数学中考中容易出现漏解的题型分析
中考数学试卷试题评析论文
摘要:本文对某地中考数学试卷进行了全面的分析与评价,从试卷的结构、题型、难度等方面进行了详细阐述,旨在为今后的中考数学命题提供有益的参考。
一、引言中考数学试卷作为衡量学生数学素养的重要工具,其命题质量直接影响着学生的考试成绩和教师的教学效果。
本文以某地中考数学试卷为例,对其试题进行了评析,以期为今后的中考数学命题提供有益的借鉴。
二、试卷结构分析1. 试卷总分:本次中考数学试卷满分为150分,分为选择题、填空题、解答题三个部分。
2. 题型比例:选择题占40分,填空题占40分,解答题占70分。
3. 难度分布:选择题难度较低,填空题难度适中,解答题难度较高。
三、题型分析1. 选择题:本次选择题共20题,涉及实数、代数式、函数、几何图形等多个知识点。
题型包括单选题、多选题和判断题。
选择题旨在考察学生对基础知识的掌握程度,题型设计合理,难易适中。
2. 填空题:本次填空题共20题,主要考察学生对数学知识的灵活运用和运算能力。
题型包括实数、代数式、函数、几何图形等知识点。
填空题难度适中,有助于考察学生的实际应用能力。
3. 解答题:本次解答题共5题,包括一道几何题、一道函数题、一道概率统计题和两道综合题。
解答题难度较高,旨在考察学生的综合运用能力、逻辑思维能力和创新能力。
四、试题评价1. 试题内容全面:本次试卷涵盖了初中数学的所有知识点,有利于全面考察学生的数学素养。
2. 难度适中:试题难度分布合理,有利于区分不同层次的学生。
3. 试题新颖:部分试题设计新颖,有助于激发学生的学习兴趣。
4. 试题具有启发性:试题设计注重考察学生的逻辑思维能力和创新能力,有利于培养学生的综合素质。
五、结论通过对本次中考数学试卷的评析,可以看出该试卷在命题方面具有一定的优点。
然而,也存在一些不足之处,如部分试题难度较高,可能对部分学生造成心理压力。
在今后的中考数学命题中,应注重以下方面:1. 试题内容要全面,涵盖所有知识点。
2. 试题难度要适中,有利于区分不同层次的学生。
中考数学试卷分析
掌握和理解。同时,数学也是一门应用学科,需要学生具备一定的解题能力 和应用能力,因此教师也应该注重对学生基本技能的训练。
2、加强对学生思维能力的培养。数学是一门需要思考的学科,思维能力是 学生学好数学的关键。因此,教师在教学中应该注重对学生思维能力的培养,通 过多种方式引导学生积极思考、主动探索,培养学生的创新意识和解决问题的能 力。
参考内容
一、试题评价
本次数学中考试卷,覆盖面广,重点突出,难度适中,无偏题怪题,题型和 易中档题占比均合理。试题按照学生的认知规律和课标要求,注重基础知识的考 查和基本技能的训练。从考试情况看,大部分学生能够较好地掌握所学的概念、 公式及其基本计算方法,并能运用所学知识解决一些实际问题。
二、学生答题情况分析
一、考试概述
本试卷旨在模拟中考数学考试,提供学生在备考阶段进行自我评估和查漏补 缺的机会。试卷内容涵盖了初中数学的核心知识点和常见题型,难度适中,有利 于学生全面而准确地测试自己的数学水平。
二、试卷结构
本试卷分为选择题和解答题两部分,总分为100分。选择题每题4分,共20题; 解答题每题8分,共6题。考试时间为120分钟。
3、解题习惯不好。表现在:解题不规范,思考问题不周密,计算马虎等。
三、教学建议
1、要重视基础知识的落实。基础知识是数学的最基本的知识,是数学解题 的基础。离开了基础知识,数学解题就无从谈起。因此,基础知识一定要抓落实。 在数学教学中,对数学概念、图象、性质、公理、定理等一定要讲透,而且要讲 到位,
四、书写工整,保持卷面整洁
ቤተ መጻሕፍቲ ባይዱ
中考数学常见失分原因及对策
中考数学常见失分原因及对策中考数学的失分原因很多,主要可以归纳为以下几个方面:概念理解不透彻、薄弱环节难以掌握、解题方法不恰当、粗心大意、计算错误等。
针对这些常见失分原因,我们可以采取相应的对策来提高数学考试成绩。
其次,薄弱环节难以掌握也是中考数学常见的失分原因之一、学生在数学学习过程中,往往会遇到一些比较难以理解和掌握的知识点,例如平行线、相似三角形、概率等。
这些薄弱环节容易成为考试的失分点。
要解决这个问题,学生可以通过请教老师或同学,找到适合自己的解题方法和思路。
针对难题,可以多进行一些归纳总结,结合例题和典型题目,逐渐培养解答这类问题的能力。
解题方法不恰当也是导致失分的常见原因之一、很多同学在做题时经常陷入固定的解题模式中,不善于灵活运用解题方法和策略。
针对这个问题,学生可以多多阅读书籍、参加数学竞赛等,培养自己的解题思维。
同时,可以通过多做一些综合性和拓展性的题目,提高运用数学知识进行解决问题的能力。
另外,粗心大意和计算错误是导致失分的重要原因之一、学生在考试中往往会因为粗心大意而漏掉一些关键信息,或者出现计算错误而导致答案错误。
为了避免这个问题,学生可以在考试之前进行充分的复习和准备,注意审题和计算的仔细性。
在做题过程中,可以将关键步骤用箭头或者颜色标出,以避免疏忽和错误。
最后,定期进行模拟考试和真题训练是提高中考数学成绩的有效方法。
通过模拟考试,可以帮助学生了解自己的薄弱环节和易失分点,及时调整学习策略,针对性地进行复习和强化练习。
真题训练可以帮助学生熟悉考试的题型和命题风格,提高应试能力和解题技巧。
综上所述,中考数学常见的失分原因及对策主要包括概念理解不透彻、薄弱环节难以掌握、解题方法不恰当、粗心大意和计算错误等。
通过针对这些问题采取相应的措施和方法,我们可以提高数学考试成绩,取得优异的成绩。
中考数学必考题型分析及解题策略总结
中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
