格图中画出函数y3的图象,并求出当x≥4时,函数y3的最小值.(3)拓展应用:将函数y3的图象继续平移得到函数y4=3|x﹣m|+2的图象,其最低点为点P.①用m表示最低点P的坐标为;②当﹣1≤x≤2时,函数y4有最小值为5,求此时m的值.解:(1)由图象可得A(2,0),故答案为:(2,0);(2)将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,如图:当x≥4时,y3取到最小值,最小值为8;(3)拓展应用:将函数y3的图象继续平移得到y4=3|x﹣m|+2,其最低点为点P.①最低点P的坐标为(m,2),故答案为(m,2);②若m<﹣1,当x=﹣1时,y4有最小值5,∴3×|﹣1﹣m|+2=5∴m=0(舍),或m=﹣2若﹣1≤m≤2,当x=m时,y4有最小值2,不符合题意,舍去.若m>2,当x=2时,y4有最小值5,∴3×|2﹣m|+2=5∴m=1(舍),或m=3综上所述,m=﹣2或m=3.26.(8分)(2023春•新疆期末)因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:,解得:,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.27.(8分)(2022秋•皇姑区校级期末)在初学函数过程中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题;在y=a|x|+b中,如表是y与x的几组对应值.(1)直接写出a=,b=;(2)直接写出m=,n=;(3)在给出的平面直角坐标系xOy中,描出以上表格中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.根据函数图象可得:①该函数的最小值为;②该函数图象轴对称图形(填“是”或“不是”);(4)已知点(2022,y1)和(﹣2023,y2)在函数y=a|x|+b的图象上,则比较y1y2(填“>”或“<”).解:(1)∵函数y=a|x|+b的图象经过点(﹣1,3),(0,1),∴,解得,故答案为:2,1;(2)∵y=2|x|+1,∴当x=﹣2时,m=2×|﹣2|+1=5,当x=1时,n=2×|1|+1=3.故答案为:5,3;(3)函数y=2|x|+1的图象如图所示:根据图象可知,①该函数的最小值为1.②该函数图象是轴对称图形,故答案为:1;是;(4)∵点(2022,y1)到对称轴y轴的结论小于点(﹣2023,y2)的距离,∴y1<y2.故答案为:<.28.(8分)(2021秋•镇海区期末)如图,一次函数y=﹣x+4的图象交y轴于点A,交x轴于点B,点P为AB中点,点C,D分别在OA,OB上,连结PC,PD,点A,E关于PC对称,点B,F关于PD对称,且CE∥DF.(1)直接写出点A,B,P的坐标.(2)如图1,若点O,E重合,求DF.(3)如图2,若点F横坐标为5,求点E的坐标.解:(1)∵当x=0时,y=4,∴A(0,4),∵当y=0时,即,则x=8,∴B(8,0),∵点P为AB中点∴P(4,2),综上所述:A(0,4),B(8,0),P(4,2);(2)∵点C在OA,点A,E关于PC对称,此时点O,E重合,∴CE⊥x轴,∵CE∥DF,∴DF⊥x轴,∵B(8,0),P(4,2),∴PB2=(8﹣4)2+(0﹣2)2=20,∵点B,F关于PD对称,∴PF=PB,DF=DB设OD=m,则DF=DB=8﹣m,∴F(m,m﹣8),∴PF2=(m﹣4)2+(m﹣10)2=2m2﹣28m+116,∵PF2=PB2,∴2m2﹣28m+116=20,解得:m1=6,m2=8(舍),∴DF=8﹣6=2;(3)设F(5,n),由折叠知PF=PB==2,∵P(4,2),∴,解得n=2+(舍)或n=2﹣,∴F(5,2﹣),设PF的解析式为y=kx+b(k≠0),则,解得,∴直线PF的解析式为:y=﹣x+4+2,过P作PQ∥CE,则PQ∥CD∥DF,∴∠EPQ=∠E=∠PAC,∠FPQ=∠F=∠ABD,∴∠EPF=∠EPQ+∠FPQ=∠PAC PBD=90°,即PE⊥PF,∴可设直线PE的解析式为y=x+m,把P(4,2)代入得2=+m,解得m=2﹣,∴直线PE的解析式为y=x+2﹣,设E(t,t+2﹣),∵PE=PA=2,∴解得t=4+(舍)或t=4﹣,∴E(4﹣,1)。

