初中数学代数式解析
数学初中七年级第二单元代数运算教学解析
数学初中七年级第二单元代数运算教学解析代数运算是数学中的重要基础部分,也是初中数学的重点内容之一。
在初中七年级的第二单元中,学生将初步学习代数运算的基本概念和方法,为进一步学习和应用代数打下坚实的基础。
本文将对初中七年级第二单元的代数运算教学进行解析,帮助教师和学生更好地理解和应用代数运算。
一、代数运算的基本概念代数运算是一种将数学问题转化为符号运算的方法,通过使用字母与符号进行表达,从而研究运算过程中的各种规律和性质。
在初中七年级的代数运算中,主要涉及以下几个基本概念:1.1 代数式与代数方程代数式是一个或多个数与字母及其运算符号组成的式子,其中的字母表示未知数。
代数方程则是将代数式中的字母表示的未知数置于等号两侧,通过求解未知数的值来满足方程。
1.2 代数运算的基本运算法则在代数运算中,有加法、减法、乘法和除法等基本运算法则。
其中,加法满足交换律和结合律,乘法满足交换律和结合律,减法和除法分别有减法公式和除法公式。
1.3 多项式多项式是由系数与字母的乘积相加而成的代数表达式。
多项式可以包含常数项、一次项、二次项等不同次数的项。
二、代数运算的基本方法与技巧在初中七年级的代数运算中,学生需要掌握一些基本的方法和技巧,以便能够正确地进行代数运算。
2.1 符号替换与代数式化简在代数运算中,常常需要进行符号替换和代数式化简的操作。
通过合并同类项、符号展开、因式分解等方法,可以将复杂的代数式化简为简单的形式,便于进一步处理和计算。
2.2 方程的解法方程是代数运算中的重要内容,解方程需要运用到代数运算的各种法则和技巧。
常见的方程解法有加法逆元法、等式对称法、因式分解法等,每种方法都有其适合的场景和运用条件。
2.3 思维方法和推理能力培养代数运算的过程需要培养学生的思维方法和推理能力。
通过分析问题、寻找规律、抽象思维等方法,能够更好地理解和解决代数运算中的问题。
三、代数运算在实际问题中的应用代数运算不仅是数学的一种基本概念和方法,也是解决实际问题的有力工具。
初中数学知识点总结:代数式的相关概念
初中数学知识点总结:代数式的相关概念学校数学学问点总结:代数式的相关概念1一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
留意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区分是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种状况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中全部字母的指数的和叫做单项式的次数。
特殊地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的挨次排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中消失的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“x”号;2.数字与字母相乘、单项式与多项式相乘时,一般根据先写数字,再写单项式,最终写多项式的书写挨次.如式子(a+b)·2·a 应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中消失除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的.代数式有单位名称,假如代数式是积或商的形式,则单位直接写在式子后面;假如代数式是和或差的形式,则必需先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
留意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是1”或-1“时,1通常省略不写,但“-”号不能省略。
初中数学知识归纳代数式的概念与运算
初中数学知识归纳代数式的概念与运算初中数学知识归纳:代数式的概念与运算代数式是初中数学中的重要内容,它是数学语言中的一种表达方式,用于表示数值之间的关系和运算。
通过掌握代数式的概念与运算规则,我们能更好地解决实际问题,提高数学思维能力。
本文将对初中数学中的代数式进行归纳与总结,以帮助同学们更好地理解与掌握。
一、代数式的基本概念代数式由变量、常数和运算符号组成,是一种用字母和数字表示数的式子。
变量是没有确定值的未知数,常用字母表示,常数则是具体的数。
而运算符号则用来表示不同的运算关系,如加减乘除等。
举例来说,2x+3y是一个代数式,其中的x和y是变量,2和3是常数,+是运算符号。
在代数式中,字母表示一个数或者未知数,通过代入具体的数值,可以求出整个式子的值。
例如,给定x=2,y=3,代入2x+3y中,得到2(2)+3(3)=4+9=13。
二、代数式的运算在代数式的运算中,我们需要掌握加减乘除等基本运算法则,并能够正确运用它们解决问题。
