北航 矩阵论 矩阵论课后参考答案

合集下载

矩阵论简明教程习题答案

矩阵论简明教程习题答案
1 , 0) T , 5 2 4 5 T , , e 3 =( ) . 令 3 5 3 5 3 5 1 2 2 5 3 5 3 10 1 4 2 1 U= , 则 U AU = 1 . 3 5 3 5 1 5 2 0 3 3 5
1 p1 = 4 , 0
1 p 2 = 0 4
=-1 所对应的方程组 (I+A)x=0 有解向量 1 p 3 = 0 0

7.
3 0 1 1 1 0 1 1 P=(p 1 , p 2, p 3 )= 4 0 0 , 则 P = 4 1 4 . 于是有 12 0 4 1 16 4 4 2100 4 2100 2100 1 2100 1 1 2100 0 3 2100 0 A 100 =P P 1 = . 3 100 100 100 1 2 1 4 2 1 4 4 2 2 (1) I A = ( 1) =D 3 ( ), I-A 有 2 阶子式
1 3 2 3 2 T ) . 3
2 1 2 2 1 2 4 ~ 0 0 0 2 4 2 4 4 0 0 0
当 =1 时, 对应的齐次线性方程组 (I-A)x=0 的系数矩阵
由此求出特征向量 p 2 =(-2, 1, 0) T , p 3 =(2, 0, 1) T . 单位化后得

d1 1, d 2 1,
d 3 ( 1)( 2)
1 A~J= 1 2
因为 A 可对角化,可分别求出特征值-1,2 所对应的三个线性无关 的特征向量: 当 =-1 时,解方程组 ( I A) x 0, 求得两个线性无关的特征向量

北航2009-2010 学年第一学期矩阵理论A试题

北航2009-2010 学年第一学期矩阵理论A试题

2009—2010学年 (A)学号 姓名 成绩《 矩阵理论 》(A )注意事项:考试时间120分钟 一. 填空 (注: I 代表单位阵,H A 表示H 转置, det(A)指行列式)(1)()det()tr A A ee -⋅= ,1()()A A A A e e e e +----=(2)若2320A A I -+=,则A 有一个无重根零化式为f(x)= (3)若2H A A A == , 则+A =(4)若3阶阵A I ≠-,且220A A I ++=,则Jordan 形A J =(5)311, ,030a A B b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ A B ⊗的特征根为(6)211555121,444111333A=, i x i i i ⎛⎫ ⎪⎡⎤⎪⎢⎥⎪==⎢⎥ ⎪⎢⎥ ⎪⎣⎦⎪ ⎪⎝⎭, 则谱半径()A ρ取值范围是 ;且1A x = ;||A||∞=(7)01,10A -⎛⎫= ⎪⎝⎭ 则 ( )sin =( )cos tAt e t -⎛⎫ ⎪ ⎪⎝⎭, =A e π (8)1111A=-⎛⎫ ⎪-⎝⎭11A x ⎛⎫= ⎪⎝⎭则的最佳极小二乘解是 ; +A = .. (9)矩阵A 中各列都可用B 的列线性表示(R(A)R(B)⊂),则有矩阵P 使BP = (10)n阶阵A 的特征根λ,谱半径()A ρ与范数||||A 的大小关系是 . (11)A 是n阶阵(k 是自然数),则(),(),||||,|||| kkkkA A A A ρρ之间关系为()tr()A B ⊗=(12)1 0 1A 1 1 2 1 2 3⎛⎫⎪= ⎪ ⎪⎝⎭的满秩分解为 ;(13)设123,,εεε是3R 的基,33RA ⨯∈满足:1223323,,2.A A A εεεεεεε===-则有矩阵B 使得123123(,,)(,,)B A εεεεεε=,B = . 二.计算下列各题1. 设列满(高)阵m n A A ⨯=的QR 分解为A QR =,Q 为次酉阵().Hn Q Q I =验证:1H X R Q -=满足A +的4个条件.2.设,000100010A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求23, A A ,(2)由23()()23!tA tA tAeI tA ++++直接计算tA e,并求()tA tA e e +-=. 计算下列各题1. (1)I 为单位矩阵,用Taylor 公式计算验证tIt ee I =且0n neI ⨯=(2)若已知sin()()At B t =, 如何求出矩阵A (写一个公式)(3)已知525252523444173343t tt t At ttt t e e e e e e e e e ----⎛⎫+-= ⎪-+⎝⎭,用导数公式求矩阵A 2.设,A ⎛⎫⎪= ⎪ ⎪⎝⎭210020002(1)求A 极小式;(2)由23((2))((2))2(2)23!()(2)t A I t A I tAtt A I e e I e I t A I ----=+-+++计算tA e3.0.50.5 ,00.5A ⎛⎫=⎪⎝⎭设计算:20()k k I A A ∞=⎛⎫-⋅ ⎪⎝⎭∑5.(1)画出矩阵A 的盖尔圆盘; (2)说明A 有3个互异特征根.1812191.19A i i ⎛⎫ ⎪= ⎪ ⎪⎝⎭三.( 6分)设A 是n阶正规矩阵,1(A){ ,,}n σλλ=(全体特征根).(1)写出正规阵A 的含有对角阵与两个U(酉)阵的乘积分解公式;(2)若A 是2阶正规矩阵,(A){1, }i σ=,1i X ⎛⎫= ⎪⎝⎭使得A X X =,求一个U(酉)阵Q ,将A 写成H Q , Q 与对角阵的乘积形式.四.(任选3题共9分 )简证下列各题 1.设•是n n⨯上相容的矩阵范数, 列向,0.nαα∈≠任取nx ∈,令||||x 如下:H x x α定义为,nx ∈. 证明: n nA A , ( A ).x x ⨯≤⋅∈2.设•是矩阵范数,x , x 0 n∈≠使得Ax=x λ; 令n n B=(x,0,0,,0)⨯证明: AB=B λ,且有 ||||B||||A||||B||λ⋅≤⋅(由此你能否推出一个结论?).3. 设A n n⨯∈, A 是相容的矩阵范数, 证明(1) ||I||1≥(I 是单位矩阵);(2)若A 可逆, 则11||||||||A A -≥4. 若A 为n 阶正规阵,1n (A)= {,,}σλλ(全体特征根),证明1n (A )= {, , }H σλλ(H A 的全体特征根).五.(11分) 1.设()1111122201T 12, , b 2101 A A --⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭,124500A A A ⨯⎛⎫=⎪⎝⎭. 求 A + 与Ax=b 的极小范数解或最佳极小二乘解2.已知111121A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, (1)求A 的短奇异值分解; (2)求奇异值分解.六.(8分)21011020, 00012A B ⎛⎫⎡⎤ ⎪==⎢⎥⎪⎣⎦ ⎪⎝⎭. 求A 的极小式;计算tA e 与()B A e ρ⊗七. (7分)设110011001A ⎛⎫⎪= ⎪ ⎪⎝⎭,求一个矩阵B (具有正的特征根),使得2BA =.附加题1.设m mA ⨯∈,n nB ⨯∈,()m nX X t ⨯=∈, 验证At Bt X e Ce =是微分方程:d , (0)d XAX XB X C t=+= 的唯一解. 2 已知5252521252523444173343t tt t Attt ttt t e e e e e e G e G e e e e -----⎛⎫+-=+= ⎪-+⎝⎭求1432A ⎛⎫= ⎪⎝⎭已知121sin()127tA f G f G ⎛⎫=+=⎪⎝⎭求A = 参考题:证明:若A 是正规,则()f A 是正规阵,特别aI bA +为正规阵.设m nA ⨯∈,证明 ()(),()()R N R N H H A A A A ⊥⊥。

09+10年北航研究生矩阵论 矩阵理论B期末试卷

09+10年北航研究生矩阵论 矩阵理论B期末试卷

二、设 A∈ 8×8,且 λ I − A 等价于准对角阵
diag
⎧⎪⎨⎪⎩⎡⎢⎣λ
2 −1 0
1 ⎤ ⎡λ +1 λ + 2⎥⎦ , ⎢⎣λ −1
0⎤ λ −1⎥⎦
,(λ
+
2)2
,
λ
+
2,
1,
1⎫⎪⎬⎪⎭
(1)试求 λ I − A 的初等因子,不变因子;Smith 标准形(3)写出 A 的最小多项式及 Jordan 形.
四、证明:1)、 因为 A+ = A,故 A3 = A 所以 秩A=秩A3 ≤ 秩A2 ≤ 秩A,所以 秩A2 = 秩A
2)、由 A3 − A = 0,故 λ3 − λ 将 A 零化,且 λ3 − λ = 0无重根, A 可对角化。
3)、 A 的特征根为 1、-1 和 0,而 秩A=r 。故非零特根个数为(对角线非零元素的个数为 r)
附加题证明:令 B = A( AT A)−1 AT ,则 BT = B 为实对称矩阵,且 B2 = B
从而 BT B 与 B 由相同的特征值,且 B 的正奇异值就是 B 的正特征值。λ2 −1 = λ(λ −1) 是
B 的 零 化 式 。 故 B 的 最 大 特 征 值 为 1 ( 否 则 B 为 零 矩 阵 , 从 而 A = 0 , 矛 盾 ), 所 以 B = B的最大奇异值= 1 = 1
3⎤ 2⎥⎦
.(1)计算
e
At
;
(2)试求
f

A=
n=0
n +1 n!
A2
+
A
n
.
八、 A∈ n×n. 证明 lim Am = 0 ⇔ ρ ( A) < 1. m→∞

矩阵论课后题答案(研究生用书)改

矩阵论课后题答案(研究生用书)改

⎞ ⎠

A
P
⎞ ⎠
⎠ ⎞
P

− 1
A

A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E

A
A A E
A

f A
A
A
A
A
A
E
A
E
E
A A


A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E


⎞ ⎠
f A E
E

A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F

矩阵论习题答案

矩阵论习题答案

自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。

矩阵论往年部分真题讲解题(含解答)

矩阵论往年部分真题讲解题(含解答)

2011年《矩阵论》习题解答一、 掌握线性空间的定义及判断是否为线性空间。

二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-=== 求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标; (3)在两组基下有相同坐标的非零向量。

解:(1)因为 ()()()12341234123420561336,,,,,,,,,11211013C ββββαααααααα⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭所以由基1234,,,αααα到基1234,,,ββββ的过渡矩阵2056133611211013C ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭ 或解 非齐次线性方程组的解 11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1T k -,对两个基有相同坐标的非零向量为()1234k x x x x ++-,k 非零常数。

二、已知线性空间V 是矩阵空间22R ⨯, (1) 证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。

08级-北航博士-矩阵论试题与答案

08级-北航博士-矩阵论试题与答案

一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX ;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。

二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。

五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),n n x I A A y y R +=-∀∈。

七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n n n n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。

八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。

矩阵论第三章答案

矩阵论第三章答案
d1 (λ ) = L = d n −1 (λ ) = 1 , d n (λ ) = (λ − a )
n
因此初等因子只有一个,即有 (λ − a )n .
11. 证:
A( λ )与 B( λ )相抵当且仅当它们有相同的不变因
子,当且仅当它们的各阶行列式因子相同.
1 1 ⎤ ⎡λ − 2 ⎢ 12. 解 : ( 1 ) 因 为 λI − A = ⎢ − 2 λ + 1 2 ⎥ ⎥ 的初等因子为 ⎢ − 1 λ − 2⎥ ⎣ 1 ⎦
0 0 ⎤ r2 − (− 1)r3 ⎡1 0 0 ⎤ c 2 − (2λ − 1)c1 ⎡1 ⎢0 ⎥ ⎢ 2 λ − λ ⎥ ⎯⎯ ⎯ λ2 ⎥ ⎯⎯ ⎯ ⎯→ ⎢ ⎯→ ⎢0 λ ⎥ 2 2 2 ⎥ ⎢ ⎥ c3 + (− λ )c1 ⎢ ( ) r + 1 − λ r 0 λ − λ − λ − λ 0 0 − λ − λ 3 2 ⎣ ⎦ ⎣ ⎦
2. 解 : ( 1)因为 A 的特征矩阵为
⎡λ + 1 ⎤ ⎢ ⎥ λ+2 ⎢ ⎥ A(λ ) = λI − A = ⎢ ⎥ λ −1 ⎢ ⎥ λ − 2⎦ ⎣
所以 A( λ )的行列式因子为
⎡1⎤ A=⎢ ⎥ ⎣1⎦
不变因子为
d 1 (λ ) = D1 (λ ) = 1, d 4 (λ ) = D4 (λ ) D3 (λ ) d 2 (λ ) = d 3 (λ ) = 1,
10. 解:
因为 A(λ ) = (λ − a )n ,所以 Dn (λ ) = (λ − a )n ,又因
c1 λ − a c2 O
O
= c1c 2 L c n −1 ≠ 0 ,
λ − a c n −1

