数字基带信号及常用的编码
实验二_数字基带信号
![实验二_数字基带信号](https://img.taocdn.com/s3/m/044da51919e8b8f67d1cb9b8.png)
实验二数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、基本原理本实验使用数字信源模块和HDB3编译码模块。
1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:CLK 晶振信号测试点BS-OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下:晶振CRY:晶体;U1:反相器7404分频器U2:计数器74161;U3:计数器74193;U4:计数器40160并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应八选一U5、U6、U7:8位数据选择器4512三选一U8:8位数据选择器4512倒相器U20:非门74HC04抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
第6章_数字信号的基带传输1
![第6章_数字信号的基带传输1](https://img.taocdn.com/s3/m/133d5af1ba0d4a7302763add.png)
3. 单极性归零码RZ : 1——正电平、0——零电平。在发送1
码时,正电平持续的时间小于码元持续的时间。即:脉冲宽度
比码元持续时间短。 优点:(1)可以直接提取同步信号; 缺点: (1) 有直流分量; (2)判决门限不能稳定在最佳门限上,使抗噪性能变 坏。 应用:作为过渡码型,以提取同步信号。 概念:脉冲宽度τ与码元宽度Tb之比τ/Tb叫占空比 。
双向码波形
优点:(1)最长连0、连1数为2。 (2)定时信息丰富(电平跳变点多) (3)编码电路简单 缺点:(1)码元速率比编码前提高了一倍。 应用:数据终端设备在中速短距离上的传输。如以太网
10 .密勒码(Miller) : 1——用10或01表示; 0——用“00‖或11表示。 应用:用于气象卫星和磁记录,低速基带数传机中。
第6 章 数字信号的基带传输
4.1.2 数字基带信号功率谱
研究基带信号的频谱结构是十分必要的,通过谱分析,
我们可以了解信号需要占据的频带宽度, 有无直流分量, 有无定时分量等)。
所包含的频谱分量(
针对信号谱的特点来选择相匹配的信道。
数字基带信号是随机的脉冲序列,用功率谱来描述它的 频谱特性。但通常求解功率谱密度函数都是十分复杂的过程。
1. 单极性不归零码NRZ : 1——正电平、0——零电平。在一个码元的持续期间电 平值不归零(电平值保持不变),很多终端设备输出 的都是这种码。 优点:(1) 发送能量大,有利于提高接收端信噪比;
(2) 占用频带较窄;
缺点:(1) 有直流分量;
(2) 不能直接提取位同步信息;
(3)判决门限取在‘1’码电平的一半,不稳定使抗噪性能变坏。
(3) 码型变换设备简单可靠;
(4) 数字基带信号占据较小的带宽,以提高频带利用率。
数据通信原理第6章
![数据通信原理第6章](https://img.taocdn.com/s3/m/17d6a329647d27284b735158.png)
码型的频域特性 抗噪声能力 提取位定时信息 简单二元码 1B2B码 AMI码 HDB3码 2B1Q码
2. 二元码
每个码元上传送一位二进制信息
3. 三元码
4. 多元码
每个码元上传送一位多进制信息
28
2.简单二元码的功率谱
花瓣形状:主瓣,旁瓣 主瓣带宽:信号的近似带宽-----谱零点带宽
数字信息--------------->码型---------->数字信息
5
数字基带信号的码型设计原则
⑴ 码型应不含有直流,且低频成分小,尽量减少高频分量以节约 频率资源减少串音;
(2)码型中应含有定时信息,便于提取定时信息;
(3)码型变换设备要简单; (4)编码应具有一定的检错能力; (5)编码方案应对信息类型没有任何限制; (6)低误码率繁殖;
H ( ) GT ( )C( )GR ( )
假定输入基带信号的基本脉冲为单位冲击δ(t),这样发送 滤波器的输入信号可以表示为
d (t )
k
a (t kT )
k b
图 6 – 6 基带传输系统简化图
38
其中ak 是第k个码元,对于二进制数字信号,ak 的取值为0、 1(单极性信号)或-1、+1(双极性信号)。
(7) 高的编码效率;
6
7
8
1.单极性非归零(NRZ)码 单极性:1---高电平;0---0电平,码元持续期间电平不变 非归零:NRZ (nor-return to zero) 有直流且有固定0电平,多用于终端设备或近距离传输 (线路板内或线路板间);
特点:发送能量大,有利于提高收端信噪比;信道上占 用频带窄;有直流分量,导致信号失真;不能直接提取 位同步信息;判决门限不能稳定在最佳电平上,抗噪声 性能差;需一端接地。
通信原理(第六章 数字基带传输系统)图片公式
![通信原理(第六章 数字基带传输系统)图片公式](https://img.taocdn.com/s3/m/3fd24ac89ec3d5bbfd0a74e3.png)
七、什么是眼图?眼图模型、说明什么问题?
八、时域均衡:基本原理、解决什么问题?如何衡量均 衡效果?