1. 加法运算法则:对于代数式中的同类项,可以按照系数相加的法则进行合并。
例如,对于3x+5x,可以合并为8x。
2. 减法运算法则:减法可以看作加法的逆运算,对于代数式中的减法,可以转化为加法运算。
例如,对于5x-3x,可以转化为5x+(-3x),再按照加法法则进行运算。
3. 乘法运算法则:代数式中的乘法运算可以通过分配率和合并同类项进行简化。
分配率可以将一个因数与括号中的每个项相乘,例如,对于2(a+b),可以展开为2a+2b。
合并同类项可以将拥有相同变量的项相加,例如,对于3x+2x,可以合并为5x。
4. 除法运算法则:除法运算是乘法运算的逆运算,在代数式中,可以通过约分、分离分母等方式进行简化。
三、代数式的应用代数式的应用不仅在于解决数学题目,还能帮助我们理解和解决实际生活中的问题。
1. 代数式的解析表示:代数式可以用于表示与解析处理问题。
通过转化实际问题为代数式,我们能够更好地理解问题的本质,并通过数学计算求解出问题的解。
初中数学同步 7年级上册 第6讲 代数式、列代数式及求值(教师版含解析)
第6讲小节代数式、列代数式及求值1.掌握代数式的概念;2.掌握代数式的正确书写;3.学会列代数式及进行相应的求值.知识点01 代数式1、定义:用运算符号将数字或字母连接起来的式子,单个字母或数字也是代数式;2、书写:字母与字母,或数字与字母之间,“×”可以省略,但数字必须写在字母的前面;带分数与字母相乘时,要化成假分数;“÷”可以改成分数线。
1.在式子n﹣3、a2b、m+s≤2、x、﹣ah、s=ab中代数式的个数有()A.6个B.5个C.4个D.3个【解答】解:由代数式的定义可得n﹣3、a2b、x、﹣ah是代数式,而m+s≤2、s=ab是等式或不等式.故选:C.2.下列代数式书写正确的是()A.a4B.m÷n C.D.x(b+c)【解答】解:A.a4的正确写法是4a,故不符合题意;B.m÷n的正确写法是,故不符合题意;C.1x的正确写法是x,故不符合题意;D.x(b+c)书写正确,符合题意.故选:D.3.代数式的意义是()A.x除以y加3B.y加3除xC.y与3的和除以xD.x除以y与3的和所得的商【解答】解:的意义是x除以y与3的和所得的商.故选:D.4.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A.该物品打九折后的价格B.该物品价格上涨10%后的售价C.该物品价格下降10%后的售价D.该物品价格上涨10%时上涨的价格【解答】解:若x表示某件物品的原价,则代数式(1+10%)x表示的意义是该物品价格上涨10%后的售价.故选:B.5.下列各式:ab•2,m÷2n,xy,1a,其中符合代数式书写规范的有2个.【解答】解:在ab•2,m÷2n,xy,1a,中,符合代数式书写规范的有xy,,共2个;故答案为:2.6.举例说明代数式8a3的意义:如一个正方体的棱长是a,一个正方体的体积是a3,那么8个正方体的体积是8a3.【解答】解:如一个正方体的棱长是a,一个正方体的体积是a3,那么8个正方体的体积是8a3.故答案为:如一个正方体的棱长是a,一个正方体的体积是a3,那么8个正方体的体积是8a3.7.请你用实例解释下列代数式的意义.(1)5+(﹣4);(2)3a.【解答】解:(1)5+(﹣4)表示气温从5℃,下降4℃后的温度;(2)3a表示一辆车以akm/h的速度行驶3小时的路程.8.请你结合自身生活实际,设计具体情境,解释下列代数式的意义:①(1﹣20%)x;②a3;③;④.【解答】解:①小明家二月份用电量x度,三月份减少20%,则三月份用电量为(1﹣20%)x度;②a表示立方体的棱长,则a3表示该立方体的体积;③汽车每小时行驶m千米,行驶30千米所用时间为小时;④骑车上坡每分钟走a米,下坡每分钟走b米,那么上坡3分钟和下坡2分钟后的平均每分钟走多少米.知识点02 列代数式及求值列式:用字母表示量,按照题目内部联系列式;求值:将数值代替字母遵循代数式中计算顺序进行计算。
七年级代数式知识点及例题
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
七年级代数式考点及知识点
七年级代数式考点及知识点代数式是代数学中的一个重要概念,它是数与字母的组合,可以用来表达一些运算关系或者数学方程式。
在初中数学中,代数式也是一个重要的考点,而且在七年级中就已经涉及到了一些基本的知识和技能。
本文将从以下几个方面对七年级代数式的考点和知识点进行讲解。
一、代数式的定义和表示代数式是由数字、字母和运算符号组合而成的表达式,它可以用一组数或者字母的值来代替其中的变量。
代数式可以表示数学中的各种运算关系,比如加减乘除、指数、根式等等。
在代数式中,一般会用字母表示未知量或者变量,而数字则表示已知量或者常数。
代数式的表示方式有两种,一种是算式的形式,另一种则是一般式的形式。