矩阵论真题讲解题(含解答)

矩阵论真题讲解题(含解答)

2011年《矩阵论》习题解答 一、 掌握线性空间的定义及判断是否为线性空间。

二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-===求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标;(3)在两组基下有相同坐标的非零向量。

解:(1)因为()()()12341234123420561336,,,,,,,,,1121113C ββββαααααααα⎛⎫ ⎪ ⎪== ⎪- ⎪⎝⎭ 所以由基123,,,αααα到基123,,,ββββ的过渡矩阵20561********13C ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭或解 非齐次线性方程组的解11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1Tk -,对两个基有相同坐标的非零向量为()1234k x xx x ++-,k 非零常数。

二、已知线性空间V 是矩阵空间22R ⨯,(1)证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。

矩阵论课后习题答案

矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。

(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。

(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。

北航 矩阵论 习题2.1参考答案

北航 矩阵论 习题2.1参考答案


T1
A
0
4
1 ;对于 b(2) (4,3)T ,构造 T2 使 T2b(2) b(2) e2
0 3 2
4 / 5 3 / 5 4 1 5 2
T2
3
/
5
4
/
5
,
T2
3
2
0
1
0 1 0
0 4/5 3/5
所以, T
I 0
0 T2
T1
4 3
/ /
5 5
0 0
3/5
3 )T 3
由 a3 (2, 0, 2)T ,有
12
a3
(a3, b1) (b1, b1)
b1
(a3, b2 ) (b2 , b2 )
b2
(2, 0, 2)
14 26
(3,1, 4)T
13 24
(10 , 14 , 4 )T 13 13 13
0T
13

k31
7 13

k32
1 2
3 26
i 2
1 i
6
3
0
2i 1 6 3
R
b1
b2
1
i 2
1
2
2
i 2
0
b3
0
1 0
i 3 1
0 0
3 6
0
1
2
i
6
2
3
2 0 0
1
30
1
3
2
6
3 3
1

P
中对应
Q1 的列向量做单位化得
P
2
1
2
3

北航研究生矩阵论课后参考答案

北航研究生矩阵论课后参考答案

矩阵论课后参考答案:第1章 线性代数引论习题1.12(1)解:由定义知n m C n m ⋅=⨯)dim(故可知其基为n m ⋅个n m ⨯阶矩阵,简单基记为在矩阵上的某一元素位置上为1,其他元素为0 ,如下⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000001 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00000010000(2)解:对约束A A T =分析可知,其为一个上下对称的矩阵(对称阵),则其维数为2)1(1)1()dim(+=++-+=n n n n V 其基为2)1(+n n 个n n ⨯阶的矩阵,故基可写为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000001,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000010010 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000000000(3)解:同上理,对A A T -=分析可知其为一个上下成负对称的矩阵,且对角元全为0,则其维数为 2)1(2)1)1)((1(1)2()1()dim(-=+--=++-+-=n n n n n n V其基为2)1(-n n 个n n ⨯阶的矩阵,故基可写为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000000000010010 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-000000010000010, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-01100000000000003解:由题可得},,,{212121ββααspan W W =+ 不难看出其秩为3,则3)dim(21=+W W 设21W W x ∈,则存在2121,,,l l k k 有 22112211ββααl l k k x +=+=则 ⎪⎩⎪⎨⎧=--=-+=+++=---0703020221222121212121l l k l k k l l k k l l k k ,故有⎪⎩⎪⎨⎧-==-=21222134l l l k l k 即)4,3,2,5()4(21222211-=-=+=l l k k x αααα 所以1)dim(21=W W 8(先补充定理:定理:设n 元齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则齐次线性方程组的基础解析存在,并且基础解系所含线性无关的解向量的个数等于r n -)证:1)对任意的21V V B ∈,则有0=AB 且0)(=-B I A 成立,故0=B 所以{0}21=V V 。

北航线性系统理论答案

北航线性系统理论答案

1-1 证明:由矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=12-n 1-n n- - - -1 01 0 00 0 1 0a a a a A可知A 的特征多项式为nn n n n n n n n n nn n n n a a a a a a a a a a a a a a a a a a a a a a a A I ++++++=+++++=+++=++=+=-+λλλλλλλλλλλλλλλλλλλλλλλ1-3-32-21-11-3-3122-2-1-n 13-n 2-n 21-1n 12-n 1-n 12-n 1-n n 1- )1(-)1(- 0 00 1- )1(-)1(- 0 0 0 1-1 0 1- 0 00 1- 若i λ是A 的特征值,则00 0 01 1 01- 0 0 0 1- 111n 1-n i 12-n 1-n n =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=++++=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--ni n i n i i i i i a a a a a a a λλλλλλλλ所以[]Ti i 1-n i 2 1 λλλ 是属于i λ的特征向量。

1-7 解:由于()ττ--t e t g =,,可知当τ<t 时,()0≠τ,t g ,所以系统不具有因果性。

又由于()()0 ,,ττ-=t g t g ,所以系统是时不变的。

1-8 解:容易验证该系统满足齐次性与可加性,所以此系统是线性的。

由于()()t 0 t ⎩⎨⎧>≤-=-=ααββαβαt u t u P u Q P 而()()⎩⎨⎧+>+≤-=⎩⎨⎧>≤=βαβαβααβαβ t 0 t t 0 t t u t u Q u P Q ,故u P Q u Q P αββα≠,所以系统是时变的。

又因为()()()()()⎩⎨⎧>≤=⎩⎨⎧>≤=ααααα,,T T t u t u P u P P T T min t 0 min t t 0 t 而()()()()()()()⎩⎨⎧>≤=⎩⎨⎧>≤=ααααα,,,,T T t u T T t u P u P P P T T T min t 0 min t mint 0 min t ,故()()u P P P u P P T T T αα=,所以系统具有因果性。

研究生矩阵论课后习题答案(全)习题一

研究生矩阵论课后习题答案(全)习题一
习题一 1.检验以下集合对于所指的线性运算是否构成实数域的线性空间: (1)设 A 是 n 阶实数矩阵. A 的实系数多项式 f ( A) 的全体,对于矩阵的加法 和数乘; (2)平面上不平行于某一向量所组成的集合,对于向量的加法和数与向量的 乘法; (3)全体实数的二元数列,对于如下定义的加法 ⊕ 和数乘 o 运算:

(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1 −1 −1
= aa −1 = 1
⑥ k o (l o a ) = k o a = (a ) = a
l l k
lk
= (lk ) o a
⑦ (k +;l
= a k a l = a k ⊕ a l = (k o a) ⊕ (l o a )
k k k
⑧ k o ( a ⊕ b) = k o ( ab) = ( ab) = a b = ( k o a ) ⊕ (k o b) 所以 R+对这两种运算构成实数域 R 上的线性空间. (5)否.设 V2 = y ( x ) y ′′ + a1 y ′ + a 0 y = f ( x ), f ( x ) ≠ 0 ,则该集合对函数的 加法和数乘均不封闭.例如对任意的 y1 , y 2 ∈ V2 , y1 + y 2 ∉ V2 .故不构成线性空间. (6)是.集合 V 对函数的加法和数乘显然封闭.零函数是 V 的零元素;对任意

