连续时间信号的频谱分析
信号与系统连续周期信号的频域分析
信号与系统连续周期信号的频域分析频域分析是信号与系统中一种重要的分析方法,用于研究信号的频谱特性。
连续周期信号是一种在时间域上具有周期性的信号,其频域分析包括傅里叶级数展开和频谱图表示。
傅里叶级数展开是一种将连续周期信号分解为若干个频率成分的方法。
对于周期为T的连续周期信号x(t),其傅里叶级数展开可以表示为:x(t) = ∑[Cn * exp( j *2πn/T * t )]其中,Cn为信号中频率为n/T的分量的振幅,j为虚数单位。
通过计算信号的傅里叶系数Cn,可以得到信号的频率成分和其对应的振幅。
在频域分析中,经常使用的一个重要工具是频谱图。
频谱图是一种将信号在频域上进行可视化展示的方法,通过绘制信号的频谱,可以直观地观察到信号的频率信息。
频谱图中的横轴表示频率,纵轴表示振幅。
对于连续周期信号,其频谱图是离散的,只有在频率为基频及其倍数的位置上有分量值。
基频是连续周期信号的最低频率成分,其他频率成分都是基频的整数倍。
频谱图中的峰值代表了信号在不同频率上的能量分布情况,而峰值的高度代表了对应频率上的振幅大小。
通过分析频谱图,可以获得信号中各个频率成分的相对强度,从而对信号进行进一步的特征提取和处理。
在实际应用中,频域分析经常用于信号处理、系统建模和通信等领域。
例如,在音频处理中,通过频域分析可以实现音频信号的降噪、音乐特征提取和音频编码等任务。
在通信系统中,频域分析可用于频率选择性衰落信道的估计和均衡、多载波调制技术等。
总结起来,频域分析是信号与系统中对连续周期信号进行分析的重要方法。
通过傅里叶级数展开和频谱图表示,可以揭示信号的频率成分及其振幅特性,为信号处理和系统设计提供依据。
信号与系统分析PPT电子教案第三章连续时间信号与系统的频谱分析
f (t ) A0 An cos(n1t n ) n1
A0
n1
An 2
[e e ] j(n1t n ) j(n1t n )
A0
1 2
n1
An
e e jn jn1t
1 2
n1
An
e e jn jn1t
上式中第三项的n用–n代换,则上式写为
f (t)
A0
1 2
n1
An e jn e jn1t
T0
因此,信号绝对可积就保证了 ak 的存在。
② 在任何有限区间内,只有有限个极值点,且极值
为有限值。
③ 在任何有限区间内,只有有限个第一类间断点。
其它形式
余弦形式 f (t) A0 An cos n1t n
2
n1
A0 a0
an An cosn
An an2 bn2
bn An sinn
cos
2 1 t
4
,
请画出其幅度谱和相位谱。
化为余弦形式
f (t) 1
5
cos(1t
0.15
)
cos
2 1 t
4
三角形式的傅里叶级数的谱系数
三角函数形式的频谱图
A0 1
0 0
An A1 2.24
A0 1
A2 1
0 1 21
n
0.25
1
0
21
0.15
A1 5 2.236 1 0.15
在时域可以看到,如果一个周期信号的周期趋 于无穷大,则周期信号将演变成一个非周期信 号;反过来,任何非周期信号如果进行周期性 延拓,就一定能形成一个周期信号。我们把非 周期信号看成是周期信号在周期趋于无穷大时 的极限,从而考查连续时间傅立叶级数在 T趋 于无穷大时的变化,就应该能够得到对非周期 信号的频域表示方法。
连续时间信号的时域分析和频域分析
时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计
数字信号处理 利用DFT分析连续信号频谱
k
N 1 k 0
jk x [ k ] e
j 2 mk N
~ x [k ]e
问题的提出
有限长序列 x N [k ] 的傅立叶变换DFT
xN [k ] X N [m] xN [k ]e
k 0
N 1
j
2π mk N
0
π/2
信号特点:时域无限,频谱无限
问题的提出
如何利用数字方法分析连续信号的频谱?
x ( t ) X ( j )
x (t )e jt dt
1 jn0t xT (t ) X (n0 ) xT (t )e dt T T
x[k ] X ( e j )
xN [k ]
XN [m]
0
N-1
k
0
N-1
m
DFT看作对周期序列的DFS主值区间取值
问题的提出
可否利用DFT分析连续信号的频谱?
