2020吉林省中考数学试卷(附答案解析)
2020年吉林省中考数学试卷
![2020年吉林省中考数学试卷](https://img.taocdn.com/s3/m/0933277fa5e9856a56126061.png)
2020年吉林省中考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.-6的相反数是()A. 6B. -6C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A. 11.09×106B. 1.109×107C. 1.109×108D. 0.1109×1083.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A. B. C. D.4.下列运算正确的是()A. a2•a3=a6B. (a2)3=a5C. (2a)2=2a2D. a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A. 54°B. 62°C. 72°D. 82°二、填空题(本大题共8小题,共24.0分)7.分解因式:a2-ab=______.8.不等式3x+1>7的解集为______.9.一元二次方程x2+3x-1=0根的判别式的值为______.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为______.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是______.12.如图,AB∥CD∥EF.若=,BD=5,则DF=______.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为______.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为______(结果保留π).三、计算题(本大题共1小题,共5.0分)15.先化简,再求值:(a+1)2+a(1-a)-1,其中a=.四、解答题(本大题共11小题,共79.0分)16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F 为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.160表:小静随机抽取名学生居家减压方式统计表(单位:人)表3:小新随机抽取60名学生居家减压方式统计表(单位:人)(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为______L,机器工作的过程中每分钟耗油量为______L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为______.25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC-CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线y=-x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为-m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查了相反数,解决本题的关键是熟记相反数的定义.根据相反数的定义,即可解答.【解答】解:-6的相反数是6,故选A.2.【答案】B【解析】解:11090000=1.109×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.【答案】D【解析】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.【答案】B【解析】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD-∠BCA=60°-45°=15°,∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故选:B.先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.【答案】C【解析】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°-∠B=180°-108°=72°,故选:C.运用圆内接四边形对角互补计算即可.本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.7.【答案】a(a-b)【解析】解:a2-ab=a(a-b).直接把公因式a提出来即可.本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.【答案】x>2【解析】解:3x+1>7,移项得:3x>7-1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.移项、合并同类项、系数化为1即可得答案.此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.【答案】13【解析】解:∵a=1,b=3,c=-1,∴△=b2-4ac=9+4=13.所以一元二次方程x2+3x-1=0根的判别式的值为13.故答案为:13.根据一元二次方程根的判别式△=b2-4ac即可求出值.本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.【答案】(240-150)x=150×12【解析】解:设快马x天可以追上慢马,依题意,得:(240-150)x=150×12.故答案为:(240-150)x=150×12.设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.【答案】垂线段最短【解析】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.根据垂线段的性质解答即可.本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.【答案】10【解析】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.【答案】【解析】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2-=,故答案为:.根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.【答案】【解析】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°-30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD-OD=2-=,∴的长为:=,故答案为.利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.15.【答案】解:原式=a2+2a+1+a-a2-1=-a.当a=时,原式=-.【解析】根据整式的混合运算顺序进行化简,再代入值即可.本题考查了整式的混合运算-化简求值,解决本题的关键是先进行整式的化简,再代入值.16.【答案】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有1种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.【解析】根据题意列出图表得出所有等情况数和两张卡片中含有A卡片的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.17.【答案】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.【解析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.【答案】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).【解析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS 即可证明△DEB≌△ABC.本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.19.【答案】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.【解析】(1)根据对称性在图①中,画一条不与AB重合的线段MN与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.20.【答案】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.【解析】设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.【答案】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.【解析】(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.【答案】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【解析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.23.【答案】3 0.5【解析】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30-5)÷(60-10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=-0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当-0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】56 120【解析】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴,故答案为:120.【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.本题是四边形的综合题,主要考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,解直角三角形,旋转的性质,矩形的面积计算,平行四边形的周长计算,【操作一】的关键是将所求图形的周长和转化为规则图形(平行四边形)的周长计算,体现了转化思想的重要性,【操作二】关键是解直角三角形求得矩形的边长.25.【答案】2x【解析】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB-AP=4-2x,∵PQ⊥AB,∴∠QPA=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4-2x=4x,解得x=;(3)①如图2,当0<x≤时,∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP•tan60°=2x,∵△PQD等边三角形,∴S△PQD=2x•3x=3x2cm2,所以y=3x2;②如图3,当点Q运动到与点C重合时,此时CP⊥AB,所以AP=AB,即2x═2,解得x=1,所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4-2x,AQ=2AP=4x,∴BG=BP=2-x∴PG=BG=(2-x),∴S△PBG=BG•PG=(2-x)2,∵AQ=2AP=4x,∴CQ=AC-AQ=4-4x,∴QH=CQ=(4-4x),∴S△QCH=CQ•QH=(4-4x)2,∵S△ABC=4×2=4,∴S四边形PGHQ=S△ABC-S△PBG-S△QCH=4-(2-x)2-(4-4x)2=-x2+18x-6,所以y=-x2+18x-6;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4-2x)×=(2-x),∵PB=4-2x,∴BQ=2BP=2(4-2x)=4(2-x),∴BG=BP=2-x,∴QG=BQ-BG=3(2-x),∴重叠部分的面积为:S△PQG=PG•QG=(2-x)•3(2-x)=(2-x)2.所以y=(2-x)2.综上所述:y关于x的函数解析式为:当0<x≤时,y=3x2;当<x≤1时,y=-x2+18x-6;当1<x<2时,y=(2-x)2.(1)根据动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,可得AP的长为2xcm;(2)当点D落在BC上时,如图1,BP=AB-AP=4-2x,根据△PQD等边三角形,△ABC 是等边三角形,证明△APQ≌△BDP,进而可得x的值;(3)根据题意分三个部分进行画图说明:①如图2,当0<x≤时,②如图3,当点Q 运动到与点C重合时,当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,分别表示出y关于x的函数解析式即可.本题考查了三角形综合题,解决本题的关键是图形面积的计算.26.【答案】解:(1)把点A(3,0)代入y=-x2+bx+,得到0=-+3b+,解得b=1.(2)∵抛物线的解析式为y=-x2+x+,∴P(m,-m2+m+),∵M,Q重合,∴-m+=-m2+m+,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部∴3-m=-m+-(-m2+m+),解得m=1-或1+(不合题意舍弃),∴m=1-.(4)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有-m+<-m2+m+,∴m2-4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x 的增大而减小,如图4-1中,当m>4时,点M在点Q的上方,也满足条件,如图4-2中,综上所述,满足条件的m的值为0<m<3或m>4.【解析】(1)利用待定系数法求解即可.(2)根据点M与点P的纵坐标相等构建方程求解即可.(3)根据PQ=MQ,构建方程求解即可.(3)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有-m+<-m2+m+,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4-1中.当m>4时,点M在点Q的上方,也满足条件,如图4-2中.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,矩形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.。
2020年吉林省中考数学试卷和答案解析
![2020年吉林省中考数学试卷和答案解析](https://img.taocdn.com/s3/m/1d8aa8a952ea551811a68739.png)
2020年吉林省中考数学试卷和答案解析一、单项选择题(每小题2分,共12分)1.(2分)﹣6的相反数是()A.6B.﹣6C.D.解析:根据相反数的定义,即可解答.参考答案:解:﹣6的相反数是6,故选:A.点拨:本题考查了相反数,解决本题的关键是熟记相反数的定义.2.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:11090000=1.109×107,故选:B.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.参考答案:解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.点拨:本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.(2分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a解析:根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.参考答案:解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.点拨:本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°解析:先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.参考答案:解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.点拨:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.(2分)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°解析:运用圆内接四边形对角互补计算即可.参考答案:解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.点拨:本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.二、填空题(每小题3分,共24分)7.(3分)分解因式:a2﹣ab=a(a﹣b).解析:直接把公因式a提出来即可.参考答案:解:a2﹣ab=a(a﹣b).点拨:本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.(3分)不等式3x+1>7的解集为x>2.解析:移项、合并同类项、系数化为1即可得答案.参考答案:解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.点拨:此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.(3分)一元二次方程x2+3x﹣1=0根的判别式的值为13.解析:根据一元二次方程根的判别式△=b2﹣4ac即可求出值.参考答案:解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.点拨:本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为(240﹣150)x=150×12.解析:设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.参考答案:解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.点拨:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.解析:根据垂线段的性质解答即可.参考答案:解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.点拨:本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.(3分)如图,AB∥CD∥EF.若=,BD=5,则DF=10.解析:利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.参考答案:解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.点拨:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.(3分)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.解析:根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE ∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.参考答案:解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.点拨:本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.(3分)如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).解析:利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.参考答案:解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.点拨:本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.解析:根据整式的混合运算顺序进行化简,再代入值即可.参考答案:解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.点拨:本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.解析:根据题意列出图表得出所有等情况数和两张卡片中含有A 卡片的情况数,然后根据概率公式即可得出答案.参考答案:解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.解析:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.参考答案:解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.点拨:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB 同侧,连接BE.求证:△DEB≌△ABC.解析:由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC.参考答案:证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).点拨:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB 关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.解析:(1)根据对称性在图①中,画一条不与AB重合的线段MN 与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ 与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.参考答案:解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.点拨:本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称性质.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)解析:设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.参考答案:解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.点拨:本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B 在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.解析:(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.参考答案:解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.点拨:本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.解析:(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.参考答案:解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.点拨:本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为3L,机器工作的过程中每分钟耗油量为0.5L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.解析:(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.参考答案:解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即机器工作时y关于x的函数解析式为y=﹣0.5x+35(10<x≤60);(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.点拨:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为56.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为72.解析:【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD 是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.参考答案:解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=4,∴DG=8,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴S矩形DCFG=DG•DC=8×9=72,故答案为:72.点拨:本题是四边形的综合题,主要考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,解直角三角形,旋转的性质,矩形的面积计算,平行四边形的周长计算,【操作一】的关键是将所求图形的周长和转化为规则图形(平行四边形)的周长计算,体现了转化思想的重要性,【操作二】关键是解直角三角形求得矩形的边长.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A 出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为2x cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.解析:(1)根据动点P从点A出发,以2cm/s的速度沿AB向点B 匀速运动,可得AP的长为2xcm;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,根据△PQD等边三角形,△ABC是等边三角形,证明△APQ≌△BDP,进而可得x的值;(3)根据题意分三个部分进行画图说明:①如图2,当0<x≤时,②如图3,当点Q运动到与点C重合时,当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,分别表示出y关于x的函数解析式即可.参考答案:解:(1)∵动点P从点A出发,以2cm/s的速度沿AB 向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QPA=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4﹣2x=4x,解得x=;(3)①如图2,当0<x≤时,∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP•tan60°=2x,∵△PQD等边三角形,∴S△PQD=2x•3x=3x2cm2,所以y=3x2;②如图3,当点Q运动到与点C重合时,此时CP⊥AB,所以AP=AB,即2x═2,解得x=1,所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4﹣2x,AQ=2AP=4x,∴BG=BP=2﹣x∴PG=BG=(2﹣x),∴S△PBG=BG•PG=(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=CQ=(4﹣4x),∴S△QCH=CQ•QH=(4﹣4x)2,∵S△ABC=4×2=4,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△APQ=4﹣(2﹣x)2﹣(4﹣4x)2﹣×2x×2x=﹣x2+18x﹣6,所以y=﹣x2+18x﹣6;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×=(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S△PQG=PG•QG=(2﹣x)•3(2﹣x)=(2﹣x)2.所以y=(2﹣x)2.综上所述:y关于x的函数解析式为:当0<x≤时,y=3x2;当<x≤1时,y=﹣x2+18x﹣6;当1<x<2时,y=(2﹣x)2.点拨:本题考查了三角形综合题,解决本题的关键是图形面积的计算.26.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.解析:(1)利用待定系数法求解即可.(2)根据点M与点P的纵坐标相等构建方程求解即可.(3)根据PQ=MQ,构建方程求解即可.(3)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x 的增大而减小,如图4﹣1中.当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中.参考答案:解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,解得b=1.(2)∵抛物线的解析式为y=﹣x2+x+,∴P(m,﹣m2+m+),∵M,Q重合,∴﹣m+=﹣m2+m+,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+﹣(﹣m2+m+)且﹣m+>2,得m<﹣解得m=1﹣或1+(不合题意舍弃),∴m=1﹣.(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.点拨:本题属于二次函数综合题,考查了二次函数的性质,待定系数法,矩形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.。