研究生矩阵论课后习题答案(全)习题三

研究生矩阵论课后习题答案(全)习题三

习题三1.证明下列问题:(1)若矩阵序列{}m A 收敛于A ,则{}Tm A 收敛于T A ,{}m A 收敛于A ;(2)若方阵级数∑∞=0m m m A c 收敛,则∑∑∞=∞==⎪⎭⎫ ⎝⎛00)(m mT m Tm m m A c A c .证明:(1)设矩阵,,2,1,)()( ==⨯m a A n n m ij m则,)()(n n m ji Tm a A ⨯=,)()(n n m ij m a A ⨯=,,2,1 =m设,)(n n ij a A ⨯=则n n ji T a A ⨯=)(,,)(n n ij a A ⨯=若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有ij m ij m a a =∞→)(lim ,则ji m ji m a a =∞→)(lim ,ij m ij m a a =∞→)(lim ,n j i ,,2,1, =,故{}T m A 收敛于TA ,{}m A 收敛于A .(2)设方阵级数∑∞=0m m mA c的部分和序列为,,,,21m S S S ,其中mm m A c A c c S +++= 10.若∑∞=0m m mA c收敛,设其和为S ,即S A cm m m=∑∞=0,或S S m m =∞→lim ,则T Tm m S S =∞→lim .而级数∑∞=0)(m mTmA c的部分和即为T mS ,故级数∑∞=0)(m m T m A c 收敛,且其和为T S ,即∑∑∞=∞==⎪⎭⎫ ⎝⎛00)(m m T m Tm m m A c A c .2.已知方阵序列{}m A 收敛于A ,且{}1-m A ,1-A 都存在,证明:(1)A A m m =∞→lim ;(2){}11lim --∞→=AA mm .证明:设矩阵,,2,1,)()( ==⨯m a A n n m ij m ,)(n n ij a A ⨯=若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有ij m ij m a a =∞→)(lim .(1) 由于对任意的n j j j ,,,21 ,有,lim )(k kkj m kj m a a =∞→ n k ,,2,1 =, 故∑-∞→nn n j j j m nj m j m j j j j m a a a 2121)()(2)(1)()1(limτ=∑-nn n j j j nj j j j j j a a a 21212121)()1(τ,而∑-=nnn j j j m nj m j m j j j j m a a a A 2121)()(2)(1)()1(τ,∑-=nn n j j j nj j j j j j a a a A 21212121)()1(τ,故A A m m =∞→lim .(2) 因为n n m ij m m A A A ⨯-=)(1)(1,n n ij A AA ⨯-=)(11. 其中)(m ij A ,ij A 分别为矩阵m A 与A 的代数余子式.与(1)类似可证明对任意的n j i ,,2,1, =,有ij m ij m A A =∞→)(lim ,结合A A m m =∞→lim ,有n n m ij m m A A ⨯∞→)(1lim)(=n n ij A A⨯)(1, 即{}11lim --∞→=A A m m .3.设函数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3201sin cos sin )(t t e t t t t t t A t , 其中0≠t ,计算),(),(lim 0t A dt d t A t →),(22t A dtd ,)(t A dt d)(t A dt d . 解:根据函数矩阵的极限与导数的概念与计算方法,有(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=→→→→→→→→→→001011010lim 0lim 1lim lim lim sin limlim cos lim sin lim )(lim 300200000t t e ttt tt t A t t t t tt t t t t t ;(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''''''''=22323002sin cos 1sin cos )(01)()()sin ()(cos )(sin )(t t e t t t t t tt t e t t t t t t A dt dt t ; (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==t e t t t t t t t A dtd dt d t A dt d t 6002cos 2sin )2(0cos sin ))(()(222; (4)=)(t A dt d '3201sin cos sin t t e tt t t tt)2cos 2(sin )sin cos 2(]1)cos (sin sin 3[32t t t t t t t t t t t t t e t +--+--++=(5))(t A dt d =22302sin cos 1sin cos t t e t t t t t tt -- )sin cos (sin 3cos 32t t t t t e t t -+=.4.设函数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-00302)(222x e e x xe e x A x xx x , 计算⎰10)(dx x A 和⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d . 解:根据函数矩阵积分变限积分函数的导数的概念与计算方法,有(1)⎰10)(dx x A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎰⎰⎰⎰⎰⎰-00302101211210102xdx dx e dxe dx x dx xe dx e x x xx ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-0023011311)1(21212e e e ; (2)⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d =)(22x xA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-00302224222222x e ex e x e x x xx. 5.设,))(,),(),((21T n t y t y t y y =A 为n 阶常数对称矩阵,Ay y y f T=)(,证明:(1)dt dy A y dt df T 2=; (2)dtdy y y dt d T222=. 证明:(1)y A y Ay y Ay y dtdfT T T '+'='=)()(y A y Ay y T T T '+'=))((y A y T '=2dtdyA y T 2=,(2)dtdy y yy dt d y dt d TT 2)(22==. 6.证明关于迹的下列公式:(1)X X X tr dX d XX tr dX d T T 2)()(==; (2)T T T B B X tr dX d BX tr dX d ==)()(; (3)X A A AX X tr dXdT T )()(+=. 其中m m ij m n ij n m ij a A b B x X ⨯⨯⨯===)(,)()(.证明:(1)因为∑∑====mi nj ij TTx X X tr XX tr 112)()(,而ij m i n j ij ij x x x 2)(112=∂∂∑∑==, 故X X X tr dXd XX tr dX d T T 2)()(== (2)因为n n mk kj ik x b BX ⨯=∑=)(1,则∑∑====n j mk kj jk TTx b B X tr BX tr 11)()(,而ji n j mk kj jk ij b x b x =∂∂∑∑==)(11, 故T T T B B X tr dXd BX tr dX d ==)()(. (3) 因为,212221212111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n m m Tx x x x x x x x x X⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========mk kn mk m k k mk mk k mk mk kn k mk k kmk k k mk kn k mk k k mk k k x a xax a x a x axa x a x a x a AX 112111212211211121111故)()()()(11ln 111111∑∑∑∑∑∑======++++=m l mk kn lk ml m k kj lk lj m l m k k lk l Tx a x x a x x a x AX X tr 则))(()(11∑∑==∂∂=∂∂m l mk kj lk lj ij Tij x a x x AX X tr x )]([111∑∑∑===∂∂+∂∂=mk kj lk ij lj mk kj lk ij ljml x a x x x a x x ∑∑==+=ml lj li mk kj ik x a x a 11故X A A X A AX AX X tr dXdT T T )()(+=+=. 7.证明:TT T T T T dX db a dX da b b a dX d +=)(, 其中)(),(X b X a 为向量函数.证明:设T m T m X b X b X b X b X a X a X a X a ))(,),(),(()(,))(,),(),(()(2121 ==,则∑==mi i i TX b X a X b X a 1)()()()(,故它是X 的数量函数,设)()()(X b X a X f T =,有),,,())()((21nTTx f x f x f X b X a dX d ∂∂∂∂∂∂= ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∑∑==m i n i i i n i m i i i i i x X b X a X b x X a x X b X a X b x X a 1111)()()()(,,)()()()( ∑∑∑===∂∂∂∂∂∂=mi i n i m i i i mi i i X b x X a X b x X a X b x X a 11211))()(,,)()(,)()(( ))()(,,)()(,)()((11211∑∑∑===∂∂∂∂∂∂+mi ni i m i i i mi i i x X b X a x X b X a x X b X aTT T TdX db adX da b +=. 8.在2R 中将向量Tx x ),(21表示成平面直角坐标系21,x x 中的点Tx x ),(21,分别画出下列不等式决定的向量Tx x x ),(21=全体所对应的几何图形:(1) ,11≤x (2) ,12≤x (3) 1≤∞x . 解:根据,1211≤+=x x x ,122212≤+=x x x{}1,m a x 21≤=∞x x x ,作图如下:9.证明对任何nC y x ∈,,总有)(212222y x y x x y y x T T --+=+. 证明:因为y y x y y x x x y x y x yx T T T T T +++=++=+)()(22y y x y y x x x y x y x y x T T T T T +--=--=-)()(22故x y y x y x y x T T +=--+)(212222 10.证明:对任意的nC x ∈,有12x x x≤≤∞.证明:设Tn x x x x ),,,(21 =,则{}nn n x x x x x x x xx x x x +++=+++==∞21122221221,,,,,max由于{}22122221221)(),,,(max n nn x x x x x x x x x +++≤+++≤ ,故21222x xx≤≤∞,即12x x x≤≤∞.11.设n a a a , ,,21是正实数,证明:对任意nT n C x x x X ∈=),,(21, ,2112⎪⎭⎫ ⎝⎛=∑=ni i i x a X是nC 中的向量范数.证明:因为 (1),02112≥⎪⎭⎫⎝⎛=∑=ni i ix a X 且00=⇔=X X ;(2)X k x a k x a k kx a kX ni i i ni i i ni i i =⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=∑∑∑===2112211222112;(3)对于nT n C y y y Y ∈=),,(21, ,T n n y x y x y x Y X ),,(2211+++=+, ,则21212122)(2Y X Y X y a x a y x a YX ni ii ni ii ni ii i +=++≤+=+∑∑∑===故Y X Y X +≤+.因此2112⎪⎭⎫⎝⎛=∑=ni i i x a X 是nC 中的向量范数. 12.证明:ij nj i a n A ≤≤=,1m ax是矩阵n n ij a A ⨯=)(的范数,并且与向量的1-范数是相容的.证明:因为(1) 0m ax ,1≥=≤≤ij nj i a n A ,且O A =⇔0=A ;(2) A k a n k ka n kA ij nj i ij nj i =≥=≤≤≤≤,1,1m ax m ax ;(3) B A b n a n b a n B A ij nj i ij nj i ij ij nj i +=+≥+=+≤≤≤≤≤≤,1,1,1m ax m ax m ax(4)设Tn x x x X ),,,(21 =,则T nj j nj nj j j nj j j x a x a x a AX ),,,(11211∑∑∑==== ,故∑∑∑===+++=nj j njnj j jnj j jx ax ax aAX 11111∑∑∑=≤≤=≤≤=≤≤+++≤nj j nj nj nj j j nj nj jjnj x a x a xa 11121111max max max11,1max X A xa n nj jijnj i =≤∑=≤≤因此ij nj i a n A ≤≤=,1m ax 是与向量的1-范数相容的矩阵范数.13.设nn CA ⨯∈,且A 可逆,证明:11--≥AA .证明:由于I AA =-1,1=I ,则111--≤==A A AA I ,故11--≥AA .14.设nn CA ⨯∈,且,1<A 证明:A I -可逆,而且有(1)AA I -≤--11)(1;(2)AA I A I -≤---1)(1.证明:(1)由于A A I I A I 11)()(---+=-,故A A I I A A I I A I 111)()()(----+≤-+≤-,即 AA I -≤--11)(1.(2)因为A I A I =-+)(,两边右乘1)(-+A I ,可得11)()(--+=+-A I A A I I ,左乘A ,整理得11)()(--+-=+A I AA A A I A ,则111)()()(---++≤+-=+A I A A A A I AA A A I A ,即 AA I A I -≤---1)(1.15.