2018中考数学题型专项研究12讲:2018中考数学题型专项研究第3讲:不等式(组)的解法
第3讲不等式(组)的解法1.确定不等式的解集并把它表示在数轴上.2.确定不等式组的解集并把它表示在数轴上.3.确定不等式组的特殊解.1.去分母时,容易出现漏项或者是两边所乘的不是最简公分母.2.去括号时,如果括号前是负因数,容易出现部分变号错误.3.移项时,对“被移动的项”理解错误,导致该变号的不变,不该变号的变了号.4.化系数为1时,两边同时除以未知数的系数,容易把该系数写到分子上.5.在不等式两边同时乘上或除以负数时不等号的方向要改变.6.在数轴上表示解集时,要注意有等号的点用实心点,无等号的点用空心圈.7.确定不等式组的解集时对公共部分的表示不合理,规律:大大取大,小小取小,大小小大取中间,大大小小无解了.去分母、去括号、移项、合并同类项、化系数为1、把解集表示在数轴上.近几年直接考查解不等式(组)题目较少,但不等式(组)是解决实际问题的有效工具,所以能够准确解不等式(组)就显得尤为重要.确定不等式组的解集时,先确定每个不等式的解集,再利用数轴寻找它们的公共部分.【典例解析】【例题1】(2017毕节)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【考点】C3:不等式的解集.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【例题2】关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.【例题3】(2017内蒙古赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题4】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.【专项训练】一、选择题:1.(2017湖南株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【考点】C2:不等式的性质.【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.2.(2017浙江湖州)一元一次不等式组的解是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤2【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.2-1-c-n-j-y【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.3.(2017青海西宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣2x+1<3,得:x>﹣1,∴不等式组的解集为﹣1<x≤1,故选:B.4.(2017•益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.错误!未找到引用源。
中考数学知识重难点分析
数学中考知识重难点分析及学习策略1函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。
运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的方程、不等式、函数也无法学好。
3应用题,中考中占总分的30%左右包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及23道选择、填空题(10分15分),占中考总分的30%左右。
4三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。
只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。
因此在初中数学学习中也是一个重点。
5圆,中考中占总分的10%左右包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。
2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析
2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析◆题型一:直线定点和代数式的值和某字母无关一次函数y=mx+m-1过定点【解析】一次函数过定点问题和整式中和某字母取值无关是同一类题:一次函数过定点实质上指的是和m的取值无关。
按照这种思路过可以解决很多的定点问题。
把一次函数解析式变形:y=m(x+1)-1,我们把(x+1)看作m的系数,若和m的取值无关,则系数(x+1)=0,即x=1,此时y=-1.因此,此一次函数过定点(-1,-1)。
1. 2022·江苏泰州·三模)小明经探究发现:不论字母系数m 取何值,函数()224365y x m x m =−+++的图像恒过一定点P ,则P 点坐标为______. 【答案】3,142⎛⎫− ⎪⎝⎭【分析】根据不论字母系数m 取何值图像恒过一定点P ,取值与m 无关,则字母m 的系数为0,进而可得答案.【详解】解:()224365y x m x m =−+++()224635y x x m x =+−++当46=0x +,即32x =−时,14y =, 所以无论字母系数m 取何值时,图像恒过一定点P 3,142⎛⎫− ⎪⎝⎭. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m 的系数为0时,才与m 的取值无关.2. 整式(ax 2+bx -1)-(4x 2+3x )的最后结果与x 的取值无关,求a ,b 的值。