2020年吉林省长春市中考数学试题(解析版)
![2020年吉林省长春市中考数学试题(解析版)](https://img.taocdn.com/s3/m/f07ccb9fdd36a32d72758184.png)
2020年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.﹣1B.﹣1.5C.﹣3D.﹣4.22.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A.79×103B.7.9×104C.0.79×105D.7.9×1053.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.4.(3分)不等式x+2≥3的解集在数轴上表示正确的是()A.B.C.D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sin A=B.cos A=C.tan A=D.sin A=6.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A.40°B.140°C.160°D.170°7.(3分)如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连结CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°8.(3分)如图,在平面直角坐标系中,点A的坐标为(3,2),AB⊥x轴于点B,点C是线段OB上的点,连结AC.点P在线段AC上,且AP=2PC,函数y=(x>0)的图象经过点P.当点C在线段OB上运动时,k的取值范围是()A.0<k≤2B.≤k≤3C.≤k≤2D.≤k≤4二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.10.(3分)分解因式:a2﹣4=.11.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则实数m的值为.12.(3分)正五边形的一个外角的大小为度.13.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2,以点C为圆心,线段CA的长为半径作,交CB的延长线于点D,则阴影部分的面积为(结果保留π).14.(3分)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a﹣3)2+2(3a﹣1),其中a=.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(6分)图①、图②、图③均是3×3的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?19.(7分)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.20.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014﹣2019年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为天,平均数为天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是年,这一年空气质量为“优”的天数的年增长率约为(精确到1%).(空气质量为“优”的天数的增长率=×100%)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.21.(8分)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为千米/时,a的值为.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P 重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.23.(10分)如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.24.(12分)在平面直角坐标系中,函数y=x2﹣2ax﹣1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2﹣2ax﹣1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(﹣1,﹣1)、F(﹣1,a﹣1)、G(0,a﹣1).当函数y=x2﹣2ax﹣1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.2020年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.﹣1B.﹣1.5C.﹣3D.﹣4.2【分析】由数轴上数的特征可得该数的取值范围,再进行判断即可.【解答】解:由数轴上墨迹的位置可知,该数大于﹣4,且小于﹣2,因此备选项中,只有选项C符合题意,故选:C.2.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A.79×103B.7.9×104C.0.79×105D.7.9×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:79000这个数用科学记数法表示为:7.9×104.故选:B.3.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.【分析】根据四棱柱的侧面展开图是矩形而且有4条棱进行解答即可.【解答】解:由四棱柱的特点可知:四棱柱的侧面展开图是矩形而且有4条棱.故选:A.4.(3分)不等式x+2≥3的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:x≥3﹣2,x≥1,故选:D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sin A=B.cos A=C.tan A=D.sin A=【分析】根据直角三角形的边角关系,即锐角三角函数逐个进行判断即可.【解答】解:在Rt△ABD中,∠ADB=90°,则sin A=,cos A=,tan A=,因此选项A正确,选项B、C、D不正确;故选:A.6.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A.40°B.140°C.160°D.170°【分析】先利用圆周角定理得到∠BOC=40°,然后根据邻补角的定义计算出∠AOC的度数.【解答】解:∵∠BOC=2∠BDC=2×20°=40°,∴∠AOC=180°﹣40°=140°.故选:B.7.(3分)如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连结CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°【分析】利用线段的垂直平分线的性质以及三角形内角和定理一一判断即可.【解答】解:由作图可知,MN垂直平分线段BC,∴DB=DC,MN⊥BC,∴∠BDN=∠CDN,∠DBC=∠DCB,∴∠ADC=∠B+∠DCB=2∠B,∵∠A=90°,∴∠ADC+∠ACD=90°,∴2∠B+∠ACD=90°,故选项A,B,D正确,故选:C.8.(3分)如图,在平面直角坐标系中,点A的坐标为(3,2),AB⊥x轴于点B,点C是线段OB上的点,连结AC.点P在线段AC上,且AP=2PC,函数y=(x>0)的图象经过点P.当点C在线段OB上运动时,k的取值范围是()A.0<k≤2B.≤k≤3C.≤k≤2D.≤k≤4【分析】设C(c,0)(0≤c≤3),过P作PD⊥x轴于点D,由△PCD∽△ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【解答】解:∵点A的坐标为(3,2),AB⊥x轴于点B,∴OB=3,AB=2,设C(c,0)(0≤c≤3),过P作PD⊥x轴于点D,则BC=3﹣c,PD∥AB,OC=c,∴△PCD∽△ACB,∴,∵AP=2PC,∴,∴PD=,CD=1﹣c,∴OD=OC+CD=1+c,∴P(1+c,),把P(1+c,)代入函数y=(x>0)中,得k=c,∵0≤c≤3∴,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费(30m+15n)元.【分析】根据单价×数量=总价,用代数式表示结果即可.【解答】解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).10.(3分)分解因式:a2﹣4=(a+2)(a﹣2).【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).11.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则实数m的值为1.【分析】由于关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4m=0,∴m=1,故答案为:1.12.(3分)正五边形的一个外角的大小为72度.【分析】根据多边形的外角和是360°,依此即可求解.【解答】解:正五边形的一个外角==72°.故答案为:72.13.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2,以点C为圆心,线段CA的长为半径作,交CB的延长线于点D,则阴影部分的面积为π﹣2(结果保留π).【分析】利用勾股定理求出AC,证明∠C=45°,根据S阴=S扇形CAD﹣S△ACB计算即可.【解答】解:∵AB=CB=2,∠ABC=90°,∴AC===2,∴∠C=∠BAC=45°,∴S阴=S扇形CAD﹣S△ACB=﹣×2×2=π﹣2,故答案为π﹣2.14.(3分)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k的值为.【分析】根据题意,可以得到点C的坐标和h的值,然后将点C的坐标代入抛物线的解析式,即可得到k的值,本题得以解决.【解答】解:∵点A的坐标为(0,2),点B的坐标为(4,2),∴AB=4,∵抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB=2,∴设点C的坐标为(c,2),则点D的坐标为(c+2,2),h==c+1,∴抛物线2=﹣[c﹣(c+1)]2+k,解得,k=.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a﹣3)2+2(3a﹣1),其中a=.【分析】根据整式的混合运算顺序进行化简,再代入值求解即可.【解答】解:原式=a2﹣6a+9+6a﹣2=a2+7.当a=时,原式=()2+7=9.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)【分析】根据题意画出树状图得出所有等可能的情况数,找出两次抽出的卡片上的图案都是“保卫和平”的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有9种等可能的情况数,其中两次抽出的卡片上的图案都是“保卫和平”的有1种,则两次抽出的卡片上的图案都是“保卫和平”的概率是.17.(6分)图①、图②、图③均是3×3的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.【分析】根据网格画出符合条件的三个三角形即可.【解答】解:如图所示:即为符合条件的三角形.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?【分析】设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,依题意,得:﹣=20,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:该村企去年黑木耳的年销量为2万斤.19.(7分)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.【分析】(1)由平行四边形性质得OB=OD,由AAS证得△OEB≌△OFD,即可得出结论;(2)由(1)得OE=OF,则OE=2,在Rt△OEB中,由三角函数定义即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵BE⊥AC,DF⊥AC,∴∠OEB=∠OFD=90°,在△OEB和△OFD中,,∴△OEB≌△OFD(AAS),∴OE=OF;(2)解:由(1)得:OE=OF,∵OF=2,∴OE=2,∵BE⊥AC,∴∠OEB=90°,在Rt△OEB中,tan∠OBE==.20.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014﹣2019年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是2018年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为7天,平均数为8天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是2018年,这一年空气质量为“优”的天数的年增长率约为89%(精确到1%).(空气质量为“优”的天数的增长率=×100%)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.【分析】(1)从折线统计图可得答案;(2)利用中位数、众数的意义分别计算即可;(3)分别计算从2015年到2019年,和前一年相比,空气质量为“优”的天数,进而利用增长率计算结果;(4)根据空气质量的等级天数进行判断即可.【解答】解:(1)从折线统计图中“达标”天数的折线的最高点,相应的年份为2018年,故答案为:2018;(2)将这6年的“重度污染”的天数从小到大排列,处在中间位置的两个数的平均数为=7,因此中位数是7天,这6年的“重度污染”的天数的平均数为=8天,故答案为:7,8;(3)前一年相比,空气质量为“优”的天数增加量为:2015年,43﹣30=13天;2016年,51﹣43=8天;2017年,65﹣51=14天;2018年,123﹣65=58天;2019年,126﹣123=3天,因此空气质量为“优”的天数增加最多的是2018年,增长率为≈89%,故答案为:2018,89%;(4)从统计表中数据可知,2018年空气质量好,2018年“达标天数”最多,重度污染、中度污染、严重污染的天数最少.21.(8分)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为40千米/时,a的值为480.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480;(2)运用待定系数法解得即可;(3)分两车相遇前与相遇后两种情况列方程解答即可.【解答】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴y与x之间的函数关系式为y=100x﹣120;(3)两车相遇前:80+100(x﹣2)=240﹣100,解得x=;两车相遇后:80+100(x﹣2)=240+100,解得x=,答:当甲、乙两车相距100千米时,甲车行驶的时间是小时或小时.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P 重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.【分析】(1)根据邻边相等的矩形是正方形证明即可.(2)证明∠QFP=∠FPQ即可解决问题.(3)证明△PFQ,△PGA都是等边三角形,设QF=m,求出AB,AD(用m表示)即可解决问题.【解答】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠A=∠ADA′=90°,由翻折可知,∠DA′E=∠A=90°,∴∠A=∠ADA′=∠DA′E=90°,∴四边形AEA′D是矩形,∵DA=DA′,∴四边形AEA′D是正方形.(2)解:结论:△PQF是等腰三角形.理由:如图②中,∵四边形ABCD是矩形,∴AB∥CD,∴∠QFP=∠APF,由翻折可知,∠APF=∠FPQ,∴∠QFP=∠FPQ,∴QF=QP,∴△PFQ是等腰三角形.(3)如图③中,∵四边形PGQF是菱形,∴PG=GQ=FQ=PF,∵QF=QP,∴△PFQ,△PGQ都是等边三角形,设QF=m,∵∠FQP=60°,∠PQD′=90°,∴∠DQD′=30°,∵∠D′=90°,∴FD′=DF=FQ=m,QD′=D′F=m,由翻折可知,AD=QD′=m,PQ=CQ=FQ=m,∴AB=CD=DF+FQ+CQ=m,∴==.故答案为.23.(10分)如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.【分析】(1)根据AB=4,构建方程求解即可.(2)分两种情形:当点P在线段AB上时,首先利用勾股定理求出AC,再求出AE即可解决问题.当点P在线段BC上时,在Rt△PCE中,求出EC即可.(3)求出两种特殊情形下△PDQ是等腰直角三角形时t的值,即可求解当△PDQ为锐角三角形时t的取值范围.(4)分两种情形:如图⑥中,当点P在线段AB上,QM∥AB时.如图⑦中,当点P 在线段BC上,QM∥BC时,分别求解即可.【解答】解:(1)当点P与B重合时,5t=4,解得t=.(2)在Rt△ABC中,∵∠B=90°,AB=4,BC=3,∴AC===5,∴sin A=,cos A=,如图①中,当点P在线段AB上时,在Rt△APE中,AE=AP•cos A=4t,∴EC=5﹣4t.如图③中,当点P在线段BC上时,在Rt△PEC中,PC=7﹣5t,cos C=,∴EC=PC•cos C=(7﹣5t)=﹣3t.(3)当△PDQ是等腰直角三角形时,则PE=DE,如图④中,当点P在线段AB上时,在Rt△APE中,PE=P A•sin A=3t,∵DE=AC﹣AE﹣CD=5﹣4t﹣2t=5﹣6t,∵PE=DE,∴3t=5﹣6t,∴t=.如图⑤中,当点P在线段BC上时,在Rt△PCE中,PE=PC•sin C=(7﹣5t)=﹣4t,∵DE=CD﹣CE=2t﹣(7﹣5t)=5t﹣,∴﹣4t=5t﹣,解得t=.∵△PDQ是锐角三角形,∴观察图象可知满足条件的t的值为0<t<或<t<.(4)如图⑥中,当点P在线段AB上,QM∥AB时,过点Q作QG⊥AB于G,延长QM交BC于N,过点D作DH⊥BC于H.∵PB∥MN∥DH,PM=DM,∴BN=NH,在Rt△PQG中,PQ=2PE=6t,∴QG=PQ=t,在Rt△DCH中,HC=DC=t,∵BC=BH+CH=t+t+t=3,解得t=.如图⑦中,当点P在线段BC上,QM∥BC时,过点D作DH⊥BC于H,过点P作PK⊥QM于K.∵QM∥BC,DM=PM,∴DH=2PK,在Rt△PQK中,PQ=2PE=(7﹣5t),∴PK=PQ=(7﹣5t),在Rt△DCH中,DH=DC=t,∵DH=2PK,∴t=2×(7﹣5t),解得t=,综上所述,满足条件的t的值为或.24.(12分)在平面直角坐标系中,函数y=x2﹣2ax﹣1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2﹣2ax﹣1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(﹣1,﹣1)、F(﹣1,a﹣1)、G(0,a﹣1).当函数y=x2﹣2ax﹣1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.【分析】(1)当x=0时,代入y=x2﹣2ax﹣1,即可得出结果;(2)将点(1,2)代入y=x2﹣2ax﹣1,得a=﹣1,则函数的表达式为y=x2+2x﹣1,由y=x2+2x﹣1=(x+1)2﹣2,得出抛物线的开口向上,对称轴为x=﹣1,则当x>﹣1时,y随x的增大而增大;(3)抛物线y=x2﹣2ax﹣1=(x﹣a)2﹣a2﹣1的对称轴为x=a,顶点坐标为(a,﹣a2﹣1),当a>0时,对称轴在y轴右侧,最低点就是A(0,﹣1),则2a﹣(﹣1)=2,即可得出结果;当a<0,对称轴在y轴左侧,顶点(a,﹣a2﹣1)就是最低点,则2a﹣(﹣a2﹣1)=2,即可得出结果;(4)易证直角边为EF与FG,由抛物线的对称轴为x=a,A(0,﹣1),则AA′=﹣2a,当点P在EF边上时,PP′=2(a+1),则﹣2a=2×2(a+1),即可得出结果;当点P 在FG边上时,求出PP′=2,则﹣2a=4,即可得出结果.【解答】解:(1)当x=0时,y=x2﹣2ax﹣1=﹣1,∴点A的坐标为:(0,﹣1);(2)将点(1,2)代入y=x2﹣2ax﹣1,得:2=1﹣2a﹣1,解得:a=﹣1,∴函数的表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴抛物线的开口向上,对称轴为x=﹣1,如图1所示:∴当x>﹣1时,y随x的增大而增大;(3)抛物线y=x2﹣2ax﹣1=(x﹣a)2﹣a2﹣1的对称轴为:x=a,顶点坐标为:(a,﹣a2﹣1),当a>0时,对称轴在y轴右侧,如图2所示:∵x≤0,∴最低点就是A(0,﹣1),∵图象的最低点到直线y=2a的距离为2,∴2a﹣(﹣1)=2,解得:a=;当a<0,对称轴在y轴左侧,顶点(a,﹣a2﹣1)就是最低点,如图3所示:∴2a﹣(﹣a2﹣1)=2,整理得:(a+1)2=2,解得:a1=﹣1﹣,a2=﹣1+(不合题意舍去);综上所述,a的值为或﹣1﹣;(4)∵a<0,Rt△EFG三个顶点的坐标分别为E(﹣1,﹣1)、F(﹣1,a﹣1)、G(0,a﹣1),∴直角边为EF与FG,∵抛物线y=x2﹣2ax﹣1=(x﹣a)2﹣a2﹣1的对称轴为:x=a,A(0,﹣1),∴AA′=﹣2a,当点P在EF边上时,如图4所示:则x p=﹣1,∵EA=OA=1,∴点P在对称轴x=a的左侧,∴PP′=2(a+1),∵AA′=2PP′,∴﹣2a=2×2(a+1),解得:a=﹣;当点P在FG边上时,如图5所示:则y p=a﹣1,∴x2﹣2ax﹣1=a﹣1,解得:x1=a+,x2=a﹣,∴PP′=a+﹣(a﹣)=2,∵AA′=2PP′,∴﹣2a=4,解得:a1=﹣,a2=0(不合题意舍去);综上所述,a的值为﹣或﹣.第31页(共31页)。
2020年吉林省中考数学试卷及答案解析
![2020年吉林省中考数学试卷及答案解析](https://img.taocdn.com/s3/m/0d06068ae2bd960591c67794.png)
2020年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)﹣6的相反数是( )A .6B .﹣6C .16D .−162.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为() A .11.09×106 B .1.109×107 C .1.109×108 D .0.1109×1083.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A .B .C .D .4.(2分)下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A .85°B .75°C .65°D .60°6.(2分)如图,四边形ABCD 内接于⊙O ,若∠B =108°,则∠D 的大小为( )A .54°B .62°C .72°D .82°二、填空题(每小题3分,共24分)7.(3分)分解因式:a 2﹣ab = .8.(3分)不等式3x +1>7的解集为 .9.(3分)一元二次方程x 2+3x ﹣1=0根的判别式的值为 .10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 .11.(3分)如图,某单位要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 .12.(3分)如图,AB ∥CD ∥EF .若AC CE =12,BD =5,则DF = .13.(3分)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点.若△ADE 的面积为12,则四边形DBCE 的面积为 .14.(3分)如图,在四边形ABCD 中,AB =CB ,AD =CD ,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BÔ的长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF长为(结果保留π).三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=√7.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m 的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x 轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=45,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.(10分)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+3 2.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)﹣6的相反数是( )A .6B .﹣6C .16D .−16【解答】解:﹣6的相反数是6,故选:A .2.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为( )A .11.09×106B .1.109×107C .1.109×108D .0.1109×108【解答】解:11090000=1.109×107,故选:B .3.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为( )A .B .C .D .【解答】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A ,故选:A .4.(2分)下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、(a 2)3=a 6,原计算错误,故此选项不符合题意;C 、(2a )2=4a 2,原计算错误,故此选项不符合题意;D 、a 3÷a 2=a ,原计算正确,故此选项符合题意;故选:D .5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A.85°B.75°C.65°D.60°【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.6.(2分)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.二、填空题(每小题3分,共24分)7.(3分)分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).8.(3分)不等式3x+1>7的解集为x>2.【解答】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x >2,故答案为:x >2.9.(3分)一元二次方程x 2+3x ﹣1=0根的判别式的值为 13 .【解答】解:∵a =1,b =3,c =﹣1,∴△=b 2﹣4ac =9+4=13.所以一元二次方程x 2+3x ﹣1=0根的判别式的值为13.故答案为:13.10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 (240﹣150)x =150×12 .【解答】解:设快马x 天可以追上慢马,依题意,得:(240﹣150)x =150×12.