设C l k CB A nn ∈∈⨯,,,证明:(1)Al k klkA ee e )(+=,特别地A A e e --=1)(;(2)当BA AB =时,BA AB BA e e e e e +==;(3)A e Ae e dtd At At At==; (4)当BA AB =时,B A B A B A sin cos cos sin )sin(±=±. 证明:(1)∑∑∑∞==-∞=+⎥⎦⎤⎢⎣⎡=+=000)()()(!1!)(n n m m n m m n n n n Al k lA kA C n n A l k e∑∑∑∑∞=∞=∞=∞=+++=+=-0000)()(!!)!()!(1)()()!(1m l l m m l lm m m l lA kA m l m l m l lA kA C m l l m nlA kA l l m m m l l m e e kA l kA m lA kA m l =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==∑∑∑∑∞=∞=∞=∞=0000)(!1)(!1)()(!!1.又因为A A A A O e e e e I --+===)(,故A A e e --=1)(.(2)当BA AB =时,二项式公式∑===+nm mm n m n nB AC B A 0)(成立,故∑∑∑∞==-∞=+⎪⎭⎫ ⎝⎛=+=000!1)(!1n n m m m n m n n nBA B A C n B A n e∑∑∑∑∞=∞=∞=∞=+=+=-0000!!1)!(1m l m l m l ml m m l B A m l B A C m l l m nBA m m l l e eB m A l =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=∑∑∞=∞=00!1!1 同理,有A B l l m m BA e e A lB m e=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∞=∞=+00!1!1, 故B A A B B A e e e e e +==.(3)由于幂级数∑∞=0!1n nn tA n 对给定的矩阵A ,以及任意的t 都是绝对收敛的,且对任意的t 都是一致收敛的,因此科可对此幂级数逐项求导,则A l ll n n n n n n At Ae l t A A n t A t A n dt d e dt d ==-=⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=-∞=0110!)!1(!1, 同理,有A e A l t A e dt d Al ll At =⎪⎪⎭⎫ ⎝⎛=∑∞=0! 故A e Ae e dtd At At At==. (4) 因为-+-++=432!41!31!21A iA A iA I e iA )!51!31()!41!21(5342 -+-+-+-=A A A i A A IA i A sin cos +=故)(21sin iA iAe e iA --=. 又当BA AB =时,B A A B B A e e e e e +==,则()()iB iA iBiA B A i B A i e e e e i e e i B A --+-+-=-=+2121)sin()()( )]sin )(cos sin (cos )sin )(cos sin [(cos 21B i B A i A B i B A i A i---++= B A B A sin cos cos sin += 同理,可得B A B A B A sin cos cos sin )sin(-=-16.求下列三类矩阵的矩阵函数2,sin ,cos A e A A(1)当A 为幂等矩阵(A A =2)时; (2)当A 为对合矩阵(I A =2)时; (3)当A 为幂零矩阵(O A =2)时.解:(1) A A =2,设矩阵A 的秩为r ,则A 的特征值为1或0, A 可对角化为J O O O I AP P r =⎥⎦⎤⎢⎣⎡=-1, 则11001sin 1sin sin sin --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P AA PJP )1(sin )1(sin 1==-,11111cos 1cos cos cos --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P A110011cos 11cos 1111--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=P P P PA I PJP I )11(cos )11(cos 1-+=-+=-111122--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P e e P P Pe e J A1100111111--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=P e e P P PA e I PJP e I )1()1(1-+=-+=-(2) 当I A =2时,矩阵A 也可对角化,A 的特征值为1或1-, A 可对角化为J AP P =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=-11111 ,其中1有m 个.则111sin 1sin 1sin 1sin sin sin --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--==P P JP P AA PJP )1(sin )1(sin 1==-111cos 1cos 1cos 1cos cos cos --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P A I )1(cos =eI P e e e e P P Pe e J A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==--1122(3)当O A =2时, A 的特征值均为0,则存在可逆矩阵P ,使得11,--==PJP A J AP P ,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m J J J 1,又O A =2,则O P PJ A ==-122,于是O J J J m =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2212故Jordan 块k J 的阶数最多为2,不妨设0=k J ),,1(r k =,B J k =⎥⎦⎤⎢⎣⎡=0010),,1(m r k +=,即 ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B B J 0则1=k iJ e ,1=-k iJ e ),,1(r k =;⎥⎦⎤⎢⎣⎡=101i e k iJ ,⎥⎦⎤⎢⎣⎡-=-101i e k iJ ),,1(m r k +=.故=--k k iJ iJ e e 0),,1(r k =,B ii e e k k iJ iJ 210020=⎥⎦⎤⎢⎣⎡=--),,1(m r k +=, 则2=+-k k iJ iJ e e ),,1(r k =,I e e k k iJ iJ 22002=⎥⎦⎤⎢⎣⎡=+-),,1(m r k +=, 因此J iB B i e e iJiJ 210021=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-- ,Ie e iJiJ 22222=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=+- , 所以A PJP i i P e e P i e e i A iJ iJ iA iA =⋅=-=-=----11)2(21)(21)(21sin , I PIP P e e P e e A iJ iJ iA iA =⋅=+=+=----11221)(21)(21cos ,I I e e O A ==2.17.若矩阵A 的特征值的实部全为负,则O e At t =+∞→lim .证明: 设A 的特征值为0,1,<-=+=i i i i a j j b a λ,则存在可逆矩阵P ,使得11,--==PJP A J AP P ,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m J J J 1,i n i i i J ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλ11 则1121--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==P e e e P PPe et J tJ tJ Jt Atm,其中⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=-t tt t t i n tt tJ e tete e e n t tee ei i 11111111)!1(λλλλλλλ又)sin (cos lim lim lim t b j t b e e e i i t a t t jb t a t t t i i i i +==∞→+∞→∞→λ,且0<i a ,故0lim =∞→tt i eλ,因此O e t J t i =∞→lim ,则O e At t =+∞→lim .18.计算Ate 和At sin ,其中:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110010002A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=010101010A ; (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6116100010A .解:(1)设,21=J ⎥⎦⎤⎢⎣⎡=11012J ,则⎥⎦⎤⎢⎣⎡=21J JA . 由于⎥⎦⎤⎢⎣⎡=t J tAt e e e 22,⎥⎦⎤⎢⎣⎡=t J t At 2sin 2sin sin , 且⎥⎦⎤⎢⎣⎡=t t t tJ e tee e02,⎥⎦⎤⎢⎣⎡=t t t tt J sin cos 0sin sin 2, 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t tt tAte te e e e 000002,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t t t t At sin cos 00sin 0002sin sin . (2)该矩阵的特征多项式为,11101)(3λλλλλϕ=---=最小多项式为3)(λλ=m .19.计算下列矩阵函数:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221131122A ,求100A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=735946524A ,求Ae ;(3)⎥⎦⎤⎢⎣⎡-=4410A ,求4arcsin A; (4)⎥⎦⎤⎢⎣⎡=48816A ,求1)(-+A I 及21A 20.证明:I A A =+22cos sin ,A iI A e e =+π2,其中A 为任意方阵.证明:(1) 因为)(21sin iA iA e e i A --=,)(21cos iA iA e e A -+=,故)2(41)(41sin 2222I e e e e A iA iA iA iA -+-=--=--, )2(41)(41cos 2222I e e e e A iA iA iA iA ++=+=--,则I A A =+22cos sin .(2)因为矩阵iI π2的特征值均为i π2,故存在可逆矩阵P ,使得I P P P e e P e i i iI=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--1122211 πππ则A A iI A iI A e I e e e e ===+ππ2221.若A 为反实对称(反Hermite )矩阵,则Ae 为实正交(酉)矩阵. 证明: 因为∑∞==0!k k A k A e ,又∑∑===⎪⎪⎭⎫ ⎝⎛nk k n k k k A k A 0**0!)(!. 故**)(A A e e =.当A 为反实对称,即A A T-=时,I e e e e e e e O A A A A A T A T====-)(,故Ae 为实正交矩阵;当A 为反Hermite 矩阵,即A A -=*时,I e e e e e e e O A A A A A A ====-**)(,故Ae 为酉矩阵.22.若A 为Hermite 矩阵,则Aie 是酉矩阵,并说明当1=n 时此结论的意义. 证明:因为A A =*,故Ai Ai Ai e ee -==*)(*)(,则I e e e e Ai Ai Ai Ai ==-*)(,故Aie 是酉矩阵.当A 为一阶Hermite 矩阵时, A 为一实数,设a A =,则上述命题为1=-aiaie e23.将下列矩阵函数表示成矩阵幂级数,并说明对A 的限制: (1)shA ,(2))ln(A I +,(3)A arctan解:(1) ∑∞=++=012)!12(1n n A n shA , n n C A ⨯∈∀; (2) ∑∞=--=+111)1(4)ln(n nn A nA I ,1<A ; (3) ∑∞=++-=112121)1(arctan n n nA n A ,1<A . 24.设nn C A ⨯∈,证明:(1))(A tr Ae e=,(2)AAe e ≤.证明:(1)设11,--==PJP A J AP P ,其中J 为若当标准形,则1121--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==P e e e P PPe e m J J J J A,其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111111λλλe e e e iJ, 则mJ J J JJAe e e e Pe P e211===-trA J J J e e e e e n m ===++λλ 121.(2)设∑==Nk kN k A S 0!,则∑∑∑===≤≤=Nk kN k k Nk k NA k A k k A S 000!1!1!, 因为∑∞==!k kAk A e ,对上式两边取极限,得 Ak kAeA k e≤≤∑∞=0!1.25.设nn CA ⨯∈,且A 可逆,若λ是A 的任一特征值,则2211A A ≤≤-λ.证明:因为2)(A A =≤ρλ,故2A ≤λ.又对任意的nC X ∈,有2212122AX A AX A IXX--≤==,所以2212AX AX ≤-.设α是矩阵A 的特征值λ对应的特征向量,即λαα=A ,则222212αλλααα==≤-A A,故有λ≤-211A .因此2211A A ≤≤-λ.。