解:由(1)(ax 2+bx-1)-(4x 2+3x )化简的结果是(a-4)x 2+(b-3)x-1,得a=4,b=3.1.(2022·重庆八中二模)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x-y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +B +E 的值一定是正数;②存在实数x ,y ,使得A+D+2E 的值为-2;③若关于x 的多项式M =3(A −B)+m ⋅B ⋅C (m 为常数)不含x 的一次项,则该多项式M 的值一定大于-3.上述结论中,正确的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据整式的四则运算法则逐个运算即可判断.【详解】解:对于①:B ⋅C +A +B +E =(x +1)(−2x)+2x 2+x +1+2x −y =x −y +1,显然当x =−100,y =1时代入化简后的式子中结果为负数,故①错误;对于②:A +D +2E =2x 2+y 2+2(2x −y)=2x 2+y 2+4x −2y =−2时,整理得到:2(x +1)2+(y −1)2−1=0,显然当x =−1,y =2时代入化简后式子中满足,故②正确;对于③:M =3(A −B)+m ⋅B ⋅C =3(2x 2−x −1)+m(x +1)(−2x)=(6−2m)x 2−(3+2m)x −3, ∵不含x 的一次项,∴320m +=,解出m =−32,此时M =9x 2−3≥−3,即M 的值一定大于等于-3,故③错误;故选:B .【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握整式的四则运算法则是解题的关键. 2.(2022·重庆市育才中学二模)已知多项式A =x 2+2y +m 和B =y 2−2x +n (m ,n 为常数),以下结论中正确的是( )①当2x =且m +n =1时,无论y 取何值,都有A +B ≥0;②当m =n =0时,A ×B 所得的结果中不含一次项;③当x y =时,一定有A ≥B ;④若m +n =2且A +B =0,则x y =;⑤若m =n ,A −B =−1且x ,y 为整数,则|x +y |=1.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且m +n =1时,A+B=4+2y +m +y 2−4+n =y 2+2y +1=(y +1)2,∵无论y 取何值,总有(y +1)2≥0,∴无论y 取何值,都有A +B ≥0,故①正确;②当m =n =0时,A ×B =(x 2+2y )(y 2−2x )=x 2y 2−2x 3+2y 3−4xy ,∴A ×B 所得的结果中不含一次项;故②正确;③当x y =时,A −B =x 2+2y +m −(y 2−2x +n )=x 2+2x +m −x 2+2x −n =4x +m −n , 其结果与0无法比较大小,故③错误;④若m+n=2且A+B=0,则A+B=x2+2y+m+y2−2x+n=x2+y2+2y−2x+2=0,变形得:(x−1)2+(y+1)2=0,∴x=1,y=-1,∴x=-y,故④错误;⑤若m=n,A−B=−1且x,y为整数,则A−B=x2+2y+m−(y2−2x+n)=x2+2y−y2+2x=−1x2−y2+2x+2y+1=0变形得:(x+1)2−(y−1)2=−1,因式分解得:(x+y)(x−y+2)=−1,∵x,y为整数,则必有|x+y|=1.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.3.(2022·江苏泰州·三模)小明经探究发现:不论字母系数m取何值,函数y=2x2+(4m−3)x+6m+5的图像恒过一定点P,则P点坐标为______.,14)【答案】(−32【分析】根据不论字母系数m取何值图像恒过一定点P,取值与m无关,则字母m的系数为0,进而可得答案.【详解】解:y=2x2+(4m−3)x+6m+5y=2x2+(4x+6)m−3x+5时,y=14,当4x+6=0,即x=−32,14).所以无论字母系数m取何值时,图像恒过一定点P(−32【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m的系数为0时,才与m的取值无关.4.(2021·河北唐山·一模)老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,则甲同学给出a 、b 的值分别是a =_______,b =_______;(2)乙同学给出了a =5,b =-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果. 【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x2-3x-1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.【详解】(1)解:(ax2+bx-1)-(4x2+3x )=ax2+bx-1-4x2-3x=(a-4)x2+(b-3)x-1,∵甲同学给出了一组数据,最后计算的结果为2x2-3x-1,∴a-4=2,b-3=-3,解得a=6,b=0,故答案为:6,0;(2)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∴当a=5,b=-1时,原式=(5-4)x2+(-1-3)x-1=x2-4x-1,即按照乙同学给出的数值化简整式结果是x2-4x-1;(3)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.5.