平行四边形及性质与一次函数.docx

平行四边形及性质与一次函数.docx

平行四边形和一次函数 一.基础填空1 •由_条线段首尾顺次连接纟R 成的多边形叫四边形;四边形有—条边,—个角,四边形的内角和等于 _____ 度;2. 如图AB 与BC 叫 边,AB Ai CD 叫 边; ZA 与ZB 叫_角,ZD 与ZB 叫—角;3. 多边形屮不相邻顶点的连线叫对角线,如图四边形ABCD«|'对角线有 条,它们是4•冇两组对边 ________________ 的四边形叫平形四边形,平行四边形用“ ______ ”表示,平 行四边形ABCD 记作 ____________ o 5. ________________________ 如图EJABCD 中,对边有 _________ 组,分别是 __ ,对角有 _____________________________ 组,分别 是 _________________ ,对角线冇 _____ 条,它们是 ____________________ o你能归纳D ABCD 的边、角各有什么关系吗?并证明你的结论。

6. 平行四边形的周长为50cm,两邻边之比为2: 3,则两邻边分别为:1.口ABCD 屮,ZA : ZB :ZC : ZD IWJ 以是() A. 1 : 2 : 3 : 4 B. 3 : 4 : 4 : 3 C. 3:3:4:4D. 3:4:3:47. 口ABCD 的周长为40cm, AABC 的周长为27cm, AC 的长为 ()A. 13cmB. 3 cmC. 7 cmD. 11. 5cm 8. __________________________________________ 在6BCD 中,若ZA-ZB=40° ,贝ijZA= ____________________________________________ , ZB= ________ 9. 若平行山边形周长为54cm,两邻边Z 差为5cm,则这两边的长度分別为一 若UABCD 的对•角线AC 平分ZDAB,则対角线AC 与BD 的位置关系是 如图,UABCD 、\12.如图,在口4BCD 屮,DB=DC 、ZA = 65° , CE 丄BD 于 E,则ZBCE= ______________10. 11.,则 ZBCE= D.AB8.__________________________________________________________ 若在口4BCD 中,ZA = 30° , AB=7cm, AD=6cm,则S CA BCD= _____________________________7.如图,AD 〃BC, AE 〃CD, BD 平分Z ABC,求证AB 二CE.二、选择题1.如图,将口4BCD沿4E翻折,使点B恰好落在ADk的点F处,则下列结论不一•定成• •• • 立的是().■(A)AF=£F(B)4B=EF(C)AE=AF(D)AF=BE2.如图,下列推理不止确的是().(A)・・・AB〃CD:. ZABC+ ZC = 180°(B)VZ1 = Z2 :.AD//BC(C)・.・AD〃BC・・・Z3=Z4(D)V ZA+Z/^DC=180°:.AB//CD3.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为().(A) 5 (B)6(C)8 (D)12三.证明题1.已知:如图,LJABCD屮,E、F是宜线AC上两点,且AE=CF. 求证:⑴BE=DF; (2)BE//DF.2•如图,在口4BCD 屮,AELBCT E, 4F丄CD 于F,若ZEAF=60°, BE=2cm, DF=3cm, 求UABCD 的周长和面积・3•口4BCD屮,E在边AD±,以BE为折痕,将向上翻折,点4正好落在CD上的点F,若△FDE的周长为8, AFCB的周长为22,求CF的长.4•如图,AD〃BC, AE〃CD, BD 平分ZABC,求证AB二CE.B E1._________________________ 在口4BCD中,AC. BD交于点0,已知肋,BC=6cm, /XAOB 的周长是18伽,那么△AOD的周长是.2.LJABCD的对角线交于点O, S^o/尸2“/,贝ij Sn Af}C n= ______________ •3.LJABCD的周长为60C777,对角线交于点O, △BOC的周长比80〃的周长小8期,贝UAB= ______ cm, BC= _______ cm.4.LJABCD中,对角线AC和BD交于点O,若AC=8, AB=6, BD=m,那么加的取值范围是____________ .5.DABCD中,E、F在AC上,四边形DEBF是平行四边形.求证:AE=CF.6.如图,[□村有一口四边形的池塘,在它的四用A、B、C、D处均有一棵人桃树.[□村准备开挖养鱼,想使池塘的面积扩人一倍,并要求扩建后的池塘成平行四边形形状,请问III村能否实现这一设想?若能,画出图形,说明理由.7.已知:如下图,平行四边形ABCD的对角AC, BD交与点O.E, F分别是0A、0C 的中点。