矩阵论答案习题 1.2

矩阵论答案习题 1.2

习题 1.21. 解:因为对2的任一向量(21,x x),按对应规则都有2中惟一确定的向量与之对应,所以是2的一个变换.(1) 关于x 轴的对称变换; (2) 关于y 轴的对称变换; (3) 关于原点的对称变换; (4) 到x 轴的投影变换; (5) 到y 轴的投影变换.2. 解: (1) 不是.因为(2211ααk k +)=2211ααk k ++β≠k1(1α)+k2)()()(22112βαβαα+++=k k=2211ααk k ++)(21k k +β(2) 不是.因为(2211ααk k +)=β≠k1(1α)+k2βα)()(212k k +=(3) 不是.因为取 x =(1 , 0 , 0 ) ,1≠k 时,(k x )=(k 2,0, 0)≠k( x )= k (1, 0, 0)=(k , 0, 0) (4) 是.因为 设x =(321,,x x x ) ,y =(321,,y y y)(k 1x +k 2y )=112(x k),,2(),,1322121322y y y y y k x x x x +-++-=k1(x )+k 2( y )(5) 是.因为()()(2211x f k x f k+)=)1()1(2211+++x f k x f k=k1(f 1(x ))+k2))((2x f(6) 是.因为()()(2211x f k x f k+)=)()(022011x f k x f k+= k1(f 1(x ))+k2))((2x f(7) 不是.因为 设x =(321,,x x x) ,y =(321,,y y y)(k 1x +k 2y )= ()0),sin(),cos(22211211y k x k y k x k ++≠k 1(x )+k2( y )=)0,sin ,(cos )0,sin ,(cos 212211y y k x x k+ =()0,sin sin ,cos cos 22211211y k x k y k x k++.3. 解:1(α+β)=1[()]()11222221,,y x y x y x y x--+=++()()=-+-=1212,,y y x x 1(α)+1(β)1(k α)=1(k (x 1, x 2))()()kx x k kx kx=-=-=1212,,1(α)所以1是线性变换.同理可证2也是线性变换.(1+2)(α)= (1+2)[(x 1, x 2)]=1[(x 1, x 2)]+2[(x 1, x 2)]),(),(),(21212112x x x x x x x x --+=-+-=12(α)=1[2(α)]=1[( x 1, -x 2)]=(- x 2, -x 1)21(α)=2[1(α)]=2[( x 2, -x 1)]=( x 2, x 1) .4. 证:(1)因()()()C B A B A C B A +-+=+()()=-+-=BCCBACCA (A )+(B )()()()()=-=-=ACCA k C kA kA C kA k(A )故是线性变换.(2)(A )B +A (B )()()BC CB A B AC CA -+-==-=ABC CAB (AB )5. 解:令 ()3,,R c b a c c b a a ∈↔⎥⎦⎤⎢⎣⎡+ 即可.6. 证:设()[]nx p x f ∈,则(12-21)(f(x))=1[2(f(x))]-2[1(f(x))]=1[xf(x)]-2[f(x)]()()()()x f x f x x f x x f ='-'+=故12-21是恒等变换.7. 证:设2V∈α,则2211e k e k +=α,由于2(e 1)+ 2(e 2)=2(e 1+e 2)=e '1+e '22(e 1)-2(e 2)=2(e 1-e 2)=e '1-e '2所以,2(e 1)=e '1,2(e 2)= e '2于是1(α)=k11(e 1)+k21(e 2)2211e k e k'+'== k12(e 1)+k22(e 2)=2(α)故1=2.8. 解:(1) 因为j i ,在xoy 平面上,其投影不变,故有(i )=i ,(j)=j ,又k 垂直xoy 平面,则0)(=k , 得((i ),(j ),(k ))=(i ,j ,k ) 0010001所求矩阵为A =010001.(2) 因为,001)(γβαα++==i,010)(γβαβ++==j ,,011)(γβαγ++=+=j i所以, 所求矩阵为 A =110101 .(3) 由的定义知,(i )=((1 ,0 ,0 ))= ( 2 ,0 ,1)(j )= ((0 ,1, 0 ))= ( -1, 1 , 0)(k )=((0 ,0 ,1))= ( 0 ,1 , 0)有 ((i ),(j ),(k ))=(),,k j i1110012-所求矩阵为 A =1110012- .(4) 据题设:)())(('t f t f = 则)(1x =(bt eatcos )'=btbebt aeatatsin cos -=21bx ax-)(2x =(bteatsin )'=12bx ax +)(3x =( btteatcos )'=431bx ax x-+ )(4x =(btte atsin )'=342bx ax x++ )(5x =(bte t atcos 212)'=653bx ax x-+)(6x = (btt sin 212)'=564bx ax x++于是 ()(1x ,)(2x ,)(3x ,)(4x ,)(5x ,)(6x )()Dx x x x x x 654321,,,,,= ,所求矩阵为D =abb a a bbaa bba ---000010000100001000019. 解:(1) (123,,e e e)=(321,,e e e )1010100=(321,,e e e)C所求矩阵为 B=C 1-AC =111213212223313233a a a a a a a a a(2) (321,,e ke e)=(321,,e e e )100001k =(321,,e e e)C所求矩阵为B=C1-AC =333231232221131211akaakaakaakaa(3)(3221,,eeee+)=(321,,eee)1111=(321,,eee)C 所求矩阵为B=C1-AC=33323231132312221211222113121211aaaaaaaaaaaaaaaa+----++10. 解:由定义知()()31121,0,2εεε+==212)0,1,1()(εεε+-=-=()()23,1,0εε==所以,所求矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-11112.11. 解:因为()()21121,2εεε'+'==()()1231,3εε'==()()2131,1εεε'+'-=-=所以,所求矩阵为⎥⎦⎤⎢⎣⎡-11132.12. 解: (1η,2η,3η)=(321,,εεε)111101011--(321,,εεε)=(1η,2η,3η)111101011--1-= (1η,2η,3η) CB=C 1-AC =111101011--21011101-111101011-- 1-= 12121211---- .13. 解:(1) (1η,2η,3η) = (321,,e e e) C ,过渡矩阵为C=(321,,e e e)1-(1η,2η,3η)=11110121 1-111122221---- =252112323123232---(2) ()(1e ,)(2e ,)(3e )=(1η,2η,3η) = (321,,e e e) C故在基{}ie 下的矩阵就是 C . (3) (()1η,(2η),(3η) ) = (1η,2η,3η) = (321,,e e e) C=()(1e ,)(2e ,)(3e ) C = (1η,2η,3η) C故在基{}iη下的矩阵仍为C . 14. 解:(1) 由于()21111110cE aE c aE +=⎥⎦⎤⎢⎣⎡=()22121210cE aE c a E +=⎥⎦⎤⎢⎣⎡=()211121100dE bE db E +=⎥⎦⎤⎢⎣⎡=()2212221dE bE d b E +=⎥⎦⎤⎢⎣⎡=故1在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d cd c b a b a A 00000001类似地,可得2在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d bc ad bc a A 00000002.由于3=12,所以3在该基下的矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==2222213d bdcdbccd ad cac bd bad abbc ab ac a A A A同理,可得4在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a ca cb a b aA 0200022000204(2)由于由简单基E 11,E 12,E 21,E 22改变为给定基E 1,E 2,E 3,E 4的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=001110011000001C于是,4在给定基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==-a bca b c cc a b b a C A C B 002202204115. 解: (1)将题给关系式写成矩阵形式为(()1e ,(2e ),(3e ) )()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11011101,,423312121321εεε即()()()B e e e 3211321321,42331212111011101,,,,εεεεεε=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-由于()()C e e e 321321,,,,=εεε,所以有(=),,321εεε()()BCC e e e 321321,,,,εεε=故在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==256355123BC A(2)因为(=)1ε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,,001,,321321A εεεεεε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=953,,001,,321321e e e CA e e e所以()1ε在基(I )下的坐标为(3,5,9).16. 解:(1)取[]2x p 的简单基1,x ,x 2,则有()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==101110102,,1,,1,,22321xx Axx f f f从简单基改变到基f 1,f 2,f 3和g 1,g 2,g 3的过渡阵分别为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5222101011C ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=211010112C故有(g 1, g 2, g 3)=(1, x, x 2)C =()211321,,C C f f f -()()21101232121102,,,,1C C A C g g g C C Axx ---==即在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==--11211221211012C C A C A(2)因为()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-321,,321,,1123212C g g g xx x f()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032,,321g g g所以(f(x))=()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-032,,032,,321321A g g g g g g()23211354,,x x g g g +--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= .17. 证:设在给定基下的矩阵为()ija A =,并设C 为从旧基到新基的过渡矩阵,由于在任一组基下的矩阵相同,则有ACCA 1-=,即AC=CA ,根据“A 与一切满秩矩阵可变换”性质,即可定出A 必为数量矩阵()常数k kI A ,=.18. 解:由基321,,ηηη到基321,,εεε的过渡矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=3103161213121211C故{}i ε在基下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-46846453106111C B C B .那么,+,,, (+ )在基{}iε下的矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+2644241011151061B A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=60127212212661AB ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=123414026215291361BA ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+3612078611442549675181B A B .19. 证:设有可逆方阵P 与Q ,使 B=P 1-AP , D=Q 1-CQ 则DB OO =CQQAPP11--O O=11--OO QPCA OOQP O=QP OO 1-CA OOQP OO即 CA OO 与 DB OO 相似.20. 证:设1r rankA=,2r rankB =,则A ,B 的行向量的极大无关组中分别含有21,r r 个行向量,设分别为11,,r αα 和21,,r ββ ,则A 的每个行向量均可由11,,r αα线性表示,B的每个行向量均可由21,,r ββ线性表示.又可A+B 的每个行向量是A 与B 的相应行向量的和,故A+B 的每个行向量均可由11,,r αα,21,,r ββ 线性表示.因此A+B 的行向量组的极大无关组中所含向量的个数不超过21r r+,即()rankBrankA B A rank+≤+.21. 证:设()n B r rankAβββ,,,,21 ==,则()()0,,,,,,2121===n n A A A A AB ββββββ ,所以θβ=1A ,θβ=2A ,…,θβ=n A .这就说明B 的列向量nβββ,,,21 都是以A 为系数矩阵的齐次方程组的解.由于rr a n k A =,所以解空间的维数为r n -,从而知nββ,,1的极大无关组所含向量的个数rn -≤,即rn rankB-≤,因此有nr n r rankB rankA =-+≤+ .22. 证:设A ,B 为同一数域上的n m ⨯与g n ⨯阶矩阵,显然,方程组BX=θ的解向量X 也满足方程组()θ=XAB ,记{}θ==BX X U , (){}θ==XAB XV则VU⊂,于是dinV AB rank n rankB n U =-≤-=)(dim即()rankBAB rank ≤.