故答案为:(240﹣150)x =150×12.11.(3分)如图,某单位要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 垂线段最短 .【解答】解:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.12.(3分)如图,AB ∥CD ∥EF .若AC CE =12,BD =5,则DF = 10 .【解答】解:∵AB ∥CD ∥EF , ∴BD DF=AC CE=12,∴DF =2BD =2×5=10. 故答案为10.13.(3分)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点.若△ADE 的面积为12,则四边形DBCE 的面积为32.【解答】解:∵D ,E 分别是△ABC 的边AB ,AC 的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE =12BC , ∴△ADE ∽△ABC , ∴S △ADE S △ABC=(DE BC)2=(12)2=14,∵△ADE 的面积为12, ∴△ABC 的面积为2,∴四边形DBCE 的面积=2−12=32, 故答案为:32.14.(3分)如图,在四边形ABCD 中,AB =CB ,AD =CD ,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BO 长为半径画弧,分别交AB ,BC 于点E ,F .若∠ABD =∠ACD =30°,AD =1,则EF̂的长为12π (结果保留π).【解答】解:在△ABD 与△CBD 中, {AB =CBAD =CD BD =BD, ∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD =30°,∠ADB =∠CDB ,CD =AD =1, ∴∠ABC =60°,∵AD =CD ,∠ADB =∠CDB , ∴BD ⊥AC ,且AO =CO , ∴∠ACB =90°﹣30°=60°, ∴∠BCD =∠ACB +∠ACD =90°, 在Rt △BCD 中,∵∠CBD =30°, ∴BD =2CD =2,在Rt △COD 中,∵∠ACD =30°, ∴OD =12CD =12,∴OB =BD ﹣OD =2−12=32, ∴EF̂的长为:60π⋅32180=12π,故答案为12π.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a +1)2+a (1﹣a )﹣1,其中a =√7. 【解答】解:原式=a 2+2a +1+a ﹣a 2﹣1 =3a . 当a =√7时,原式=3√7.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A 卡片的概率.【解答】解:根据题意列表如下:A B C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A 卡片的有5种情况, ∴小吉同学抽出的两张卡片中含有A 卡片的概率为59.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数. 【解答】解:设乙每小时做x 个零件,甲每小时做(x +6)个零件, 根据题意得:90x+6=60x,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +6=18.答:乙每小时做12个零件.18.(5分)如图,在△ABC 中,AB >AC ,点D 在边AB 上,且BD =CA ,过点D 作DE ∥AC ,并截取DE =AB ,且点C ,E 在AB 同侧,连接BE .求证:△DEB ≌△ABC .【解答】证明:∵DE ∥AC , ∴∠EDB =∠A . 在△DEB 与△ABC 中, {DE =AB∠EDB =∠A BD =CA, ∴△DEB ≌△ABC (SAS ). 四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A ,B ,C 均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图②中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点.(3)在图③中,画一个△DEF ,使△DEF 与△ABC 关于某条直线对称,且D ,E ,F 为格点.【解答】解:(1)如图①,MN 即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m 的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【解答】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=AF DF,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x 轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【解答】解:(1)将点A的坐标为(2,4)代入y=kx(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=kx的解析式为y=8x,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=8 x,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD=12×2×4+12(2+4)×2=10.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×2660=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为3L,机器工作的过程中每分钟耗油量为0.5L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【解答】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当10<x≤60时,设y关于x的函数解析式为y=ax+b,{10a +b =3060a +b =5, 解得,{a =−0.5b =35,即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40.24.(8分)能够完全重合的平行四边形纸片ABCD 和AEFG 按图①方式摆放,其中AD =AG =5,AB =9.点D ,G 分别在边AE ,AB 上,CD 与FG 相交于点H . 【探究】求证:四边形AGHD 是菱形.【操作一】固定图①中的平行四边形纸片ABCD ,将平行四边形纸片AEFG 绕着点A 顺时针旋转一定的角度,使点F 与点C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 56 .【操作二】将图②中的平行四边形纸片AEFG 绕着点A 继续顺时针旋转一定的角度,使点E 与点B 重合,连接DG ,CF ,如图③,若sin ∠BAD =45,则四边形DCFG 的面积为 72 .【解答】解:【探究】∵四边形ABCD 和AEFG 都是平行四边形, ∴AE ∥GF ,DC ∥AB ,∴四边形AGHD 是平行四边形, ∵AD =AG ,∴四边形AGHD 是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为: ME +EF +MC +AD +DM +AM +AG +GN +AN +BN +BC +NF =(ME +AM +AG +EF +NF )+(AD +BC +DM +MC +AN +BN )=2(AE +AG )+2(AB +AD )=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD =AG =5,∠DAB =∠BAG , 又AM =AM ,∴△AMD ≌△AMG (SAS ), ∴DM =GM ,∠AMD =∠AMG , ∵∠AMD +∠AMG =180°, ∴∠AMD =∠AMG =90°, ∵sin ∠BAD =45, ∴DM AD=45,∴DM =45AD =4, ∴DG =8,∵四边形ABCD 和四边形AEFG 是平行四边形, ∴DC ∥AB ∥GF ,DC =AB =GF =9, ∴四边形CDGF 是平行四边形, ∵∠AMD =90°,∴∠CDG =∠AMD =90°, ∴四边形CDGF 是矩形,∴S 矩形DCFG =DG •DC =8×9=72,故答案为:72.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC 是等边三角形,AB =4cm ,动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动,过点P 作PQ ⊥AB ,交折线AC ﹣CB 于点Q ,以PQ 为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为2x cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.【解答】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QP A=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,解得x =23;(3)①如图2,当0<x ≤23时,∵在Rt △APQ 中,AP =2x ,∠A =60°,∴PQ =AP •tan60°=2√3x ,∵△PQD 等边三角形,∴S △PQD =12×2√3x •3x =3√3x 2cm 2,所以y =3√3x 2;②如图3,当点Q 运动到与点C 重合时,此时CP ⊥AB ,所以AP =12AB ,即2x ═2,解得x =1,所以当23<x ≤1时,如图4,设PD 、QD 与BC 分别相交于点G 、H ,∴BP=4﹣2x,AQ=2AP=4x,∴BG=12BP=2﹣x∴PG=√3BG=√3(2﹣x),∴S△PBG=12×BG•PG=√32(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=√3CQ=√3(4﹣4x),∴S△QCH=12×CQ•QH=√32(4﹣4x)2,∵S△ABC=12×4×2√3=4√3,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△APQ=4√3−√32(2﹣x)2−√32(4﹣4x)2−12×2x×2√3x=−21√32x2+18√3x﹣6√3,所以y=−21√32x2+18√3x﹣6√3;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×√32=√3(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=12BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S △PQG =12×PG •QG =12×√3(2﹣x )•3(2﹣x )=3√32(2﹣x )2. 所以y =3√32(2﹣x )2.综上所述:y 关于x 的函数解析式为:当0<x ≤23时,y =3√3x 2;当23<x ≤1时,y =−21√32x 2+18√3x ﹣6√3; 当1<x <2时,y =3√32(2﹣x )2.26.(10分)如图,在平面直角坐标系中,抛物线y =−12x 2+bx +32与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ ⊥l 于点Q ,M 是直线l 上的一点,其纵坐标为﹣m +32.以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【解答】解:(1)把点A (3,0)代入y =−12x 2+bx +32,得到0=−92+3b +32, 解得b =1.(2)∵抛物线的解析式为y =−12x 2+x +32,∴P (m ,−12m 2+m +32),∵M ,Q 重合,∴﹣m+32=−12m2+m+32,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+32−(−12m2+m+32)且﹣m+32>2,得m<−12解得m=1−√7或1+√7(不合题意舍弃),∴m=1−√7.(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+32<−12m2+m+32,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.。
吉林省长春市中考数学试卷及答案(Word解析版)
![吉林省长春市中考数学试卷及答案(Word解析版)](https://img.taocdn.com/s3/m/6c85ba6303768e9951e79b89680203d8ce2f6ac8.png)
吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(•长春)的绝对值等于()A.B.4C.D.﹣4考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣的绝对值等于,即|﹣|=.故选A.点评:本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个长方形,位于左边,第二层有2个长方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106B.1.4×107C.1.4×108D.0.14×108考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000 000有8位,所以可以确定n=8﹣1=7.解答:解:14 000 000=1.4×107.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(•长春)不等式2x<﹣4的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式分析:首先解不等式求得不等式的解集,根据数轴上点的表示法即可判断.解答:解:解不等式得:x<﹣2.故选D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D 在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°考点:平行线的性质;直角三角形的性质.分析:首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.解答:解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.6.(3分)(•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.7.(3分)(•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3考点:相似三角形的判定与性质.专题:探究型.分析:先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.解答:解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)(•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.5考点:一次函数图象上点的坐标特征;坐标与图形变化-平移分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故选C.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.二、填空题(每小题3分,共18分)9.(3分)(•长春)计算:a2•5a=5a3.考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算即可得到结果.解答:解:原式=5a3.故答案为:5a3.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.(3分)(•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).考点:列代数式分析:用两天接待的游客总人数除以天数,即可得解.解答:解:2天平均每天接待游客.故答案为:.点评:本题考查了列代数式,比较简单,熟练掌握平均数的求法是解题的关键.11.(3分)(•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.考点:垂径定理;正方形的性质.分析:根据正方形性质得出BC=7,∠OCB=90°,根据垂径定理得出CM=2BC,推出MN=4BC,代入求出即可.解答:解:∵四边形OABC是正方形,∴BC=7,∠OCB=90°,∴OC⊥MN,∴由垂径定理得:MN=2CM,∵点B是CM的中点,∴CM=2BC,∴MN=4BC=4×7=28,故答案为:28.点评:本题考查了垂径定理和正方形性质的应用,关键是推出MN=4BC.12.(3分)(•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.考点:全等三角形的判定与性质.分析:根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.解答:解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA,∴∠ADC=∠B=65°.故答案为:65.点评:本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.13.(3分)(•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k 的值为.考点:正多边形和圆;反比例函数图象上点的坐标特征.分析:连接OB,过B作BM⊥OA于M,得出等边三角形AOB,求出OB,根据锐角三角函数求出BM和OM,即可得出B的坐标,代入即可求出答案.解答:解:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=6,∴BM=OB•sin∠BOA=6×sin60°=3,OM=OB•COS60°=3,即B的坐标是(3,3),∵B在反比例函数位于第一象限的图象上,∴k=3×3=9,故答案为:9.点评:本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.14.(3分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.考点:二次函数图象上点的坐标特征.分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.解答:解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)(•长春)先化简,再求值:,其中x=.考点:分式的化简求值专题:计算题.分析:将的分子因式分解,然后约分;再将(x﹣2)2展开,合并同类项后再代入求值即可.解答:解:原式==4x+x2﹣4x+4=x2+4.当x=时,原式==11.点评:本题考查了分式的化简求值,熟悉因式分解及约分、通分是解题的关键.16.(6分)(•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的情况数,找出两人摸出的求颜色相同的情况数,即可求出所求的概率.解答:解:列表如下:甲乙结果白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中颜色相同的情况有4种,则P(两人摸出的球颜色相同)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)(•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.考点:分式方程的应用.分析:首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方即可.解答:解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.18.(7分)(•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.19.(7分)(•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)考点:解直角三角形的应用-仰角俯角问题分析:在Rt△CAE中,利用CD、DE的长和已知的角的度数,利用正弦函数可求得AC的长.解答:解:由题意知,DE=AB=2.17,∴CE=CD﹣DE=12.17﹣2.17=10.在Rt△CAE中,∠CAE=26°,sin∠CAE=,∴AC===≈22.7(米).答:岸边的点A与桥墩顶部点C之间的距离约为22.7米.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(7分)(•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.考点:条形统计图;用样本估计总体;扇形统计图专题:计算题.分析:(1)由条形统计图中的数据相加即可求出n名学生中剩饭的学生人数,除以剩饭学生所占的百分比即可求出学生的总数,即为n的值;(2)根据条形统计图得到剩饭2次以上的人数,除以n的值,即可求出结果;(3)根据(2)中求出的百分比,乘以1200即可得到结果.解答:解:(1)根据题意得:这n名学生中剩饭学生的人数为58+41+6=105(人),n的值为105÷70%=150,则这n名学生中剩饭的学生有105人,n的值为150;(2)根据题意得:6÷150×100%=4%,则剩饭2次以上的学生占这n名学生人数的4%;(3)根据题意得:1200×4%=48(人).则估计上周在学校食堂就餐的1200名学生中剩饭2次以上的约有48人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(8分)(•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.考点:一次函数的应用分析:(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论.解答:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.点评:本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.22.(9分)(•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.考点:全等三角形的判定与性质;正方形的判定与性质.分析:探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.解答:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.点评:本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.23.(10分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))考点:二次函数综合题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式;(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=x2﹣x﹣2,即可求出m的值;(3)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线y=x2﹣x﹣2的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标;②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线x=上,列出关于m的方程,解方程即可求出m的值.解答:解:(1)∵抛物线经过点A(﹣1,0)、B(4,0),∴解得∴抛物线所对应的函数关系式为y=x2﹣x﹣2;(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得m1=,m2=.∴点C在这条抛物线上时,m的值为或;(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+4=,解得m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.其中(3)②要注意分析题意分情况讨论E点可能的位置,这是解题的关键.24.(12分)(•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.考点:四边形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S 与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM.∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC 时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
吉林省长春市2020年中考数学试题(Word版,含答案与解析)
![吉林省长春市2020年中考数学试题(Word版,含答案与解析)](https://img.taocdn.com/s3/m/2105e61d0975f46526d3e187.png)
吉林省长春市2020年中考数学试卷一、单选题(共8题;共16分)1.如图,数轴上被墨水遮盖的数可能为()A. =1B. -1.5C. -3D. -4.2【答案】C【考点】数轴及有理数在数轴上的表示【解析】【解答】解:根据题意可知,墨水遮盖区域的数在-4和-2之间∴数字可能为-3.故答案为:C.【分析】根据数轴上有理数的大小和顺序进行判断即可。
2.为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A. 79×103B. 7.9×104C. 0.79×105D. 4ab【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:79000用科学记数法表示为7.9×104故答案为:B.【分析】根据科学记数法的含义,表示得到数字即可。
3.下列图形是四棱柱的侧面展开图的是()A. B.C. D.【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.4.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.【答案】 D【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【解答】解:∵x+2≥3∴x≥1∴在数轴上表示正确的为D.故答案为:D.【分析】根据题意,解出不等式的解集,在数轴上进行表示即可。
5.比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A. sinA=BDAB B. cosA=ABADC. tanA=ADBDD. sinA=ADAB【答案】A【考点】锐角三角函数的定义【解析】【解答】解:根据题意可知,在直角三角形ABD中,求∠A可由以下方法求得①sinA=BDAB②cosA=ADAB③tanA=BDAD故答案为:A.【分析】根据题意,结合锐角三角函数的定义,表示得到∠A的式子,进行判断即可得到答案。
2020年吉林省长春市中考数学试卷 (解析版)
![2020年吉林省长春市中考数学试卷 (解析版)](https://img.taocdn.com/s3/m/ca5e74dba26925c52dc5bf8d.png)