一、数字基带系统和频带系统结构
一、数字基带信号(电波形)及其频谱特性(1)
二元码:幅度取值只有两种“1”、“0”或“1”、 “-1”
单极性非归零码:用高低电平分别表示“1”和“0”, 如图6-1(a) 。一般用于近距离之间的信号传输 双极性非归零码:用正负电平分别表示“1”和“0”, 如图6-1(b)。应用广泛,适应于在有线和电缆信道中 传输。 单极性归零码:有电脉冲宽度比码元宽度窄,每个脉 冲都回到零电位。如图6-1(c)。利于减小码元间波形 的干扰和同步时钟提取。但码元能量小,匹配接收时 输出信噪比低些
二、基带传输码的常用码型(4)
HDB3特点:保持AMI码的优点,三元码,无直流分量,主 要功率集中在码速率fb的1/2出附近(如图)。 位定时频率分量为零,通过极性交替规律得到检错能力。 增加了使连0串减少到 至多3个的优点,而不管 信息源的统计特性如何。
对于定时信号的恢复 是十分有利的。广泛应 用于基带传输与接口码。
Pv (w) = 2p å
¥ m =-
Cn d (w - mws )
2
Pv ( f ) = å
2
Cn d ( f - mf s )
2
故稳态波的双边功率谱密度
Pv ( f ) = å
¥ m =-
f s [ PG1 (mf s ) + (1 - P)G2 (mf s )] ? d ( f
mf s )..(6.1 - 14)
代入(6.1-26)得单极性非归零波形的双边功率谱密度
Ps (w) = Ts 2 1 Sa (p fTs ) + d ( f )..(6.1 - 30) 4 4
数字基带信号及常用的编码
![数字基带信号及常用的编码](https://img.taocdn.com/s3/m/0430854f77232f60ddcca172.png)
数字基带信号1.1 基带信号的基本概念数字基带信号可以来字计算机、电传机等终端数据的各种数字代码,也可以来自模拟信号经数字化处理后的脉冲编码(PCM)信号等,是未经载波信号调制而直接传输的信号,所占据的频谱从零频或很低频开始。
1.2 几种数字基带信号的基本波形1.2.1 单极性波形这是一种最简单的基带信号波形,用正电平和零电平分别表示对应二进制“1”和“0”,极性单一,易于用TTL和CMOS电路产生。
缺点是有直流分量,要求传输线路具有直流传输能力,因而不适用有交流耦合的远距离传输,只适用于计算机内部或者极进距离的传输,信号波形图如图1-1所示。
图1-1 单极性波1.2.2 双极性波形这种波形用正、负电平的脉冲分别表示二进制代码“1”和“0”,其正负电平的幅度相等、极性相反,当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接受端恢复信号的判决电平为零,因而不熟信道特性的变化的影响,扛干扰能力也叫强,信号波形图如图1-2所示。
图1-2 双极性波1.2.3 单极性归零波形这种波形是指它的有电脉冲宽度τ小于码元Ts,即信号电压在一个码元终止时刻前总要回到零电平,通常归零波使用半占空码,即占空比(τ/Ts)为50%,从单极性波可以直接提取定时信息,是其他码型提取位同步信息时常采用的一种过渡波形。
图1-3 单极性归零波1.2.4 双极性归零波形这种波形兼有双极性和归零波形的特点,由于其相邻脉冲之间存在零电位的间隔,是的接受端很容易识别出每个码元的起止时间,从而使收发双方能保持位的同步。
波形如图1-4所示。
图1-4 双极性归零波1.2.5 差分波形这种波形是用相邻码元的电平的跳变和不变来表示消息代码,而与码元本身的点位或极性无关,电平跳变表示“1”,电平的不变表示“0”,当然这种规定也可以反过来,也称为相对码波形,而相应地称前面的单极性或双极性波形为绝对码波形,这种波形传输代码可以消除设备初始状态的影响。
1.数字基带信号与AMI,HDB3编译码-通信原理实验报告
![1.数字基带信号与AMI,HDB3编译码-通信原理实验报告](https://img.taocdn.com/s3/m/e0215d1e773231126edb6f1aff00bed5b8f37354.png)
计算机与信息工程学院验证性实验报告一、实验目的1、掌握单极性码、双极性码、归零码、非归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码同步时分复用信号的帧结构特点。
二、实验原理及方法本实验使用数字信源模块和AMI/HDB3编译码模块。
1、数字信源模块本模块有以下信号测试点及输出点:• CLK 晶振信号测试点• BS-OUT 信源位定时信号测试点/输出点• FS 信源帧定时信号测试点• NRZ-OUT(AK) NRZ信号(绝对码AK) 测试点/输出点•晶振CRY:晶体;U1:反相器7404•并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应•八选一U5、U6、U7:8位数据选择器4512而分频器、三选一、倒相器、抽样等单元由一片CPLD(Altera公司的EPM7 064芯片或其全兼容芯片-ATMEL公司的ATF1504AS)完成。
2. AMI/HDB3编译码模块本模块的原理框图如图1.6所示,电原理图如图1.7所示,图中NRZ-IN接信源模块的输出信号NRZ-OUT,BS-IN接信源模块的输出位定时信号BS-OUT,它们已在印刷电路板上连通。
模块内部使用+5V和-5V电压,其中-5V电压由-12V 电源经三端稳压器7905变换得到。
本模块有以下信号测试点:• NRZ 译码器输出信号测试点• BS-R 锁相环输出的位同步信号测试点• AMI-HDB3 编码器输出信号测试点• BPF 带通滤波器输出信号测试点• DET 整流器输出信号测试点三、实验内容及步骤1、熟悉数字信源模块和AMI/HDB3编译码模块的工作原理,接好电源线,打开实验设备电源开关。
2、用示波器观察数字信源模块上的各种信号波形。
将示波器置于外同步触发状态,用信源模块的FS信号作为示波器的外同步触发信号。
基带传输之码型编码