又由于()()()TT TAB rank AB rankAB rank ==rankArankAT=≤因此 (){}r a n k B r a n k AAB rank,min ≤.23. 证:由上题知,()rankAA A rank T≤,现在只需证明()rankAA A rank T≥即可.考虑线性方程组θ=AX A T,设()T nx x x X,,,21 =是方程组的一组解,将θ=AX A T两边左乘X T ,得θ=AX A XTT,即()θ=AX AX T,所以θ=AX,即{}{}00=⊂=AX X AX A XT.于是()rankAn A Arankn T-≤-即有()rankAA Arank T≤,故有()rankAA Arank T= ,并且有()()rankArankA A A rankA ArankTTTT T===即有()()TTAA rankA ArankrankA==.注:对复矩阵A ,上式不一定成立.例如⎥⎦⎤⎢⎣⎡-=11ii A ,1=rankA .由于⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=00001111i i i i A AT故()=A Arank T.此时,相应的关系式应为()()A A rankAA rankrankA **== .24. 证:必要性.由上题已证得,充分性只要在AX=θ两边左乘A T 即可.25. 证:(1)因为nrankA=,故nm≥,不妨设A 的前n 行线性无关,且构成的n 阶满秩方阵为A 1,后n m -行构成的矩阵为A 2,则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=B A B A B A A AB 2121所以()()rankBB A rankAB rank =≥1,但()r a n k B AB rank ≤,故()r a n k BAB rank =.(2) 同理可证. 26. 解:(1)⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡--=0011B ;(2)⎥⎦⎤⎢⎣⎡=0001A , ⎥⎦⎤⎢⎣⎡=0020B ; (3)⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B .27. 证:因为()()()n m rankBrankA AB rankrankC,min ,min ≤≤=,但n m >,故m 阶方阵C 的秩mn <≤,所以C 是降秩的.28. 解:先求矩阵A 的特征值和特征向量为 121==λλ,()T20,6,31-=α23-=λ,()T1,0,02=α故的特征值和特征向量为121==λλ,()3212063e e ek +-,0≠k23-=λ,3ke , 0≠k .29. 解:(1)121==λλ,()T1,0,11=α,()T0,1,02=α,13-=λ,()T1,0,13-=α.(2)1=λ,()T2,1,31-=α,i143,2±=λ,().10,1432,1463,2Ti i -±-±=α(3)121==λλ,()T20,6,31-=α,23-=λ,()T1,0,02=α;(4)2321===λλλ,()T0,0,1,11=α,()T0,1,0,12=α,()T1,0,0,13=α,24-=λ,()T1,1,1,14---=α.以上分别求出了在不同基下所对应矩阵A 的特征值和特征向量,则类似于上题的方法,可求出不同基下所对应的特征值和特征向量.30. 解:(1),(2),(4)为非亏损矩阵(单纯矩阵),其变换矩阵P 分别为(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010101;(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---+101021432143211461463i ii i;(4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---11101010011111.31. 证 : 设在给定基下的矩阵为A ,则()n i A i ni i ,,2,100det 1=≠⇔≠=∏=λλ32. 证:设rrankA =,则存在满秩矩阵P 与Q ,使得()0,r I diagPAQ =,故有()C I diagBPPAQQPABPr 0,111==---其中()ijC BQQC==--11, 这说明AB 与diag (0,rI)相似.另一方面,有()0,111r I C d i a g P A Q BPQBAQ Q==---,说明BA 与()0,r I Cdiag相似.不难验证有()()()()0,det 0,det r r I CdigI C I diagI -=-λλ故AB 与BA 有相同的特征多项式,因此有相同的特征值和迹.33. 证:设A 的任一特征值为λ,λ的对应于λ的特征子空间记为λV .对λV 中任意向量Z 有BZZ B BAZ ABZ λλ===故λV BZ ∈,因此λV 为线性变换()BZZ =的不变子空间,即()BZZ =为λV 中的线性变换,此线性变换的特征向量即为B 的特征向量,但它又属于λV ,由λV 的定义知它又是A 的特征向量,即A 与B 有公共的特征向量.34. 证:设A 的特征值为iλ,则A 2的特征值为2iλ,由12=iλ有1±=i λ,若所有1=i λ,则A+I 为满秩矩阵,故由(A+I )(A-I )=A 2-I 2=0,有A=I .35. 证:不失一般性,设B 非奇异,有AB=B -1(BA )B 即AB 与BA 相似,所以它们有相同的特征多项式.36. 证:设A 为n 阶方阵,具其秩为r ,由于A 2=A ,知A 的列向量都是A 的对应于特征值1的特征向量.因γ=rankA ,故特征值1的几何重复度为r ,其代数重复度至少为r .又θ=AX的基础解系中的向量个数为r n -,即A 的特征值0的几何重复度为r n -,其代数重复度不小于r n -.由于一个n 阶矩阵的特征值的代数重复度之和恰为n ,故特征值1和0的代数重复度分别为r 和r n -.可见A 除了1和0外无其它特征值,而1和0的几何重复度之和为n ,故A 为非亏损矩阵,所以A 相似()0,rIdiag .37. 证:用反证法.若A 可相似于对角矩阵,对角元素即为A 的特征值,且至少有一个不为0.但是,由于λαα=A ,于是θαλα==kkA,因为θα≠,所以0=kλ,故0=λ,即A 的特征值都等于0,矛盾.38. 证:由XAX λ=,有()Xk kX A λ=,XX A kk λ=,从而有()()Xf X A f λ=,即X 也是()A f 的特征向量.显然()A f 的特征值为()λf ,即为λ的多项式.39. 解:取3中的自然基321,,εεε,计算得(1ε)=(0 , -2 ,-2 ) , (2ε)=(-2 , 3 ,-1 ) , (3ε)=(-2 , -1 ,3 )则在基321,,εεε下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=31213222A而A的特征值为2,4321-===λλλ,与之对应的特征向量为()TX0,2,11-=,()TX2,0,12-=,()TX1,1,23=,则有()2,4,41-=Λ=-diagACC,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112211C.由()321,,ααα=(321,,εεε)C求得3R的另一组基为()0,2,12211-=+-=εεα,()2,0,12312-=+-=εεα,()1,1,223213=++=εεεα,显然在该基下的矩阵为对角阵Λ.40. 解:(1)因为()21xx+=,()21xx+=,()xx+=12,所以在基1,x,x2下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111A.(2)由于A原特征值为121-==λλ,23=λ,相应的特征向量为()TX01,11-=,()TX1,12-=,()TX11,13=,存在可逆阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111C,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-2111AACC,故所求的基321,,eee为()()()2223211,1,1,,1,,xxxxCxxeee+++-+-==.41. 解:(1)对任意的V∈βα,及Rlk∈,,有()()()()()BBlBBkBlklkBlkTTTTTTββααβαβαβα-+-=+-+=+=k ((α))+l ((β))故是线性变换.(2)取V的简单基⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=1,1,11321AAA由于(),111⎥⎦⎤⎢⎣⎡-=A⎥⎦⎤⎢⎣⎡-=11)(2A,⎥⎦⎤⎢⎣⎡-=11)(3A,所以在基321,,AAA下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111111RR的特征值为2,0321===λλλ,对应的线性无关的特征向量为(1,1,0)T,(0,1,1)T,(0,1,-1)T,令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111111C,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ2则有Λ=-RCC1,由(B1,B2,B3)=(A1,A2,A3)C求得V的另一组基为⎥⎦⎤⎢⎣⎡-=+=111211AAB,⎥⎦⎤⎢⎣⎡=+=11322AAB,⎥⎦⎤⎢⎣⎡-=-=11323AAB,在该基下的矩阵为Λ.42. 证:(1)取n的一组基neee,,,21,设1(neee,,,21)=(n eee,,,21)A2(neee,,,21)=(n eee,,,21)B则有 (12)(n e e e ,,,21)=(n e e e ,,,21)(AB )(1+2)(ne e e,,,21)=(ne e e,,,21)(A+B )由12=1+2,可得AB=A+B ,从而有B T A T =A T +B T .若1是1的特征值,则 1也是A 的特征值,从而1也是A T 的特征值,设A T 对应于特征值1的特征向量为β,即()0≠=βββTA,由(B T A T )β=(A T +B T )β,可得B T β=β+B T β,即β=0,这与β是A T 的特征向量矛盾,故1不是1的特征值.(2)因1有几个不同的特征值,所以1有n 个线性无关的特征向量.记1的对应于特征值nλλλ,,,21的线性无关的特征向量为X 1,X 2,…,X n ,即1ii iXXλ= (i =1,2,…,n ),则X 1,X 2,…,X n 作为n的基时,1的矩阵A =diag (nλλλ,,,21).再由AB=A+B 及1≠iλ知 ()⎪⎪⎭⎫ ⎝⎛---=-=-1,,1,122111n n d i a g A I A B λλλλλλ 即1与2在该基X 1,X 2,…,X n 下的矩阵都为对角阵.43. 证:对任意0λαV ∈,有1(αλα0)∈.由于1(2(α))=2(1(α))=2(λα)所以2()0λαV ∈, 故0λV 是2的不变子空间.44. 解:(1) ('3'2''1,,,ee e e )=( 4321,,,e e e e )C=(4321,,,e e e e)2111011*********---∴ B=C1-AC =242134040168101042699631-----(2) 先求核θ(1-) . 设η=)(1θ-在基{}iε下的坐标为(4321,,,x x x x),(θη=)在此基下的坐标为(0,0,0,0),于是A4321x x x x = 000此时A 的秩为2,解之,得基础解系 )1,0,2,1(,)0,1,23,2(21--=--=ξξ,作 421232112,232e e e e e e +--=+--=ηη. 显然,21,ηη为核θ(1-)的一组基,故核由21,ηη所张成,即 θ(1-)=Span (21,ηη) .再求值域(4) . 由于((e 1),(e 2),(e 3),(e 4)) = (4321,,,e e e e) A而A 的秩为2,所以(e 1),(e 2),(e 3),(e 4)的秩也为2,且(e 1),(e 2)线性无关,故组成(4)的基,从而(4)=Span ((e 1),(e 2)) .(3) 由(2)知21,ηη是核θ(1-)的一组基,易知2121,,,ηηe e为4的一组基,由于有(2121,,,ηηe e)=(4321,,,e e e e )1100223101201---- = (4321,,,e e e e) D所以在此基下的矩阵为B=D 1-AD =220021001290025-(4) (2)知(e 1),(e 2)是值域(4)的一组基,又知(e 1),(e 2),43,e e为4的一组基,有((e1),(e2),43,e e )=(4321,,,e e e e )122012100210001--=(4321,,,e e e e) T所以在此基下的矩阵为B=T 1-A T =00002231291225 .45. 证:取3中的自然基321,,εεε,因为(+ )(1ε)=(1ε)+ (1ε)=(1,0,0)+(0,0,1)=(1,0,1)同理有(+ )(2ε)=(2,0,0),(+ )(3ε) =(1,1,0)这表明+ 将基321,,εεε变换成3中的另一组基1e =(1,0,1),2e =(2,0,0),3e =(1,1,0)(易证它们线性无关). 又因(+ )(3)是3的子空间,而321,,e e e是(+ )(3)的最大无关组,故这个子空间的维数为3,再由习题1.1中第22题的结果知(+ )(3)=3(此时取V 2=3).46. 解:因为2[(321,,a a a)]=([(321,,a a a)])=()[]21,,0a a =(0,0,1a )所以2的像子空间为R (2)(){}R a a ∈=,0,核子空间为N (2)(){}R a a a a ∈=2232,,,因此,dimR (2)=1,其一组基为(0,0,1);dim N (2)=2,其一组基为(0,1,0),(0,0,1).47. 证 :(1)由的定义容易验证满足可加性和齐次性,所以它为线性变换.又因2[(nx x x,,,21)]=[()()2111,,,0,0],,,0--=n n x x x x ,…推知n[()()0,,0,0],,,21==n x x x,即nϑ=(零变换).(2)若[()()()0,,0,0,,,0],,,1121==-n n x x x x x,则1x =2x =…=1-n x=0即()θ1-为由一切形如(0,0,…,n x )的向量构成的子空间,它是一维子空间,则(0,…,0,1)是它的基.又由维数关系 dim (V)+dim1-(θ)=n便得 (V) 的维数等于 n-1 .48. 证 :(1)必要性.若(V)= (V),对任V∈α,则∈)(α(V )=(V) ,故存在V∈β,使=)(α)(β,=)(α2)(β= )(β=)(α ,由α的任意性有 = .同理可证= .充分性.若= ,=, 对任(∈)α(V )V ⊂,=)(α)(α= ()(α)∈ (V ) , 故(V)⊂ (V) ;同理可证 (V)⊂(V).(2)必要性.若()=-θ1)(1θ-,对任V∈β,作-β)(β,因(-β)(β)=)(β-2)(β=)(β-)(β=θ ,所以,-β)(β∈()θ1- =)(1θ- ,则 (-β)(β)= θ,故=)(β )(β,由β的任意性有 =. 同理,通过作β- )(β, 可得=.充分性.若= , =, 对任 ∈α()θ1-,由=)(α=)(α()(α)= (θ)=θ ,故()⊂-θ1)(1θ-;同理,由任∈β)(1θ- ,可得 ()⊂-θ1)(1θ-.。