二、代数式的基本性质代数式具有许多基本的性质,例如:1. 代数式可以进行加减乘除和指数运算,满足运算法则和运算律;2. 代数式中的运算符号可以改变位置,但结果不变;3. 代数式中的因式可以提取出来,从而简化表达式;4. 代数式中的括号可以展开或者合并,但结果不变;5. 代数式可以进行分式拆分或者合并,以简化表达式。
三、代数式的含义和应用代数式在数学中的应用非常广泛,可以用于解方程、求解未知量、分析数据等等。
在初中数学中,常见的应用场景如下:1. 根据实际问题建立代数式,分析问题的特征和规律;2. 判断代数式中的常数和变量,求解未知量的值;3. 应用代数式进行数据分析和统计,得出结论和规律。
四、七年级代数式的考点和知识点在七年级数学中,涉及到代数式的考点和知识点主要有以下几个方面:1. 代数式的基本概念和性质:理解代数式的定义和表示,掌握代数式的基本性质和运算法则;2. 一元一次方程与简单的代数式:理解一元一次方程的概念和求解方法,掌握简单的代数式的表达和分析;3. 代数式和图象:掌握代数式和图象的关系,了解一些基本的代数图形;4. 代数式的应用:掌握代数式在实际问题中的应用场景,了解代数式在数学中的传统应用和新兴应用。
五、总结代数式是初中数学中一个重要的概念和考点,掌握代数式的基本概念和性质,理解代数式的应用场景,可以提高解题的效率和准确性。
【初中数学】初中数学知识点:代数式的概念
【初中数学】初中数学知识点:代数式的概念代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
单独一个数和字母也就是代数式。
例如:ax+2b,-2/3,b^2/26,√a+√2等。
代数式的性质:(1)单独一个数或一个字母也是代数式,如-3,a.(2)代数式中就可以存有运算符号,不应当所含等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈,也就是说,等式或不等式不是代数式,但代数式中可以所含括号。
可以存有绝对值。
比如:|x|,|-2.25|等。
(3)代数式中的字母表示的数必须使这个代数式有意义,即在实际问题中,字母表示的数要符合实际问题。
代数式的分类:在实数范围内,代数式分为有理式和无理式。
一、有理式有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。
这种代数式中对于字母只展开非常有限次提、减至、乘坐、除和整数次乘方这些运算.整式有包括单项式(数字或字母的乘积或单独的一个数字或字母)和多项式(若干个单项式的和).1.单项式没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫作单项式(或字母因数)的数字系数,缩写系数单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数2.多项式个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。
不含字母的项叫做常数项。
多项式的次数:多项式里,次数最低的项的次数,就是这个多项式的次数。
齐次多项式:各项次数相同的多项式叫做齐次多项式。
不容约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称作有理数范围内不容约多项式。
实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
等距多项式:在多元多项式中,如果任一两个元互相交换税金的结果都和原式相同,则表示此多项式就是关于这些元的等距多项式。
初中数学速记笔记:3.代数式
(一)用字母表示数,列式表示数量关系
用字母表示数,可以简明地表达一些一般
的数量和数量关系,即把问题中与数量有
关的语句,用含有数、字母和运算符号的
式子表示出来.
(二)代数式的概念
(1)定义:用运算符号(加、减、乘、除、乘方、开方)把数或表
示数的字母连接而成的式子,叫做代数式,单独的一个数或一个字
母也是代数式.
(2)注意:代数式中不含“=”“>”“<”“≠”等符号.
(三)列代数式
1.把问题中与数量有关的语句,用含有数、字母和运算符号的式子
表示出来,这就是列代数式.
2.书写代数式的注意事项:
3.列代数式的步骤:
(1)读懂题意,弄清其中的数量关系,抓住题
目中表示运算关系的关键词,如和、差、积、
商、比、倍、分、大、小、增加了、增加到、
减少、几分之几等.
(2)分清运算顺序,注意关键性断句及括号的恰当使用.
(四)解释简单代数式表示的实际背景或几何意义
实际问题中的数量关系可以用代数式表示,另一方面,同一个代数式可以揭示多种不同的实际意义.注意在说代数式表示的实际意义时,数与字母的含义必须与实际相符.
(五)求代数式的值
提示:(1)代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律,而代数式的值是这个规律下的特殊情形.(2)代数式中字母的取值,必须使该代数式有意义.
(3)用代数式表示实际问题的数量关系时,字母的取值要保证具有实际意义.