基本原理 利用信号傅立叶变换具有的信号时域与频 域之间的对应关系,建立信号的DFT与四种信 号频谱之间的关系。
时域的离散化
时域的周期化
频域周期化 频域离散化
利用DFT分析连续信号的频谱
[m] X [m] 取主值[书75公式(2-62)] X N
2.5.1 连续非周期信号频谱与DFT的关系 X(j) X[m]采样、周期、取主值
X ( j) X (e
j
) 采样 =T;T
[-m , m ] [ , ]
[m] 周期 X (e ) X N
x[k ] X ( e )
x[k]
j
k
连续时间信号与系统的频域分析报告
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
实验二--连续时间信号的频域分析
实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号 20 评分:实验日期: 2017 年 12 月 13日指导教师: 张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT、DTFT的若干重要性质。
基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB编程完成相关的傅里叶变换的计算。
以看得很清楚。
二、实验原理及方法任何一个周期为T1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。
其中三角傅里叶级数为:2.1或:2.2指数形式的傅里叶级数为:2.3其中,为指数形式的傅里叶级数的系数,按如下公式计算:2.4傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。
傅里叶变换和其逆变换定义如下:2.52.6连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。
按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号ejt的线性组合构成的,每个频率所对应的周期复指数信号ejt称为频率分量(frequency component),其相对幅度为对应频率的|X(j)|之值,其相位为对应频率的X(j)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。
DFT分析连续时间信号频谱
在matlab 中对信号111()cos()cos(2)s t t f t π=Ω进行采样,其中f1=1000Hz ,根据奈奎斯特采样定理,采样频率f>=2*f1,在此我们取f=3000Hz 在matlab 中仿真也好,实际中处理的信号也罢,一般都是数字信号。
而采样就是将信号数字化的一个过程,设将信号s1(t)数字化得到信号s1(n)=cos(2*pi*f1/f*n),其中n=[0…N -1],N 为采样点数。
为什么说s1(n)=cos(2*pi*f1/f*n)表示以采样率f 对频率为f1的信号进行采样的结果呢? 采样,顾名思义,就是对信号隔一段时间取一个值,而隔的这段时间就是采样间隔,取其倒数就是采样率了,那们我们看s1(n)=cos(2*pi*f1/f*n),将前面的参数代入,当n=0时,s1(0)=cos(0),当n=1时,s1(1)=cos(2*pi*1000/3000*1),当n=2时,s1(2)=cos(2*pi*1000/3000*2),当n=3时,s1(3)=cos(2*pi*1000/3000*3),这是不是想当于对信号s1(t)的一个周期内采了三个样点呢?对一个频率为1000Hz 的信号每周期采三个样点不就是相当于以3倍于频率的采样率进行采样呢?注意,当n=3时相当于下一个周期的起始了。
我们取采样点数N=64,即对64/3=21.3个周期,共计64/3/f1=21.3ms 时长。
我们在matlab 中输入以下命令:>> n=0:63;>> f1=1000;f=3000;>> s1=cos(2*pi*f1/f*n);>> plot(abs(fft(s1)));从理论上讲11()cos(2)s t f t π=应该在1000Hz 和-1000Hz 两个频点上有两根线,即应该图1可知,两个峰值大约对应横轴坐标为21和43=64-21两个点。
第三、四章连续时间信号与系统的频域分析内容总结
第
连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X
第
连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X
第
连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X
第
连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X
第
连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)
常见连续时间信号的频谱
19
1. 线性特性
若f1 (t) F F1 ( j); f 2 (t) F F2 ( j), 则af1 (t) bf 2 (t) F aF1 ( j) bF2 ( j) 其中a和b均为常数。
2020/2/29
20
3
2. 共轭对称特性
若 f (t) F F ( j)
1
F( j)
(π)
(π)
t -0
0
0
余弦信号及其频谱函数
2020/2/29
12
二、常见周期信号的频谱密度
2. 正弦型信号
sin 0t
1 (e j0t 2j
- e-j0t ) F - jπ[d (
- 0 ) - d (
0 )]
sin 0t 1
2020/2/29
(t)]
2π
n-
1d
T
(
-
n0
)
0
d (
n-
-
n0 )
dT (t)
单位冲激串
(1)
及其频谱函数
F[dT (t)] (0 )
2020/2/29 - T 0 T
t
-0 0 0
16
4.3、功率谱密度的性质
● 利用已知的基本公式和Fourier变换的性质等
dT
(t)
d
n-
(t
-
nT
)
1 T
e
n-
jn0t
F[d T
(t)]
2π
n-
1d
T
(
-
连续时间信号频谱分析研究及MATLAB实现
周期 ,即频 谱数值 计算 的范 围 ;而 在某 时间段 上对信
即得到离散频率点上 的近似计算式 :
N
. 一 .