八年级数学培优第十三讲平行四边形与一次函数

八年级数学培优第十三讲平行四边形与一次函数

第十二讲平行四边形与一次函数考点? 方法? 破译⒈理解并掌握平行四边形的定义、性质、和判断方法,并运用它们进行计算与证明.⒉理解三角形中位线定理并会应用.⒊认识平行四边形是中心对称图形.经典? 考题? 赏析【例 3】()如图 :在平面直角坐标系中,有 A( 0,1) ,B(- 1,0) ,C( 1,0)三点 .⑴若点 D 与 A、B、 C 三点组成平行四边形,请写出全部切合条件的点 D 的坐标;⑵选择⑴中切合条件的一点D,求直线 BD 的分析式.【解法指导】已知固定的三个点,作平行四边形应有三种可能性,如下图,因此本题 D 点坐标应有三种可能性.【解】⑴D 1( 2, 1) D2(- 2, 1) D 3( 0,- 1)⑵若选择 D3( 0,- 1),可求得分析式: y=- x- 1【变式题组】已知固定的三个点,作平行四边形时应有三种可能性,如下图,因此此题 D 点坐标应有三种可能性.【解】⑴ D1( 2, 1) D 2(- 2, 1) D 3( 0,- 1)⑵若选择D3( 0,- 1),可求得分析式:y=- x- 1【变式题组】01.如图,直线l 1:y=-3x +3与y轴交于点A,与直线2交 y 轴于点 C,且点 C 与点 A 对于 x 轴对称.⑴求直线 l2 的分析式⑵设 D( 0,- 1),平行于 y 轴的直线x= t 分别交直线l 2交于 x 轴上同一点B,直线 l 2;l1和 l2于点E、 F .能否存在t 的值,使得以A、 D、 E、 F 为极点的四边形是平行四边形,若存在,求出t 的值;若不存在,请说明原因.1 02.如图,在直角坐标系中,A( 1, 0), B(3, 0), P 是 y 轴上一动点,在直线y=x2 上能否存在点Q,使 A、B、 P、Q 为极点的四边形为平行四边形?若存在,求出对应的Q点的坐标;若不存在,请说明原因.03.(资阳)若一次函数 y= 2x- 1 和反比率函数y=k的图象都经过点( 1, 1).2x⑴求反比率函数的分析式;⑵已知点 A 在第三象限,且同时在两个函数的图象上,求点 A 的坐标;⑶利用⑵的结果,若点 B 的坐标为( 2, 0),且以点 A、 O、 B、 P 为极点的四边形是平行四边形,请你直接写出点P 的坐标.【例 4】()如图 1.在四边形ABCD 中,AB= CD,E、F 分别是BC、 AD 的中点,连结EF 并延伸,分别与BA、 CD 的延伸线交于点M、 N,则∠ BME=∠ CNE(不需证明)( 温馨提示 :在图 1 中,连结 BD,取 BD 的中点 H,连结 HE 、 HF ,依据三角形中位线定理,证明 HE =HF ,进而∠ 1=∠ 2,再利用平行线性质,可证得∠ BME =∠ CNE. ) 问题一:如图 2,在四边形 ADBC 中,AB 与 CD 订交于点 O,AB= CD,E、F 分别是 BC、 AD 的中点,连结 EF,分别交 DC、 AB 于 M、 N,判断 ? OMN 的形状,请直接写出结论.问题二 :如图 3,在 ?ABC 中, AC>AB,D 点在 AC 上, AB= CD ,E、F 分别是 BC、AD 的中点,连结 EF 并延伸,与 BA 的延伸线交于点 G,若∠ EFC = 60°,连结 GD ,判断 ? AGD 的形状并证明 .【解法指导】出现中点,联想到三角形中位线是惯例思路,由于三角形中位线不单能进行线段的替代,也可经过平前进行角的转移.【解】⑴△ OMN 为等腰三角形.⑵△ AGD 为含有 30°的直角三角形.证明:连结 BD,取 BD 的中点 M,连结 FM 、 EM.∵AF=FD ,BM=MD ∴MF // 1 AB 同理12 CD.∵ AB= CD ∴MF =ME,ME //2又∵∠ 2=∠ 1= 60°,∴△ MEF 为等边三角形,∴∠ 4=∠ 3= 60°,∠ 5=60°∴△ AGF 为等边三角形∴ FG=FD ∴∠ ADG = 30°∴△ AGD 为含有 30°的直角三角形. D 【变式题组】A01.()如图,已知四边形ABCD 中, R、 P 分别是 BC、 CD 上的点, EE、 F 分别是 AP、RP 的中点,当点P在CD上从 C向D挪动而点 R不P动时,那么以下结论建立的是() FA、线段 EF 的长渐渐增大B、线段 EF 的长渐渐减小 B RCC、线段 EF 的长不变D、线段 EF 的长与点 P 的地点相关02.