(4)代数式中的字母每取一个确定的数时,能相应地求出代数式的一个确定值.。
初中数学代数式全集汇编及答案解析
初中数学代数式全集汇编及答案解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.6.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.8.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.计算的值等于( )A .1B .C .D .【答案】C【解析】【分析】 直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】 原式= ==.故选C .【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.13.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .14.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.15.已知多项式x-a与x2+2x-1的乘积中不含x2项,则常数a的值是()A.-1 B.1 C.2 D.-2【答案】C【解析】分析:先计算(x﹣a)(x2+2x﹣1),然后将含x2的项进行合并,最后令其系数为0即可求出a的值.详解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2.故选C.点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.16.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.17.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】 根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.20.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b【答案】C【解析】【分析】根据完全平方公式的形式(a±b)2=a2±2ab+b2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b2故选C.【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.。
初中数学知识点(代数)
初中数学知识点(代数)一、代数式代数式是由数、字母和运算符号组成的表达式。
代数式可以分为单项式和多项式。
1. 单项式:只包含一个字母和它的指数的代数式,如:5x²、3a³等。
2. 多项式:由若干个单项式相加或相减组成的代数式,如:3x² + 2x 1、4a³ + 5ab²等。
二、代数式的运算1. 加法:将两个或多个代数式相加,如:3x² + 2x 1 + 4x²3x + 2。
2. 减法:将两个或多个代数式相减,如:3x² + 2x 1 (4x²3x + 2)。
3. 乘法:将两个或多个代数式相乘,如:(3x² + 2x 1) ×(4x² 3x + 2)。
4. 除法:将一个代数式除以另一个代数式,如:(3x² + 2x 1) ÷ (4x² 3x + 2)。
三、方程方程是含有未知数的等式。
解方程就是求出未知数的值,使得等式成立。
初中阶段主要学习一元一次方程和一元二次方程。
1. 一元一次方程:未知数的最高次数为1的方程,如:2x + 3 = 7。
2. 一元二次方程:未知数的最高次数为2的方程,如:x² 5x +6 = 0。
四、不等式不等式是表示两个数之间大小关系的式子。
初中阶段主要学习一元一次不等式和一元二次不等式。
1. 一元一次不等式:未知数的最高次数为1的不等式,如:2x + 3 > 7。
2. 一元二次不等式:未知数的最高次数为2的不等式,如:x²5x + 6 ≥ 0。
五、函数函数是描述变量之间关系的数学概念。
初中阶段主要学习一次函数和二次函数。
1. 一次函数:函数表达式为y = kx + b(k ≠ 0)的函数,其中k是斜率,b是截距。
2. 二次函数:函数表达式为y = ax² + bx + c(a ≠ 0)的函数,其中a、b、c是常数。
初一代数式知识点总结归纳
初一代数式知识点总结归纳代数式是初中数学学习中的重要内容,它是数学语言的一种表达方式,能够帮助我们描述数学问题并进行计算。
在初一阶段,我们学习了一些基础的代数式知识点,本文将对这些内容进行总结归纳。
一、代数式的定义与基本概念代数式是由数字、字母和运算符号组成的表达式。
它可以用来表示数值、量、关系等,并且可以进行运算。
字母在代数式中表示未知数或变量,通过代数式我们可以进行数学推理和问题求解。
代数式由常数项、变量项和算符组成。
常数项是没有变量的项,变量项由变量和指数相乘得到。
算符包括加法、减法、乘法和除法。
二、代数式的分类1. 单项式:只包含一个项的代数式,例如:3x、-2y²。
2. 多项式:包含两个或两个以上项的代数式,例如:x²+2xy-3。
3. 幂:由底数和指数组成,例如:a⁵。
4. 系数:乘以变量项的数字因子,例如:3x中的3就是系数。
三、代数式的运算1. 合并同类项:将具有相同变量和指数的项进行合并,例如:3x+5x可以合并为8x。
2. 展开式:将括号内的代数式按照分配率进行展开,例如:2(x+3)可以展开为2x+6。
3. 因式分解:将代数式转化为乘积形式,例如:2x+6可以因式分解为2(x+3)。
4. 提取公因式:将多项式中的公共因子提取出来,例如:2x²+4x可以提取出2x,得到2x(x+2)。
四、一元一次方程一元一次方程是代数学中常见的一种方程类型,形式为ax+b=0,其中a和b为已知数,x为未知数。
我们可以通过移项、合并同类项、消元等方式解一元一次方程。
五、等式的性质等式是两个代数式之间用等号连接的关系。
在等式中,左右两边的代数式的值相等。