-
号进 行截取 的方 式 .即不 同窗函数 的应用 .决定 了信 号频谱估计 的精度和有效范 围。 设 要 分 析 连 续 时 间 非 周 期 信 号 厂 f在 频 率 范 围 ( )
f()x (j n f) n ep一 0 ) 3 3
n= 0
对 ID T : F 计算式 显然有 I c
Ff J . T D T ( ] T Fk 1l () 2 ・ F[ n = ・ ( 4 f ) )
一
l
该式表明 ,利用D TF T计算连续 时间傅 ̄ n 变换 F (F ) - I - 的频谱时 ,除 了计算时域样点的离散傅里叶变化的频谱 , 七 ,还要gF k乘 以取 样时间间隔 ,才能得出结果 。 () q () 直 接 计 算 DF 的 复 杂 度 为 序 列 长 度 的 平 方 ,即 T
取信 号 的时 间段 、如何 选择 时域采 样率 ,以及在 时 间
Hz
,
采 样 时 间间 隔 ( 间分 辨率 ) =l , 5 ,而 时 为T / = ms f
段 上对信 号进 行截取 的方式 。截取 信号 的 时间段 长度 根 据要 求的频 率分辨 率可 以得 出信 号 时域截 断长 度为
2 、频 谱 分 析 的若 干 问题 讨 论
( )根据频率分辨率要 求确定分析信号厂( 的截取 2 f ) 时间长度 。要使所分析的频率分辨率达到△ ,即每隔 厂 计算一个频率点 ,那么对信号 的截取时间长度三 必须满足 L / ≥1A f,根据截取时间长度 和采样时间间隔 可以计
算出截取 时间信号离散化之后的序列点数Ⅳ ,也可 以由计
连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设
连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设1 引言随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。
传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。
仪器设备很大部分陈旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。
虚拟仪器正是解决这一矛盾的最佳方案。
基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。
在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。
信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。
将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。
信号的特征值分为幅值特征值、时间特征值和相位特征值。
尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。
信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。
频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。
信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。
常见连续时间信号的频谱
常见连续时间信号的频谱频谱是用来描述信号在不同频率上的能量分布的。
在信号处理中,常见的连续时间信号包括正弦信号、方波信号和三角波信号等。
下面将分别描述它们的频谱特性。
正弦信号是指具有连续时间的周期性振荡特征的信号。
它的频谱是一个单独的线谱,频谱图上只有一个频率分量。
该频率分量的幅度表示正弦波的振幅,相位表示信号在时间上的延迟或提前。
方波信号是一种具有快速上升和下降的信号,它在一个周期内以高电平和低电平交替出现。
方波信号的频谱是一个线谱,其中包含一系列频率成分,这些频率成分形成了奇数谐波的谐波级数。
频谱图中,频率分量的幅度和频率成分的奇数谐波级数呈现出明显的衰减规律。
三角波信号是一种具有连续变化斜率的信号,其波形类似于一条斜边倾斜上升再倾斜下降的直角三角形。
三角波信号的频谱也是一个线谱,其中包含一系列频率成分,这些频率成分形成了奇数谐波的谐波级数。
与方波信号不同的是,频谱图中的频率分量衰减得更加平缓,且奇数谐波的幅度逐渐递减。
综上所述,正弦信号的频谱是一个单独的频率分量,方波信号和三角波信号的频谱都是由奇数谐波级数的频率成分组成的。
不同信号的频率分量的幅度和衰减规律不同,这些频谱特性对于信号的合成和分析具有重要的指导意义。
常见的连续时间信号除了正弦信号、方波信号和三角波信号外,还包括矩形信号、指数信号和高斯脉冲信号等。
它们各自具有不同的周期性和非周期性特征,在频域上也表现出不同的频谱特性。
矩形信号是一种具有平坦上升和下降沿的信号,其波形类似于一个矩形框。
矩形信号的频谱是一个线谱,其中包含一系列频率成分,这些频率成分与方波信号的频谱类似,形成了奇数谐波的谐波级数。
不同的是,矩形信号的谐波级数幅度衰减得更快,频率成分的振幅更低。