![基带传输之码型编码](https://img.taocdn.com/s3/m/9f465509905f804d2b160b4e767f5acfa1c783f4.png)
基带传输之码型编码常见的传输码型有NRZ码、RZ码、AMI码、HDB3码及CMI码,其中最适合基带传输的码型是HDB3码。
另外,AMI码也是CCITT建议采用的基带传输码型,但其缺点是当长连0过多时对定时信号提取不利。
CMI码一般作为四次群的接口码型。
1、什么是基带传输?基带传输指的是基带信号的传输。
先看看什么是基带信号?数字通信系统所传输的原始数字信号,如计算机输出的数字码流,各种文字、图像的二进制代码,由数字电话终端送出的PCM脉冲编码信号等。
这些信号具有较低的频谱分量,所占据的频谱通常是从直流式低频段开始的,其带宽是有限的,所以称为数字基带信号。
下面讲讲基带传输;在传输距离不太远的情况下,数字基带信号可以不经过调制,如直接在有线市话电缆中传输,利用中继方式也可以实现长距离的直接传输。
实际上,基带传输不如频带传输那样广泛,但是在基带传输中要讨论的问题在频带传输中也必须考虑,因此掌握好基带传输原理很有必要。
2、基带传输讨论的问题?主要涉及两个问题,一个是码型问题,另一个是无失真传输条件。
3、引入码型编码;如何确定二进制码组的位数,采用怎样的码型非常重要二进制码组的位数决定了它能表示的状态的多少;而确定应该采用怎样的码型,即采用怎样的电脉冲形式来表述这些二进制码组。
下面专门讨论这个问题:对于码型问题,通常会自然而然的认为,“1”就用高电平,“0”就用低电平或零表示。
但实际上没那么简单。
通常由信源编码输出的数字信号多为经自然编码的电脉冲序列,正如人们通常认为的,高电平表示1,低电平表示0,此信号虽然是名副其实的数字信号,却不适合在信道中传输。
数字通信系统一般并不采用这样的数字信号进行基带传输,因此就需要通过码型编码或码型变换将数字信号用合适的电脉冲表示。
1)、为什么信源编码输出的数字信号不适合基带传输?这种数字基带信号常常包含直流分量或低频分量,因此对于低频受限的信道,信号可能传不过去,比如说有线信道的低频特性就很差,很难传输零频率附近的分量,并且经过自然编码后,有可能出现连“0”或连“1”数据,这是的数字信号会出现长时间不变的低电平或高电平,以致接收端在确定各个码元的位置时会遇到困难。
数字基带信号
![数字基带信号](https://img.taocdn.com/s3/m/a323000419e8b8f67d1cb990.png)
数字信号基带传输
3. 双极性不归零信号 双极性是指用正、负两个极性来表示数据信号的“1”或“0”;在“1”和
“0”等概率出现的情况下双极性序列中不含有直流分量,对传输信道的直 流特性没有要求;如图4.1(c)所示。 4. 双极性归零信号
“1”码和“0”码在一个码元周期Tb内,高电位只维持一段时间就返回零 位;如图4.1(d)所示。这种波形的每一个码元最后都要回到零电位。由于 正负极性均归零,所以包含有比单极性归零波形更多的同步信息,无论是 连续的1还是连续的0,均可以方便地在接收端识别出来。 5. 伪三元信号
AMI码对应的基带信号是正负极性交替的脉冲序列,而0电位持不变的规律。 AMI码的优点是,由于+1与-1 交替, AMI码的功率谱中不含直流成分,高、低频 分量少,能量集中在频率为1/2码速处。此外,AMI码的编译码电路简单,便于利 用传号极性交替规律观察误码情况。鉴于这些优点,AMI码是CCITT建议采用的 传输码性之一。
AMI码的不足是,当原信码出现连“0”串时,信号的电平长时间不跳变,造成 提取定时信号的困难。解决连“0”码问题的有效方法之一是采用HDB3码。
2. HDB3码 HDB3码的全称是3阶高密度双极性码,它是AMI码的一种改进型, 其目的是为
了保持AMI码的优点而克服其缺点, 使连“0”个数不超过3个。其编码规则如下:
数字信号基带传输
图4.1 常用数字序列电信号形式
数字信号基带传输
1.2 数字基带信号的常用码型
在实际的基带传输系统中,并不是所有代码的电波形都能在信道中传输。 例如,前面介绍的含有直流分量和较丰富低频分量的单极性基带波形就不适 宜在低频传输特性差的信道中传输,因为它有可能造成信号严重畸变。又如, 当消息代码中包含长串的连续“1”或“0”符号时,非归零波形呈现出连续的固 定电平,因而无法获取定时信息。单极性归零码在传送连“0”时,存在同样 的问题。因此,对传输用的基带信号主要有下面几个方面的要求: (1) 线路传输码型的频谱应不含直流分量; (2)便于从线路内传输码型中提取定时信息; (3)线路传输码型具有一定的检错能力; (4)尽量减少基带信号频谱中的高频分量,以节省传输频带并减少串扰; (5)编码效率高。
基带传输的常用码型
![基带传输的常用码型](https://img.taocdn.com/s3/m/fba7e0d00912a216157929b4.png)
常见的线路码型有以下几种:
信息代码: 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
AMI码
(Bipolar RZ)
HDB3码
+V
&码)
编码规则: 遇数字‘1’ 正负电平交替;遇数字‘0’ 为0电平。 实际上是把二进制脉冲序列变为三电平的符号序列。
优点:极性交替反转,所以无直流分量(包括在“1”、“0” 码不等概率情况下)。
缺点:可能出现长的连0串,会造成提取定时信号的困难。
2. 三阶高密度双极性码(HDB3)
HDB3码是在AMI码基础上为克服长连“0”码而改进 的一种码型。
编码规则:
(1)先把信息代码变成AMI码;
(2)当出现4个或4个以上连0码时,则在第4个0码处添 加脉冲,称为破坏脉冲,用V表示。
(3)为保证无直流,V脉冲应正负交替插入;为此当相 邻V码间有偶数个“1”时,将后面的连“0”串中的第1 个“0”编码为B符号,B符号的极性与前一非“0”码的 极性相反,而B符号后的V码与B符号的极性相同.