2020年吉林省长春市中考数学试卷一、选择题(共8小题).1.(3分)如图,数轴上被墨水遮盖的数可能为()A.1-B. 1.5--C.3-D. 4.22.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为() A.3⨯D.50.7910⨯7.9107910⨯B.47.910⨯C.53.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.x+的解集在数轴上表示正确的是()4.(3分)不等式23A.B.C.D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔项中心点为点B,塔身中心线AB与垂直中心线AC的夹角为A∠,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算A∠的三角函数值,进而可求A∠的大小.下列关系式正确的是()A.sinBDAAB=B.cosABAAD=C.tanADABD=D.sinADAAB=6.(3分)如图,AB是O的直径,点C、D在O上,20BDC∠=︒,则AOC∠的大小为()A.40︒B.140︒C.160︒D.170︒7.(3分)如图,在ABC∆中,90BAC∠=︒,AB AC>.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连结CD.下列说法不一定正确的是()A.BDN CDN∠=∠B.2ADC B∠=∠C.ACD DCB∠=∠D .290B ACD ∠+∠=︒8.(3分)如图,在平面直角坐标系中,点A 的坐标为(3,2),AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2AP PC =,函数(0)ky x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是( )A .02k <B .233k C .223k D .843k 二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费 元. 10.(3分)分解因式:24a -= .11.(3分)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则实数m 的值为 .12.(3分)正五边形的一个外角的大小为 度.13.(3分)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==,以点C 为圆心,线段CA 的长为半径作AD ,交CB 的延长线于点D ,则阴影部分的面积为 (结果保留)π.14.(3分)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为 .三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2(3)2(31)a a -+-,其中2a =.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为1A 、2A ,图案为“保卫和平”的卡片记为)B17.(6分)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB 为边画ABC ∆. 要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等; (3)点C 在格点上.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?19.(7分)如图,在ABCD中,O是对角线AC、BD的交点,BE AC⊥,DF AC⊥,垂足分别为点E、F.(1)求证:OE OF=.(2)若5∠的值.OF=,求tan OBEBE=,220.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.20142019-年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为天,平均数为天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是 年,这一年空气质量为“优”的天数的年增长率约为 (精确到1%). (空气质量为“优”的天数的增长率100%)""-""=⨯""今年空气质量为优的天数去年空气质量为优的天数去年空气质量为优的天数(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.21.(8分)已知A 、B 两地之间有一条长240千米的公路.甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地.两车行驶的路程之和y (千米)与甲车行驶的时间x (时)之间的函数关系如图所示. (1)甲车的速度为 千米/时,a 的值为 . (2)求乙车出发后,y 与x 之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容. 1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片()ABCD AB AD >,将矩形纸片沿过点D 的直线折叠,使点A 落在边DC 上,点A 的对应点为A ',折痕为DE ,点E 在AB 上.求证:四边形AEA D '是正方形.【规律探索】由【问题解决】可知,图①中的△A DE '为等腰三角形.现将图①中的点A '沿DC 向右平移至点Q 处(点Q 在点C 的左侧),如图②,折痕为PF ,点F 在DC 上,点P 在AB 上,那么PQF ∆还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC QP =时,将矩形纸片继续折叠如图③,使点C 与点P 重合,折痕为QG ,点G 在AB 上.要使四边形PGQF 为菱形,则ADAB= .23.(10分)如图①,在ABC ∆中,90ABC ∠=︒,4AB =,3BC =.点P 从点A 出发,沿折线AB BC -以每秒5个单位长度的速度向点C 运动,同时点D 从点C 出发,沿CA 以每秒2个单位长度的速度向点A 运动,点P 到达点C 时,点P 、D 同时停止运动.当点P 不与点A 、C 重合时,作点P 关于直线AC 的对称点Q ,连结PQ 交AC 于点E ,连结DP 、DQ .设点P 的运动时间为t 秒.(1)当点P 与点B 重合时,求t 的值. (2)用含t 的代数式表示线段CE 的长.(3)当PDQ ∆为锐角三角形时,求t 的取值范围.(4)如图②,取PD 的中点M ,连结QM .当直线QM 与ABC ∆的一条直角边平行时,直接写出t 的值.24.(12分)在平面直角坐标系中,函数221(y x ax a =--为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当0x 时,若函数221(y x ax a =--为常数)的图象的最低点到直线2y a =的距离为2,求a 的值.(4)设0a <,Rt EFG ∆三个顶点的坐标分别为(1,1)E --、(1,1)F a --、(0,1)G a -.当函数221(y x ax a =--为常数)的图象与EFG ∆的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为(P P ''与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为A '.若2AA PP '=',直接写出a 的值.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.1-B. 1.5-C.3-D. 4.2-解:由数轴上墨迹的位置可知,该数大于4-,-,且小于2因此备选项中,只有选项C符合题意,故选:C.2.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为() A.30.7910⨯D.57.910⨯⨯C.57910⨯B.47.910解:79000这个数用科学记数法表示为:47.910⨯.故选:B.3.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.解:由四棱柱的特点可知:四棱柱的侧面展开图是矩形.故选:A.x+的解集在数轴上表示正确的是()4.(3分)不等式23A.B.C.D.解:32x-,1x,故选:D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔项中心点为点B,塔身中心线AB与垂直中心线AC的夹角为A∠,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算A∠的三角函数值,进而可求A∠的大小.下列关系式正确的是()A.sinBDAAB=B.cosABAAD=C.tanADABD=D.sinADAAB=解:在Rt ABD∆中,90ADB∠=︒,则sinBDAAB=,cosADAAB=,tanBDAAD=,因此选项A正确,选项B、C、D不正确;故选:A.6.(3分)如图,AB是O的直径,点C、D在O上,20BDC∠=︒,则AOC∠的大小为()A.40︒B.140︒C.160︒D.170︒解:222040BOC BDC ∠=∠=⨯︒=︒, 18040140AOC ∴∠=︒-︒=︒.故选:B .7.(3分)如图,在ABC ∆中,90BAC ∠=︒,AB AC >.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ; ②作直线MN ,与边AB 相交于点D ,连结CD . 下列说法不一定正确的是( )A .BDN CDN ∠=∠B .2ADC B ∠=∠ C .ACD DCB∠=∠D .290B ACD ∠+∠=︒解:由作图可知,MN 垂直平分线段BC , DB DC ∴=,MN BC ⊥,BDN CDN ∴∠=∠,DBC DCB ∠=∠, 2ADC B DCB B ∴∠=∠+∠=∠, 90A ∠=︒,90ADC ACD ∴∠+∠=︒, 290B ACD ∴∠+∠=︒,故选项A ,B ,D 正确, 故选:C .8.(3分)如图,在平面直角坐标系中,点A 的坐标为(3,2),AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2AP PC =,函数(0)ky x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是( )A .02k <B .233k C .223k D .843k 解:点A 的坐标为(3,2),AB x ⊥轴于点B , 3OB ∴=,2AB =,设(C c ,0)(03)c ,过P 作PD x ⊥轴于点D , 则3BC c =-,//PD AB ,OC c =, PCD ACB ∴∆∆∽, ∴PD CD CPAB CB CA==,2AP PC =, ∴1233PD CD c ==-, 23PD ∴=,113CD c =-, 213OD OC CD c ∴=+=+,2(13P c ∴+,2)3,把2(13P c +,2)3代入函数(0)ky x x =>中,得2439k c =+, 03c∴223k , 故选:C .二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费 (3015)m n + 元. 解:根据单价⨯数量=总价得,(3015)m n +元, 故答案为:(3015)m n +.10.(3分)分解因式:24a -= (2)(2)a a +- . 解:24(2)(2)a a a -=+-.11.(3分)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则实数m 的值为 1 .解:关于x 的一元二次方程220x x m -+=有两个相等的实数根, ∴△0=,2(2)40m ∴--=,1m ∴=,故答案为:1.12.(3分)正五边形的一个外角的大小为 72 度. 解:正五边形的一个外角360725︒==︒. 故答案为:72.13.(3分)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==,以点C 为圆心,线段CA 的长为半径作AD ,交CB 的延长线于点D ,则阴影部分的面积为 2π- (结果保留)π.解:2AB CB ==,90ABC ∠=︒,22222222AC AB BC ∴=+=+=45C BAC ∴∠=∠=︒,245(22)12223602ACBCAD S S S ππ∆⋅⋅∴=-=-⨯⨯=-阴扇形,故答案为2π-.14.(3分)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为72.解:点A 的坐标为(0,2),点B 的坐标为(4,2), 4AB ∴=,抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且122CD AB ==,∴设点C 的坐标为(,2)c ,则点D 的坐标为(2,2)c +,2212c h c +==+, ∴抛物线232[(1)]2c c k =--++,解得,72k =. 三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2(3)2(31)a a -+-,其中2a =. 解:原式26962a a a =-++- 27a =+.当2a =时,原式2(2)79=+=.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为1A 、2A ,图案为“保卫和平”的卡片记为)B解:根据题意画图如下:共有9种等可能的情况数,其中两次抽出的卡片上的图案都是“保卫和平”的有1种,则两次抽出的卡片上的图案都是“保卫和平”的概率是19.17.(6分)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC∆.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.解:如图所示:即为符合条件的三角形.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?解:设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,依题意,得:36080203x x-=,解得:2x=,经检验,2x=是原方程的解,且符合题意.答:该村企去年黑木耳的年销量为2万斤.19.(7分)如图,在ABCD中,O是对角线AC、BD的交点,BE AC⊥,DF AC⊥,垂足分别为点E、F.(1)求证:OE OF=.(2)若5BE=,2OF=,求tan OBE∠的值.【解答】(1)证明:四边形ABCD是平行四边形,OB OD∴=,BE AC⊥,DF AC⊥,90OEB OFD∴∠=∠=︒,在OEB∆和OFD∆中,OEB OFDBOE DOF OB OD∠=∠⎧⎪∠=∠⎨⎪=⎩,() OEB OFD AAS∴∆≅∆,OE OF∴=;(2)解:由(1)得:OE OF =, 2OF =, 2OE ∴=, BE AC ⊥, 90OEB ∴∠=︒,在Rt OEB ∆中,2tan 5OE OBE BE ∠==. 20.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表. 20142019-年长春市空气质量级别天数统计表根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是 2018 年. (2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为 天,平均数为 天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是 年,这一年空气质量为“优”的天数的年增长率约为 (精确到1%). (空气质量为“优”的天数的增长率100%)""-""=⨯""今年空气质量为优的天数去年空气质量为优的天数去年空气质量为优的天数(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.解:(1)从折线统计图中“达标”天数的折线的最高点,相应的年份为2018年, 故答案为:2018;(2)将这6年的“重度污染”的天数从小到大排列,处在中间位置的两个数的平均数为5972+=,因此中位数是7天, 这6年的“重度污染”的天数的平均数为1315591586+++++=天,故答案为:7,8;(3)前一年相比,空气质量为“优”的天数增加量为: 2015年,433013-=天; 2016年,51438-=天; 2017年,655114-=天; 2018年,1236558-=天; 2019年,1261233-=天,因此空气质量为“优”的天数增加最多的是2018年,增长率为12365100%89%65-⨯≈, 故答案为:2018,89%;(4)从统计表中数据可知,2018年空气质量好,2018年“达标天数”最多,重度污染、中度污染、严重污染的天数最少.21.(8分)已知A 、B 两地之间有一条长240千米的公路.甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地.两车行驶的路程之和y (千米)与甲车行驶的时间x (时)之间的函数关系如图所示. (1)甲车的速度为 40 千米/时,a 的值为 .(2)求乙车出发后,y 与x 之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.解:(1)由题意可知,甲车的速度为:80240÷=(千米/时); 4062480a =⨯⨯=,故答案为:40;480;(2)设y 与x 之间的函数关系式为y kx b =+, 由图可知,函数图象经过(2,80),(6,480), ∴2806480k b k b +=⎧⎨+=⎩,解得100120k b =⎧⎨=-⎩, y ∴与x 之间的函数关系式为100120y x =-;(3)两车相遇前:80100(2)240100x +-=-,解得135x =; 两车相遇后:80100(2)240100x +-=+,解得235x =, 答:当甲、乙两车相距100千米时,甲车行驶的时间是135小时或235小时. 22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容. 1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片()ABCD AB AD >,将矩形纸片沿过点D 的直线折叠,使点A 落在边DC 上,点A 的对应点为A ',折痕为DE ,点E 在AB 上.求证:四边形AEA D '是正方形.【规律探索】由【问题解决】可知,图①中的△A DE '为等腰三角形.现将图①中的点A '沿DC 向右平移至点Q 处(点Q 在点C 的左侧),如图②,折痕为PF ,点F 在DC 上,点P 在AB 上,那么PQF ∆还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC QP=时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则ADAB=35.【解答】(1)证明:如图①中,四边形ABCD是矩形,90A ADA∴∠=∠'=︒,由翻折可知,90DA E A∠'=∠=︒,90A ADA DA E∴∠=∠'=∠'=︒,∴四边形AEA D'是矩形,DA DA=',∴四边形AEA D'是正方形.(2)解:结论:PQF∆是等腰三角形.理由:如图②中,四边形ABCD是矩形,//AB CD ∴,QFP APF ∴∠=∠,由翻折可知,APF FPQ ∠=∠,QFP FPQ ∴∠=∠,QF QP ∴=,PFQ ∴∆是等腰三角形.(3)如图③中,四边形PGQF 是菱形,PG GQ FQ PF ∴===,QF QP =,PFQ ∴∆,PGA ∆都是等边三角形,设QF m =,60FQP ∠=︒,90PQD ∠'=︒,30DQD ∴∠'=︒,90D ∠'=︒,1122FD DF FQ m ∴'===,332QD D F '='=, 由翻折可知,32AD QD ='=,PQ CQ FQ m ===, 52AB CD DF FQ CQ m ∴==++=, ∴332552m AD AB m ==. 35. 23.(10分)如图①,在ABC ∆中,90ABC ∠=︒,4AB =,3BC =.点P 从点A 出发,沿折线AB BC -以每秒5个单位长度的速度向点C 运动,同时点D 从点C 出发,沿CA 以每秒2个单位长度的速度向点A 运动,点P 到达点C 时,点P 、D 同时停止运动.当点P 不与点A 、C 重合时,作点P 关于直线AC 的对称点Q ,连结PQ 交AC 于点E ,连结DP 、DQ .设点P 的运动时间为t 秒.(1)当点P 与点B 重合时,求t 的值.(2)用含t 的代数式表示线段CE 的长.(3)当PDQ ∆为锐角三角形时,求t 的取值范围.(4)如图②,取PD 的中点M ,连结QM .当直线QM 与ABC ∆的一条直角边平行时,直接写出t 的值.解:(1)当点P 与B 重合时,54t =,解得45t =. (2)在Rt ABC ∆中,90B ∠=︒,4AB =,3BC =,2222435AC AB BC ∴=+=+=,3sin 5A ∴=,4cos 5A =, 如图①中,当点P 在线段AB 上时,在Rt APE ∆中,cos 4AE AP A t ==, 54EC t ∴=-.如图③中,当点P 在线段BC 上时,在Rt PEC ∆中,75PC t =-,3cos 5C =, 321cos (75)355EC PC C t t ∴==-=-.(3)当PDQ ∆是等腰直角三角形时,则PE DE =,如图④中,当点P 在线段AB 上时,在Rt APE ∆中,sin 3PE PA A t ==,54256DE AC AE CD t t t =-----=-,PE DE =,356t t ∴=-,59t ∴=. 如图⑤中,当点P 在线段BC 上时,在Rt PCE ∆中,428sin (75)455PE PC C t t ==-=-, 3212(75)555DE CD CE t t t =-=--=-, ∴28214555t t -=-, 解得5945t =. 观察图象可知满足条件的t 的值为509t <<或497455t <<.(4)如图⑥中,当点P 在线段AB 上,//QM AB 时,过点Q 作QG AB ⊥于G ,延长QN 交BC 于N ,过点D 作DH BC ⊥于H . ////PB MN DH ,PM DM =,BN NH ∴=,在RtPQG 中,26PQ PE t ==,42455QG PQ t ∴==,在Rt DCH ∆中,3655HC DC t ==, 242463555BC BH CH t t t =+=++=, 解得518t =. 如图⑦中,当点P 在线段BC 上,//QM BC 时,点点D 作DH BC ⊥于H ,过点P 作PK QM ⊥于K .//QM BC ,DM PM =,2DH PK ∴=,在Rt PQK ∆中,82(75)5PQ PE t ==-, 324(75)525PK PQ t ∴==-, 在Rt DCH ∆中,4855DH DC t ==, 2DH PK =,∴8242(75)525t t =⨯-, 解得65t =, 综上所述,满足条件的t 的值为518或65. 24.(12分)在平面直角坐标系中,函数221(y x ax a =--为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当0x 时,若函数221(y x ax a =--为常数)的图象的最低点到直线2y a =的距离为2,求a 的值.(4)设0a <,Rt EFG ∆三个顶点的坐标分别为(1,1)E --、(1,1)F a --、(0,1)G a -.当函数221(y x ax a =--为常数)的图象与EFG ∆的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为(P P ''与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为A '.若2AA PP '=',直接写出a 的值.解:(1)当0x =时,2211y x ax =--=-,∴点A 的坐标为:(0,1)-;(2)将点(1,2)代入221y x ax =--,得:2121a =--,解得:1a =-,∴函数的表达式为:221y x x =+-,2221(1)2y x x x =+-=+-,∴抛物线的开口向上,对称轴为1x =-,如图1所示:∴当1x >-时,y 随x 的增大而增大;(3)抛物线22221()1y x ax x a a =--=---的对称轴为:x a =,顶点坐标为:2(,1)a a --, 当0a >时,对称轴在y 轴右侧,如图2所示:0x ,∴最低点就是(0,1)A -,图象的最低点到直线2y a =的距离为2,2(1)2a ∴--=,解得:12a =; 当0a <,对称轴在y 轴左侧,顶点2(,1)a a --就是最低点, 如图3所示:22(1)2a a ∴---=,整理得:2(1)2a +=,解得:11a =--21a =-;综上所述,a 的值为12或1--; (4)0a <,Rt EFG ∆三个顶点的坐标分别为(1,1)E --、(1,1)F a --、(0,1)G a -, ∴直角边为EF 与FG ,抛物线22221()1y x ax x a a =--=---的对称轴为:x a =,(0,1)A -, 2AA a ∴'=-,当点P 在EF 边上时,如图4所示:则1p x =-,1EA OA ==,∴点P 在对称轴x a =的左侧,2(1)PP a ∴'=+,2AA PP '=',222(1)a a ∴-=⨯+, 解得:23a =-; 当点P 在FG 边上时,如图5所示:则1p y a =-,2211x ax a ∴--=-,解得:1x a =+,2x a =,(PP a a ∴'=+--= 2AA PP '=',224a a a∴-=+,解得:14 3a=-,20a=(不合题意舍去);综上所述,a的值为23-或43-.。
2024年吉林省中考真题数学试卷含答案解析
![2024年吉林省中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/62d2ba566d85ec3a87c24028915f804d2a16876f.png)
2024年吉林省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-【答案】D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同【答案】A 【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,2【答案】C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C 【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为 .【答案】23x <</32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC 的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .【答案】()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为 2m (结果保留π).三、解答题15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有∴幸运游客小明与小亮恰好抽中同一个项目的概率17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD、,作直线GH,则直线GH即为所求;(2)解:如图所示,取格点G H⊥.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(1)20192023-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,②201920232020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)在Rt GAD 中,45EAD ∠=∴873tan DG AG DG EAD===∠在Rt GAC △中,37EAC ∠=∴tan 873CG AG EAC =⋅∠=∴873654.75CD DG CG =-=-23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mm x 16.519.823.126.429.7凳面的宽度/mm y 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P从点A /s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.∵90C ∠=︒,30B ∠=∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=∵PQ AB ∥,∴30APQ BAD ∠=∠=∴PAQ APQ =∠∠,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =∴QE QA =,即22AE AQ t ==∵30PAQ ∠=︒,∴1322PG AP ==∵PQE V 是等边三角形,∴QE PQ AQ ===∴12S QE PG =⋅=∵PQE V 是等边三角形,∴60E ∠=︒,而CE AE AC =-∴tan CF CE =⋅∠∴1S CE CF =⋅∵30DAC ∠=︒DCA ∠=由上知3DC =,∴23AD =,∴此时323PD t =-26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y ∴当2t <时,抛物线223y x x =-+与直线y 当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线∴当11t ≥时,抛物线223y x x =-+与直线y ∴当2t <或11t ≥时,抛物线223y x x =-+与直线即:当2t <或11t ≥时,关于x 的方程2ax +Ⅲ:∵,1P Q x m x m ==-+,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
2020吉林省中考数学试卷及答案解析
![2020吉林省中考数学试卷及答案解析](https://img.taocdn.com/s3/m/4225475d02020740be1e9b66.png)