研究生矩阵论课后习题答案(全)习题三

研究生矩阵论课后习题答案(全)习题三

习题三1.证明下列问题:(1)若矩阵序列{}m A 收敛于A ,则{}Tm A 收敛于T A ,{}m A 收敛于A ;(2)若方阵级数∑∞=0m m m A c 收敛,则∑∑∞=∞==⎪⎭⎫ ⎝⎛00)(m mT m Tm m m A c A c .证明:(1)设矩阵,,2,1,)()( ==⨯m a A n n m ij m则,)()(n n m ji Tm a A ⨯=,)()(n n m ij m a A ⨯=,,2,1 =m设,)(n n ij a A ⨯=则n n ji T a A ⨯=)(,,)(n n ij a A ⨯=若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有ij m ij m a a =∞→)(lim ,则ji m ji m a a =∞→)(lim ,ij m ij m a a =∞→)(lim ,n j i ,,2,1, =,故{}T m A 收敛于TA ,{}m A 收敛于A .(2)设方阵级数∑∞=0m m mA c的部分和序列为,,,,21m S S S ,其中mm m A c A c c S +++= 10.若∑∞=0m m mA c收敛,设其和为S ,即S A cm m m=∑∞=0,或S S m m =∞→lim ,则T Tm m S S =∞→lim .而级数∑∞=0)(m mTmA c的部分和即为TmS ,故级数∑∞=0)(m m T m A c 收敛,且其和为T S ,即∑∑∞=∞==⎪⎭⎫ ⎝⎛00)(m m T m Tm m m A c A c .2.已知方阵序列{}m A 收敛于A ,且{}1-m A ,1-A 都存在,证明:(1)A A m m =∞→lim ;(2){}11lim --∞→=A A m m .证明:设矩阵,,2,1,)()( ==⨯m a A n n m ij m ,)(n n ij a A ⨯=若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有ij m ij m a a =∞→)(lim .(1) 由于对任意的n j j j ,,,21 ,有,lim )(k kkj m kj m a a =∞→ n k ,,2,1 =, 故∑-∞→nn n j j j m nj m j m j j j j m a a a 2121)()(2)(1)()1(limτ=∑-nn n j j j nj j j j j j a a a 21212121)()1(τ,而∑-=nn n j j j m nj m j m j j j j m a a a A 2121)()(2)(1)()1(τ,∑-=nn n j j j nj j j j j j a a a A 21212121)()1(τ,故A A m m =∞→lim .(2) 因为n n m ij m m A A A ⨯-=)(1)(1,n n ij A AA ⨯-=)(11. 其中)(m ij A ,ij A 分别为矩阵m A 与A 的代数余子式.与(1)类似可证明对任意的n j i ,,2,1, =,有ij m ij m A A =∞→)(lim ,结合A A m m =∞→lim ,有n n m ij m m A A ⨯∞→)(1lim)(=n n ij A A⨯)(1, 即{}11lim --∞→=A A m m .3.设函数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321sin cos sin )(t t e t t t t t t A t , 其中0≠t ,计算),(),(lim 0t A dt d t A t →),(22t A dtd ,)(t A dt d)(t A dt d . 解:根据函数矩阵的极限与导数的概念与计算方法,有(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=→→→→→→→→→→001011010lim 0lim 1lim lim lim sin limlim cos lim sin lim )(lim 300200000t t e ttt ttt A t t t t tt t t t t t ;(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''''''''=22323002sin cos 1sin cos )(01)()()sin ()(cos )(sin )(t t e t t t t t tt t e t t t t t t A dt dt t ; (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==t e t t t t t t t A dtd dt d t A dt d t 6002cos 2sin )2(0cos sin ))(()(222;(4)=)(t A dt d '3201sin cos sin t t e tt t t tt)2cos 2(sin )sin cos 2(]1)cos (sin sin 3[32t t t t t t t t t t t t t e t +--+--++=(5))(t A dt d =22302sin cos 1sin cos t t e t t t t t tt -- )sin cos (sin 3cos 32t t t t t e t t -+=.4.设函数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-00302)(222x e e x xe e x A x xx x , 计算⎰10)(dx x A 和⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d . 解:根据函数矩阵积分变限积分函数的导数的概念与计算方法,有(1)⎰10)(dx x A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎰⎰⎰⎰⎰⎰-0030210102110210102xdx dx e dxe dx x dxxe dxe xx x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-0023011311)1(21212e e e ;(2)⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d =)(22x xA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-00302224222222x e e x ex e x x x x. 5.设,))(,),(),((21Tn t y t y t y y =A 为n 阶常数对称矩阵,Ay y y f T =)(,证明:(1)dt dy A y dt df T 2=; (2)dtdy y y dt d T222=. 证明:(1)y A y Ay y Ay y dtdfT T T '+'='=)()(y A y Ay y T T T '+'=))((y A y T '=2dtdyA y T 2=,(2)dtdy y yy dt d y dt d TT 2)(22==. 6.证明关于迹的下列公式:(1)X X X tr dX d XX tr dX d T T 2)()(==; (2)T T T B B X tr dX d BX tr dX d ==)()(;(3)X A A AX X tr dXd T T )()(+=.其中m m ij m n ij n m ij a A b B x X ⨯⨯⨯===)(,)()(.证明:(1)因为∑∑====mi nj ij TTx X X tr XX tr 112)()(,而ij m i n j ij ij x x x 2)(112=∂∂∑∑==, 故X X X tr dXd XX tr dX d T T 2)()(== (2)因为n n mk kj ik x b BX ⨯=∑=)(1,则∑∑====n j mk kj jk TTx b B X tr BX tr 11)()(,而ji n j mk kj jk ij b x b x =∂∂∑∑==)(11, 故T T T B B X tr dXd BX tr dX d ==)()(. (3) 因为,212221212111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n m m Tx x x x x x x x x X⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========mk kn mk m k k mk mk k mk mk kn k mk k kmk k k mk kn k mk k k mk k k x a xax a x a x axa x a x a x a AX 112111212211211121111故)()()()(11ln 111111∑∑∑∑∑∑======++++=m l mk kn lk m l m k kj lk lj m l m k k lk l Tx a x x a x x a x AX X tr 则))(()(11∑∑==∂∂=∂∂m l mk kj lk lj ij Tij x a x x AX X tr x )]([111∑∑∑===∂∂+∂∂=mk kj lk ij lj mk kj lk ij ljml x a x x x a x x ∑∑==+=ml lj li mk kj ik x a x a 11故X A A X A AX AX X tr dXdT T T )()(+=+=. 7.证明:T T T T T T dXdb a dX da b b a dX d +=)(, 其中)(),(X b X a 为向量函数.证明:设Tm T m X b X b X b X b X a X a X a X a ))(,),(),(()(,))(,),(),(()(2121 ==,则∑==mi i i TX b X a X b X a 1)()()()(,故它是X 的数量函数,设)()()(X b X a X f T =,有),,,())()((21n TTx f x f x f X b X a dXd ∂∂∂∂∂∂= ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∑∑==m i n i i i n i m i i i i i x X b X a X b x X a x X b X a X b x X a 1111)()()()(,,)()()()( ∑∑∑===∂∂∂∂∂∂=mi i ni m i i i mi i i X b x X a X b x X a X b x X a 11211))()(,,)()(,)()(( ))()(,,)()(,)()((11211∑∑∑===∂∂∂∂∂∂+mi n i i m i i i mi i i x X b X a x X b X a x X b X aTT T TdXdb a dX da b +=. 8.在2R 中将向量Tx x ),(21表示成平面直角坐标系21,x x 中的点Tx x ),(21,分别画出下列不等式决定的向量Tx x x ),(21=全体所对应的几何图形:(1) ,11≤x (2) ,12≤x(3) 1≤∞x .解:根据,1211≤+=x x x ,122212≤+=x x x{}1,max 21≤=∞x x x ,作图如下:9.证明对任何nC y x ∈,,总有)(212222y x y x x y y x T T --+=+. 证明:因为y y x y y x x x y x y x yx T T T T T +++=++=+)()(22y y x y y x x x y x y x y x T T T T T +--=--=-)()(22故x y y x y x y x T T +=--+)(212222 10.证明:对任意的nC x ∈,有12x x x≤≤∞.证明:设Tn x x x x ),,,(21 =,则{}nn n x x x x x x x xx x x x +++=+++==∞21122221221,,,,,max由于{}22122221221)(),,,(max n nn x x x x x x x x x +++≤+++≤ ,故21222x xx≤≤∞,即12x x x≤≤∞.11.设n a a a , ,,21是正实数,证明:对任意nT n C x x x X ∈=),,(21, ,2112⎪⎭⎫ ⎝⎛=∑=ni i i x a X是nC 中的向量范数.证明:因为(1),02112≥⎪⎭⎫ ⎝⎛=∑=ni i i x a X 且00=⇔=X X ; (2)X k x a k x a k kx a kX ni i i ni i i ni i i =⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∑∑===2112211222112;(3)对于nT n C y y y Y ∈=),,(21, ,T n n y x y x y x Y X ),,(2211+++=+, ,则21212122)(2Y X Y X y a x a y x a YX ni ii ni ii ni ii i +=++≤+=+∑∑∑===故Y X Y X +≤+.因此2112⎪⎭⎫⎝⎛=∑=ni i i x a X 是nC 中的向量范数. 12.证明:ij nj i a n A ≤≤=,1m ax是矩阵n n ij a A ⨯=)(的范数,并且与向量的1-范数是相容的.证明:因为(1) 0m ax ,1≥=≤≤ij nj i a n A ,且O A =⇔0=A ;(2) A k a n k ka n kA ij nj i ij nj i =≥=≤≤≤≤,1,1m ax m ax ;(3) B A b n a n b a n B A ij nj i ij nj i ij ij nj i +=+≥+=+≤≤≤≤≤≤,1,1,1m ax m ax m ax(4)设Tn x x x X ),,,(21 =,则T nj j nj n j j j n j j j x a x a x a AX ),,,(11211∑∑∑==== ,故∑∑∑===+++=nj j njnj j jnj j jx ax ax aAX 11111∑∑∑=≤≤=≤≤=≤≤+++≤nj j nj nj nj j j nj nj jjnj x a x a xa 11121111max max max11,1max X A xa n nj jijnj i =≤∑=≤≤因此ij nj i a n A ≤≤=,1m ax 是与向量的1-范数相容的矩阵范数.13.设nn CA ⨯∈,且A 可逆,证明:11--≥AA .证明:由于I AA =-1,1=I ,则111--≤==A A AA I ,故11--≥AA .14.设nn CA ⨯∈,且,1<A 证明:A I -可逆,而且有(1)AA I -≤--11)(1;(2)AA I A I -≤---1)(1.证明:(1)由于A A I I A I 11)()(---+=-,故A A I I A A I I A I 111)()()(----+≤-+≤-,即 AA I -≤--11)(1.(2)因为A I A I =-+)(,两边右乘1)(-+A I ,可得11)()(--+=+-A I A A I I ,左乘A ,整理得11)()(--+-=+A I AA A A I A ,则111)()()(---++≤+-=+A I A A A A I AA A A I A ,即 AA I A I -≤---1)(1.15.设C l k CB A nn ∈∈⨯,,,证明:(1)Al k klkA ee e )(+=,特别地A A e e --=1)(;(2)当BA AB =时,BA AB BA ee e e e +==;(3)A e Ae e dtd At At At==;(4)当BA AB =时,B A B A B A sin cos cos sin )sin(±=±. 证明:(1)∑∑∑∞==-∞=+⎥⎦⎤⎢⎣⎡=+=000)()()(!1!)(n n m m n m m n n n n Al k lA kA C n n A l k e∑∑∑∑∞=∞=∞=∞=+++=+=-0000)()(!!)!()!(1)()()!(1m l l m m l lm m m l lA kA m l m l m l lA kA C m l l m nlA kA l l m m m l l m e e kA l kA m lA kA m l =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==∑∑∑∑∞=∞=∞=∞=0000)(!1)(!1)()(!!1.又因为A A A A O e e e e I --+===)(,故A A e e --=1)(.(2)当BA AB =时,二项式公式∑===+nm mm n m n nB AC B A 0)(成立,故∑∑∑∞==-∞=+⎪⎭⎫ ⎝⎛=+=000!1)(!1n n m m m n m n n nBA B A C n B A n e∑∑∑∑∞=∞=∞=∞=+=+=-0000!!1)!(1m l m l m l ml m m l B A m l B A C m l l m nBA m m l l e eB m A l =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=∑∑∞=∞=00!1!1同理,有A B l l m m BA e e A lB m e=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∞=∞=+00!1!1, 故B A A B B A e e e e e +==.(3)由于幂级数∑∞=0!1n nn t A n 对给定的矩阵A ,以及任意的t 都是绝对收敛的,且对任意的t 都是一致收敛的,因此科可对此幂级数逐项求导,则A l ll n n n n n n At Ae l t A A n t A t A n dt d e dt d ==-=⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=-∞=0110!)!1(!1, 同理,有A e A l t A e dt d Al ll At =⎪⎪⎭⎫ ⎝⎛=∑∞=0! 故A e Ae e dtd At At At==. (4) 因为-+-++=432!41!31!21A iA A iA I e iA )!51!31()!41!21(5342 -+-+-+-=A A A i A A IA i A sin cos +=故)(21sin iA iAe e iA --=.又当BA AB =时,B A A B B A e e e e e +==,则()()iB iA iBiA B A i B A i e e e e i e e i B A --+-+-=-=+2121)sin()()( )]sin )(cos sin (cos )sin )(cos sin [(cos 21B i B A i A B i B A i A i---++= B A B A sin cos cos sin += 同理,可得B A B A B A sin cos cos sin )sin(-=-16.求下列三类矩阵的矩阵函数2,sin ,cos A e A A (1)当A 为幂等矩阵(A A =2)时;(2)当A 为对合矩阵(I A =2)时;(3)当A 为幂零矩阵(O A =2)时.解:(1) A A =2,设矩阵A 的秩为r ,则A 的特征值为1或0, A 可对角化为J O O O I AP P r =⎥⎦⎤⎢⎣⎡=-1,则11001sin 1sin sin sin --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P AA PJP )1(sin )1(sin 1==-,11111cos 1cos cos cos --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P A110011cos 11cos 1111--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=P P P PA I PJP I )11(cos )11(cos 1-+=-+=-111122--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P e e P P Pe e J A1100111111--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=P e e P P PA e I PJP e I )1()1(1-+=-+=-(2) 当I A =2时,矩阵A 也可对角化,A 的特征值为1或1-, A 可对角化为J AP P =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=-11111 ,其中1有m 个. 则111sin 1sin 1sin 1sin sin sin --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--==P P JP P AA PJP )1(sin )1(sin 1==-111cos 1cos 1cos 1cos cos cos --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P A I )1(cos =eI P e e e e P P Pe e J A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==--1122(3)当O A =2时, A 的特征值均为0,则存在可逆矩阵P ,使得11,--==PJP A J AP P ,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m J J J 1,又O A =2,则O P PJ A ==-122,于是O J J J m =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2212故Jordan 块k J 的阶数最多为2,不妨设0=k J ),,1(r k =,B J k =⎥⎦⎤⎢⎣⎡=0010),,1(m r k +=,即 ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B B J 0则1=k iJ e ,1=-k iJ e ),,1(r k =;⎥⎦⎤⎢⎣⎡=101i ekiJ ,⎥⎦⎤⎢⎣⎡-=-101i e k iJ ),,1(m r k +=. 故=--k k iJ iJ e e 0),,1(r k =,B ii e e k k iJ iJ 210020=⎥⎦⎤⎢⎣⎡=--),,1(m r k +=, 则2=+-k k iJ iJ e e ),,1(r k =,I e e k k iJ iJ 22002=⎥⎦⎤⎢⎣⎡=+-),,1(m r k +=, 因此J iB B i e e iJiJ 210021=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-- ,Ie e iJiJ 22222=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=+- , 所以A PJP i i P e e P i e e i A iJ iJ iA iA =⋅=-=-=----11)2(21)(21)(21sin , I PIP P e e P e e A iJ iJ iA iA =⋅=+=+=----11221)(21)(21cos ,I I e e O A ==2.17.若矩阵A 的特征值的实部全为负,则O e At t =+∞→lim .证明: 设A 的特征值为0,1,<-=+=i i i i a j j b a λ,则存在可逆矩阵P ,使得11,--==PJP A J AP P ,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m J J J 1,i n i i i J ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλ11 则1121--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==P e e e P PPe et J tJ tJ Jt Atm, 其中⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=-t tt t t i n tttJ e tete e e n t tee ei i 11111111)!1(λλλλλλλ又)sin (cos lim lim lim t b j t b e e e i i t a t t jb t a t t t i i i i +==∞→+∞→∞→λ,且0<i a ,故0lim =∞→tt i eλ,因此O e t J t i =∞→lim ,则O e At t =+∞→lim .18.计算Ate 和At sin ,其中:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110010002A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=010101010A ; (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6116100010A .解:(1)设,21=J ⎥⎦⎤⎢⎣⎡=11012J ,则⎥⎦⎤⎢⎣⎡=21J JA . 由于⎥⎦⎤⎢⎣⎡=t J tAt e e e 22,⎥⎦⎤⎢⎣⎡=t J t At 2sin 2sin sin , 且⎥⎦⎤⎢⎣⎡=t t ttJ e te e e02,⎥⎦⎤⎢⎣⎡=t t t tt J sin cos 0sin sin 2,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t tt tAte te e e e 000002,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t t t tAt sin cos 00sin 0002sin sin . (2)该矩阵的特征多项式为,11101)(3λλλλλϕ=---=最小多项式为3)(λλ=m .19.计算下列矩阵函数:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221131122A ,求100A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=735946524A ,求Ae ;(3)⎥⎦⎤⎢⎣⎡-=4410A ,求4arcsin A; (4)⎥⎦⎤⎢⎣⎡=48816A ,求1)(-+A I 及21A 20.证明:I A A =+22cos sin ,A iI A e e =+π2,其中A 为任意方阵.证明:(1) 因为)(21sin iA iA e e i A --=,)(21cos iA iA e e A -+=, 故)2(41)(41sin 2222I e e e e A iA iA iA iA -+-=--=--,)2(41)(41cos 2222I e e e e A iA iA iA iA ++=+=--, 则I A A =+22cos sin .(2)因为矩阵iI π2的特征值均为i π2,故存在可逆矩阵P ,使得I P P P e e P e i i iI=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--1122211 πππ则A A iI A iI A e I e e e e ===+ππ2221.若A 为反实对称(反Hermite )矩阵,则Ae 为实正交(酉)矩阵.证明: 因为∑∞==0!k k A k A e ,又∑∑===⎪⎪⎭⎫ ⎝⎛nk k n k k k A k A 0**0!)(!. 故**)(A A e e =.当A 为反实对称,即A A T-=时,I e e e e e e e O A A A A A T A T====-)(,故Ae 为实正交矩阵;当A 为反Hermite 矩阵,即A A -=*时,I e e e e e e e O A A A A A A ====-**)(,故Ae 为酉矩阵.22.若A 为Hermite 矩阵,则Aie 是酉矩阵,并说明当1=n 时此结论的意义.证明:因为A A =*,故Ai Ai Ai e e e -==*)(*)(,则I e e e e Ai Ai Ai Ai ==-*)(,故Aie 是酉矩阵.当A 为一阶Hermite 矩阵时, A 为一实数,设a A =,则上述命题为1=-ai ai e e23.将下列矩阵函数表示成矩阵幂级数,并说明对A 的限制: (1)shA ,(2))ln(A I +,(3)A arctan 解:(1) ∑∞=++=012)!12(1n n A n shA , n n C A ⨯∈∀; (2) ∑∞=--=+111)1(4)ln(n nn A nA I ,1<A ; (3) ∑∞=++-=112121)1(arctan n n nA n A ,1<A . 24.设nn C A ⨯∈,证明:(1))(A tr Ae e=,(2)AA ee ≤.证明:(1)设11,--==PJP A J AP P ,其中J 为若当标准形,则1121--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==P e e e P PPe e m J J J J A, 其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111111λλλe e e e iJ, 则mJ J J JJAe e e e Pe P e211===-trA J J J e e e e e n m ===++λλ 121.(2)设∑==Nk kN k A S 0!,则∑∑∑===≤≤=Nk kN k k Nk k NA k A k k A S 000!1!1!, 因为∑∞==!k kAk A e ,对上式两边取极限,得 Ak kAeA k e≤≤∑∞=0!1.25.设nn CA ⨯∈,且A 可逆,若λ是A 的任一特征值,则2211A A ≤≤-λ.证明:因为2)(A A =≤ρλ,故2A ≤λ.又对任意的nC X ∈,有2212122AX A AX A IXX--≤==,所以2212AX AX ≤-.设α是矩阵A 的特征值λ对应的特征向量,即λαα=A ,则222212αλλααα==≤-A A,故有λ≤-211A .因此2211A A ≤≤-λ.。