3. CMI码
编码规则: “1”码交替用“00”和“11”表示;“0”码用“01”
表示。
4. 数字双相码( Manchester)码
每个码元用两个连续极性相反的脉冲来表示。如 “1”码用正、负脉冲表示,“0”码用负、正脉冲表示。
现代通信原理
现代通信原理
基带传输的常用码型
数字基带信号通常是在电缆线路中传输,为了克服传 输损耗,对传输码型的选择主要考虑以下几点: (1) 码型中无直流分量; 低频、高频分量尽量少; (2) 码型中应包含定时信息, 以便定时提取; (3) 码型变换设备要简单可靠; (4) 码型具有一定检错能力; (5)尽可能提高线路码的编码效率,即提高传输效率。
数字基带信号的码型
![数字基带信号的码型](https://img.taocdn.com/s3/m/b4c591ee0975f46527d3e156.png)
4.1.1 数字基带信号的码型设计原则所谓数字基带信号,就是消息代码的电脉冲表示――电波形。
在实际基带传输系统中,并非所有的原始数字基带信号都能在信道中传输,例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变;再例如,一般基带传输系统都是从接收到的基带信号中提取位同步信号,而位同步信号却又依赖于代码的码型,如果代码出现长时间的连“0” 符号,则基带信号可能会长时间出现0 电位,从而使位同步恢复系统难以保证位同步信号的准确性。
实际的基带传输系统还可能提出其它要求,从而导致对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的要求主要有两点:(1 )对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2 )对所选的码型的电波形的要求,期望电波形适宜于在信道中传输。
前一问题称为传输码型的选择,后一问题称为基带脉冲的选择。
这是两个既彼此独立又相互联系的问题,也是基带传输原理中十分重要的两个问题。
本节讨论前一问题,后一问题将在下面几节中讨论。
传输码(常称为线路码)的结构将取决于实际信道的特性和系统工作的条件。
概括起来,在设计数字基带信号码型时应考虑以下原则:(1)码型中应不含直流分量,低频分量尽量少。
(2)码型中高频分量尽量少。
这样既可以节省传输频带,提高信道的频带利用率,还可以减少串扰。
串扰是指同一电缆内不同线对之间的相互干扰,基带信号的高频分量越大,则对邻近线对产生的干扰就越严重。
(3)码型中应包含定时信息。
(4)码型具有一定检错能力。
若传输码型有一定的规律性,则就可根据这一规律性来检测传输质量,以便做到自动监测。
(5)编码方案对发送消息类型不应有任何限制,即能适用于信源变化。
这种与信源的统计特性无关的性质称为对信源具有透明性。
(6)低误码增殖。
对于某些基带传输码型,信道中产生的单个误码会扰乱一段译码过程,从而导致译码输出信息中出现多个错误,这种现象称为误码增殖。
实验1 基带信号的常用码型变换实验
![实验1 基带信号的常用码型变换实验](https://img.taocdn.com/s3/m/425c8548ad02de80d4d8402b.png)
实验1 基带信号的常用码型变换实验一、实验目的1.熟悉RZ 、BNRZ 、BRZ 、CMI 、曼彻斯特、密勒码型变换原理及工作过程;2.观察数字基带信号的码型变换测量点波形;二、实验仪器1.AMI/HDB3编译码模块,位号:F (实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M 双踪示波器1台4.信号连接线3根三、实验工作原理(一)基带信号及其常用码型变换在实际的基带传输系统中,传输码的结构应具有下列主要特性:1) 相应的基带信号无直流分量,且低频分量少;2) 便于从信号中提取定时信息;3) 信号中高频分量尽量少,以节省传输频带并减少码间串扰;4) 不受信息源统计特性的影响,即能适应于信息源的变化;5) 编译码设备要尽可能简单。
1.1 单极性不归零码(NRZ 码)单极性不归零码中,二进制代码“1”用幅度为E 的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
0000E +1111 图1-1 单极性不归零码1.2 双极性不归零码(BNRZ 码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
10111000E +E-0图 1-2 双极性不归零码1.3 单极性归零码(RZ 码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
00001111E +0图 1-3 单极性归零码1.4 双极性归零码(BRZ 码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
00001111E +0E-图 1-4 双极性归零 1.5 曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
第五章数字信号的基带传输
![第五章数字信号的基带传输](https://img.taocdn.com/s3/m/7363b4e502020740bf1e9b23.png)
第五章 数字信号的基带传输基带传输系统频带传输系统(调制传输系统)数字基带信号:没有经过调制的原始数字信号。