2020年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6B.﹣6C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108 3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.8.不等式3x+1>7的解集为.9.一元二次方程x2+3x﹣1=0根的判别式的值为.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.2020年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6B.﹣6C.D.【解答】解:﹣6的相反数是6,故选:A.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108【解答】解:11090000=1.109×107,故选:B.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【解答】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a【解答】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).8.不等式3x+1>7的解集为x>2.【解答】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.9.一元二次方程x2+3x﹣1=0根的判别式的值为13.【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为(240﹣150)x=150×12.【解答】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.【解答】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.12.如图,AB∥CD∥EF.若=,BD=5,则DF=10.【解答】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.【解答】解:原式=a2+2a+1+a﹣a2﹣1=﹣a.当a=时,原式=﹣.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【解答】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有1种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.【解答】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.【解答】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【解答】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x 轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【解答】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为3L,机器工作的过程中每分钟耗油量为0.5L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【解答】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为56.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为120.【解答】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴,故答案为:120.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为2x cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.【解答】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QP A=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4﹣2x=4x,解得x=;(3)①如图2,当0<x≤时,∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP•tan60°=2x,∵△PQD等边三角形,∴S△PQD=2x•3x=3x2cm2,所以y=3x2;②如图3,当点Q运动到与点C重合时,此时CP⊥AB,所以AP=AB,即2x═2,解得x=1,所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4﹣2x,AQ=2AP=4x,∴BG=BP=2﹣x∴PG=BG=(2﹣x),∴S△PBG=BG•PG=(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=CQ=(4﹣4x),∴S△QCH=CQ•QH=(4﹣4x)2,∵S△ABC=4×2=4,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH=4﹣(2﹣x)2﹣(4﹣4x)2=﹣x2+18x﹣6,所以y=﹣x2+18x﹣6;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×=(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S△PQG=PG•QG=(2﹣x)•3(2﹣x)=(2﹣x)2.所以y=(2﹣x)2.综上所述:y关于x的函数解析式为:当0<x≤时,y=3x2;当<x≤1时,y=﹣x2+18x﹣6;当1<x<2时,y=(2﹣x)2.26.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【解答】解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,解得b=1.(2)∵抛物线的解析式为y=﹣x2+x+,∴P(m,﹣m2+m+),∵M,Q重合,∴﹣m+=﹣m2+m+,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部∴3﹣m=﹣m+﹣(﹣m2+m+),解得m=1﹣或1+(不合题意舍弃),∴m=1﹣.(4)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.。
2020年吉林省长春市中考数学评价检测试卷(十三)
![2020年吉林省长春市中考数学评价检测试卷(十三)](https://img.taocdn.com/s3/m/5c8ca3aafab069dc51220136.png)
中考数学评价检测试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.2020的相反数是()A. 2020B. -2020C.D.2.人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A. 0.77×10-5mB. 0.77×10-6mC. 7.7×10-5mD. 7.7×10-6m3.如图,是一个几何体的表面展开图,则该几何体是()A. 三棱柱B. 四棱锥C. 长方体D. 正方体4.下列运算正确的是()A. (m+n)2=m2+n2B. (x3)2=x5C. 5x-2x=3D. (a+b)(a-b)=a2-b25.如果式子有意义,那么x的取值范围在数轴上表示为()A. B.C. D.6.如图,AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为()A. B. C. D. 17.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A. cmB. cmC. 64 cmD. 54cm8.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线y=过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为()A. 6B. 8C. 12D. 16二、填空题(本大题共7小题,共25.0分)9.比较大小:-3______-2.10.因式分解:mn2-9m=______.11.下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是______.12.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的内角和是______.13.如图,将矩形纸片ABCD折叠,使得点A和点C重合,折痕是EF,连结EC.若AB=2,BC=4,则CE的长为______.14.如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是______.15.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:分析数据两组样本数据的平均数、中位数、众数如下表所示:(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为_____;b.可以推断出_____部门员工的生产技能水平较高,理由为_____.(至少从两个不同的角度说明推断的合理性)三、解答题(本大题共9小题,共71.0分)16.先化简,再求值:+,其中x=-1.17.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:每人各出一张牌,若两人出的牌相同,则为平局;若两人出的牌不同,则A胜B,B 胜C,C胜A.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.18.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?请你建立适当的数学模型,解决上面问题.19.如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F(1)求证:AE是⊙O的切线;(2)若cos∠A=,AE=8,则⊙O的半径长为______.20.如图,在6×7的网格图中,每个小正方形的边长为1,△ABC的顶点均为格点(1)在图①中,借助网格和无刻度的直尺画出△ABC的高CM;(2)在图②中,连结点B与格点D.点P是BC的中点,点Q为BD上的一动点,当△CPQ的周长最小时,请利用网格和无刻度的直尺确定点P、Q的位置,并画出△CPQ.21.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示(1)a的值是______,甲的速度是______km/h.(2)求乙车距A地的路程y与x之间的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?22.已知△ABC和△ADE是等腰直角三角形,∠ABC=∠ADE=90°,点F为CE中点,连结DF、BF.【感知】如图①,当点D在AC上,点E在AB上时,易证:DF=BF,DF⊥BF.【探究】如图②,将△ADE从图①中的位置绕着点A逆时针旋转45°,此时【感知】中的结论还是否成立?说明理由.【应用】如图③,将△ADE从图①中的位置绕着点A逆时针旋转90°,过点F作FG⊥BD于点G,若AB=6,AD=2,则线段FG的长为______.23.如图,BD是菱形ABCD的对角线,AB=BD=2cm.动点P从点A出发,沿折线AB-BC以1cm/s的速度向终点C运动,当点P出发后,且不与点B重合时,过点P作PQ∥BD交折线AD-DC于点Q.以PQ为边作正三角形PQE,且点E与BD始终在PQ的同侧.设正三角形PQE与△ABD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点E落在BD上时,求t的值.(2)当点P在AB边上时,求S与t之间的函数关系式.(3)当点E落在∠BDC的平分线上时,直接写出t的值.24.在平面直角坐标系中,点A的坐标为(m,2)(其中m为常数),点B与点A关于y轴对称.在实数范围内定义函数y=(其中m为常数)的图象为G.(1)当点(-1,2)在G上时,求m的值;(2)当点B在G上时,求m的值;(3)m≠0时,连结AB,当G与线段AB恰好有两个公共点时,m=______.(4)当y最小值的取值范围是-2≤y最小值≤-1时,直接写出m的取值范围.答案和解析1.【答案】B【解析】解:2020的相反数是:-2020.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】D【解析】解:0.000 0077=7.7×10-6m.故选D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:由图得,这个几何体为三棱柱.故选:A.由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.4.【答案】D【解析】解:A、(m+n)2=m2+2mn+n2,故本选项错误;B、(x3)2=x6,故本选项错误;C、5x-2x=3x,故本选项错误;D、(a+b)(a-b)=a2-b2,故本选项正确;故选:D.根据完全平方公式,幂的乘方,合并同类项法则,平方差公式分别求出每个式子的值,再判断即可.本题考查了对完全平方公式,幂的乘方,合并同类项法则,平方差公式的应用,注意:完全平方公式有(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,题目比较好,难度适中.5.【答案】A【解析】解:由题意可知:2x+4≥0,∴x≥-2,故选:A.根据二次根式有意义的条件即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.6.【答案】A【解析】解:连接AQ,BQ,∵∠P=45°,∴∠QAB=∠P=45°,∠AQB=90°,∴△ABQ是等腰直角三角形.∵AB=2,∴2BQ2=4,∴BQ=.故选:A.连接AQ,BQ,根据圆周角定理可得出∠QAB=∠P=45°,∠AQB=90°,故△ABQ是等腰直角三角形,根据勾股定理即可得出结论.本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.【答案】C【解析】【分析】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.过A作AE⊥CP 于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【解答】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.8.【答案】A【解析】解:如图,过F作FC⊥OA于C,∵,∴OA=3OC,BF=2OC∴若设F(m,n)则OA=3m,BF=2m∵S△BEF=4∴BE=则E(3m,n-)∵E在双曲线y=上∴mn=3m(n-)∴mn=6即k=6.故选:A.由于,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=,然后即可求出E(3m,n-),依据mn=3m(n-)可求mn=6,即求出k的值.此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.9.【答案】<【解析】解:∵(3)2=18,(2)2=12,∴-3<-2.故答案为:<.先把两数平方,再根据实数比较大小的方法即可比较大小.此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.10.【答案】m(n-3)(n+3)【解析】解:原式=m(n2-9)=m(n-3)(n+3).故答案为:m(n-3)(n+3).首先提取公因式m,再利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.11.【答案】等腰三角形三线合一【解析】解:利用作图可得到OA=OB,PA=PB,利用等腰三角形的性质可判定OP平分∠AOB.故答案为:等腰三角形的三线合一.【分析】利用基本作图得到△OAB为等腰三角形,OP垂直平分AB,然后根据等腰三角形的性质可判定射线OP平分∠MON.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).12.【答案】540°【解析】解:∵多边形从一个顶点出发可引出2条对角线,∴n-3=2,解得n=5,∴内角和=(5-2)•180°=540°.故答案为:540°.根据从多边形的一个顶点可以作对角线的条数公式(n-3)求出边数,然后根据多边形的内角和公式(n-2)•180°列式进行计算即可得解.本题考查了多边形的内角和公式.能够利用多边形的对角线的公式,求出多边形的边数是解题的关键.13.【答案】2.5【解析】解:∵四边形ABCD是矩形,∴CD=AB=2,AD=BC=4,∠D=90°,∵将矩形纸片ABCD折叠,使得点A和点C重合,∴AE=CE,∴DE=AD-AE=4-CE,∵CE2=DE2+CD2,即CE2=(4-CE)2+22,∴CE=2.5,故答案为2.5.由四边形ABCD是矩形,得到CD=AB=2,AD=BC=4,∠D=90°,根据折叠的性质得到AE=CE,根据勾股定理列方程即可得到结论.该题主要考查了翻折变换的性质及其应用问题,矩形的性质,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.14.【答案】或【解析】解:由tan∠AOE=,可设A、B点坐标分别为(2m,3m)、(2n,3n),∵AD∥OC,∴∠ADB=∠OCB,∠DAB=∠COA,∴△BAD∽△BOC.①当点A在线段OB上时,如图1所示.∵OC=2AD,∴D点为线段BC的中点,∵C(0,c),B(2n,3n),∴D点横坐标为=n,由题意知A、D点均在抛物线的对称轴上,∴n=2m,∴B点坐标为(4m,6m),∵A,B在抛物线上,且抛物线对称轴为x=2m,∴有,解得:,或,∵c>0,∴c=;②当点B在线段OA上时,如图2所示.∵OC=2AD,∴OB=2AB.∵C(0,c),B(2n,3n),∴D点横坐标为×2n=3n,由题意知A、D点均在抛物线的对称轴上,∴n=m,∴B点坐标为(m,2m),∵A,B在抛物线上,且抛物线对称轴为x=2m,∴有,解得:,或.∵c>0,∴c=.综上所述:c的值为或.故答案为:或.设A(2m,3m)、B(2n,3n),分点A在线段OB上及点B在线段OA上两种情况,由OC=2AD,利用相似三角形的性质可得出m、n间的关系,将A、B点坐标代入抛物线与抛物线对称轴x=2m联立方程组,解方程组即可求得c的值.本题考查了三角形的相似以及二次函数的性质,解题的关键是根据OC=2AD找到A、B 点坐标的关系.15.【答案】解:(1)填表如下:a.240b.乙;①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.③乙部门生产技能测试中,优秀的员工人数为12多于甲8人,表示乙部门员工的生产技能水平较高.【解析】本题考查了数据分析的应用和用样本估计总体,属于中档题.根据收集的数据按分数段填表即可;a.用乙部门优秀员工人数除以20乘以400即可得出答案;b.根据情况进行讨论分析,理由合理即可.16.【答案】解:原式=-==x+1,当x=-1时,原式=.【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【答案】解:(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:=.【解析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可求得答案.18.【答案】解:设买美酒x斗,普通酒y斗,依题意,得:,解得:.答:买美酒0.25斗,普通酒1.75斗.【解析】设买美酒x斗,普通酒y斗,根据现在买两种酒2斗共付30钱,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.【答案】【解析】(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)∵∠AEC=90°,cos∠A=,AE=8,∴AC=10,CE=6,∵OB∥CE,∴△AOB∽△ACE,∴,∴,∴OB=,∴⊙O的半径长为,故答案为:.(1)连接OB,根据等腰三角形的性质得到∠OCB=∠OBC,根据角平分线的定义得到∠OCB=∠BCF,得到∠OBC=∠BCF,求得∠ABO=∠AEC=90°,于是得到结论;(2)解直角三角形得到AC=10,CE=6,根据相似三角形的性质列方程即可得到结论.本题考查了切线的性质和判定,勾股定理,平行线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.20.【答案】解:如图所示,(1)CM即为所求;(2)△CPQ即为所求.【解析】(1)在图①网格中,根据勾股定理画出△ABC的高CM即可;(2)在图②网格中,根据平行四边形的对角线相等且互相平分线找到点P,连接AP交BD于点Q,即可画出△CPQ.本题考查了作图-应用与设计作图、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.21.【答案】4.5 60【解析】解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),甲车的速度==60(千米/小时);故答案为:4.5;60;(2)设乙开始的速度为v千米/小时,则4v+(7-4.5)(v-50)=460,解得v=90(千米/小时),4v=360,则D(4,360),E(4.5,360),∴线段OD的函数关系式为y=90x(0≤x≤4),设直线EF的解析式为y=kx+b,,解得,所以线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);综上所述,乙车距A地的路程y与x之间的函数关系式为:y=;(3)易知C(0,40),设线段CF的解析式为y=kx+40,根据题意得,7k+40=460,解得k=60,∴线段CF的解析式为y=60x+40,∵甲乙两车距离不超过10km时,车载通话机可以进行通话,∴,解得,,解得,则两车在行驶过程中可以通话的总时长为:(小时).(1)由乙在途中的货站装货耗时半小时易得a=4.5,甲从A到B共用了(+7)小时,然后利用速度公式计算甲的速度;(2)分段函数;设乙开始的速度为v千米/小时,利用乙两段时间内的路程和为460列方程4v+(7-4.5)(v-50)=460,解得v=90(千米/小时),计算出4v=360,则可得到D(4,360),E(4.5,360),然后利用待定系数法求出线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)求出线段CF的解析式,再根据题意列不等式组解答即可.本题考查了一次函数的应用:学会从函数图象中获取信息,特别注意自变量取值范围的变化.22.【答案】【解析】解:(1)DF=BF,DF⊥BF理由如下:如图①中,∵∠ABC=∠EDC=90°,F是EC的中点,∴DF=CF=EF=CE,BF=CF=EF=CE,∴DF=BF,∵△ABC和△ADE是等腰直角三角形,∴∠ACB=45°,∵DF=CF,∴∠DCF=∠CDF,∴∠DFE=∠DCF+∠CDF=2∠DCF,∵BF=CF,∴∠FCB=∠FBC,∴∠BFE=∠FBC+∠FCB=2∠BCF,∴∠DFB=∠EFD+∠EFB=2(∠DCF+∠BCF)=2∠ACB=90°,∴DF=BF.(2)(1)中的结论仍然成立如图②中,过点C作CM∥DE,交DF的延长线于M,连接DB,BM.∵DE∥CM,∴==,∠DEC=∠MCE,∵F是CE的中点,∴CF=EF,∴DF=FM,CM=DE,∵△ABC和△ADE是等腰直角三角形,∴DE=AD,BC=AB,∠DEA=∠DAE=∠CAB=∠ACB=45°,∴∠DEC=135°=∠ECM,∠DAB=90°,∴∠BCM=∠ECM-∠ACB=90°,∴∠DAB=∠BCM,且AB=BC,CM=DE=AD,∴△ADB≌△BCM(SAS),∴DB=BM,∠ABD=∠MBC,∵∠ABD+∠DBC=90°,∴∠MBC+∠DBC=90°=∠DBM,且DB=BM,∴△DBM是等腰直角三角形,又∵DF=FM,∴BF=DF,BF⊥DF.(3)如图③中,延长DF,AC交于M,连接BF,BM.∵△ABC和△ADE是等腰直角三角形,∴∠EDA=∠ABC=90°,AD=DE,AB=BC,∵∠DAC=90°,∴DE∥AC,∴==,∵F是EC中点,∴EF=CF,∴DF=FM,DE=CM,∵∠ACB=∠BAC=45°,∴∠DAB=135°=∠BCM,且AB=BC,AD=DE=CM,∴△ADB≌△CMB(SAS),∴BD=BM,∠ABD=∠CBM,∵∠ABD+∠DBC=90°,∴∠CBM+∠DBC=90°,∴∠DBM=90°且BD=BM,∴△DBM是等腰直角三角形,又∵DF=FM∴BF=DF,BF⊥DF,∴△DFB是等腰直角三角形,又∵FG⊥BD,∴FG=BD,作DN⊥AB交BA的延长线于N,∵∠DAB=135°,∴∠DAN=45°且DN⊥AB,∴DN=AN,∵AN2+DN2=AD2=8,∴AN=DN=2,∴BN=AB+AN=8,在Rt△ADB中,DB==2,∴FG=BD=.故答案为(1)如图①中,根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠ACB=90°,DF⊥BF.(2)如图②中,过点C作CM∥DE,交DF的延长线于M,连接DB,BM,易得DF=FM,CM=DE,可证明△ADB≌△BCM,可得BD=BM,BD⊥BM,即△DBM是等腰直角三角形,且DF=FM,则结论成立(3)如图③中,连接DF并延长交AC的延长线于M,连接BM,BF,易得DF=FM,CM=DE,可证明△ADB≌△BCM,可得BD=BM,BD⊥BM,即△DBM是等腰直角三角形,且DF=FM,可得△DBF是等腰直角三角形,且FG⊥BD,则FG=BD,作DN⊥AB,根据勾股定理依次可得AN,DN,BD长度,则FG的长度也求出了.本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)∵四边形ABCD是菱形,AB=BD,∴∠A=∠C=60°,△ABD与△BCD是等边三角形,∵PQ∥BD,以PQ为边作正三角形PQE,且点E与BD始终在PQ的同侧,∴点P在AB上时,四边形APEQ是菱形,且△APQ与△EPQ是全等的等边三角形;点P在BC上时,四边形CPEQ是菱形,且△CPQ与△EPQ是全等的等边三角形;∴当AP=PE=PB时或CP=PE=PB时,点E落在BD上,即点P在AB中点或BC中点时,点E落在BD上,∴t==1(s)或t==3(s),∴当点E落在BD上时,求t的值为1s或3s;(2)∵△APQ是等边三角形,∴三角形各边的高为边长的,当0<t≤1时,S=S△PQE=S△APQ=AP•AP=t×t=t2;当1<t<2时,如图1所示:过点E作EH⊥PQ于H,交BD于O,∵PQ∥BD,∴△EMN与△EPQ都是等边三角形,AP=PQ=PE=t,∴==,∵∠APE=120°,∴∠BPN=60°,∵∠PBN=60°,∴△BPN是等边三角形,∴PN=PB=2-t,EN=PE-PN=t-2+t=2t-2,∴MN===2t-2,OE=EN=(t-1),∴S=t2-MN•OE=t2-×(2t-2)×(t-1)=-t2+2t-;(3)①当点P在AB上时,点E落在∠BDC的平分线上,如图2所示:∵△BCD是等边三角形,∴∠BDM=30°,∵△ABD是等边三角形,∴∠ADB=60°,∴∠QDE=90°,∵△APQ与△EPQ是全等的等边三角形,∴∠AQE=120°,∴∠EQD=60°,∴∠QED=30°,∴DQ=QE,∵PQ∥BD,∴DQ=PB,∵四边形APEQ是菱形,∴PB=AP,∵AB=2,∴AP=×2=,∴t=s;②当点P在BC上时,点E落在∠BDC的平分线上,如图3所示:∵△BCD是等边三角形,∴∠DMC=90°,BM=CM=1,同①得:∠EPM=60°,∴∠PEM=30°,∴PM=PE,∵四边形CPEQ是菱形,∴PM=PC,∴PM=CM,∴BP=,∴t==(s);综上所述,当点E落在∠BDC的平分线上时,t的值为s或s.【解析】(1)证出点P在AB中点或BC中点时,点E落在BD上,得出t=1或t=3;(2)分两种情况,当0<t≤1时,当1<t<2时,由等边三角形的性质和三角形面积公式即可得出答案;(3)①当点P在AB上时,点E落在∠BDC的平分线上,由直角三角形的性质得出DQ=QE,由菱形的性质得出PB=AP,进而得出答案;②当点P在BC上时,点E落在∠BDC的平分线上,证出∠DMC=90°,BM=CM=1,由直角三角形的性质得出PM=PE,由菱形的性质得出PM=PC,求出BP=,进而得出答案.本题是四边形综合题,主要考查了菱形的判定与性质、等边三角形的判定与性质、角平分线定义、含30°角直角三角形的性质、相似三角形的判定与性质、三角形面积的计算等知识;本题综合性强,熟练掌握菱形的判定与性质以及等边三角形的性质是解题的关键.24.【答案】【解析】解:(1)把点(-1,2)代入y=x2+x+m,则1-1+m=2,∴m=2;(2)∵点A的坐标为(m,2)(其中m为常数),点B与点A关于y轴对称,∴点B的坐标为(-m,2),当-m≥1时,即m≤-1时,把点(-m,2)代入y=x2+x-m,则m2-m-m=2,解得m=1±,(舍去)当-m<1时,即m>-1时,把点(-m,2)代入y=x2+x+m,则m2-m+m=2,解得m=±,(负值舍去),综上,m=;(3)当m<0时不存在两个交点,当m>0时存在两个交点,此时只有一种情况成立,即y=x2+x+m=2时,且△=1-4(m-2)=0,解得m=符合题意,故答案为:;(4)当图形G上最低点落在函数y=x2+x-m(x≥1)的图象上时,则最低点坐标为(1,2-m),∴-2≤2-m≤-1,解得:3≤m≤4;当图形G上最低点落在函数y=x2+x-m(x<2)的图象上时,同理:-≤m≤-;综上所述,m的取值范围为:3≤m≤4或-≤m≤-.(1)直接代入求值即可;(2)求得B点的坐标,分两种求得代入求值即可;(3)当m≠0时,两个公共点只能分别在G1,G2上,分别求解即可;(4)分两种情况:①图形G上最低点落在左侧函数部分的图象上,根据题意解不等式组即可,②图形G上最低点落在右侧部分的图象上时,解不等式组即可.本题考查的是二次函数综合运用,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,其中(3)要确定临界点的情况,进而求解.。