(2021·河北唐山·一模)定义:若A−B=m,则称A与B是关于m的关联数.例如:若A−B=2,则称A与B是关于2的关联数;(1)若3与a是关于2a的关联数,则a=__________.(2)若(x−1)2与x+1是关于-2的关联数,求x的值.(3)若M与N是关于m的关联数,M=2mn−n+3,N的值与m无关,求N的值.【答案】(1)1(2)x1=1,x2=2(3)2.5【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m的方程,将M=3mn+n+3代入,用m、n的式子表示出N,再利用N的值与m无关进行计算即可.(1)解:∵3与a是关于2a的关联数,∴3-a=2a,∴a=1,故答案为:1(2)解:(x−1)2−(x+1)=−2,整理得x2−3x+2=0则(x−2)(x−1)=0解得:x1=1,x2=2.∴x的值为1或2;(3)解:(2mn−n+3)−N=m,N=2mn−m−n+3=m(2n−1)−n+3,∵N的值与m无关,∴2n−1=0,∴n=0.5,∴N=2.5.【点睛】本题考查了新型定义题型,解一元一次方程、解一元二次方程,整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.6.(2021·浙江·杭州育才中学二模)已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当|x−1|+(y−2)2=0,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【答案】(1)M=2(2)y=2【分析】(1)先化简M,进而根据非负数的性质求得x,y的值,进而代入求解即可;(2)根据(1)中M的化简结果变形,令含x项的系数为0,进而求得y的值【详解】(1)解:M=(2x2+3xy+2y)−2(x2+x+yx+1)=2x2+3xy+2y−2x2−2x−2yx−2=xy+2y−2x−2|x−1|+(y−2)2=0∴x=1,y=2原式=1×2+2×2−2×1−2=2(2)∵M=xy+2y−2x−2=(y−2)x+2y−2与字母x的取值无关,∴y−2=0解得y=2【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.◆题型二:特殊代数式求值①若m,n是方程2x2−4x−7=0的两个根,则2m2−3m+n的值为【解析】一次代入无法求得结果,出现这种情况,我们可以从先代高次再代低次!把2m2=4m+7代入,原式=m+n+7,然后用韦达定理即可求值。
中考数学易错题解析解方程的常见错误及纠正方法
中考数学易错题解析解方程的常见错误及纠正方法解方程是中学数学中的重要内容,也是容易出错的一个知识点。
在中考数学中,解方程题经常会出现,并且常常成为学生们易错的地方。
本文将从解方程的常见错误入手,探讨解方程题的正确解法和纠正方法,帮助同学们在中考数学中避免这些错误。
一、常见错误1. 忽略分配律:在解方程问题中,常常会有分配律的运算。
例如:2(x + 1) = 3(x - 2)。
有些同学会漏掉分配律,直接将2乘以x和1,3乘以x和2,导致最后得到的方程错误。
2. 步骤混乱:解方程是一个需要有条不紊进行的过程,但有些同学容易在解题过程中步骤混乱。
例如:直接代入计算,没有按照顺序进行合并同类项、消元等步骤,导致最后答案错误。
3. 求解范围错误:解方程的过程中,有时会得到可行解和不可行解。
但有些同学没有注意到这一点,将不可行解作为最后的解答,造成错误。
二、纠正方法1. 仔细阅读题目:解方程题在中考中常常伴随着实际问题。
在解答问题之前,要仔细阅读题目,理解问题的要求和条件。
只有明确了方程的意义和所求的未知数,才能正确解题。
2. 列方程时注重细节:在列方程时,要注意各项系数的符号、操作的顺序等细节。
特别是运用分配律时,要确保每项都正确进行了乘法运算。
3. 使用合适的解法:解方程可以采用多种方法,如消元法、配方法、因式分解等。
不同方程适用不同的方法,需要根据具体情况灵活选择。
在解题过程中,同学们可以多进行练习,熟悉各种解法的应用场景。
4. 检验答案的可行性:在解得方程的根之后,需要进行合理性检验。
将解代入原方程,看是否符合题目条件和要求。
如果不符合,则需要回顾解题过程,找出可能出错的地方。
5. 多进行归纳总结:经常遇到的错误,需要进行归纳总结,并进行自我纠正。
同学们可以将错题整理出来,反复分析错误的原因,并总结出解题的经验和技巧。
三、解方程题的练习方法为了提高解方程的能力,同学们可以进行以下练习:1. 多做基础题:基础题目是掌握解方程的关键。
2025数学中考压轴真题题型分析与解答
题型1 圆综合题
1. [2023江苏泰州中考]已知: A , B 为圆上两定点,点 C 在该圆上,∠ C 为
所对的圆周角.
知识回顾
(1)如图(1),☉ O 中, B , C 位于直线 AO 异侧,∠ AOB +∠ C =135°.
①求∠ C 的度数;
②若☉ O 的半径为5, AC =8,求 BC 的长;
1
2
3
4
5
6
(3)当0< x ≤8时,请直接写出点A'到直线 AB 的距离(用含 x 的式子表示).
1
2
3
4
5
6
(1)【证明】∵将线段 MA 绕点 M 顺时针旋转 n °(0< n ≤180)到 MA ',
∴ A ' M = AM .
∵∠A'MA的平分线 MP 所在直线交折线 AB - BC 于点 P ,
.
答:信号塔 AB 的高度约为20 m.