(如各种二进制码PCM 码,M ∆码等)数字调制信号:数字基带信号对载波进行调制形成的带通信号。
5.1、基带信号的码型一、数字基带信号的码型设计原则:1. 对传输频带低端受限的信道,线路传输的码型的频谱中应该不含有直流分量;2.信号的抗噪声能力强;3.便于从信号中提取位定时信息;4.尽量减少基带信号频谱中的高频分量,节省传输频带、减小串扰; 5.编译码设备应尽量简单。
二、数字基带信号的常用码型。
1、单极性不归零码NRZ (Non Return Zero )脉冲宽度τ等于码元宽度T特点:(1)有直流,零频附近的低频分量一般信道难传输。
(2)收端判决门限与信号功率有关,不方便。
(3)要求传输线一端接地。
(4)不能用滤波法直接提取位定时信号。
2、双极性非归零码(BNRZ )T =τ,有正负电平特点:不能用滤波直接提取位定时信号。
⎩⎨⎧数字通信系统3、单极性归零码(RZ)τ<T特点:(1)可用滤波法提取位同步信号(2)NRZ的缺点都存在4、双极性归零码(BRZ)特点:(1)整流后可用滤波提取位同步信号(2)NRZ的缺点都不存在5、差分码电平跳变表1,电平不变表0 称传号差分码电平跳变表0,电平不变表1 称空号差分码特点:反映相邻代码的码元变化。
6、传号交替反转码(AMI)τ)归零码表0用零电平表示,1交替地用+1和-1半占空(T5.0=示。
优点:(1)“0”、“1”不等概时也无直流(2)零频附近低频分量小(3)整流后即为RZ码。
缺点:连0码多时,AMI整流后的RZ码连零也多,不利于提取高质量的位同步信号(位同频道抖动大)应用:μ律一、二、三次群接口码型:AMI加随机化。
7、三阶高密度双极性码()3HDBHDB3码编码步骤如下。
①取代变换:将信码中4个连0码用取代节000V或B00V代替,当两个相邻的V码中间有奇数个1码时用000V代替4个连0码,有偶数个1码时用B00V代替4个连0码。
第5章 数字信号的基带传输系统
![第5章 数字信号的基带传输系统](https://img.taocdn.com/s3/m/8a55dd5a52d380eb62946d82.png)
HDB3码: -1000 -V +1000 +V -1 +1 -B00 -V +1 —1
虽然HDB3码的编码规则比较复杂,但译码比较简单。从上述 原理看出,每一个破坏符号V总是与前一非“0”符号同极性(包括
B符号在内),故从收到的符号序列中可以容易地找到破坏点V,
从而断定V符号及其前面的3个符号必是连“0”符号,然后恢复4个
一、单极性不归0二进制脉冲序列的功率谱密度数字 基带信号单个波形的频谱:
(设“1”、“0”码等概率出现,码元宽度)。
19
天津电子信息职业技术学院
20
天津电子信息职业技术学院
二、单极性归零二进制码序列的功率谱密度:
g1(t)
g2 (t )
A
Ts 2 Ts
2Ts 3Ts t
(a) 单极性归0二进制序列
6
天津电子信息职业技术学院
占空比指的是脉冲宽度τ与码元宽度Tb之比τ/Tb。单极性RZ码 的占空比为50%。
4.双极性归零(RZ)码 双极性归零码的构成原理与单极性归零码相同,如图5-1d)。 每一个码元被分成两个相等的间隔,“1”码是在前一个间隔为正 电平而后一个间隔回到零电平,而“0”码则是在前一个间隔内为 负电平而后一个间隔回到零电平。
1
1…
AMI码: +100 —1 +1000 -1 +1 -1 …
基带信号的码型
![基带信号的码型](https://img.taocdn.com/s3/m/68f1caf1700abb68a882fb04.png)
虽然HDB3码的编码规则比较复杂,但译码却比较简单。从上述原理可到破坏点V,于是断定V符号及其前面的3个符号必定
(7)高的编码效率。
(8)编译码设备应尽量简单。
上述各项原则并不是任何基带传输码型均能完全满足,往往是依照实际要求满足其中若干项。
数字基带信号的码型种类繁多,下面仅以矩形脉冲组成的基带信号为例, 介绍一些目前常用的基本码型。
之比 叫占空比。
单极性 RZ 码与单极性 NRZ
码比较,缺点是发送能量小、占用频带宽,主要优点是可以直接提取同步信号。此优点虽不意味着单极性归零码能广泛应用到信道上传输,但它却是其它码型提取同步信号需采用的一个过渡码型。即对于适合信道传输的,但不能直接提取同步信号的码型,可先变为单极性归零码,再提取同步信号。}
分别对应基带信号的正电平和零电平,在整个码元持续时间,电平保持不变。
单极性 NRZ 码具有如下特点:
( 1 )发送能量大,有利于提高接收端信噪比;
( 2 )在信道上占用频带较窄;
( 3 )有直流分量,将导致信号的失真与畸变;且由于直流分量的存在,无法使用一些交流耦合的线路和设备;
例如:
( a )代码: 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1
( b ) AMI 码: 0 +1 0 0 0 0 -1 +1 0 0 0 0 0 -1 0 +1
形式上与单极性或双极性码型相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分码也称相对码,而相应地称前面的单极性或双极性码为绝对码。
53基带传输的常用码型
![53基带传输的常用码型](https://img.taocdn.com/s3/m/eea0d5116c175f0e7cd13728.png)
5. 密勒码(Miller) *编码方法 “1”码~码元持续时间中心点出现跃变来表示,即用“10”或“01”表示 “0”码分两种情况处理:对于单个“0”时,在码元持续时间内不出现跃变,且与相邻码元