2023年吉林省长春市中考数学试卷及答案解析
![2023年吉林省长春市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/ed158312905f804d2b160b4e767f5acfa0c78343.png)
2023年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)实数a、b、c、d在数轴上对应点的位置如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d2.(3分)长春龙嘉国际机场T3A航站楼设计创意为“鹤舞长春”.如图所示.航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程是按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为()A.0.38×108B.38×106C.3.8×108D.3.8×107 3.(3分)下列运算正确的是()A.a3﹣a2=a B.a2•a=a3C.(a2)3=a5D.a6÷a2=a3 4.(3分)如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥5.(3分)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短6.(3分)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为()A.32sin25°米B.32cos25°米C.米D.米7.(3分)如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE 8.(3分)如图,在平面直角坐标系中,点A、B在函数(k>0,x>0)的图象上,分别以A、B为圆心,1为半径作圆,当⊙A与y轴相切、⊙B与x轴相切时,连接AB,,则k的值为()A.3B.3C.4D.6二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:m2﹣1=.10.(3分)若关于x的方程x2﹣2x+c=0有两个不相等的实数根,则实数c的取值范围是.11.(3分)2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)12.(3分)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.13.(3分)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B',折痕为AF,则∠AFB'的大小为度.14.(3分)2023年5月28日,C919商业首航完成——中国民航商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”,是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为80米时,两条水柱在抛物线的顶点H处相遇.此时相遇点H距地面20米,喷水口A、B距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A′、B′到地面的距离均保持不变,则此时两条水柱相遇点H'距地面米.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a+1)2+a(1﹣a),其中.16.(6分)班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则如下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后放回,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.17.(6分)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?18.(7分)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放,点A、E,B、D依次在同一条直线上,连接AF、CD.(1)求证:四边形AFDC是平行四边形;(2)已知BC=6cm,当四边形AFDC是菱形时,AD的长为cm.19.(7分)近年来,肥胖已经成为影响人们身体健康的重要因素,国际上常用身体质量指数(BodyMassIndex,缩写BMI)来衡量人体程度以及是否康其计算公式是BMI=,例如:某人身高1.60m,体重60kg,则他的,中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖:BMI≥28为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI值并绘制了两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m,BMI值为27,他想通过健身减重使自己的BMI值达到正常,则他的体重至少需要减掉kg.(结果精确到1kg)20.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B均在格点上,只用无刻度的尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.(1)在图①中,△ABC的面积为;(2)在图②中,△ABC的面积为5;(3)在图③中,△ABC是面积为的钝角三角形.21.(8分)甲、乙两人相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车直达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示:(1)当15≤x≤40时,求乙距山脚的垂直高度y与x之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.22.(9分)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.23.(10分)如图①,在矩形ABCD中,AB=3,AD=5,点E在边BC上,且BE=2,动点P从点E出发,沿折线EB﹣BA﹣AD以每秒1个单位长度的速度运动.作∠PEQ=90°,EQ交边AD或边DC于点Q,连接PQ.当点Q与点C重合时,点P停止运动.设点P 的运动时间为t秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形,如图②,请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.24.(12分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+2(b是常数)经过点(2,2).点A的坐标为(m,0),点B在该抛物线上,横坐标为1﹣m.其中m<0.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B在x轴上时,求点A的坐标;(3)该抛物线与x轴的左交点为P,当抛物线在点P和点B之间的部分(包括P,B两点)的最高点与最低点的纵坐标之差为2﹣m时,求m的值;(4)当点B在x轴上方时,过点B作BC⊥y轴于点C,连接AC、BO.若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC的顶点),设这两个交点分别为点E、点F,线段BO的中点为D.当以点C、E、O、D(或以点C、F、O、D)为顶点的四边形的面积是四边形AOBC面积的一半时,直接写出所有满足条件的m的值.2023年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据数轴上表示某个数的点与原点的距离的大小确定结论.【解答】解:由图可知:实数b在数轴上的对应点到原点O的距离,所以在这四个数中,绝对值最小的数是b.故选:B.【点评】本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:38000000=3.8×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别判断得出答案.【解答】解:A.a3﹣a2,无法合并,故此选项不合题意;B.a2•a=a3,故此选项符合题意;C.(a2)3=a6,故此选项不合题意;D.a6÷a2=a4,故此选项不合题意.故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】由多面体的表面展开图,即可得到答案.【解答】解:多面体的底面是面③,则多面体的上面是⑤.故选:C.【点评】本题考查几何体的表面展开图,关键是由长方体的表面展开图找到相对面.5.【分析】根据点O为AA'、BB'的中点得出OA=OA',OB=OB',根据对顶角相等得到∠AOB=∠A'OB',从而证得△AOB和△A'OB'全等,于是有AB=A'B',问题得证.【解答】解:∵点O为AA'、BB'的中点,∴OA=OA',OB=OB',由对顶角相等得∠AOB=∠A'OB',在△AOB和△A'OB'中,,∴△AOB≌△A'OB'(SAS),∴AB=A'B',即只要量出A'B'的长度,就可以知道该零件内径AB的长度,故选:A.【点评】本题考查了三角形全等的判定与性质,正确运用三角形全等的判定定理是解题的关键.6.【分析】根据直角三角形的边角关系进行解答即可.【解答】解:如图,由题意得,AC=32m,∠A=25°,在Rt△ABC中,∵cos A=,∴AB==(m),故选:D.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.7.【分析】利用基本作图得到AF平分∠MAN,则根据角平分线的画法可对选项进行一一判断.【解答】解:角平分线的作法如下:①以点A为圆心,AD长为半径作弧,分别交AM、AN于点D、E;②分别以点D、E为圆心,DF长为半径作弧,两弧在∠MAN内相交于点F;③作射线AF,AF即为∠MAN的平分线.根据角平分线的作法可知,AD=AE,DF=EF,根据等腰三角形的三线合一可知AF⊥DE,故选:B.【点评】本题考查了用直尺和圆规作角平分线的方法,掌握画法是解题的关键.8.【分析】依据题意,可得A(1,k),B(k,1),再由AB=3,从而2(k﹣1)2=18,进而得解.【解答】解:由题意,得A(1,k),B(k,1).∵AB=3,∴有两点距离公式可得:2(k﹣1)2=18.∴(k﹣1)2=9.∴k=﹣2或4.又k>0,∴k=4.故选:C.【点评】本题考查了反比例函数的图象与性质的应用,解题时需要熟练掌握并理解.二、填空题(本大题共6小题,每小题3分,共18分)9.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣1=(m+1)(m﹣1).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.10.【分析】根据一元二次方程有两个不相等的实数根,Δ=b2﹣4ac>0求解即可.【解答】解:∵关于x的方程x2﹣2x+c=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4c>0,解得:c<1.故答案为:c<1.【点评】本题主要考查一元二次方程根的判别式,熟知一元二次方程的根与Δ=b2﹣4ac 的关系是解题关键.熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.11.【分析】根据题意可知:总路程﹣已跑的路程=离终点的路程,然后列出相应的代数式即可.【解答】解:由题意可得,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为(7.5﹣10x)公里,故答案为:(7.5﹣10x).【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式即可.12.【分析】根据题意求出OA:OA′=1:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC与△A′B′C′的周长比为1:3,故答案为:1:3.【点评】本题考查的是位似变换的概念和性质,掌握位似图形的对应边互相平行是解题的关键.13.【分析】由多边形的内角和及轴对称的性质和三角形内角和可得出结论.【解答】解:∵五边形的内角和为(5﹣2)×180°=540°,∴∠B=∠BAE=108°,由图形的折叠可知,∠BAM=∠EAM=∠BAE=54°,∠BAF=∠FAB'=∠BAM=27°,∠AFB'=∠AFB=180°﹣∠B﹣∠BAF=180°﹣108°﹣27°=45°.故答案为:45.【点评】本题考查了多边形的内角和,三角形的内角和定理,图形的折叠的性质,掌握这些知识点是解题的关键.14.【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令x =0求平移后的抛物线与y轴的交点即可.【解答】解:由题意可知:A(﹣40,4)、B(40,4).H(0,20),设抛物线解析式为:y=ax2+20,将A(﹣40,4)代入解析式y=ax2+20,解得:a=﹣,∴y=﹣+20,消防车同时后退10米,即抛物线y=﹣+20向左平移后的抛物线解析式为:y=﹣+20,令x=0,解得:y=19,故答案为:19.【点评】本题考查了待定系数法求抛物线解析式、函数图象的平移及坐标轴的交点,解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15.【分析】分别运用完全平方公式和乘法分配律将两个括号展开,再进行合并同类项计算即可.【解答】解:原式=a2+2a+1+a﹣a2=(a2﹣a2)+(2a+a)+1=3a+1.当a=时,3a+1=3×+1=+1.【点评】整式的混合运算是初中数学最基本的知识点,考查学生最基本的运算能力,一定要熟练掌握,确保计算结果正确无误.16.【分析】画树状图,共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,∴某同学获一等奖的概率为.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】设原计划平均每天制作x个摆件,根据“结果提前5天完成任务”列分式方程,求解即可.【解答】解:设原计划平均每天制作x个摆件,根据题意,得,解得x=200,经检验,x=200是原方程的根,且符合题意,答:原计划平均每天制作200个摆件.【点评】本题考查了分式方程的应用,理解题意并能根据题意建立方程是解题的关键.18.【分析】(1)根据全等三角形的性质得到AC=DF,∠CAB=∠FDE,根据平行线的判定定理得到AC∥DF,根据平行四边形的判定定理即可得到四边形AFDC是平行四边形;(2)连接CF交AD于O,根据直角三角形的性质得到AC=BC=6(cm),根据菱形的性质得到CF⊥AD,AD=2AO,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵△ACB≌△DFE,∴AC=DF,∠CAB=∠FDE,∴AC∥DF,∴四边形AFDC是平行四边形;(2)解:连接CF交AD于O,∵∠ACB=90°,∠CAB=30°,BC=6cm,∴AC=BC=6(cm),∵四边形AFDC是菱形,∴CF⊥AD,AD=2AO,∴∠AOC=90°,∴AO=AC==9(cm),∴AD=2AO=18cm,故答案为:18.【点评】本题考查了菱形的性质,平行四边形的判定,含30°角的直角三角形的性质,全等三角形的性质,熟练掌握菱形的性质是解题的关键.19.【分析】(1)利用正常人数7除以35%即可得总人数,减去其它人数和即可得答案;(2)用200×偏胖和肥胖和的百分比即可得答案;(3)利用身体质量指数公式算出小张实际体重,再用小张身高算出正常体重的最大值,最后用小张实际体重减去小张正常体重的最大值即可得答.【解答】解:(1)7÷35%=20(人),偏胖人数:20﹣2﹣7﹣3=8(人),条形图如下:(2)200×=110(人),答:公司200名员工中属于偏胖和肥胖的总人数110人;(3)小张实际体重:27×(1.70)2=78.03(kg),小张正常体重的最大值:24×(1.70)2=69.36(kg),∴他的体重至少需要减掉:78.03﹣69.36≈9(kg),故答案为:9.【点评】本题考查条形统计图,扇形图,能结合俩图找到正常体重的人数和百分比是解题关键.20.【分析】(1)先根据三角形的面积求出AB边上的高,再作图;(2)根据网格线的特点及三角形的面积公式作图;(3)根据网格线的特点及三角形的面积公式作图.【解答】解:如图:(1)如图①:△ABC即为所求;(2)如图②:△ABC即为所求;(3)如图③:△ABC即为所求.【点评】本题考查了作图的应用与设计,掌握网格线的特点及三角形的面积公式是解题的关键.21.【分析】(1)设乙距山脚的垂直高度y与x之间的函数关系式为y=kx+b,再利用待定系数法来求解即可;(2)求出甲的函数解析式和乙的解析式,甲的函数解析式和乙的解析式组成方程组解答即可.【解答】解:(1)设乙距山脚的垂直高度y与x之间的函数关系式为y=kx+b,∵直线过(15,0)和(40,300),∴,解得,∴乙距山脚的垂直高度y与x之间的函数关系式为y=12x﹣180;(2)设甲的函数解析式为:y=mx+n,将(25,160)和(60,300)代入得:,解得,∴y=4x+60;∵乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度,∴,解得,∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米.【点评】本题考查了一次函数的应用,待定系数法求一次函数的解析式的运用,图象的交点坐标的求法是解题关键.22.【分析】【感知】根据圆周角定理即可得出答案;【探究】先构造出△PBC≌△EBA(SAS),得出PB=EB,进而得出△PBE是等边三角形,即可得出结论;【应用】先构造出△PBC≌△EBA(SAS),进而判断出∠PBG=90°,进而得出△PBG 是等腰直角三角形,即可得出结论;【解答】【感知】解:∵∠AOB=90°,∴∠APB=∠AOB=45°(在同圆中,同弧所对的圆周角是圆心角的一半),故答案为:45;【探究】证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS),∴PB=EB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠APB=60°,∴△PBE为等边三角形,∴PB=PE=AE+AP=PC+AP;【应用】解:如图③,延长PA至点G,使AG=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAG=180°,∴∠BCP=∠BAG,∵BA=BC,∴△PBC≌△GBA(SAS),∴PB=GB,∠PBC=∠GBA,∵∠ABC=90°,∴∠PBG=∠GBA+∠ABP=∠PBC+∠ABP=∠ABC=90°,∴PG=BP,∵PG=PA+AG=PA+PC,∴PC=PG﹣PA=×2PA﹣PA=3PA,∴==,故答案为:【点评】此题是圆的综合题,主要考查了圆周角定理,圆内接四边形的性质,全等三角形的判定和性质,作出辅助线构造出全等三角形是解本题的关键.23.【分析】(1)证明四边形ABEQ是矩形,进而在Rt△QBE中,勾股定理即可求解.(2)证明△PBE∽△ECD,得出.(3)过点P作PH⊥BC于点H,证明△PHE≌△ECQ得出PE=QE,即可得出结论.(4)分三种情况讨论,①如图所示,当点P在BE上时,②当P点在AB上时,当F,A重合时符合题意,此时如图,③当点P在AD上,当F,D重合时,此时Q与点C重合,则PFQE是正方形,即可求解.【解答】解:如图所示,连接BQ,∵四边形ABCD是矩形,∴∠BAQ=∠ABE=90°,∵∠PEQ=90°,∴四边形ABEQ是矩形,当点P和点B重合时,∴QE=AB=3,BE=2,在Rt△QBE中,,故答案为:.(2)如图所示,∵∠PEQ=90°,∠PBE=∠ECD=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴△PBE∽△ECD,∴,∵BE=2,CD=AB=3,∴.(3)如图所示,过点P作PH⊥BC于点H,∵∠PEQ=90°,∠PHE=∠ECQ=90°,∴∠1+∠2=90°,∠2+∠3=90°,则四边形ABHP是矩形,∴PH=AB=3,又∵EC=BC﹣BE=5﹣2=3,∴PH=EC,∴△PHE≌ECQ(AAS),∴PE=QE,∴△PQE是等腰直角三角形;(4)①如图所示,当点P在BE上时,∵QE=QF=3,AQ=BE=2,在Rt△AQF中,,则,∵PE=t,∴BP=2﹣t,PF=PE=t,在Rt△PBF中,PF2=PB2+FB2,∴,解得:,当时,点F在矩形内部,∴0<t≤符合题意.②当P点在AB上时,当F,A重合时符合题意,此时如图,π则PB=t﹣BE=t﹣2,PE=AP=AB﹣PB=3﹣(t﹣2)=5﹣t,在Rt△PBE中,PE2=PB2+BE2,∴(5﹣t)2=(t﹣2)2+22,解得t=.③当点P在AD上,当F,D重合时,此时点Q与点C重合,则PFQE是正方形,此时t=2+3+2=7.综上所述,0<t≤或t=或t=7.【点评】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24.【分析】(1)将点(2,2)代入抛物线解析式,利用待定系数法即可求解;(2)当y=0时,﹣x2+2x+2=0,求得抛物线与x轴的交点坐标,根据抛物线上的点B 在x轴上时,横坐标为1﹣m,其中m<0,得出,即可求解;(3)证明点B一定在对称轴右侧,分情况讨论:①如图所示,当,即﹣时,②当,即时分别画出图形,根据最高点与最低点的纵坐标之差为2﹣m,建立方程,解方程即可求解;(4)根据B在x轴的上方,得出﹣<m<0,根据题意分三种情况讨论:①当E是AC的中点时,②当F为AO的中点时,③,根据题意分别得出方程,解方程即可求解.【解答】解:(1)将点(2,2)代入抛物线y=﹣x2+bx+2中,得2=﹣4+2b+2,解得:b=2,∴抛物线解析式为y=﹣x2+2x+2=﹣(x﹣1)2+3,∴顶点坐标为(1,3).(2)由y=﹣x2+2x+2,当y=0时,﹣x2+2x+2=0,解得:,,∵抛物线上的点B在x轴上时,横坐标为1﹣m.其中m<0.∴1﹣m>1,∴,解得:,∵点A的坐标为(m,0),∴.(3)令﹣x2+2x+2=0,得x1=1﹣,x2=1+,∴P(1﹣,0),∵m<0,∴1﹣m>1,∴点B一定在对称轴右侧,∴B(1﹣m,﹣m2+3).①如图所示,当,即﹣时,根据题意,3=2﹣m,解得m=﹣1;②当,即时,依题意,3﹣(﹣m2+3)=2﹣m,解得:m=﹣2或m=1(舍去).综上所述,m=﹣1或m=﹣2.(4)如图所示,∵B在x轴的上方,∴且m<0,∴﹣<m<0,∵以点C、E、O、D为顶点的四边形的面积是四边形AOBC面积的一半,线段BO的中点为D,=S△COD,∴S△BCD=S△AOC+S△BOC,S△BOC=S△BCD+S△COD,∵S四边形AOBC①当E是AC的中点,如图,则S四边形AOBC∴,代入y=﹣x2+2x+2,即,解得(舍去)或;②同理当F为AO的中点时,如图所示,S△ACF=S△CFO,S△BCD=S△COD,则点C、F、O、D为顶点的四边形的面积是四边形AOBC 面积的一半,∴,解得;③如图所示,=S,设S△BOC则,∵以点C、E、O、D为顶点的四边形的面积是四边形AOBC面积的一半,线段BO的中点为D,∴,即,∴,∴CF=AO,∴F(﹣m,﹣m2+3),∵B,F关于x=1对称,∴,解得:.综上所述,或或.【点评】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键。
2023年吉林省中考数学真题(解析版)
![2023年吉林省中考数学真题(解析版)](https://img.taocdn.com/s3/m/14d62852b80d6c85ec3a87c24028915f814d847a.png)