1
2
3
4
5
6
4. [2023河北中考]如图(1)和图(2),平面上,四边形 ABCD 中, AB =8, BC
=2 , CD =12, DA =6,∠ A =90°,点 M 在 AD 边上,且 DM =2.将线
段 MA 绕点 M 顺时针旋转 n °(0< n ≤180)到 MA ',∠ A ' MA 的平分线 MP 所在
∴△ EBA ≌△ CBF (SAS),∴ AE = CF .
∵ CD = CB - CA = CE - CA = AE ,
∴ CD = CF ,
∴必有一个点 D 的位置始终不变,即点 D 在点 F 处.
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析中考数学中,常见的规律题型主要有数字规律题、图形规律题、字母规律题等。
下面将分别对这几类题型进行解题策略分析。
一、数字规律题数字规律题是指给出一个数列,要求找出其中的规律,根据规律推算出后面的数。
解题策略:1. 观察数列的前几项,并找出其中的规律。
如果数列是等差数列或等比数列,可以通过计算公式来求得后面的数;2. 如果数列没有明显的规律,可以尝试逐项进行计算,观察相邻的数之间的关系,再进行推算。
例如:1. 找出下列数列的规律,并写出下一个数:2, 4, 6, 8, 10, ...解答:观察数列可以发现,每一个数都比前一个数大2,因此下一个数为12。
解题策略:1. 观察图形的形状、线条、颜色等特征,寻找相邻图形之间的关系;2. 如果图形之间的关系不明显,可以尝试对每个图形进行具体的计数,观察每个图形的部分与整体的关系;3. 对于复杂的图形,可以利用分解法,将图形拆解成简单的几何形状进行分析。
例如:1. 下面的图形中,哪个图形是多余的?为什么?解答:观察图形可以发现,每两个圆之间的扇形线条都是由上一个图形顺时针旋转45度得到的,因此D图是多余的。
2. 绘制下一个图形:*********解答:观察图形可以发现,每一行的星号个数满足一个规律,即n(n+1)/2,下一行应该有4(4+1)/2=10个星号,因此下一个图形为:*************************2. 找出下列字母序列的规律,并写出下一个字母:F, E, D, G, F, O, N, I, U, ...解答:观察字母可以发现,前四个字母是逆序的,再接下来的四个字母是顺序的,因此下一个字母应该是顺序的,即V。
在解答规律题时,需要有耐心和细心观察,并通过不断尝试和分析寻找规律。
掌握一些常用的解题策略,对于解决规律题会有很大帮助。
中考数学试题研究与分析
中考数学试题研究与分析中考数学作为中学数学教学的重要组成部分,在学生的数学学习中具有重要的地位。
一直以来,中考数学试题都是广大数学教学工作者关注的热点,这些试题从题型、难度、命题思路等各个方面反映了中小学数学教学的现状及其评价标准。
本文将对中考数学试题进行一些研究与分析,以期对广大数学教育工作者进行一些借鉴和提高的意义。
一、对试题命制的理解一份试卷的命制,就是列出本试卷所应该考查何种题型和何种难度的现实操作过程。
从命制的角度来看,试卷要想考查学生的全面能力,首先就要注重试题的构思与异化力度。
其次,要注重试卷整体的平衡性。
例如,子题数目的平均分配,时限及总分的分配,题型难度的梯度等等,这些方面都要充分地考虑。
此外,命制试卷时还应该注意尽量减小各类无关因素的干扰,例如环境、情感、认知水平等等因素。
二、题型的分析中考数学题型的多样性是中考数学教学重要特征之一。
中考数学试题的题型相对繁多,题型较多,既考查了学生的知识技能,也考查了学生的思维能力。
下面我们以基础题型为例,简要分析一下中考数学试卷的题型:一、选择题选择题包括单选题和多选题,这是中考数学试卷上最为基础和普遍的题型。
选择题往往考查学生的知识掌握能力,而且评分比较方便,因此中考的选择题占比相当高。
选择题有三种思考方式:选择题的选项可以直接帮助作出判断,选择题的选项可以作为辅助推断,选择题的选项可以通过分析弄清题目。
二、填空题填空题也是中考数学试卷上常见的一种题型,它通过填空来让学生掌握基本的计算技能。
填空题虽然简单,但是对于提高学生的思维能力也有很大的作用。
如可以要求学生在填数的过程中思考外推与内推的规律、特征等等。
填空题一般要求学生注意填写单位,确定小数点位数等等。
三、简答题中考数学试卷上的简答题主要是通过简短的文字问题来考察学生的基本数学知识和基本思维能力。
简答题通过文字问题来考查学生的计算能力,同时也可以提高学生的数学素养。
简答题可分为三个方面:思维性的、计算性的与测量性的。
中考数学题型分析及解题技巧归纳
中考数学题型分析及解题技巧归纳中考要考虑初中毕业生升入普通高中后继续学习的潜在能力,但普通高中教育还是基础教育的范畴,因此,中考既要坚持考查基础知识、基本方法和基本技能,又要坚持考查学科能力。
这次小编给大家整理了中考数学题型分析及解题技巧,供大家阅读参考。