矩阵论课后参考答案(第一二三四

矩阵论课后参考答案(第一二三四

矩阵为 A

1 1
18 22
15 20



T
在 基 1 (1,2,1) , 2 (3,1,2),

1
21,2)下的矩阵。
解:由题可知1,2,3 与1,2,3 时空间 L(F 3) 的两组基,则存在一个
过渡矩阵 C 使得
3 -1 2
2 1 2
1 0 0
0 1 0
0 r 2(2)r1 1
0 r3(1)r10
1
0
3 5 -1
2 5 0
1 2 -1
0 1 0
0 0 1
1r2



5 (1)r 3
1 3 2 1 0
0
1 3 2 1 0 0
r2r30 1 0 1 0 1 r3(1)r20 1 0 1 0 1
2
1 0 0 0 0 1 0 0
0 0 0 0
0
0
0
0

1
0
0
0


0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1
(3)解:同上理,对 AT A 分析可知其为一个上下成负对称的矩阵,
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
0 0
所以V1 V2 {0} 。
2)明显V1 V2 Fn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不妨令 为特征值 所对应的一个特征向量,即
..........................................................式2
将式1代入式2可得
........................................................式3
将式3两边同取共轭有
10
解:因为
故其收敛半径为1。
又A的特征值为

则其谱半径为

故可知矩阵级数 发散。
习题
6(1)
解:当 时
由 得

所以 。
同理当 时
同理当 时
(3)
解:当 时
由 得
所以 。
同理当 时
同理当 时
习题
1
解:由矩阵函数的性质得知
式中
而由约束条件 知
其中 为 的一个基础解系,则有
故 的秩为 式2
故由式1及式2可知:
综上1),2),3)。则有 证毕
习题
8
解:由题可知 与 时空间 的两组基,则存在一个过渡矩阵C使得
-------------------------------------1
引入 的一组简单基
则 ------------------------------------2
对 单位化: , ,
最后得到该组标准正交基为
4
解:将齐次方程组写为
其中A为
化简上式后有
原方程为
由于 ,故方程组有3个基础解系。将 分别取值为
,故可得解空间的一组解为
对上式解用施密特正交化,有
将上式归一化后的标准正交基为
9
证明:由于A为hermite矩阵,则有
..........................................................式1

1(2)一个givens变换如下:
function[Q R]=qrgivens(A)
[m,n]=size(A);
if(m>n)
fprintf('这是一个列满秩矩阵\n')
elseif(m==n)
fprintf('这是一个方阵矩阵\n')
else
fprintf('这是一个行满秩矩阵,不能用QR分解\n')
.........................................式4
对上式同时右乘特征向量 后有
...................................................式5
将式2代入式5中有
...................................................式6
T=eye(m-index_j+1,m-index_j+1);%初始化当前列交换完成时候总的Givens矩阵
forsub_i=2:m-index_j+1%将每一列的数据从第二个数据开始依次与第一个数据进行变化
xi=b(1);%获取第一个数据
xj=b(sub_i);%依次获取当前列之后的数据
r=sqrt(xi^2+xj^2);
2设A是n阶可逆矩阵,则
解: ,故同上理,用满秩分解求广义逆的方法有
习题
15(2)
解:方程的增广矩阵为
故 ,故可知方程式相容的。
方案1:故可的其关于 的通解为
故从上式可得A的满秩分解为
,
从而
因此通解为
方案2:故可得其关于 的通解为
利用Hermite初等型求解A-{1}逆
可知 ,
故矩阵A的{1}逆为
(不妨取 )
由式1与式6综合可得
-----------------------------------------------------------7

补充知识:对 求逆及求原始的
从题中我们可以看出直接求 的逆有很大的困难度,而 的逆矩阵较为好求,故我们将式5转化一下变为 ,
故可知
从而可求得
同理知道 后可求得C如下
(2)直接令p=x即可
第3章
习题
4
证明:对于r阶对角阵S,不难看出其逆矩阵满足Moore-Penrose方程,亦即有 。在此,不妨令
则有下式
故由定义可知G为A的广义逆,即有
。证毕
习题
补充作业
1、求广义逆
解:
故可求得 的标准正交基为
则有
故A的广义逆为
=
补充作业
1设A,B都是n阶酉矩阵,则
解:
不难看出 分别为一个列满秩矩阵与行满秩矩阵,故由满秩分解求其广义逆为
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T=sub_T*T;%将每次两个数据交换后的Gives变化给乘起来,直到当前列所有数据交换完成
b(1)=sqrt(b(1)^2+b(sub_i)^2);%1求得交换数据之后的第一个数据的值
b(sub_i)=0;%将交换的数据位置0
sub_T=eye(m-index_j+1,m-index_j+1);%进行下一个数据与第一个数据的交换时重新初始化每次交换时的Givens矩阵
end
T_all=blkdiag(eye(index_j-1),T)*T_all;%将每一列的数据变为与单位向量平行后的每列的Givens矩阵乘起来
A_after_givens=T_all*A;%求得经过Givens变化后的矩阵
A_tempt=A_after_givens(index_j+1:m,index_j+1:n);%取得余下的余子式
end
Q=T_all';
R=T_all*A;
习题
3(1)
解:
故取
, ,所以
3
解:
故取
, ,所以
习题
2
证:设 的特征值为
则存在n阶酉矩阵V,使得
亦即 相似与对角矩阵,则由相似的性质可知
又因 为奇异值,故有 ,从而有
6
解:
A的特征多项式为
所以A的特征值为 ,根据单纯矩阵的性质可知,对应于A的二重特征值6,A应该有两个线性无关的特征向量,故线性方程组 的系数矩阵的秩应该为3-2=1,即 ,故
从而可知 时,A为单纯矩阵。
由特征值 可得对应的特征向量分别为
, ,
故 ,

故A的谱分解为
求可逆阵P,
(1)将 标准正交化
求得结果为
其基为 个 阶的矩阵,故基可写为, ,3解源自由题可得不难看出其秩为3,则
设 ,则存在 有
则 ,故有

所以
8
(先补充定理:
定理:设n元齐次线性方程组的系数矩阵A的秩 ,则齐次线性方程组的基础解析存在,并且基础解系所含线性无关的解向量的个数等于 )
证:1)对任意的 ,则有 且 成立,故
所以 。
2)明显
3)对于 来说, 为 的一个基础解系,不妨设 ,则有 式1
从而有
..........................................................式7
故可知 为实数,从而可知Hermite矩阵的特征根为实数。
第2章
习题
1(1)
解: , , , ,故由Gram_Schmidt正交化有
求其单位向量后有
, ,
则单位化后有
, ,
令 ,则
(2)
将式(1)减去式(2)后并等式两边同时加上一个单位矩阵I有
上式变为 ,因此
两边取极限可得
同上理
(3)
将式(3)其两边同乘 则有
(4)
将式(3)减去式(4)后有
(5)
将式(5)其两边同乘 则有
(6)
将式(5)减去式(6)后并等式两边同时加上一个2倍单位矩阵I有
(7)
上式变为
两边取极限,整理可得

则由 解出向量 (这是 给定后的任一值)
故可得
补充要点:关于 的讨论
由于 不仅与 有关,它还与下面的式子有关,故需要找到一个合适的式子使得两式成立。不妨设
则由式 可得
而由式 可知
故可知
从而可得
不妨取 ,则可得
习题
2.(2)
解:复数域中向量 , 内积为
正交化后
2.(3)
解:
先取一组简单基为 ,再根据题中内积定义进行Schmidt正交化。
cost=xi/r;%求得矩阵常数c
sint=xj/r;%求得矩阵常数s
%%%%%%%%%%%%构造出当前交换两个数据是的Givens矩阵%%%%%%%%%%%
sub_T(1,1)=cost;
sub_T(1,sub_i)=sint;
sub_T(sub_i,1)=-sint;
sub_T(sub_i,sub_i)=cost;
矩阵论课后参考答案:

习题
2
(1)解:由定义知
故可知其基为 个 阶矩阵,简单基记为在矩阵上的某一元素位置上为1,其他元素为0,如下

(2)解:对约束 分析可知,其为一个上下对称的矩阵(对称阵),则其维数为
其基为 个 阶的矩阵,故基可写为
, ,
(3)解:同上理,对 分析可知其为一个上下成负对称的矩阵,且对角元全为0,则其维数为
亦即
从而有
19
解:借用18题的结论,则可知BA的特征值为 ,C=AB的特征多项式为
20
解:和19题的解法相同. 的特征多项式为
故特征根为0(n-1重)与 。
习题
13
解:由题可得 的初等因子为
相关文档
最新文档