如图,在△ ABC 中,M 是 BC 的中点, AD 是∠ A 的均分线, BD ⊥ AD 于 D ,AB= 12,AC = 22,则 MD 的长为() .【例 5】(比赛)如图 1,在△ ABC 中,∠ C= 90°,点 M 在 BC 上,且 BM= AC,点 N 在AC 上,且 AN= MC ,AM 与 BN 订交于点 P,求证:∠ BPM = 45°.【解法指导】题中相等线段关系性不强,可否把相等的线段(或角)经过改变地点,将分别的条件集中,进而结构全等三角形解决问题.【解】方法一、如图 2,过 M 作 MEAN , 连结 BE, EN, 则得 AMEN , ∴ ME⊥ BC, AM =EN在△ AMC 和△ BEM 中 ,AC = BN, ∠ BNE =∠ C = 90° , ME =MC∴△ AMC ≌△ BEM ∴∠ 2+∠ 3= 90° ,方法 2:如图 3,过 ∴ BE =AM = EN, ∠ 3=∠ 4 ∵∠ 1=∠ 2, ∠ 1+∠ 4= 90° ∴△ BEN 为等腰直角三角形,∠ BNE = 45° , ∴∠ BPM = 45°B 作 BFAN, 连结 AF, FM 也可证得.【变式题组】01.如图,在等腰△ ABC 中, AB = AC, 延伸边 AB 到点 D , 延伸 CA 到点 E, 连结 DE ,若AD =BC = CE = DE, 求∠ BAC 的度数.操练稳固 反应提升05.()某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫6 得颜色的花,假如有AB ∥ EF ∥ DC , BC ∥ GH ∥ AD, 那么以下说法错误的选项是 A .红花,绿花栽种面积必定相等B. 紫花,橙花栽种面积必定相等C. 红花,蓝花栽种面积必定相等D. 蓝花,黄花栽种面积必定相等06.()如图, l1 ∥ l2BE ∥ CF ,BA ⊥ l1 DC ⊥ l , 下边四个结论中AB = DC;BE= CF④ S □ABCD 2S △ADE = S △ DCF□BCFE, 此中正确的有( )= S A.4 个B .3 个C.2 个 D .1 个07.( )已知四边形 ABCD , 有以下四个条件:AB ∥ CD BC =AD 从这四个条件中任选两个,能使四边形ABCDAB = CD BC ∥ AD为平行四边形的选法种数有④()种种种D .3种08.()如图,在四边形ABCD 中, P 是对角线 BD 的中点, E, F 分别是 AB, CD 的中点,AD=BC, ∠ PEF = 180, 则∠ PFE 的度数为 ________09. . 如图,平行四边形ABCD 中,点 E 在边 AD 中,以 BE 为折痕,将△ABE 向上翻折,点 A 恰巧落在 CD 上的 F 点,若△ FDE 的周长为 8,△ FCB 的周长为 22,则 FC 的长为_________10.如图,在 Rt△ ABC 中,∠ BAC= 90°,AB= 3, AC= 4, 将△ ABC 沿直线 BC 向右平移个单位获得△DEF , AC 与 DE 订交于点G, 连结 AD , AE, 则以下结论中建立的是____ 四边形 ABED 是平行四边;△ AGD≌△ CGE△ ADE为等腰三角形④AC均分∠EAD11. ( )如图□ABCD 中, E 是 BC 边上一点,且AB= AE.求证 : △ ABC≌△ EAD若 AE 均分∠ DAB, ∠ EAC=25°,求∠ AED 的度数.12. (荆州 )如图,□ABCD 一点 E 知足 ED⊥ AD 于 D ,且∠ EBC=∠ EDC,∠ ECB= 45°,找出图中一条与EB 相等的线段,并加以证明.13.已知,如图,△ABC 是等边三角形, D 是 AB 边上的点,将线段DB 绕点 D 顺时针旋转 60°获得线段 DE,延伸 ED 交 AC 于点 F,连结 DC ,AE.⑴求证:△ ADE ≌△ DFC⑵过点 E 作 EH∥ DC 交 DB 于点 G ,交 BC 于点 H,连结 AH ,求∠ AHE 的度数.。