的边界处也不跃变;对于连“0”时,在两个“0”码的边界出现电平跃变,即 “00”与“11”交替。
4. 差错传输 这在原理上是可行的,但会出现错误的传播,只要一个码元发生错误,则这种错误会相
继影响以后的码元。要求 ak−1 必须正确,否则,从错误的一位开始以后全错,见下图。
发送端 接收端
1 01 10 0 0 1 011
ak +1 −1 +1 +1 −1 −1 −1 +1 −1 +1 +1
Ck
0 0 +2 0 −2 −2 0 0 0 +2
记: P(1) ~发“1”码的概率
P(0 /1) ~发“1”码而错判成“0”码的概率
P(0) ~发“0”码的概率
P(1/ 0) ~发“0”码而错判成“1”码的概率
1.部分响应波形
sin x 波形
↔
x
两个 sin x 波形合成
↔
x
sin 2πW (t + Ts 2
2πW (t + Ts )
)
+
sin 2πW (t − Ts 2
2πW (t − Ts )
)
=
4 π
cosπt 1 − 4t 2
/ Ts / Ts 2
=g (t )2源自2理想矩形的频谱 余弦型频谱
“1”~传输码:极性交替的正负电平
通信原理 第六章 数字基带传输系统
![通信原理 第六章 数字基带传输系统](https://img.taocdn.com/s3/m/8948a33c87c24028915fc3d1.png)
来源: 来源: 计算机输出的二进制数据 模拟信号→ A/D →PCM码组 上述信号所占据的频谱是从直流或低频开始的,故称数 数 字基带信号。 字基带信号
2008.8 copyright 信息科学与技术学院通信原理教研组 3
基本概念
2、数字信号的传输
1)基带传输 基带传输——数字基带信号不加调制在某些 基带传输 具有低通特性的有线信道中传输,特别是传输距离 不太远的情况下; 2)频带传输 频带传输——数字基带信号对载波进行调制 频带传输 后再进入带通型信道中传输。
2008.8 copyright 信息科学与技术学院通信原理教研组 19
传输码结构设计的要求
码型变换或成形是数字信息转换为数字信号的过程, 码型变换或成形是数字信息转换为数字信号的过程,不 数字信息转换为数字信号的过程 同的码型将有不同的频谱结构,对信道有着不同的要求。 同的码型将有不同的频谱结构,对信道有着不同的要求。
1 2 3 4 5
引言 数字基带信号码波形 基带传输的常用码型 基带脉冲传输和码间干扰 无码间干扰的基带传输特性
2008.8
copyright 信息科学与技术学院通信原理教研组
18
6.3基带传输的常用码型 3
在实际的基带传输系统中, 在实际的基带传输系统中,并不是所有类 型的基带电波形都能在信道中传输。 型的基带电波形都能在信道中传输。 对传输用的基带信号有两个方面的要求: 对传输用的基带信号有两个方面的要求: ( 1 ) 对代码的要求 , 原始消息代码必须编 对代码的要求, 成适合于传输用的码型; 传输码型的选择) 成适合于传输用的码型;(传输码型的选择) 对所选码型的电波形要求, (2) 对所选码型的电波形要求,电波形应 适合于基带系统的传输。(基带脉冲的选择) 。(基带脉冲的选择 适合于基带系统的传输。(基带脉冲的选择)
数字基带信号的码型
![数字基带信号的码型](https://img.taocdn.com/s3/m/8f17fe375f0e7cd184253623.png)
5.数字双相码
编码规则:用一个周期的方波表示二进制信号“1”,
而用它的反相波形表示“0” 。 特点:频谱中存在很强的定时分量,不受信源统计特 性的影响,而且不存在直流分量。这些优点是用频带 加倍来换取的。
6.传号反转码(CMI)
编码规则:二进制信号中的“1” 交替地用“11”和“00”
表示;“0”码则固定地用“01”表示。
HDB3码的编码虽然比较复杂,但译码却比较简单。 从收到的符号序列中可以容易地找到破坏点V,于是也断 定V符号及其前面的3个符号必是连0符号,从而恢复4个连 0码,再将所有-1变成+1后便得到原消息代码。 代码: 1 000 0 1 AMI码: -1 0 0 0 0 +1 -1 0 0 0 -V +1 HDB3码:-1 0 0 0 -V +1 000 0 1 0 0 0 0 -l 0 0 0 +V -1 0 0 0 +V -1 1 000 0 1 1 +l 0 0 0 0 -1 +1 +l 0 0 0+V -1 +1 +l -B 0 0-V +1 -1
特点:没有直流分量;有频繁出现的波形跳变,便于恢复
定时信号;而且具有检错能力。
7.密勒码
编码规则:用码元周期中点出现跳变表示“1”,否
则表示“0”;但当出现连续“0”时,则在前一个 “0”结束(后一个“0”开始)时出现电平跳变。 特点:Miller码脉冲宽度最大为两个码元周期,最 小为一个码元周期,可以检测传输误码或线路故障。
3、不具备内在的检测错误能力。
4.差分码
编码规则:二进制信号“1”、“0”分别用电平跳变或不
变表示。以电平跳变表示“1”,则称为传号差分码。以电 平跳变表示“0”,则称为空号差分码。 由于差分码中只具有相对意义,所以又称相对码。 特点:可以消除设备初始状态的影响,在相位调制系统中 可用于解决载波相位模糊问题。
数字基带传输常用码型
![数字基带传输常用码型](https://img.taocdn.com/s3/m/83134712227916888486d7d3.png)