吉林省2023年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1. 月球表面的白天平均温度零上126C °,记作+126C °,夜间平均温度零下150C °,应记作( )A. +150C° B. 150C -° C. +276C ° D. 276C-°【答案】B【解析】【分析】根据正负数表示相反意义的量,平均温度零上表示正,平均温度零下表示负即可求解.【详解】解:平均温度零上126C °,记作+126C °,夜间平均温度零下150C °,应记作150C -°,故选:B .【点睛】本题主要考查正负数与实际问题的综合,掌握正负数表示相反意义的量是解题的关键.2. 图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是( )A.B. C. D.【答案】A【解析】【分析】主视图是从几何体正面观察到的视图.【详解】解:领奖台从正面看,是由三个长方形组成的.三个长方形,右边最低,中间最高,故选A .【点睛】本题考查主视图,掌握三视图的特征是解题关键.3. 下列各式计算结果为a 5的是( )A. 32a a +B. 32a a ×C. ()32aD. 102a a ¸【答案】B【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项逐项计算即可求解.【详解】解:A. 3a 与2a 不是同类项,不能合并,故该选项不符合题意;B. 32a a ×5a =,故该选项符合题意;C. ()32a 6a =,故该选项不符合题意;D. 122a a ¸10a =,故该选项不符合题意;故选:B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项是解题的关键.4. 一元二次方程2520x x -+=根的判别式的值是( )A. 33B. 23C. 17D. 【答案】C【解析】【分析】直接利用一元二次方程根的判别式24b ac =-△求出答案.【详解】解:∵1a =,=5b -,2c =,∴()224541172b ac =-=-´´-=V .故选:C .【点睛】此题主要考查了一元二次方程的根的判别式,正确记忆公式是解题关键.5. 如图,在ABC V 中,点D 在边AB 上,过点D 作DE BC ∥,交AC 于点E .若23AD BD ==,,则AE AC的值是( )A. 25 B. 12 C. 35 D. 23【答案】A【解析】【分析】利用平行线分线段成比例定理的推论得出AE AD AC AB=,即可求解.【详解】解:∵ABC V 中,DE BC ∥,∴AE AD AC AB =,∵23AD BD ==,∴22235AE AD AC AD BD ===++,故选:A .【点睛】本题考查平行线分线段成比例定理的推论,解题关键是牢记“平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例”.6. 如图,AB ,AC 是O e 弦,OB ,OC 是O e 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC Ð=°,则BPC Ð的度数可能是( )A. 70°B. 105°C. 125°D. 155°【答案】D【解析】【分析】根据圆周角定理得出2140BOC BAC Ð=Ð=°,进而根据三角形的外角的性质即可求解.【详解】解:∵ BCBC =,70BAC Ð=°,∴2140BOC BAC Ð=Ð=°,∵140BPC BOC PCO Ð=Ð+г°,的∴BPC Ð的度数可能是155°故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.二、填空题(每小题3分,共24分)7. ..【解析】【分析】根据负数的绝对值是它的相反数,可得答案..8. 不等式480x ->的解集为__________.【答案】2x >【解析】【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:480x ->48x >解得:2x >,故答案为:2x >.【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.9. 计算:(3)a b +=_________.【答案】3ab a+【解析】【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键.10. 如图,钢架桥的设计中采用了三角形的结构,其数学道理是__________.【答案】三角形具有稳定性【解析】【分析】根据三角形结构具有稳定性作答即可.【详解】解:其数学道理是三角形结构具有稳定性.故答案为:三角形具有稳定性.【点睛】本题考查了三角形具有稳定性,解题的关键是熟练的掌握三角形形状对结构的影响.11. 如图,在ABC V 中,AB AC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两孤交于点D ,作直线AD 交BC 于点E .若=110BAC а,则BAE Ð的大小为__________度.【答案】55【解析】【分析】首先根据题意得到AD 是BAC Ð的角平分线,进而得到1552BAE CAE BAC Ð=Ð=Ð=°.【详解】∵由作图可得,AD 是BAC Ð的角平分线∴1552BAE CAE BAC Ð=Ð=Ð=°.故答案为:55.【点睛】此题考查了作角平分线,角平分线的定义,解题的关键是熟练掌握以上知识点.12. 《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱.问合伙人数是多少?为解决此问题,设合伙人数为x 人,可列方程为__________.【答案】54573x x +=+【解析】【分析】根据题中钱的总数列一元一次方程即可.【详解】解:设合伙人数为x 人,根据题意列方程54573x x +=+;故答案为:54573x x +=+.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.13. 如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径r 为15m ,点A ,B 是圆上的两点,圆心角120AOB Ð=°,则 AB 的长为_________m .(结果保留π)【答案】10π【解析】【分析】利用弧长公式π180n r l =直接计算即可.【详解】∵半径15m OA =,圆心角120AOB Ð=°,∴AB l n 120π1510π180´´==,故答案为:10π.【点睛】本题考查了弧长计算,熟练掌握弧长公式π180n r l =,并规范计算是解题的关键.14. 如图,在Rt ABC △中,90C BC AC Ð=°<,.点D ,E 分别在边AB ,BC 上,连接DE ,将BDE V 沿DE 折叠,点B 的对应点为点B ¢.若点B ¢刚好落在边AC 上,303CB E CE ¢Ð=°=,,则BC 的长为__________.【答案】9【解析】【分析】根据折叠的性质以及含30度角的直角三角形的性质得出26B E BE CE ¢===,即可求解.【详解】解:∵将BDE V 沿DE 折叠,点B 的对应点为点B ¢.点B ¢刚好落在边AC 上,在Rt ABC △中,90C BC AC Ð=°<,,303CB E CE ¢Ð=°=,,∴26B E BE CE ¢===,∴369BC CE BE =+=+=,故答案为:9.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.三、解答题(每小题5分,共20分)15. 下面是一道例题及其解答过程的一部分,其中M 是单项式.请写出单项式M ,并将该例题的解答过程补充完整.例 先化简,再求值:211a a aM -++,其中100a =.解:原式()()2111a a a a a =-++……【答案】M a =,11a -,99100,过程见解析【解析】【分析】先根据通分的步骤得到M ,再对原式进行化简,最后代入100a =计算即可.【详解】解:由题意,第一步进行的是通分,∴()()2111M a a a a a M a a ×==+++,∴M a =,原式()()2111a a a a a =-++()211a a a -=+()()()111a a a a +-=+1a a-=11a=-,当100a =时,原式1991100100=-=.【点睛】本题考查了分式的化简求值,正确对分式进行化简是解题的关键.16. 2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A ,B ,C ,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.【答案】13【解析】【分析】分别使用树状图法或列表法将甲乙两位选手抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也各有3种不同的抽取情况,所有等可能出现的结果有9种,找出两次卡片相同的抽取结果,即可算出概率.【详解】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,所以甲、乙两位选手演讲的主题人物是同一位航天员的概率3193P ==.解法二:用列表法,根据题意,列表结果如下:AB C AAA BA CA B AB BB CB C AC BC CC 由表格可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,所以甲、乙两位选手演讲的主题人物是同一位航天员的概率3193P ==.【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.17. 如图,点C 在线段BD 上,在ABC V 和DEC V 中,A D AB DE B E Ð=Ð=Ð=Ð,,.求证:AC DC =.【答案】证明见解析【解析】【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC V 和DEC V 中,A D AB DEB E Ð=Ðìï=íïÐ=Ðî∴()ASA ABC DEC ≌V V ∴AC DC =.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.18. 2022年12月28日查干湖冬捕活动后,某商家销售A ,B 两种查干湖野生鱼,如果购买1箱A 种鱼和2箱B 种鱼需花费1300元:如果购买2箱A 种鱼和3箱B 种鱼需花费2300元.分别求每箱A 种鱼和每箱B 种鱼的价格.【答案】每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【解析】【分析】设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,由题意得:21300232300x y x y +=ìí+=î,解得700300x y =ìí=î,答:每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.四、解答题(每小题7分,共28分)19. 图①、图②、图③均是55´的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上.在图①、图②、图③中以AB 为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.【答案】见解析【解析】【分析】根据勾股定理可得AB =【详解】解:如图所示,如图①,AC AB ===,则ABC V 是等腰三角形,且ABC V 是锐角三角形,如图②,AD AB ===,BD ==,则222AD AB BD +=,则ABD △是等腰直角三角形,如图③,AE AB ===ABE V 是等腰三角形,且ABE V 是钝角三角形,【点睛】本题考查了勾股定理与网格问题,等腰三角形的定义,熟练掌握勾股定理是解题的关键.20. 笑笑同学通过学习数学和物理知识,知道了电磁波的波长l (单位:m )会随着电磁波的频率f (单位:MHz )的变化而变化.已知波长l 与频率f 是反比例函数关系,下面是它们的部分对应值:频率f (MHz )101550波长l (m )30206(1)求波长l 关于频率f 的函数解析式.(2)当75MHz f =时,求此电磁波的波长l .【答案】(1)300f l =; (2)4m【解析】【分析】(1)设解析式为k fl =()0k ¹,用待定系数法求解即可;(2)把75MHz f =值代入(1)所求得的解析式中,即可求得此电磁波的波长l .【小问1详解】解:设波长l 关于频率f 的函数解析式为k f l =()0k ¹,把点()10,30代入上式中得:3010k =,解得:300k =,300fl \=;【小问2详解】解:当75MHz f =时,300475l ==,答:当75MHz f =时,此电磁波的波长l 为4m .【点睛】本题是反比例函数的应用问题,考查了求反比例函数的解析式及求反比例函数的函数值等知识,利用待定系数法求得反比例函数解析式是解题的关键.21. 某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告 时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示准备皮尺.【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角a .测出眼睛到地面的距离AB .测出所站地方到古树底部的距离BD .a =________.1.54m AB =.10m BD =.【步骤四】计算古树高度CD .(结果精确到0.1m )(参考数据:sin 400.643cos 400.766tan 400.839°=°=°=,,)请结合图①、图④和相关数据写出a 的度数并完成【步骤四】.【答案】40°,9.9mCD =【解析】【分析】根据测角仪显示的度数和直角三角形两锐角互余即可求得a 的度数,证明四边形ABDE 是矩形得到DE AB =,再解直角三角形求得CE 的度数,即可求解.【详解】解:测角仪显示的度数为50°,∴905040a =°-°=°,∵AB BD ^,ED BD ^,CE AE ^,∴90ABD EDB AED Ð=Ð=Ð=°,∴四边形ABDE 是矩形,10m AE BD ==, 1.54mED AB ==在Rt CAE △中,tan 8.39m CE AE a ==,∴8.39 1.549.939.9m CD CE ED =+=+=».【点睛】本题考查了解直角三角形的实际应用和矩形的判定与性质,熟练掌握解直角三角形的运算是解题的关键.22. 为了解20182022-年吉林省粮食总产量及其增长速度的情况,王翔同学查阅相关资料,整理数据并绘制了如下统计图:20182022-年吉林省粮食总产量及其增长速度(以上数据源于《2022年吉林省国民经济和社会发展统计公报》)注:-=100%´本年粮食总产量去年粮食总产量增长速度去年粮食总产量.根据此统计图,回答下列问题:(1)2021年全省粮食总产量比2019年全省粮食总产量多__________万吨.(2)20182022-年全省粮食总产量的中位数是__________万吨.(3)王翔同学根据增长速度计算方法得出2017年吉林省粮食总产量约为4154.0万吨.结合所得数据及图中信息对下列说法进行判断,正确的画“√”,错误的画“×”①20182022-年全省粮食总产量增长速度最快的年份为2019年,因此这5年中,2019年全省粮食总产量最高.( )②如果将20182022-年全省粮食总产量的中位数记为a 万吨,20172022-年全省粮食总产量的中位数记为b 万吨,那么a b <.( )【答案】(1)161.3(2)3877.9(3)①×;②√【解析】【分析】(1)根据条形统计图,可知2021年全省粮食总产量4039.2;2019年全省粮食总产量为3877.9,作差即可求解.(2)根据中位数定义,即可求解.(3)①根据统计图可知2019年全省粮食总产量不是最高;②根据中位数定义可得3877.94039.23877.92b +=>,即可求解.【小问1详解】解:根据统计图可知,2021年全省粮食总产量为4039.2;2019年全省粮食总产量为3877.9,∴2021年全省粮食总产量比2019年全省粮食总产量多4039.23877.9161.3-=(万吨);故答案为:161.3.【小问2详解】将20182022-年全省粮食总产量从小到大排列为:3632.7,3803.2,3877.9,4039.2,4080.8;∴20182022-年全省粮食总产量的中位数是3877.9万吨故答案为:3877.9.【小问3详解】①20182022-年全省粮食总产量增长速度最快的年份为2019年,但是在这5年中,2019年全省粮食总产量不是最高.故答案为:×.②依题意,3877.9a =,3877.94039.23877.92b +=>∴b a >,故答案为:√.【点睛】本题考查了条形统计图与折线统计图,中位数的计算,从统计图中获取信息是解题的关键.五、解答题(每小题8分,共16分)23. 甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和()m y 与甲组挖掘时间x (天)之间的关系如图所示.为的的(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.【答案】(1)30(2)()312060y x x =+30<£(3)10天【解析】【分析】(1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;(2)设乙组停工后y 关于x 的函数解析式为y kx b =+,用待定系数法求解,再结合图象即可得到自变量x 的取值范围;(3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组已停工的天数为a ,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.【小问1详解】解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,∴甲组挖掘了60天,乙组挖掘了30天,603030-=(天)∴甲组比乙组多挖掘了30天,故答案为:30;【小问2详解】解:设乙组停工后y 关于x 的函数解析式为y kx b =+,将()30,210和()60,300两个点代入,可得2103030060k b k b =+ìí=+î,解得3120k b =ìí=î,∴()312060y x x =+30<£【小问3详解】解:甲组每天挖30021036030-=-(米)甲乙合作每天挖210730=(米)∴乙组每天挖734-=(米),乙组挖掘的总长度为304120´=(米)设乙组己停工的天数为a ,则()330120a +=,解得10a =,答:乙组已停工的天数为10天.【点睛】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图象得到有用信息是解题的关键.24. 【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN .转动其中一张纸条,发现四边形EFMN 总是平行四边形其中判定的依据是__________.【探究提升】取两张短边长度相等的平行四边形纸条ABCD 和EFGH (AB BC <,FG BC £),其中AB EF =,B FEH Ð=Ð,将它们按图②放置,EF 落在边BC 上,FG EH ,与边AD 分别交于点M ,N .求证:EFMN Y 是菱形.【结论应用】保持图②中的平行四边形纸条ABCD 不动,将平行四边形纸条EFGH 沿BC 或CB 平移,且EF 始终在边BC 上.当MD MG =时,延长CD HG ,交于点P ,得到图③.若四边形ECPH 的周长为40,4sin 5EFG Ð=(EFG Ð为锐角),则四边形ECPH 的面积为_________.【答案】(操作发现),两组对边分别平行的四边形是平行四边形;(探究提升),见解析;(结论应用),8【解析】【分析】(操作发现),根据两组对边分别平行的四边形是平行四边形解答即可;(探究提升),证明四边形ABEN 是平行四边形,利用邻边相等的平行四边形是菱形即可证明结论成立;(结论应用),证明四边形ECPH 是菱形,求得其边长为10,作GQ BC ^于Q ,利用正弦函数的定义求解即可.【详解】解:(操作发现),∵两张对边平行的纸条,随意交叉叠放在一起,∴MN EF ∥,NE MF ∥,∴四边形EFMN 是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:两组对边分别平行的四边形是平行四边形;(探究提升),∵MN EF ∥,NE MF ∥,∴四边形EFMN 是平行四边形,∵B FEH Ð=Ð,∴NE AB ∥,又AN BE ∥,∴四边形ABEN 是平行四边形,∴EF AB NE ==,∴平行四边形EFMN 是菱形;(结论应用),∵平行四边形纸条EFGH 沿BC 或CB 平移,∴MD GP ∥,PD MG ∥,∴四边形MNHG 、CDMF 、PGMD 是平行四边形,∵MD MG =,∴四边形PGMD 是菱形,∵四边形EFMN 是菱形,∴四边形ECPH 是菱形,∵四边形ECPH 的周长为40,∴10FH GF ==,作GQ BC ^于Q ,∵4sin 5EFG Ð=,∴45GQ GF =,∴8GQ =,∴四边形ECPH 的面积为10880´=.故答案为:80.【点睛】本题考查了菱形的判定和性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.六、解答题(每小题10分,共20分)25. 如图,在正方形ABCD 中,4cm AB =,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA AB -于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(04x <<),四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm ,CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.【答案】(1)()4x -;x(2)()()2412160241624x x x y x x ì-+<£ï=í-+<£ïî(3)43x =或83x =【解析】【分析】(1)根据正方形中心对称的性质得出,OM OP OQ ON ==,可得四边形PQMN 是平行四边形,证明ANP CQM V V ≌即可;(2)分02x <£,24x <£两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【小问1详解】解:依题意,1AP x x =´=()cm ,则()4PB AB AP x cm =-=-,∵四边形ABCD 是正方形,∴,90AD BC DAB DCB Ð=Ð=°∥,∵点O 是正方形对角线AC 的中点,∴,OM OP OQ ON ==,则四边形PQMN 是平行四边形,∴MQ PN =,MQ NP ∥,∴PNQ MQN Ð=Ð,又AD BC ∥,∴ANQ CQN Ð=Ð,∴ANP MQC Ð=Ð,在,ANP CQM V V 中,ANP MQC NAP QCM NP MQ Ð=ÐìïÐ=Ðíï=î,∴ANP CQM V V ≌,∴()cm MC AP x ==故答案为:()4x -;x .【小问2详解】解:当02x <£时,点Q 在BC 上,由(1)可得ANP CQM V V ≌,同理可得PBQ MDN V V ≌,∵4,2,PB x QB x MC x =-==,42QC x =-,则222MCQ BPQ y AB S S =--V V ()()164242x x x x =--´--241216x x =-+;当24x <£时,如图所示,则AP x =,224AN CQ x CB x ==-=-,()244PN AP AN x x x =-=--=-+,∴()44416y x x =-+´=-+;综上所述,()()2412160241624x x x y x x ì-+<£ï=í-+<£ïî;【小问3详解】依题意,①如图,当四边形PQMN 是矩形时,此时90PQM Ð=°,∴90PQB CQM Ð+Ð=°,∵90BPQ PQB Ð+Ð=°,∴BPQ CQM Ð=Ð,又B BCD Ð=Ð,∴~BPQ CQM V V ,∴BP BQ CQ CM=,即4242x x x x-=-,解得:43x =,当四边形PQMN 是菱形时,则PQ MQ =,∴()()()22224242x x x x -+=+-,解得:0x =(舍去);②如图所示,当PB CQ =时,四边形PQMN 是轴对称图形,424x x -=-,解得83x =,当四边形PQMN 是菱形时,则4PN PQ ==,即44x -+=,解得:0x =(舍去),综上所述,当四边形PQMN 是轴对称图形时,43x =或83x =.【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.26. 如图,在平面直角坐标系中,抛物线22y xx c =-++经过点(0,1)A .点P ,Q 在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ Ð的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m -=时,直接写出m 的值.【答案】(1)221y x x =-++(2)12m = (3)点P 与点Q 的纵坐标的差为1或8(4)13m =或54m =【解析】【分析】(1)待定系数法求解析式即可求解;(2)化为顶点式,求得顶点坐标,进而根据点Q 的横坐标为2m ,即可求解;(3)分AQ x ∥轴时,AP x ∥轴时分别根据抛物线的对称性求得Q 的横坐标与P 的横坐标,进而代入抛物线解析式,求得纵坐标,即可求解;(4)分四种情况讨论,①如图所示,当,P Q 都在对称轴1x =的左侧时,当,P Q 在对称轴两侧时,当点P 在1x =的右侧时,当P 的纵坐标小于1时,分别求得12,h h ,根据21h h m -=建立方程,解方程即可求解.【小问1详解】解:∵抛物线22y xx c =-++经过点(0,1)A .∴1c =∴抛物线解析式为221y x x =-++;【小问2详解】解:∵221y x x =-++()212x =--+,顶点坐标为()1,2,∵点Q 与此抛物线顶点重合,点Q 的横坐标为2m∴21m =,解得:12m =;【小问3详解】①AQ x ∥轴时,点,A Q 关于对称轴1x =对称,22Q x m ==,∴1m =,则212112-+´+=,222211-+´+=,∴()1,2P ,Q ()2,1∴点P 与点Q 的纵坐标的差为211-=;②当AP x ∥轴时,则A P ,关于直线1x =对称,∴2P x m ==,24Q x m ==则242417-+´+=-∴()2,1P ,()4,7Q -;∴点P 与点Q 的纵坐标的差为()178--=;综上所述,点P 与点Q 的纵坐标的差为1或8;【小问4详解】①如图所示,当P Q ,都在对称轴1x =的左侧时,的则021m <<∴102m <<∵()2,21P m m m -++,()()()22,2221Q m m m -++即()22,441Q m m m -++∴()21211P A h y y m m =-=-++-22m m =-+;222441144Q A h y y m m m m=-=-++-=-+∵21h h m-=∴22442m m m m m-++-=解得:13m =或0m =(舍去);②当,P Q 在对称轴两侧或其中一点在对称轴上时,则211m m ³£,,即112m ££,则2122,211h m m h =-+=-=,∴212m m m +-=,解得:m =;③当点P 在1x =的右侧且在直线0y =上方时,即12m <<,1211h =-=,()2222441441h m m m m =--++=-+∴24411m m m-+-=解得:54m =或0m =(舍去);④当P 在直线1y =上或下方时,即2m ³,,()22122121h m m m m =--++=-+,()2222441441h m m m m =--++=-+,()2244121m m m m m\-+--+=解得:1m =(舍去)或0m =(舍去)综上所述,13m =或54m =.【点睛】本题考查了二次函数的性质,待定系数法求解析式,顶点式,熟练掌握二次函数的性质是解题的关键.。
2020年吉林省长春市中考数学试卷(含解析)印刷版
![2020年吉林省长春市中考数学试卷(含解析)印刷版](https://img.taocdn.com/s3/m/159c02075fbfc77da369b136.png)
.
23.(10 分)如图①,在△ABC 中,∠ABC=90°,AB=4,BC=3.点 P 从点 A 出发,沿折线 AB﹣BC 以每秒 5 个单位长度的速度向点 C 运动,同时点 D 从点 C 出发,沿 CA 以每秒 2 个单位长度的速度向 点 A 运动,点 P 到达点 C 时,点 P、D 同时停止运动.当点 P 不与点 A、C 重合时,作点 P 关于直线 AC 的对称点 Q,连结 PQ 交 AC 于点 E,连结 DP、DQ.设点 P 的运动时间为 t 秒. (1)当点 P 与点 B 重合时,求 t 的值. (2)用含 t 的代数式表示线段 CE 的长. (3)当△PDQ 为等腰直角三角形时,求 t 的取值范围.
8
C.
D. 【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得. 【解答】解:x≥3﹣2, x≥1, 故选:D. 5.(3 分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔项中心点为点 B,塔身中心线 AB 与垂 直中心线 AC 的夹角为∠A,过点 B 向垂直中心线 AC 引垂线,垂足为点 D.通过测量可得 AB、BD、 AD 的长度,利用测量所得的数据计算∠A 的三角函数值,进而可求∠A 的大小.下列关系式正确的是 ()
(1)甲车的速度为
千米/时,a 的值为
.
(2)求乙车出发后,y 与 x 之间的函数关系式.
(3)当甲、乙两车相距 100 千米时,求甲车行驶的时间.
5
22.(9 分)【教材呈现】如图是华师版八年级下册数学教材第 121 页的部分内容. 1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?
年.
(2)长春市从 2014 年到 2019 年空气质量为“重度污染”的天数的中位数为
天,平均数为
2020年吉林省长春市中考数学试卷 (解析版)
![2020年吉林省长春市中考数学试卷 (解析版)](https://img.taocdn.com/s3/m/26d019e5250c844769eae009581b6bd97f19bcbd.png)
2020年吉林省长春市中考数学试卷 (解析版)2020年吉林省长春市中考数学试卷一、选择题(共8小题)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.-1 B.-1.5 C.-3 D.-4.22.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为平方米的新少年宫,预计2020年12月正式投入使用.这个数用科学记数法表示为()A.79×10³ B.7.9×10⁴ C.0.79×10⁵ D.7.9×10⁵3.(3分)下列图形是四棱柱的侧面展开图的是()A. B. C. D.4.(3分)不等式x+2<3的解集在数轴上表示正确的是()A. B. C. D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔项中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.XXX6.(3分)如图,AB是O的直径,点C、D在O上,∠BDC=20°,则∠AOC的大小为()A.40° B.140° C.160° D.170°7.(3分)如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与XXX相交于点D,连结CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠B C.∠ACD=∠DCB D.2∠B+∠ACD=90°8.(3分)如图,在平面直角坐标系中,点A的坐标为(3,2),AB⊥x轴于点B,点C是线段OB上的点,连结AC.点P在线段AC上,且AP=2PC,函数y=kx+1.当点C 在线段OB上运动时,k的取值范围是()k (x>0)的图象经过A.<k2 B.2<k3 C.2<k2/3 D.8<k4/3二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费____元.10.(3分)分解因式:a²-4=____.11.若关于 $x$ 的一元二次方程 $x^2 - 2x + m$ 有两个相等的实数根,则实数 $m$ 的值为多少?12.正五边形的一个外角的大小为多少度?13.如图,在 $\triangle ABC$ 中,$\angle ABC=90^\circ$,$AB=BC=2$,以点 $C$ 为圆心,线段 $CA$ 的长为半径作$AD$,交 $CB$ 的延长线于点 $D$,则阴影部分的面积为多少(结果保留 $\pi$)?14.如图,在平面直角坐标系中,点 $A$ 的坐标为 $(0,2)$,点 $B$ 的坐标为 $(4,2)$。
2020年吉林省长春市中考数学评价检测试卷(八)---附答案解析
![2020年吉林省长春市中考数学评价检测试卷(八)---附答案解析](https://img.taocdn.com/s3/m/3bacdbedc77da26925c5b0bb.png)
,
故选:D.