1. 对等式进行加减法:等式两边同时加减相同的数,等式仍成立。
2. 对等式进行乘除法:等式两边同时乘除相同的非零数,等式仍成立。
3. 对等式进行代入运算:在等式中,可将一个代数式代入到另一个代数式中,等式仍成立。
六、绝对值绝对值是一个数与零点之间的距离。
新初中数学代数式解析含答案(2)
新初中数学代数式解析含答案(2)一、选择题1.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.下列运算正确的是( )A .21ab ab -=B 93=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.5.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .7.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.8.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.9.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.10.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60则购买A 类会员年卡,需要消费(1500+100x )元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.13.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2018次输出的结果是( )A.3 B.27 C.9 D.1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27,第2次,13×27=9,第3次,13×9=3,第4次,13×3=1,第5次,1+2=3,第6次,13×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.14.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.15.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .16.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .17.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.18.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.19.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.20.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29b C .29a D .22a b -【解析】【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.。
七年级代数式知识点梳理
七年级代数式知识点梳理
在初中数学中,代数式是重要的基础知识之一。
在七年级中,学生们首次接触代数式,并开始深入了解其基本概念和应用。
本文将对七年级代数式知识点进行梳理和总结,以帮助学生更好地掌握和应用这一基础知识。
1. 代数式的概念
代数式是由数、字母和运算符组成的式子,其中字母表示未知数或变量。
代数式可以表示数学模型,用于解决实际问题。
2. 代数式的分类
代数式可以分为一次式、二次式、多项式等,根据字母的最高次数来区分。
一次式:最高次数为1的代数式,形如ax+b,其中a、b为已知数,x为未知数。
二次式:最高次数为2的代数式,形如ax²+bx+c,其中a、b、
c为已知数,x为未知数。
多项式:最高次数大于2的代数式,形如a1xⁿ+a2xⁿ⁻¹+...+an,
其中a1、a2、...、an为已知数,x为未知数。
3. 代数式的化简
代数式的化简是指将一个复杂的代数式简化为一个更简单的代
数式。
常见的化简方法有合并同类项、因式分解、提取公因数等。
4. 代数式的求值
代数式的求值是指将代数式中的字母替换为已知数,并进行计
算得出结果。
例如,求出3x+4在x=5时的值,将x替换为5,得
到3×5+4=19。
5. 代数式的应用
代数式在数学中有广泛的应用,如解方程、解不等式、求极值等。
代数式也常用于物理、化学等领域的数学模型中。
总之,在初中学习代数式是十分重要的,正确的掌握代数式的概念、分类、化简和求值方法,能够帮助学生更好地理解数学知识,丰富数学思维,为后续学习打下坚实的基础。
初中数学知识点总结代数式的相关概念
初中数学知识点总结代数式的相关概念代数式是由数或字母和基本运算符号(如加减乘除)组成的数学表达式。
它是数学中重要的基础概念之一,用来描述数与数之间的关系。
在初中数学中,代数式是学习代数的基础,了解代数式的相关概念对于后续学习代数的知识具有重要的意义。
一、代数式的定义代数式是由数字、字母、运算符号组成的表达式,它可以包含一个或多个项,每个项由系数与字母的乘积构成。
代数式中的字母表示未知数,而数字作为字母的系数表示了未知数的倍数。
代数式可以用于表示实际问题中的数学关系,是解决各种数学问题的基础。
二、代数式的基本运算1.加法:将两个或多个代数式按照字母的指数相同的项进行合并,然后将系数相加得到最终的和。
例如:3x+2x=5x。
2.减法:将减数取相反数,然后按照加法的规则进行计算。
例如:2x-3x=-x。
3.乘法:将两个代数式中的每一项按照字母的指数相加的规则进行相乘,并将得到的各项的系数相乘得到最终的积。
例如:(3x+2y)×2=6x+4y。
4.除法:将被除式除以除式,按照乘法的逆运算进行计算。
例如:(6x+4y)÷2=3x+2y。
三、代数式的合并与分解1.合并同类项:将代数式中字母的指数相同的项进行合并,然后将系数相加得到最终的结果。