目录中考数学各类题型解题技巧1.数形结合思想就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2.联系与转化的思想事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3.分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4.待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5.配方法就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6.换元法在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7.分析法在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
中考数学10道经典题型分析
中考数学10道经典题型分析跟大家分享一下近期初三数学总复习的一些好的题目,相信总有一款题目你会感兴趣。
第1题、第2题:阿氏圆的经典题目。
这是最值经常见的题目,确定动点的运动轨迹,构造母子相似三角形解决线段的系数,三点共线时距离最短。
具体技巧请参加题目解答与分析。
经典题目1:阿氏圆经典题目。
经典题目2:阿氏圆问题。
第3题:费马点问题。
费马点问题也是最值问题最常见的题型,三线线段之和最短,通过旋转构造全等三角形,实现线段的转换(移到同一直线上),四点共圆时,线段之和最短。
经典题目3:胡不归问题。
第4题:胡不归问题。
胡不归问题同样的线段最值常见问题,AB+kCD的最值问题,首先要解决其中一条线段的K值,阿氏圆通常采用构造母子相似三角形来解决这个问题,而胡不归通常采用三角函数来解决这个问题。
这道综合题还是很不错的,值得练一练。
经典题目4:胡不归问题。
第5,6题:二次函数中的a,b,c问题。
在选择题中,这也算是比较有点难度的问题了,而且考试的频率往往非常高,需要熟练掌握。
基本的技巧我已经在下面列出了。
经典题目5:二次函数多结论问题。
经典题目7:二次函数多结论问题。
第7题:相似三角形综合题目。
这是一次模拟测验的倒数第2题,三角形综合题。
这道题比较好,是因为它不只一种解法,尤其是在第3问中,有不同的作辅助线的方法,有点意思。
经典题目7:三角形综合题。
第8题:中考压轴题模拟题。
这是深圳南山区联考模拟卷的压轴题,最后一问其实并不难,根据题意不难理解,动点的运动轨迹是某个圆的一段弧,在同一个圆中,同弧(弦)所对的圆周角相等,从而可以确定动点的运动轨迹,三点共线时,由距离最短。
具本思路和过程可参照下面答案。
经典题目8:中考压轴题目。
第9题:平行四边形的存在性问题。
这道题目真的很不错,弄懂这道题目,平行四边形的存在性问题就基本弄懂了。
我在参考答案中列举了三种常见的方法,其中包括点的坐标平移法,中点坐标(平行四边形对角顶点坐标之间的关系要熟练掌握)等。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析
中考数学中,规律题是一种常见的题型。
这类题目要求考生根据给定的一组数据,找
出其中的规律或者推算出未给出的数据。
在解题过程中,考生需要观察、分析,运用一些
数学知识和思维方法进行推理,最终得出正确的答案。
下面,我们将对中考数学常见的规
律题进行题型分类和解题策略分析。
一、数字规律题
数字规律题是指给定一组数字,要求找出其中的规律或者推算出下一个数字。
这类题
目一般可以分为以下几种类型:
1.等差数列
等差数列是一组数字按照一定的规律递增或递减得到的数列。
考生在解答这类题目时,需要观察给定的数字之间的差值是否相等,并用差值推算出下一个数字。
解题策略是:观
察前后两个数字之间的差值,如果差值相等,则下一个数字为当前数字加上差值;如果差
值不等,则需要进一步观察找出规律。
3.特殊规律
在数字规律题中,有些题目的规律可能比较特殊,没有明显的等差或等比关系,考生
需要观察数字之间的其他特征,如数字之间的和、乘积、平方等关系,通过推理找出规
律。
2.图形填空
图形填空是指给定一组图形,有一个图形缺失,要求从选项中选择一个图形填入缺失
的位置,使整个图形序列符合某种规律。
考生在解答这类题目时,需要观察给定的图形,
并根据规律确定缺失图形的特征。
解题策略是:观察给定的图形之间的变化规律,确定缺
失图形应该具有的特征,并从选项中选择符合规律的图形。
中考数学常见”陷阱“题型汇总
中考数学常见”陷阱“题型汇总一、数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程与不等式陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
中考数学题型深度分析
中考数学题型深度分析数学作为中考科目之一,是一个重要的考察学生逻辑思维和解决问题能力的科目。
在中考数学试卷中,各种题型都有其特点和要求。
本文将对几种常见的数学题型进行深度分析,帮助同学们更好地应对中考数学考试。
一、选择题选择题是中考数学试卷中最常见的题型之一。
在这一题型中,学生需要在给出的选项中选择正确的答案。
选择题的特点是简单明了,但往往需要较高的逻辑分析能力。
举个例子:例题:下列四个数中,哪个数是偶数?A. 17B. 22C. 29D. 31解析:题目要求找出一个偶数,因此首先要了解什么是偶数。