指数信号是指幅度随时间以指数形式衰减或增长的信号。
指数信号的频谱是一个连续谱,在整个频率范围内都存在频率分量。
频谱图中,频率分量的幅度随着频率的增加而逐渐减小,呈现出指数衰减的特征。
实验二连续时间信号的频域分析
实验⼆连续时间信号的频域分析实验⼆连续时间信号的频域分析⼀、实验⽬的1、掌握连续时间周期信号的傅⾥叶级数的物理意义和分析⽅法;2、观察截短傅⾥叶级数⽽产⽣的“Gibbs 现象”,了解其特点以及产⽣的原因;3、掌握连续时间傅⾥叶变换的分析⽅法及其物理意义;4、掌握各种典型的连续时间⾮周期信号的频谱特征以及傅⾥叶变换的主要性质;5、学习掌握利⽤Matlab 语⾔编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利⽤这些程序对⼀些典型信号进⾏频谱分析,验证CTFT 、DTFT 的若⼲重要性质。
基本要求:掌握并深刻理傅⾥叶变换的物理意义,掌握信号的傅⾥叶变换的计算⽅法,掌握利⽤Matlab 编程完成相关的傅⾥叶变换的计算。
⼆、原理说明1、连续时间周期信号的傅⾥叶级数CTFS 分析任何⼀个周期为T 1的正弦周期信号,只要满⾜狄利克利条件,就可以展开成傅⾥叶级数。
三⾓傅⾥叶级数为:∑∞=++=1000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1或:∑∞=++=100)cos()(k k k t k ca t x ?ω 2.2 其中102T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。
三⾓形式傅⾥叶级数表明,如果⼀个周期信号x(t),满⾜狄⾥克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每⼀个不同频率的正弦信号称为正弦谐波分量(Sinusoid component),其幅度(amplitude )为k c 。
数字信号处理实验:利用FFT分析连续信号频谱
数字信号处理课程实验实验报告实验一 利用FFT 分析连续信号频谱一、 实验目的1、 进一步加深离散傅里叶变换DFT 原理的理解;2、 应用离散傅里叶变换DFT (实际应用FFT 计算)分析连续信号的频谱;3、 深刻理解利用DFT 分析连续信号的频谱的原理,分析工程中常出现的现象及解决方法。
二、 实验原理1、 利用DFT 分析连续时间周期信号的频谱周期为Tp 的周期性连续时间信号)(t x p 的频谱(傅里叶级数的系数))(Ωjk x p 是非周期离散谱,定义为)(Ωjk x p =dt e t x p1tjk p p 0Ω-⎰)(T T 其中f 2p2ππ==ΩT 为信号的基频,Ωk 为信号的谐频,谱线间隔为Ω。
通过时域采样就可以利用DFT 分析连续周期信号的频谱。
其步骤为: ① 确定周期信号的基本周期Tp ;② 计算一个周期内的采样点数N ,若周期信号的最高频谱为Ωp ,则频谱中有2p+1 根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据实际需要)能量的前p+1 个谐波为近似的频谱范围,其余的谐波忽略不计。
取N ≥2p+1; ③ 对连续周期信号以采样间隔NT T p=进行采样 ; ④ 利用FFT 计算采样信号的N 点DFT ,得到()k X ; ⑤ 最后求出连续周期信号的频谱为)(Ωjk x p =N1()k X 。
因为对连续周期信号按采样间隔NT T p=进行采样,每个周期抽取N 点时,则有 t=nT ,Tp=NT那么 )(Ωjk x p =dt et x p 1tjk p p 0Ω-⎰)(T T =∑-=-10n n p 2jk e n x p N T T T T T π)( =∑-=-1n n N 2jk e n x N 1N T π)(=)(k N 1X若能按照满足采样定理的采样间隔进行抽样,并且采取整周期为信号分析的长度,则利用FFT 计算得到的离散频谱值等于连续周期信号频谱)(Ωjk x p 的准确值。
连续时间信号与系统的频域分析实验报告(共9篇)
连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。
二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。
%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym('Heaviside(2*t+1)-Heaviside(2*t-1)');Gt1=sym('Heaviside(t1+1)-Heaviside(t1-1)');Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple('convert',Fw,'piecewise');FFw1=maple('convert',Fw1,'piecewise');FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。