例如:2x+3x=5x,2y^2+3y^2=5y^22.分解:将代数式按照括号中字母的指数进行分解,将各项按照运算符号进行合并得到最终的结果。
例如:3x+6=3(x+2)。
四、代数式的求值代数式可以通过给字母赋予具体的数值来求得结果,这个过程叫做代数式的求值。
例如:求代数式3x+2在x=4时的值,代入x=4得到3×4+2=14五、代数式的应用代数式是解决实际问题的有效工具,可以用来描述和计算各种数学关系。
例如:利用代数式可以表示速度、力和电流等物理量之间的关系,在解决与这些物理量相关的问题时,代数式能够提供有效的数学模型。
总结:代数式是由数字、字母和运算符号组成的数学表达式,用来描述数与数之间的关系。
初中数学中常见的代数问题解析
初中数学中常见的代数问题解析代数是数学中的一个重要分支,也是初中数学学科中的重点内容之一。
在学习代数的过程中,会遇到很多常见的代数问题。
本文将对这些常见的代数问题进行解析,帮助初中生更好地理解和掌握代数知识。
一、一元一次方程1. 问题描述:已知一个一元一次方程,求解方程的根。
解析:一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。
求解方程的根可以通过移项、合并同类项以及化简等方法,得到x的值。
2. 问题描述:已知一元一次方程的根,求解方程的系数。
解析:已知一元一次方程的根x,可以将该根代入方程,然后根据方程的形式,得到系数的值。
二、一元二次方程1. 问题描述:已知一个一元二次方程,求解方程的根。
解析:一元二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为已知数,x为未知数。
求解方程的根可以通过公式法、配方法或因式分解等方法,得到方程的解。
2. 问题描述:已知一元二次方程的根,求解方程的系数。
解析:已知一元二次方程的根x₁和x₂,可以利用韦达定理,通过根与系数之间的关系,得到方程的系数。
三、代数式的化简1. 问题描述:已知一个复杂的代数式,化简该代数式。
解析:化简代数式的关键是运用数学中的基本运算法则和代数运算法则,如合并同类项、分配率、乘法法则等,将代数式化简为最简形式。
四、函数与方程1. 问题描述:已知一个函数,求解函数的零点。
解析:函数的零点即函数图象与x轴的交点,也就是函数的根。
求解函数的零点可以通过解方程f(x) = 0来实现。
2. 问题描述:已知一个函数,求解函数的最值。
解析:求解函数的最值需要首先找到函数的极值点,然后通过比较函数在极值点和区间端点的函数值,得到函数的最值。
五、不等式1. 问题描述:已知一个不等式,求解不等式的解集。
解析:求解不等式的解集需要根据不等式的性质和已知条件,通过变形和化简等方法,得到不等式的解集。
六、代数方程组1. 问题描述:已知一个代数方程组,求解方程组的解集。
初中数学知识归纳代数式的概念和性质
初中数学知识归纳代数式的概念和性质代数式是初中数学中非常重要的一个概念。
它可以帮助我们简洁地表达数学问题,并且掌握代数式的概念和性质对于我们解决各类数学问题和应用数学能力的提升非常有帮助。
本文将对初中数学中代数式的概念和性质进行归纳总结,为同学们的学习和理解提供一些指导。
一、代数式的概念代数式是由数字、字母和运算符号通过运算规则相连接而成的数学表达式。
在代数式中,数字称为常数,字母称为变量,运算符号则表示不同的运算。
代数式的构成要素包括常数、变量和运算符号。
常数是代表具体数值的,比如2、3等,它们在代数式中保持不变。
变量则代表着一个未知数,可以是任何数值,通常用字母表示。
运算符号用于表示不同的运算,比如加减乘除等。
例子1:3x + 2y - 5在这个例子中,3、2和5分别是常数,x和y是变量,而+、-则是运算符号。
二、代数式的性质代数式具有一些重要的性质,我们了解这些性质可以帮助我们更好地运用代数式解决问题。
1. 代数式的和差性质代数式的和差性质指的是:在代数式中,可以交换相同类别的项的位置,也可以用项的加法和减法将代数式合并。
例子2:2x + 3y - 4x + 5y按照和差性质,我们可以重新排列代数式的项,得到:2x - 4x + 3y + 5y再通过合并同类项,我们可以得到:-2x + 8y2. 代数式的积性质代数式的积性质指的是:在代数式中,可以交换相同类别项的位置,也可以用项的乘法和除法将代数式合并。
例子3:2xy + 3x - 4xy + 5x按照积性质,我们可以重新排列代数式的项,得到:2xy - 4xy + 3x + 5x再通过合并同类项,我们可以得到:-2xy + 8x3. 代数式的因式分解代数式的因式分解指的是将代数式按照公因式的方式进行拆分。
例子4:2x + 4y通过因式分解,我们可以得到:2(x + 2y)三、代数式的应用代数式在数学中有着广泛的应用,它可以帮助我们解决各类数学问题,计算和推导。
初三代数式知识点归纳总结
初三代数式知识点归纳总结代数式是初中数学学习中的重要内容,它是数学语言的一种表达方式,既简洁又灵活。
在初三阶段,我们学习了很多代数式的知识点。
下面就对初三代数式的相关内容进行归纳总结。
1. 代数式的定义和基本概念代数式由字母、数字和运算符号组成的式子,它可以表示一类数,并可根据需要进行计算和变形。
代数式由项构成,项由系数和字母的乘积构成。
代数式可以通过合并同类项、提取公因式等方式进行简化和变形。
2. 一元一次代数式一元一次代数式是由一个字母的一次幂和常数项构成的代数式。
一元一次代数式的一次幂指数为1,例如:2x + 3。
我们学习了解一元一次方程的求解过程,可以通过各种运算,将方程化简为最简形式,并求得方程的解。
3. 多项式代数式多项式代数式是由多个项相加或相减而成的代数式,其中每个项可以是常数项或含有字母的项。
多项式代数式可以进行加法、减法和乘法运算。
我们学习了多项式的合并同类项、提取公因式、因式分解等基本运算法则。
4. 代数式的乘法公式和因式分解代数式的乘法公式是用于展开代数式的重要工具。
其中,平方差公式和求和差公式是最基本的乘法公式。