偶数是可以被2整除的数,而只有22满足这个条件,所以答案是B。
在解答选择题时,学生要仔细阅读题目,理解题意,分析选项,选出正确的答案。
二、填空题填空题是中考数学试卷中另一种常见的题型。
在这种题型中,学生需要根据题目的要求填写正确的数值或式子。
填空题的特点是要求学生综合运用所学的数学知识,进行逻辑思考和计算。
举个例子:例题:已知直角三角形的直角边长分别是3cm和4cm,求斜边的长。
解析:利用勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
根据题目中给出的条件,可以计算得出斜边的长为5cm。
在解答填空题时,学生要通过对已知条件的理解和运算的灵活性,推导出正确的答案。
三、计算题计算题是中考数学试卷中常见的一种题型。
在这种题型中,学生需要根据给定的条件进行计算,得出正确的结果。
计算题的特点是注重计算过程和答案的准确性。
举个例子:例题:有一个五边形,每个内角是120°,求它的外角和。
解析:五边形的外角和等于360°,而每个内角是120°,因此外角就是360°- 120°= 240°。
在解答计算题时,学生要注意计算的步骤和方法,确保计算过程正确,并得出准确的结果。
四、应用题应用题是中考数学试卷中相对较难的一种题型。
在这种题型中,学生需要将所学的数学知识应用到实际问题中,进行思考和解决。
中考数学二次函数压轴题题型归纳(学生版)
中考数学二次函数压轴题题型归纳(学生版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学二次函数压轴题题型归纳(学生版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学二次函数压轴题题型归纳(学生版)的全部内容。
中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:2、中点坐标:线段的中点的坐标为: 直线()与()的位置关系: (1)两直线平行且 (2)两直线相交(3)两直线重合且 (4)两直线垂直 3、一元二次方程有整数根问题,解题步骤如下:① 用和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式. 例:关于的一元二次方程有两个整数根,且为整数,求的值。
4、二次函数与轴的交点为整数点问题.(方法同上)例:若抛物线与轴交于两个不同的整数点,且为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于的方程(为实数),求证:无论为何值,方程总有一个固定的根。
6、函数过固定点问题,举例如下:已知抛物线(是常数),求证:不论为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
7、路径最值问题(待定的点所在的直线就是对称轴)(1)如图,直线、,点在上,分别在、上确定两点、,使得之和最小.()()22B A B A x x y y AB-+-=AB C ⎪⎭⎫⎝⎛++22B A B A y y x x ,11b x k y +=01≠k 22b x k y +=02≠k ⇔21k k =21b b ≠⇔21k k ≠⇔21k k =21b b =⇔121-=k k∆x()01222=-m x m x++5<m m m x ()3132+++=x m mx yx m x 23(1)230mx m xm --+-=m m 22-+-=m mx x y m m 1l 2l A 2l 1l 2l M N MN AM+(2)如图,直线、相交,两个固定点、,分别在、上确定两点、,使得之和最小.(3)如图,是直线同旁的两个定点,线段,在直线上确定两点、(在的左侧 ),使得四边形的周长最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考中容易出现漏解的题型分析
“数学是锻炼思维的体操”,解数学题不仅能训练思维的灵活性,亦能培养思维的周密性。
近几年各省市的中考数学命题注意了对学生思维周密性的考查,可是许多学生在解题时往往只满足于求出一解而导致解题不完整,出现漏解。
因此,剖析解数学题时出现漏解的常见原因,对于培养同学们的思维品质、提高解题能力具有重要的意义。
本文以中考试题为例,剖析产生漏解的几种常见原因,供复习时参考。
一、思维定势干扰
例1. 直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于______。
错解:由勾股定理得,该直角三角形的斜边1086b a c 2222=+=+=。
而直角三角形的外接圆的直径就是它的斜边,所以这个三角形的外接圆的半径等于5。
剖析:这里受勾股定理中常见的勾股数6,8,10的影响,把6,8作为直角边,实际上8也可以作为斜边,即:
(1)当6,8分别为直角边时,第三边即斜边为10;
(2)当6为直角边,8为斜边时,第三边是另一直角边为72。
所以这个三角形的外接圆的半径等于5或7
例2. 已知实数a 、b 满足2b 2b ,2a 2a 22=+=+,求b
1a 1+的值。