平行四边形及性质与一次函数

平行四边形及性质与一次函数

平行四边形和一次函数一.基础填空1.由__条线段首尾顺次连接组成的多边形叫四边形;四边形有_条边,___个角,四边形的内角和等于_____度;2.如图AB与BC叫___边, AB与CD叫___边;∠A与∠B叫___角,∠D与∠B叫___角;3.多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有___条,它们是___4.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。

5.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

的边、角各有什么关系吗?并证明你的结论。

6.平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为:中,∠A︰∠B︰∠C︰∠D的值可以是()A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰4的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3 cmC.7 cmD.11.5cm8.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.9.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.10.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.11.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.12.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.7. 如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.二、选择题1.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE2.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD3.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12三.证明题1.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.2.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60°,BE =2cm ,DF =3cm ,求□ABCD 的周长和面积.3.□ABCD 中,E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.4.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE.FEDCB AFED CA第二节.平行四边形的性质21.在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.2. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.3. □ABCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是____________.5. □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .6.如图,田村有一口四边形的池塘,在它的四角A 、B 、C 、D 处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.7.已知:如下图,平行四边形ABCD 的对角AC ,BD 交与点O.E ,F 分别是OA 、OC 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学培优第十三讲平行四边形与一次函数
第十二讲平行四边形与一次函数
考点•方法•破译
⒈理解并掌握平行四边形的定义、性质、和判定方法,并运用它们进行计算与证明.
⒉理解三角形中位线定理并会应用.
⒊了解平行四边形是中心对称图形.
经典•考题•赏析
【例3】(南昌)如图:在平
面直角坐标系中,有A(0,1),B
(-1,0),C(1,0)三点.
⑴若点D与A、B、C三点
构成平行四边形,请写出所有符合条件的点D 的坐标;
⑵选择⑴中符合条件的一点D,求直线BD的解析式.
【解法指导】已知固定的三个点,作平行四边形应有三种可能性,如图所示,因而本题D点坐标应有三种可能性.
【解】⑴D1(2,1)D2(-
2
2,1)D3(0,-1)
⑵若选择D3(0,-1),可求得解析式:y =-x-1
【变式题组】已知固定的三个点,作平行四边形时应有三种可能性,如图所示,因而本题D点坐标应有三种可能性.
【解】⑴D1(2,1)D2(-2,1)D3(0,-1)
⑵若选择D3(0,-1),可求得解析式:y =-x-1
【变式题组】
3+3与y
01.如图,直线l1:y =-x
2
轴交于点A,与直线l2交于x轴
上同一点B,直线l2交y轴于点
3
C,且点C与点A关于x轴对称.
⑴求直线l2的解析
式;
⑵设D(0,-1),平行于y轴的直线x=t
分别交直线l1和l2于点E、F.是否存
在t的值,使得以A、D、E、F为顶点
的四边形是平行四边形,若存在,求出
t的值;若不存在,请说明理由.
02.如图,在直角坐标系中,A(1,0),B(3,
1x上是否0),P是y轴上一动点,在直线y=
2
存在点Q,使A、B、P、Q为顶点的四边形为平行四边形?若存在,求出对应的Q点的坐标;若不存在,请说明理由.
4
5
03.(四川资阳)若一次函数y =2x -1和反比
例函数y =x k 2的图象都经过点(1,1).
⑴求反比例函数的解析式;
⑵已知点A 在第三象限,且同时在两个函
数的图象上,求点A 的坐标;
⑶利用⑵的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.
【例4】(齐齐哈尔)如图1.在四边形ABCD 中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明)(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB 与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于M、N,判断∆OMN的形状,请直接写出结论.
6
7
问题二:如图3,在∆ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断∆AGD 的形状并证明.
【解法指导】出现中点,联想到三角形中
位线是常规思路,因为三角形中位线不仅能进行线段的替换,也可通过平行进行角的转移.
【解】⑴△OMN 为等腰三角形.
⑵△AGD 为含有30°的直角三角形.
证明:连接BD ,取BD 的
中点M ,连接FM 、EM .
∵AF =FD ,BM =MD ∴MF //21AB 同理ME //2
1CD .∵AB =CD ∴MF =ME ,
R
P D C
B A E
F
又∵∠2=∠1=60°,∴△MEF为等边三角形,∴∠4=∠3=60°,∠5=60°
∴△AGF为等边三角形∴FG=FD
∴∠ADG=30°
∴△AGD为含有30°的直角三角
形.
【变式题组】
01.(扬州)如图,已知四边形ABCD中,R、P分别是BC、CD上的点,
E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不
动时,那么下列结论成立的是()
A、线段EF的长逐渐增大
B、线段EF的长逐渐减小
C、线段EF的长不变
D、线段EF的长与点P的位置有关
02.如图,在△ABC中,M是
BC的中点,AD是∠A的平
8
9
分线, BD ⊥AD 于D ,AB =12,AC =22,则MD 的长为( ).
A .3
B .4
C .5
D .6
【例5】(浙江竞赛)如图1,在△ABC 中,∠C =90°,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 与BN 相交于点P ,求证:∠BPM =45°.
【解法指导】题中相等线段关联性不强,能否把相等的线段(或角)通过改变位置,将分散的条件集中,从而构造全等三角形解决问题.
【解】方法一、如图2,过M 作 ME AN ,连接BE ,EN ,则得 AMEN , ∴ME ⊥BC ,AM =EN
在△AMC 和△BEM 中 ,AC =BN ,∠
BNE
=∠C=90°, ME=MC
∴△AMC≌△BEM∴BE=AM=EN,∠3=∠4 ∵∠1=∠2,∠1+∠4=90°∴∠2+∠3=90°, ∴△BEN为等腰直角三角形,∠BNE=45°,∴∠BPM=45°方法2:如图3,过B作BF AN,连接AF,FM也可证得.
【变式题组】
01.如图,在等腰△ABC中,AB=AC,延长边AB到点D,延长CA到点E,
连接DE,若AD=BC=CE=DE,
求∠BAC的度数.
10
演练巩固反馈提高
05.(浙江金华)某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫6得颜色的花,如果有AB∥EF∥DC,BC∥GH ∥AD,那么下列说法错误的是
A.红花,绿花种植面积一定相等B.
紫花,橙花种植面积一定相等
C.红花,蓝花种植面积一定相等
D.蓝
花,黄花种植面积一定相等
06.(陕西)如图,l1∥l2BE∥CF, BA⊥l1DC⊥l2,下面四个结论中①AB=DC;
②BE=CF③S△ADE=S△DCF④S□ABCD =S□BCFE,其中正确的有()
A.4个B .3个C.2个D .1