在因式分解中,我们学习了怎样将一个代数式分解成几个乘积的形式,以便于进行进一步的计算和运算。
5. 二次根式和二次代数式二次根式是指含有平方根(二次根号)的根式,例如:√(2x + 3)。
我们学习了二次根式的化简和运算法则,例如消去根号、分解因式等。
二次代数式是含有平方项的代数式,例如:x^2 + 2x + 1。
对于二次代数式,我们学习了使用配方法、完全平方公式等进行变形和求解。
6. 代数式的方程与不等式代数式可以用于表示方程和不等式。
在初三阶段,我们学习了一元二次方程和一元二次不等式的解法,以及用图像解法、配方法等求解代数式方程和不等式的方法。
我们还学习了方程和不等式的根、解集等概念。
通过对初三代数式的归纳总结,我们对代数式的定义、基本概念和运算法则都有了更深入的理解。
初中代数式知识点
初中代数式知识点代数式是由算数符号(如+、-、×、÷)和字母(称为变量)通过各种数学运算符号(如括号、指数、根号等)相连接而构成的。
初中的代数式主要涉及到一元一次方程、一元一次不等式、整式、分式等。
1.一元一次方程一元一次方程是指只包含一个未知数,且未知数的最高次数为1的方程。
形式通常为:ax + b = 0,其中a和b是已知数,x是未知数。
解一元一次方程的基本步骤是化简方程,使未知数的系数为1,然后采用逆运算法,将方程的两边同时进行相同的运算。
2.一元一次不等式一元一次不等式是指只包含一个未知数,且未知数的最高次数为1的不等式。
形式通常为:ax + b > 0或ax + b < 0,其中a和b是已知数,x是未知数。
求解一元一次不等式的基本方法是化简不等式,使未知数的系数为1,然后根据不等式的性质进行变形和求解。
3.整式整式是指只包含有理数、未知数和它们之间的加、减、乘运算的代数式。
根据运算的性质,可以对整式进行合并同类项、分配律、乘方等操作。
常见的整式有单项式、多项式和恒等式。
单项式是只包含一个项的整式,如2x、3、x^2等。
多项式是包含多个项的整式,如3x^2 - 2x + 1、恒等式是对于一些范围内的所有数都成立的等式,如(a+b)^2 = a^2 + 2ab+ b^24.分式分式又称有理式,是指由两个整式用除法运算连接而成的代数式。
分式的基本形式为分子分母都是整式的形式,如a/b,其中a和b都是整式,且b不等于0。
分式可以进行合并同类项、分配律等运算,还可以进行化简,使分子和分母没有公因式,并使分式的分母为最简形式。
5.负指数与零指数运算负指数运算是指一个数的负指数幂等于这个数的倒数的幂,如a^(-n)=1/a^n。
零指数运算是指一个数的零次幂等于1,如a^0=1、负指数与零指数运算可以根据指数运算的性质进行推导和证明。
以上是初中代数式的主要知识点,它们是构建复杂代数式和解决代数方程、不等式问题的基础。
初中数学知识归纳代数式的基本概念和运算
初中数学知识归纳代数式的基本概念和运算初中数学知识归纳:代数式的基本概念和运算代数是数学的一个重要分支,它研究的是数与变量之间的关系以及它们之间的运算规律。
而代数式是代数研究中最基本的概念之一,它由常数、变量和运算符号组成。
在初中数学学习中,我们需要了解代数式的基本概念和运算规则,下面将对此进行归纳总结。
一、代数式的基本概念代数式由常数、变量和运算符号组成,它描述了数与变量之间的关系,常用的代数式有以下几种形式:1. 常数:代表具体的数值,如2、3.14等。
2. 变量:用字母表示的未知数,如x、y等。
3. 系数:代表变量的倍数,与变量相乘的数,如2x中的2就是系数。
4. 幂次:表示变量的指数,如x²表示x的平方。
5. 等号:表示两个代数式相等的关系,如x + 2 = 5。
二、代数式的运算规则1. 加法和减法:代数式的加法和减法遵循交换律和结合律,可以将同类项合并。
例如,对于代数式3x + 2y - x + 4y,通过合并同类项得到2x + 6y。
2. 乘法:代数式的乘法遵循交换律和结合律,可以将同底数幂相乘。
例如,对于代数式2x² * 3x³,可以先将底数相乘得到6x⁵。
3. 除法:代数式的除法可以转化为乘法,即a/b = a * (1/b)。
例如,对于代数式6x⁵ / 2x²,可以转化为6x⁵ * (1/2x²),再进行乘法运算得到3x³。
4. 括号:代数式中的括号用于改变运算顺序。
例如,对于代数式2(x + 3),先计算括号内的和,再与2相乘,得到2x + 6。
5. 平方根:代数式中的平方根用√表示。
例如,对于代数式√(x² + 4),表示对x² + 4进行开方。
6. 四则混合运算:代数式中的四则混合运算按照先乘除后加减的顺序进行。
例如,对于代数式2x + 3(x - 1) / 2,先进行括号内的乘除运算,再与2x进行加法运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.p=5,q=18B.p=-5,q=18
C.p=-5,q=-18D.p=5,q=-18
【答案】A
【解析】
试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,
B、6x3y2÷(﹣3x)2=6x3y2÷9x2= xy2,故此选项错误;
C、2a﹣2= ,故此选项错误;
D、(﹣2a)3=﹣8a3,正确.
故选D.
【点睛】
此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.
8.下列运算正Βιβλιοθήκη 的是( )A. B. C. D.
【详解】
解:设正方形A的边长为a,正方形B的边长为b,
由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,
由图乙得:(a+b)2−a2−b2=12,即2ab=12,
所以a2+b2=13,即正方形A,B的面积之和为13,
故选:C.
【点睛】
本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.
【解析】
【分析】
根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.