差分码:不是用脉冲的绝对电平来表示“0” 码和“1”码,而是利用相邻前后码元电平的 相对变化来传送信息。分为“1”差分码和 “0”差分码两种。 特点:当传输系统中某些环节引起基带信 号反相时,也不会影响接收的结果,多用 于数字相位调制。
双极性不归零码:用正电平表示“1”码,用 负电平表示“0”码,正和负的幅值相等 。 特点:不含直流分量;抗干扰性能好;但 不能直接提取同步信息。
单双极性归零码:使用了正、负和零三个电平, 信号本身携带同步信息,解决了同步问题。缺点 是编码一个比特,需要两次信号变化,增加了占 用带宽,且线路上的平均电压值还不为零。
三元码
三元码是指利用信号幅度的三种取值+1、0、 -1来表示二进制数“1”和“0”。
AMI码(传号交替反转码)
编码规则: (0称为空号,1称为传号) 0变为传输码0 1交替变为传输码+1、-1、+1、-1 例:1001100011→ +100-1+1000-1+1 特点: 1) 统计上无直流(+1-1交替)、低频成分小 2) 进行了二进制→三进制变化,即1B/1T码型 3) 编/译码电路简单 4) 便于观察误码(+1、-1不交替) 5) 缺点:可能出现长的0串,提取定时信号困难
编码: “1”用码元持续中心点跃变表示, 即:01或10,但保持边沿不跃变 单个0:不跃变,且相邻码元边界也不跃变 “0” 00 例: 两个0:第2个0边界跃变,即: 或11
二进制
1
10 01
1
10 10
0
01 00
1
10 01
0
01 11
数字基带信号传输常用码型的教学技巧分析和应用
![数字基带信号传输常用码型的教学技巧分析和应用](https://img.taocdn.com/s3/m/13fa620c5f0e7cd185253603.png)
2017年第7期信息通信2017(总第175 期)INFORMATION & COMMUNICATIONS (S um. N o175)数字基带信号传输常用码型的教学技巧分析和应用张帆(武汉职业技术学院电信学院,湖北武汉430074)摘要:通信原理是所有本科专科通信、电子等相近专业的必修基础课,而在现代通信产业迅速发展的步伐下,数字通信基 础的优势更加凸显。
文章针对数字通信基础课程中数字基带信号传输的几种常用码型这一重难点,进行教学的通俗化 分析和应用,使得初学者能够快速并透彻地掌握相关知识。
关键词:码型;HDB3码;密勒码中图分类号:TN76 文献标识码:A文章编号=1673-1131(2017)07-0270-020引言在数字基带信号传输知识点中,几种常用码型对初学者 而言是一个难点。
现在很多教材中直接列出各码型的基本编 码规则,让初学者无法将相关码型的原理及功能联系起来一 起理解,以致于学习时总是走很多弯路。
如果采用本文中的 理解方法,将有利于初学者快速掌握。
1数字基带信号传输的常用码型在实际的基带传输系统中,不是所有原始基带信号都能够在信道中传输,而在接收方能够在满足一定误码率的条件下还原的。
为了使得它们能够顺利在信道中传输,需 要对原始信号的码型进行调整,就是我们要求学习的码型,总体要求对应码型具有低频截止、频带窄、定时信号易提取等特性。
数字基带信号传输常用的码型有:AM I、HDB3、曼彻斯特 码、密勒码、传号反转码等。
目前常见教材上是从基本描述开 始出发的,但是对于大多数学生而言,每一种码型特点太多,不易于理解。
2码型特点归纳法码型特点归纳法,是一种依据码型的改进过程,将具有统一原型的码型归纳在一起进行学习的方法。
经过反复的教学实践,证明此法简便,可使初学者快速掌握。
并可以扩展到其它学科或其它知识点,以致于在学习中养成总结归纳的好习惯,能够做到举一反三。
以下来介绍码型特点归纳法上的使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字基带信号
1.1 基带信号的基本概念
数字基带信号可以来字计算机、电传机等终端数据的各种数字代码,也可以来自模拟信号经数字化处理后的脉冲编码(PCM)信号等,是未经载波信号调制而直接传输的信号,所占据的频谱从零频或很低频开始。
1.2 几种数字基带信号的基本波形
1.2.1 单极性波形
这是一种最简单的基带信号波形,用正电平和零电平分别表示对应二进制“1”和“0”,极性单一,易于用TTL 和CMOS 电路产生。
缺点是有直流分量,要求传输线路具有直流传输能力,因而不适用有交流耦合的远距离传输,只适用于计算机内部或者极进距离的传输,信号波形图如图1-1所示。
1 011
100+E
图1-1 单极性波
1.2.2 双极性波形
这种波形用正、负电平的脉冲分别表示二进制代码“1”和“0”,其正负电平
的幅度相等、极性相反,当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接受端恢复信号的判决电平为零,因而不熟信道特性的变化的影响,扛干扰能力也叫强,信号波形图如图1-2所示。
1 011
100+E
-E
图1-2 双极性波
1.2.3 单极性归零波形
这种波形是指它的有电脉冲宽度τ小于码元Ts ,即信号电压在一个码元终止
时刻前总要回到零电平,通常归零波使用半占空码,即占空比(τ/Ts )为50%,从单极性波可以直接提取定时信息,是其他码型提取位同步信息时常采用的一种过渡波形。
1 011
100+E
+E
图1-3 单极性归零波
1.2.4 双极性归零波形
这种波形兼有双极性和归零波形的特点,由于其相邻脉冲之间存在零电位的间隔,是的接受端很容易识别出每个码元的起止时间,从而使收发双方能保持位的同步。