错解:由题意知,a 、b 是方程2x 2x 2=+的两个实数根,根据韦达定理得2b a -=+,2ab -=。
12
2ab b a b 1a 1=--=+=+∴ 剖析:此种解答受根与系数的关系的影响,认为a 、b 一定是方程2x 2x 2=+的两个不等实根,实际上a 与b 的值也可以相等。
(1)当b a ≠时,解答如上所述。
(2)2x 2x 2=+的根是31x ±-= 当31b a +-==时
133
12a 2b 1a 1+=+-==+ 当31b a --==时
313
12a 2b 1a 1-=+-==+
二、审题草率
例3. 一组数据5,7,7,x 的中位数与平均数相等,则x 的值为_____________。
错解:由题意得74
x 775=+++ 9x =∴
剖析:这组数据的中位数不一定是7,应根据x 的大小位置分类讨论求解。
(1)当x>7时,解法同上。
(2)当7x 5≤≤时,这组数据排列为5,x ,7,7。
依题意得4
x 7752x 7+++=+ 解得5x =
(3)当x<5时,这组数据排列为x ,5,7,7 依题意得4
x 775257+++=+ 解得x=5,这与x<5矛盾
综上所述,x 的值为5或9
例4. 一次函数y=kx+b 的自变量的取值范围是6x 3≤≤-,相应函数值的取值范围是2y 5-≤≤-,则这个函数的解析式为_______________________。
错解:依题意可知,当x=6时,2y -=
当3x -=时,5y -=
则有⎩
⎨⎧-=+--=+5b k 32b k 6 解得⎪⎩⎪⎨⎧-==4
b 31k ∴这个函数的解析式为4x 3
1y -= 剖析:错解只考虑了当k>0时的情况,实际上当k<0时,题设条件也能成立,即当x=6时,5y -=;当3x -=时,2y -=。
利用待定系数法可求得此时31
k -=,3b -=。
所以这个函数的解析式为4x 31y -=或3x 3
1y --=。
三、忽视了数学的一些规定
例5. 当a 取什么数时,关于未知数x 的方程01x 4ax 2=-+只有正实数根? 错解:由题意得⎪⎪⎪⎩
⎪⎪⎪⎨⎧>-=⋅>-=+≥+=∆0a 1x x 0a 4x x 0a 4162121 解得0a 4<≤-
剖析:误认为这一定是一元二次方程。
正确解法是
当a=0时,原方程是关于x 的一次方程,只有正实根4
1x =
;当0a ≠时,原方程是关于x 的一元二次方程,0a 4<≤-时只有正实根。
所以,a 的取值范围是0a 4≤≤-
四、忽视图形的位置或形状
例 6. 若圆O 的直径AB 为2,弦AC 为2,弦AD 为3,则OCD S 扇形(其中O OCD S S 2圆扇形<)为_________________________。
错解:如图1所示,过O 点分别做OE ⊥AC ,OF ⊥AD
则1OA =,22AE =,2
3AF = 由此可得,∠AOE=45°,∠AOF=60°
于是∠COD=∠AOD -∠AOC=2∠AOF -2∠AOE=120°-90°=30°
12
360130S 2OCD ππ=⨯⨯=∴扇形
图1
剖析:上述解法只考虑了一种情况,即弦AC 和弦AD 在圆心的同侧,而忽略了弦AC 和弦AD 在圆心O 的两侧的情况。
如图2所示,同上述作法,可求∠COD=150°,从而求得125S OCD π=扇形,综上所述,OCD S 扇形的面积为12
π或125π。
图2
例7. 为美化环境,计划在某小区内用30m 2的草皮铺设一块边长为10m 的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。
错解:分两种情况计算,不妨设AB=10m ,过点C 作CD ⊥AB ,垂足为D
(1)当AB 为底边时,AD=DB=5(m )(如图3所示) 由30CD AB 2
1S ABC =⋅=∆得CD=6(m ) )m (6156BC AC 22=+==∴
图3
(2)当AB 为腰时(如图4所示)
AC=AB=10(m ) 则)m (2BD ),m (8CD AC AD 22==-=
图4
剖析:上述解法虽然进行了分类计算,看似正确,其实仍然漏掉了一种情况:当AB 为腰且三角形为钝角三角形时(如图5所示),AB=BC=10(m ),AD=AB+BD=18(m )
)m (106186AC 22=+=∴
图5
五、忽视了比例线段之间的不同对应关系
例8. (江西)如图6所示,已知△ABC 内接于圆O ,AE 切圆O 于点A ,BC//AE 。
(1)求证:△ABC 是等腰三角形;
(2)设AB=10cm ,BC=8cm ,点P 是射线AE 上的点,若以A 、P 、C 为顶点的三角形与△ABC 相似,求AP 的长。
图6
错解:(1)略
(2)过点C 作AB 的平行线交AE 于点P (如图6所示)
由BCA APC ∆~∆得AP :BC=AC :BA
又由(1)知AC=BA
cm 8BC AP ==∴
剖析:错解遗漏了另一种情况,如图7所示,过点C 作圆O 的切线交AE 于点P 2,则AP 2=CP 2。
图7
CBA ACB CAP ACP 22∠=∠=∠=∠ 2
25810BC AC AP BC
:AC AC :AP BAC C AP 22222===∴=∴∆~∆∴。