【详解】
A. 和 不是同类项,不能合并,故该选项计算错误,不符合题意;
B. ,故该选项计算错误,不符合题意;
C. ,故该选项计算错误,不符合题意;
D. ,故该选项计算正确,符合题意.
故选D.
【点睛】
本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.
【答案】A
【解析】
【分析】
分别计算出两个图形中阴影部分的面积即可.
【详解】
图1阴影部分面积:a2﹣b2,
图2阴影部分面积:(a+b)(a﹣b),
由此验证了等式(a+b)(a﹣b)=a2﹣b2,
故选:A.
【点睛】
此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.
【答案】D
【解析】
【分析】
根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.
【详解】
A. ,故A选项错误;
B. ,故B选项错误;
C. ,故C选项错误;
D. ,正确,
故选D.
【点睛】
本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.
A. B. C. D.
【答案】B
【解析】
【分析】
根据图1可得出 ,即 ,图1长方形的面积为 ,图2正方形的面积为 ,阴影部分的面积即为正方形的面积与长方形面积的差.
【详解】
解:由图可知,图1长方形的面积为 ,图2正方形的面积为
∴阴影部分的面积为:
∵ ,即
∴阴影部分的面积为:
故选:B.
【点睛】
本题考查的知识点是完全平方公式,根据图1得出a,b的关系是解此题的关键.
∴m=12×14−10=158.
故选C.
14.下列说法正确的是()
A.若A、B表示两个不同的整式,则 一定是分式
B.
C.若将分式 中,x、y都扩大3倍,那么分式的值也扩大3倍
D.若 则
【答案】C
【解析】
【分析】
根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.
【详解】
A.若A、B表示两个不同的整式,如果B中含有字母,那么称 是分式.故此选项错误.
∴ ,且 ,
解得a=2,
故选:A.
【点睛】
此题考查多项式的次数与项数的定义,熟记定义是解题的关键.
19.下列计算正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.
【详解】
A、 ,不符合题意;
B、 和 不是同类项,不能合并,不符合题意;
9.若2m=5,4n=3,则43n﹣m的值是( )
A. B. C.2D.4
【答案】B
【解析】
【分析】
根据幂的乘方和同底数幂除法的运算法则求解.
【详解】
∵2m=5,4n=3,
∴43n﹣m= = = =
故选B.
【点睛】
本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.
10.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为 ,宽为 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为()
【解析】
【分析】
根据多项式乘以多项式的法则,分别进行计算,即可求出答案.
【详解】
A、2a+3a=5a,故本选项错误;
B、(2a+b)2=4a2+4ab+b2,故本选项错误;
C、2a2•3a3=6a5,故本选项错误;
D、(2a-b)(2a+b)=4a2-b2,故本选项正确.
故选D.
【点睛】
本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.
初中数学代数式解析
一、选择题
1.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6 ,宽为5 )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于()
A.19 B.20 C.21 D.22
【答案】B
【解析】
【分析】
根据图示可知:设小长方形纸片的长为a、宽为b,有: (cm),则阴影部分的周长为: ,计算即可求得结果.
11.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )
A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab
又∵展开式中不含x2与x3项,
∴p-5=0,7-5p+q=0,
解得p=5,q=18.
故选A.
13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )
A.110B.158C.168D.178
【答案】B
【解析】
根据排列规律,10下面的数是12,10右面的数是14,
∵8=2×4−0,22=4×6−2,44=6×8−4,
B. ,故故此选项错误.
C.若将分式 中,x、y都扩大3倍,那么分式的值也扩大3倍,故此选项正确.
D.若 则 ,故此选项错误.
故选:C
【点睛】
本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.
15.下列运算中正确的是( )
A. B.
C. D.
【答案】D
∴2+3m=0,
解得,m= ,
故选C.
7.下列运算正确的是( )
A.a5﹣a3=a2B.6x3y2÷(﹣3x)2=2xy2
C. D.(﹣2a)3=﹣8a3
【答案】D
【解析】
【分析】
直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.
【详解】
A、a5﹣a3,无法计算,故此选项错误;
【点睛】
本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.
6.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是( )
A.0B. C.﹣ D.﹣
【答案】C
【解析】
试题解析:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,
∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,
【详解】
A: ,计算错误;
B: ,计算错误;
C: ,计算错误;
D: ,计算正确;
故选:D.
【点睛】
比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.
16.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()
A.7B.12C.13D.25
【答案】C
【解析】
【分析】
设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab=12,求出a2+b2即可.
B、 ,故选项B不合题意;
C、 ,故选项C不符合题意;
D、 ,故选项D符合题意.
故选:D.
【点睛】
本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.
5.计算 的结果是()
A. B. C.- 1D.
【答案】A
【解析】
【分析】
根据积的乘方的逆用进行化简运算即可.
【详解】
故答案为:A.
故选:C.
【点睛】
此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.
4.下列各式中,计算正确的是( )
A. B. C. D.
【答案】D
【解析】
【分析】