波形如图1-4所示。
1 011
100+E
-E
+E
-E
图1-4 双极性归零波
1.2.5 差分波形
这种波形是用相邻码元的电平的跳变和不变来表示消息代码,而与码元本身的点位或极性无关,电平跳变表示“1”,电平的不变表示“0”,当然这种规定也可以反过来,也称为相对码波形,而相应地称前面的单极性或双极性波形为绝对码波形,这种波形传输代码可以消除设备初始状态的影响。
波形如图1-5所示。
1 011
100+E
-E
+E
-E
图1-5 差分波形
1.2.6 多电平波形
上述波形的电平取值只有两种,即一个二进制码对应一个脉冲,为了提高频带利用率,可以采用多电平波形或多值波形。
其编码规则是,用多个二进制码表示一个脉冲。
在波特率相同(传输带宽相同)的条件下,比特率提高了,因此多电平波形在频带受限的告诉数据传输系统中得到了广泛的应用。
表示信息码元的单个脉冲的波形并非一定是矩形的,根据实际情况,还可以是高斯脉冲、升余弦脉冲等其他形式。
1.3 基带传输的常用码型
1.3.1 AMI 码
AMI(Alternative Mark Inversion)码的全称是传号交替反转码,其编码规则是 ● 三元码,“1”交替地变换为“+1”和“-1”,“0”保持不变
● 采用归零码,脉冲宽度为码元宽度之半
● “0”,“1”不等概时也无直流;零频附近的低频分量小;频率集中在1/2
码速处;编解码电路简单,且可以利用传号极性交替这一规律观察五码情
况;整流成归零码之后,从中可以提取定时分量。
● 连0码多时,AMI 整流后的RZ 码连0也多,不利于提取高质量的位同步
信号
AMI 码的波形图如图1-6所示: 1 011100000000111
+1-1000000000+1+1+1-1-1二进制码
二进制波形AMI 波形
AMI 码
图1-6 AMI 码波形
1.3.2 HDB 3码
HDB 3(3nd Order High Density Bipolar)码的全称是三阶高密度双极性码,是AMI 码的一种改进,保持了AMI 码的优点,使“0”连续不超过3个。
其编码规则为:
● “1”交替地变换为+1与-1的半占空归零码,但连“0”数小于或者等
于3。
● 当连“0”数等于4时,用取代节“000V ”或者“B00V ”代替,“V ”的极
性与前一个非零符号的极性相同(这破坏了极性交替的规则,所以V 又称
为破坏脉冲);并要求相邻的“V ”也满足极性必须交替。
V 的取值为+1
或-1.
● B 的取值可以是0、+1、-1,以使V 同时满足(3)中的要求。
HDB3码波形如下: 1 011100000000111
+1-10000+V -B 00-V +1-1
+1-1+1二进制码
二进制波形HDB3码波形
HDB3码
图1-7 HDB 3码波形
1.3.3 双相码
双向码又称为曼彻斯特(Manchester)码,用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”,其编码规则:
● “1”用“10”表示,“0”用“01”表示,
● 是一种双极性不归零波形,只有极性相反的两个电平;
● 每个码元中心都有电平跳变,含有丰富的定时信息,且没有直流分量,编
码过程也简单;
● 缺点是占用带宽加宽,使频率利用率降低。
双相码波形如下: 1 01110000011
二进制码
二进制波形双相码波形
双相码1001100110101010
01010101 图1-8 双相码波形
1.3.4 差分双相码
为了解决双相码因极性反转而引起的译码错误,采用差分码的概念,每个码中间的电平跳变用于同步,而每个码元的开始出是否存在额外的跳变用来确定信码,有跳变则表示二进制“1”、无跳变则表示“0”,即跳变与上个码元不同则为“1”,相同则为“0”。
差分双相码的波形如下。
1 01110000011
二进制码
二进制波形差分双相码波形
差分双相码1010011010011001
10010101
图1-9 差分双相码波形
1.3.5 密勒码
密勒(Miller)码又称延迟调制码,是双相码的一种变形,编码规则如下:
● ‘1’:10或01表示;连‘1’交替使用这两种方式
● ‘0’:00或11表示;连‘0’交替使用这两种方式
● ‘10’或‘01’的交界处保持电平不发生跃变
● 双相码的下降沿对应延迟调制码的跃变沿
密勒码的波形图如下:
1 01110000011二进制码
双相码波形双相码
1001100110101010
01010101
密勒码波形
图1-10 密勒码波形
1.3.6 CMI 码
CMI(Coded Mark Inversion)码是传号反转码的简称,与双相码类似,也是一种双极性二电平码。
编码规则:
● ‘1’交替用11和00来表示,‘0’固定用01来表示;
● 易于实现,有较多的电平跃变,含有丰富的定时信息;
● 10为禁用码组,不会出现三个以上的连码,具有检错能力
CMI 码的波形如下:
1 01110000011
二进制码
二进制波形CMI 码波形
CMI 码1101110001011101010111
00
图1-11 CMI 码波形
1.3.7 块编码
为了提高线路编码性能,需要某种冗余来确保码型的同步和检错能力。
引入快编码可以在某种程度上达到这两个目的。
块编码的形式有nBmB 、nBmT 码等。
nBmB 码的编码规则:
● 把原信息码流的n 位二进制码作为一组,变换为m 位二进制码作为新的
码组。
● 1B2B 码:双相码、延迟调制码、CMI 码。