07.(成都)已知四边形ABCD,有以下四个条件:①AB∥CD②AB=CD③BC∥AD
④BC=AD从这四个条件中任选两个,能使
四边形ABCD为平行四边形的选法种数有()
A.6种
B.5种
C.4种
D.3种08.(厦门)如图,在四边形ABCD中,P是对
角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=180,则∠PFE的度数为________
09..如图,平行四边形ABCD中,点E在边
AD中,以BE为折痕,将△ABE向上翻折,点A恰好落在CD上的F点,若△FDE的周长为8,△FCB的周长为22,则FC的长为_________
10.如图,在Rt△ABC中,∠BAC=90°,AB=
3,AC=4,将△ABC沿直线BC向右平移2.5个单位得到△DEF,AC与DE相交于点G,连接AD,AE,则下列结论中成立的是____
①四边形ABED是平行四边;②△AGD≌△CGE③△ADE为等腰三角形④AC平分∠EAD
11.(长春)如图□ABCD中,E是BC边上一点,且AB=AE.
求证:△ABC≌△EAD
若AE平分∠DAB,∠EAC=25°,
求∠AED的度数.
12.(荆州)如图,□ABCD内一点
E满足ED⊥AD于D,且∠EBC
=∠EDC,∠ECB=45°,找出图
中一条与EB相等的线段,并加以证明.
13.已知,如图,△ABC是等边三角形,D是AB边上的点,将线段DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC,AE.
⑴求证:△ADE≌△DFC
⑵过点E作EH∥DC交DB于点G ,交BC
于点H,连接AH,求∠AHE的度数.。

相关文档
最新文档