4.【解答】解:A、a+2a=3a,故本选项错误;
B、a•a2=a3,故本选项正确;
C、(2a)2=4a2,故本选项错误;
D、(﹣a2)3=﹣a6,故本选项错误.
故选:B.
5.【解答】解:展开图的这个图形是八边形,故内角和为:(8﹣2)×180°=1080°.
故选:A.
6.【解答】解:根据题意,得 3×4+2x≤24.故选 B.
第 2 页(共 21 页)
13.(3 分)如图,在△ACB 中,∠ACB=90°,点 D 为 AB 的中点,将△ACB 绕点 C 按顺 时针方向旋转,当 CB 经过点 D 时得到△A1CB1.若 AC=6,BC=8,则 DB1 的长为 .
14.(3 分)如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 = AB 1.6m 时,涵洞顶 点与水面的距离是 2.4m.这时,离开水面 1.5m 处,涵洞的宽 DE 为 .
2020 年吉林省长春市中考数学评价检测试卷(八)
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)
1.(3 分)比﹣3 大 2 的数是( )
A.﹣5
B.﹣1
.C 1
.D 5
2.(3 分)2022 年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥
运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为 15.6 亿美元,政府
C 3x+2 4 24 D 3x+2 4 24
7.(3 分)如图,在平面直角坐标系中,一次函数 =y kx+b 和 =y mx+n 相交于点(2,﹣1),
第 1 页(共 21 页)
则关于 、x y 的方程组 的解是( )
2020年吉林省中考数学试卷-答案
![2020年吉林省中考数学试卷-答案](https://img.taocdn.com/s3/m/24a0a891b307e87100f69650.png)
∴△ADE∽△ABC ,
2
2
∴ S△ADE S△ABC
DE BC
1 2
1 ,
4
1 ∵△ADE 的面积为 ,
2
∴△ABC 的面积为 2,
13 ∴四边形 DBCE 的面积 2 ,
22
3 故答案为: .
2
1 14.【答案】 π
2
【解析】解:在 △ABD 与△CBD 中,
AB CB
10
22.【答案】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同
学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏
12.【答案】10
【解析】解:∵AB∥CD∥EF ,
BD AC 1 ∴ ,
DF CE 2
∴DF 2BD 2 5 10 .
故答案为 10.
3 13.【答案】
2
【解析】解:∵D , E 分别是△ABC 的边 AB , AC 的中点,
∴DE 是 △ABC 的中位线,
1 ∴DE∥BC , DE BC ,
四、 19.【答案】解:(1)如图①, MN 即为所求;
(2)如图②, PQ 即为所求;
(3)如图③, △DEF 即为所求. 20.【答案】解:设 AB 与 DE 交于点 F ,如图所示: 由题意得: DF AB , BE CD 1.5 m , DF BC 35 m ,
AF 在 Rt△ADF 中, AFD 90 , tan EDA ,
DF
∴AF DF tan36 35 0.73 25.55m ,
∴AB AF BF 25.55 1.5 27m ;
答:塔 AB 的高度约 27 m .
2020年吉林省长春市中考数学试卷及答案解析
![2020年吉林省长春市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/f081c2e3fd0a79563c1e729f.png)
2020年长春市初中毕业学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1.如图,数轴上被墨水遮盖的数可能为( )A .1-B . 1.5-C .3-D . 4.2-2.为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为( ) A .37910⨯B .47.910⨯C .50.7910⨯D .57.910⨯3.下列图形是四棱柱的侧面展开图的是( )A .B .C .D .4.不等式23x +≥的解集在数轴上表示正确的是( )A .B .C .D .5.比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B ,塔身中心线AB 与垂直中心线AC 的夹角为A ∠,过点B 向垂直中心线AC 引垂线,垂足为点D .通过测量可得AB 、BD 、AD 的长度,利用测量所得的数据计算A ∠的三角函数值,进而可求A ∠的大小.下列关系式正确的是( )A .sin BD A AB=B .cos ABA AD=C .tan ADA BD=D .sin ADA AB=6.如图,AB 是O 的直径,点C 、D 在O 上,20BDC ∠=︒,则AOC ∠的大小为( )A .40︒B .140︒C .160︒D .170︒7.如图,在ABC ∆中,90BAC ∠=︒,AB AC >.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ;②作直线MN ,与边AB 相交于点D ,连结CD .下列说法不一定正确的是( )A .BDN CDN ∠=∠B .2ADC B ∠=∠ C .ACD DCB ∠=∠D .290B ACD ∠+∠=︒8.如图,在平面直角坐标系中,点A 的坐标为()3,2,AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2AP PC =.函数()0ky x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是( )A .02k <≤B .233k ≤≤ C .232k ≤≤ D .834k ≤≤ 二、填空题(本大题共6小题,每小题3分,共18分)9.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费___________元.10.分解因式:24a -=_________.11.若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则实数m 的值为_________.12.正五边形的一个外角的大小为__________度.13.如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==,以点C 为圆心,线段CA 的长为半径作AD ,交CB 的延长线于点D ,则阴影部分的面积为___________(结果保留π).14.如图,在平面直角坐标系中,点A 的坐标为()0,2,点B 的坐标为()4,2.若抛物线23()2y x h k =--+(h 、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为_________.三、解答题(本大题共10小题,共78分)15.先化简,再求值:()()23231a a -+-,其中a =16.现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为1A 、2A ,图案为“保卫和平”的卡片记为B )17.图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB 为边画ABC ∆. 要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形; (2)三个图中所画的三角形的面积均不相等; (3)点C 在格点上.18.在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤? 19.如图,在ABCD 中,O 是对角线AC 、BD 的交点,BE AC ⊥,DF AC ⊥,垂足分别为点E 、F .(1)求证:OE OF =.(2)若5BE =,2OF =,求tan OBE ∠的值.20.空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气.下图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014—-2019年长春市空气质量级别天数统计表2014-2019年长春市空气质量为“达标”和“优”的天数折线统计图根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是_________年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为__________天,平均数为________天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是_________年,这一年空气质量为“优”的天数的年增长率约为___________(精确到1%).(空气质量为“优”“”“”100%“”今年空气质量为优的天数-去年空气质量为优的天数=去年空气质量为优的天数)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.21.已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.22.【教材呈现】下图是华师版八年级下册数学教材第121页的部分内容.【问题解决】如图①,已知矩形纸片()ABCD AB AD >,将矩形纸片沿过点D 的直线折叠,使点A 落在边DC 上,点A 的对应点为A ',折痕为DE ,点E 在AB 上.求证:四边形AEA D '是正方形.【规律探索】由【问题解决】可知,图①中的A DE '∆为等腰三角形.现将图①中的点A '沿DC 向右平移至点Q 处(点Q 在点C 的左侧),如图②,折痕为PF ,点F 在DC 上,点P 在AB 上,那么PQF ∆还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC QP =时,将矩形纸片继续折叠如图③,使点C 与点P 重合,折痕为QG ,点G 在AB 上.要使四边形PGQF 为菱形,则ADAB=___________. 23.如图①,在ABC ∆中,90ABC ∠=︒,4AB =,3BC =.点P 从点A 出发,沿折线AB BC -以每秒5个单位长度的速度向点C 运动,同时点D 从点C 出发,沿CA 以每秒2个单位长度的速度向点A 运动,点P 到达点C 时,点P 、D 同时停止运动.当点P 不与点A 、C 重合时,作点P 关于直线AC 的对称点Q ,连结PQ 交AC 于点E ,连结DP 、DQ .设点P 的运动时间为t 秒.(1)当点P 与点B 重合时,求t 的值. (2)用含t 的代数式表示线段CE 的长.(3)当PDQ ∆为锐角三角形时,求t 的取值范围.(4)如图②,取PD 的中点M ,连结QM .当直线QM 与ABC ∆的一条直角边平行时,直接写出t 的值. 24.在平面直角坐标系中,函数221y x ax =--(a 为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点()1,2时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围. (3)当0x ≤时,若函数221y x ax =--(a 为常数)的图象的最低点到直线2y a =的距离为2,求a 的值.(4)设0a <,Rt EFG ∆三个顶点的坐标分别为()1,1E --、()1,1F a --、()0,1G a -.当函数221y x ax =--(a 为常数)的图象与EFG ∆的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为P '(P '与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为A '.若2AA PP ''=,直接写出a 的值.参考答案一、选择题1.C2.B3.A4.D5.A6.B7.C8.C二、填空题9.()3015m n + 10.()()22a a +- 1l .1m = 12.72 13.2π- 14.72三、解答题15.原式2269627a a a a =-++-=+;当a =279=+=16.树状图如下:P(两次抽取的卡片上图案都是“保卫和平”)19 =.列表法如下表:P(两次抽取的卡片上图案都是“保卫和平”)9=. 17.答案不唯一18.设该村企去年黑木耳的年销量为x万斤依题意得80360203x x+=解得:2x=经检验2x=是原方程的根,且符合题意.答:该村企去年黑木耳的年销量为2万斤.19.(1)证明:在ABCD中,OD OB=∵BE AC⊥,DF AC⊥∴DF BE∴FDO EBO∠=∠又∵DOF BOE∠=∠∴()DFO BEO ASA∆∆≌∴OE OF=(2)∵OE OF =,2OF =∴2OE = ∵BE AC ⊥∴90OEB ∠=︒在Rt OBE ∆中,5BE =,2tan 5OE OBE BE ∠== 20.(1)2018; (2)7,8; (3)2018,89%(4)2018年空气质量好,2018年达标天气天数最多.(答案不唯一) 21.(1)40,480;(2)设y 与x 之间的函数关系式为y kx b =+, 由图可知,函数图象过点()2,80,()6,480,所以2806480k b k b +=⎧⎨+=⎩解得100120k b =⎧⎨=-⎩所以y 与x 之间的函数关系式为100120y x =-. (3)两车相遇前:()801002240100x +-=- 解得:135x =两车相遇后:()801002240100x +-=+ 解得:235x =答:当甲、乙两车相距100千米时,甲车行驶的时间是135小时或235小时. 22.【问题解决】证明:在矩形ABCD 中,90A ADA '∠=∠=︒由翻折得:90DA E A '∠=∠=︒∴90A ADA DA E ''∠=∠=∠=︒ ∴四边形AEA D '是矩形 又∵AD A D '= ∴矩形AEA D '是正方形 【探索规律】PQF ∆是等腰三角形理由:在矩形ABCD 中,ABCD ∴APF PFQ ∠=∠由翻折得:APF FPQ ∠=∠∴PFQ FPQ ∠=∠ ∴FQ PQ =∴PQF ∆是等腰三角形23.(1)当点P 与点B 重合时,54t =.解得45t =. (2)在Rt ABC ∆中,4AB =,3BC =,所以5AC =,3sin 5A =,4cos 5A =. 如图3,当点P 在AB 上时,在Rt APE ∆中,cos 4AE AP A t =⋅=. 所以54CE AC AE t =+=-.如图4,当点P 在BC 上时,在Rt PCE ∆中,75PC t =-,3cos sin 5C A ==. 所以321cos (75)355CE PC C t t =⋅=-=-. (3)先考虑临界值等腰直角三角形PDQ ,那么PE DE =. 如图5,当点P 在AB 上时,在Rt APE ∆中,sin 3PE AP A t =⋅=. 而54256DE AC AE CD t t t =--=--=-, 由PE DE =,得356t t =-.解得59t =. 如图6,当点P 在BC 上时,在Rt PCE ∆中,428sin (75)455PE PC C t t =⋅=-=-. 而3212(75)555DE CD CE t t t =-=--=-, 由PE DE =,得824555t t -=-,解得4945t =.再数形结合写结论.当PDQ ∆为锐角三角形时,509t <<,或537505t <<.(4)t 的值为518或65. 考点伸展 第(4)题的思路如下:如图7,当点P 在AB 上时,延长QM 交BC 于点N . 作QG AB ⊥于G ,作DH BC ⊥于H .由QM AB ,M 是PD 的中点,可知N 是BH 的中点.在Rt PQG ∆中,26PQ PE t ==,所以42455QG PQ t ==. 在Rt DCH ∆中,3655HC DC t ==. 由242463555BC BH HC HC t t t =++=++=,解得518t =. 如图8,当点P 在BC 上时,作PK QM ⊥于K .由QM BC ,M 是PD 的中点,可知2DH PK =.在Rt PQK ∆中,882(75)55PQ PE PC t ===-,所以324(75)525PK PQ t ==-. 在Rt DCH ∆中,4855DH DC t ==. 由2DH PK =,得8242(75)525t t =⨯-,解得65t =.24.(1)当0x =时,2211y x ax =--=-,所以()0,1A -. (2)将点()1,2代入2211y x ax =--=-,得2121a =--.解得1a =-. 所以2221(1)2y x x x =+-=+-(如图1所示).抛物线的开口向上,对称轴为1x =-.因此当1x >-时,y 随x 的增大而增大.(3)抛物线22221()1y x ax x a a =--=---的对称轴为x a =,顶点坐标为()2,1a a --.如图2,如果0a >,那么对称轴在y 轴右侧,最低点就是()0,1A -. 已知最低点到直线2y a =的距离为2,所以()212a --=.解得12a =.如图3,如果0a <,那么对称轴在y 轴左侧,顶点()2,1a a --就是最低点. 所以()2212a a ---=.整理,得()212a +=.解得1a =3),或1a =-+.(4)23a =-,或43-. 考点伸展第(4)题可以这样思考:抛物线221y x ax =--的对称轴为x a =, ()0,1A -,所以2AA a '=-.①如图4,当点P 在EF 边上时,1p x =-.因为1EA OA ==,所以点P 在对称轴x a =的左侧.所以()21PP a '=+. 由2AA PP ''=,得()241a a -=+.解得23a =-. ②如图5,当点P 在FG 边上时,1p y a =-.解方程2211x ax a --=-,得x a =所以PP '=.由2AA PP ''=,得2a -=. 解得43a =-,或0a =(舍去).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将
收集的数据进行了整理,绘制的统计表分别为表 1、表 2 和表 3.
表 1:小莹抽取 60 名男生居家减压方式统计表(单位:人)
减压方式 A B C D E
人数
4 6 37 8 5
表 2:小静随机抽取 10 名学生居家减压方式统计表(单位:人)
减压方式 A B C D E
人数
21331
表 3:小新随机抽取 60 名学生居家减压方式统计表(单位:人)
A.85°
B.75°
C.65°
第 1 页(共 30 页)
D.60°
6.如图,四边形 ABCD 内接于⊙O,若∠B=108°,则∠D 的大小为( )
A.54°
B.62°
C.72°
D.82°
二、填空题(每小题 3 分,共 24 分)
7.分解因式:a2﹣ab=
.
8.不等式 3x+1>7 的解集为
.
9.一元二次方程 x2+3x﹣1=0 根的判别式的值为
21.(7 分)如图,在平面直角坐标系中,O 为坐标原点,点 A,B 在函数 y= (x>0) 的图象上(点 B 的横坐标大于点 A 的横坐标),点 A 的坐标为(2,4),过点 A 作 AD ⊥x 轴于点 D,过点 B 作 BC⊥x 轴于点 C,连接 OA,AB.
(1)求 k 的值. (2)若 D 为 OC 中点,求四边形 OABC 的面积.
2020 年吉林省中考数学试卷
一、单项选择题(每小题 2 分,共 12 分) 1.﹣6 的相反数是( )
A.6
B.﹣6
C.
D.
2.国务院总理李克强 2020 年 5 月 22 日在作政府工作报告时说,去年我国农村贫困人 口减少 11090000,脱贫攻坚取得决定性成就.数据 11090000 用科学记数法表示为
第 4 页(共 30 页)
22.(7 分)2020 年 3 月线上授课期间,小莹、小静和小新为了解所在学校九年级 600
名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将 居家减压方式分为 A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐) 和 E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们
四、解答题(每小题 7 分,共 28 分) 19.(7 分)图①、图②、图③都是 3×3 的正方形网格,每个小正方形的顶点称为格点.A,
B,C 均为格点.在给定的网格中,按下列要求画图:
第 3 页(共 30 页)
(1)在图①中,画一条不与 AB 重合的线段 MN,使 MN 与 AB 关于某条直线对称, 且 M,N 为格点. (2)在图②中,画一条不与 AC 重合的线段 PQ,使 PQ 与 AC 关于某条直线对称, 且 P,Q 为格点. (3)在图③中,画一个△DEF,使△DEF 与△ABC 关于某条直线对称,且 D,E, F 为格点. 20.(7 分)如图,某班数学小组测量塔的高度,在与塔底部 B 相距 35m 的 C 处,用高 1.5m 的测角仪 CD 测得该塔顶端 A 的仰角∠EDA 为 36°.求塔 AB 的高度(结果精 确到 1m). (参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)
() A.11.09×106
B.1.109×107
C.1.109×108 D.0.1109×108
3.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图为( )
A.
B.
C.
D.
4.下列运算正确的是( )
A.a2•a3=a6
B.(a2)3=a5
C.(2a)2=2a2 D.a3÷a2=a
5.将一副三角尺按如图所示的方式摆放,则∠α 的大小为( )
17.(5 分)甲、乙二人做某种机械零件.已知甲每小时比乙多做 6 个,甲做 90 个所用 的时间与乙做 60 个所用的时间相等.求乙每小时做零件的个数.
18.(5 分)如图,在△ABC 中,AB>AC,点 D 在边 AB 上,且 BD=CA,过点 D 作 DE∥AC,并截取 DE=AB,且点 C,E 在 AB 同侧,连接 BE.求证:△DEB≌△ABC.
CD⊥l 于点 D,将水泵房建在了 D 处.这样做最节省水管长度,其数学道理
是
.
12.如图,AB∥CD∥EF.若 = ,BD=5,则 DF=
.
13.如图,在△ABC 中,D,E 分别是边 AB,AC 的中点.若△ADE 的面积为 ,则四
边形 DBCE 的面积为
.
14.如图,在四边形 ABCD 中,AB=CB,AD=CD,我们把这种两组邻边分别相等的
16.(5 分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,
现有三张正面印有“中国结”图案的不透明卡片 A,B,C,卡片除正面图案不同外,
其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图
案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法, 求小吉同学抽出的两张卡片中含有 A 卡片的概率.
四边形叫做“筝形”.筝形 ABCD 的对角线 AC,BD 相交于点 O.以点 B 为圆心,
BO 长为半径画弧,分别交 AB,BC 于点 E,F.若∠ABD=∠ACD=30°,AD=1,
第 2 页(共 30 页)
则 的长为
(结果保留 π).
三、解答题(每小题 5 分,共 20 分) 15.(5 分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中 a= .
.
10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马
每天走 240 里,跑得慢的马每天走 150 里,慢马先走 12 天,快马几天可以追上慢马?
设快马 x 天可以追上慢马,根据题意,可列方程为
.
பைடு நூலகம்
11.如图,某单位要在河岸 l 上建一个水泵房引水到 C 处.他们的做法是:过点 C 作
减压方式 A B C D E
人数
6 5 26 13 10
根据以上材料,回答下列问题: (1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九
第 5 页(共 30 页)
年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处. (2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九 年级 600 名学生中利用室内体育活动方式进行减压的人数.