(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym('(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)');Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)');ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym('((i*w)+5*i*w-8)/((i*w)+6*i*w+5)');ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。
连续时间信号频谱分析研究及MATLAB实现
谱时 ,除 了计算时域样点的离散傅里叶变化 的频谱 F ,还 f 要 将 1 以取 样 时 间 间 隔 ,才 能 得 出结 果 。 乘
直 接 计 算 D T的 复杂 度 为 序 列 长 度 的 平 方 , 0Ⅳ 1 16 F 即 (:。9 5 年,库 利 ( .. o l y TW Co e )和 图基 ( . . u y J W T k )在 《 计算数学》
时间段 [ ] , 上,那么就可 以根据采样定 理选 取采样时间 间
隔 为 T / f 、 并 选 取 截 取 时 问 段 长 度 为 L≥t— o 这 样 l 2 . , ( l t。
法为数字信号处理技术应用于各种信号 的实时处理创造 了条
件 , 大 大推 动 了数 字 信 号 处 理 技 术 的 发展 ,在 此 利 用 F T计 F 算 连 续 时 间傅 里 叶变 化 的 频 谱 。
= co= k o , …
( )引言 一
在 信 号 处 理 过 程 中 ,频 域 分 析 方 法 往 往 比 时域 分 析方 法 更 方 便 和 有 效 。 对 于 确 知 连 续 时 间 信 号 ,其 频 域 分 析 可 以通 过 连 续 时 间 傅 里 叶 变 换 来 进 行 ,但 是 ,这 样 计 算 出来 的结 果 仍 然 是 连 续 函 数 , 计 算 机 不 能 直 接 加 以处 理 。为 了实 现 数 值 计 算 , 还 需 要 对 其 进 行 离 散 化 处 理 ,即 采 用 离 散 傅 里 叶变 换 ( F )进 行分 析 。D T的 快 速 算 法 的 出现 ,使 D T在 数 字 通 DT F F 信 、 图像 处 理 、 功 率 谱 估 计 、 系 统 分 析 与 仿 真 、雷 达 信 号 处 理 、 光 学 、 医 学 等 各 个 领 域 都 得 到 广 泛 应 用 。本 文 以正 弦 信 号 为例 ,介绍 用 D T的快 速 算 法 即 快速 傅 里 叶变 化 ( F )实 F FT
常见连续时间信号的频谱
2e-at ( sin t - a cos t) 2a
a2 2
0 a2 2
➢ 幅度频谱为 ➢ 相位频谱为
F( j) 2a a2 2
() 0
2024/1/6
4
一、常见非周期信号的频谱
3. 单位冲激信号d(t)
F[d
(t)]
-
f (t)e-jt dt
-
d
(t)e
-
jt
dt
1
d (t)
F ( j)
cos0t
1 (e j0t 2
e-j0t ) F π[d (
- 0 ) d (
0 )]
cos 0t
1
F( j)
(π)
(π)
t -0
0
0
余弦信号及其频谱函数
2024/1/6
12
二、常见周期信号的频谱密度
2. 正弦型信号
sin 0t
1 (e j0t 2j
- e-j0t ) F - jπ[d (
● 微分性质 [ f (n) (t)] ( j)n [ f (t)]
2024/1/6
19
1. 线性特性
若f1 (t) F F1 ( j); f 2 (t) F F2 ( j), 则af1 (t) bf 2 (t) F aF1 ( j) bF2 ( j) 其中a和b均为常数。
2024/1/6f来自(t)e j0t]-1 2j
F[
f
(t)e - j0t
]
-
j 2
F[ j(
-
0
)]
j 2
F[ j(
0
)]
2024/1/6
30 13
例2 试求矩形脉冲信号f(t)与余弦信号cos0 t相
信号与系统实验报告实验三连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,云归而岩穴暝,晦明变化者,山间之朝暮也。野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。直译法:那太阳一出来,树林里的雾气散开,云雾聚拢,山谷就显得昏暗了,朝则
自暗而明,暮则自明而暗,或暗或明,变化不一,这是山间早晚的景色。野花开放,有一股清幽的香味,好的树木枝叶繁茂,形成浓郁的绿荫。天高气爽,霜色洁白,泉水浅了,石底露出水面,这是山中四
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊
么不能划分为“山/行六七里”?
明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望
之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适当的讲解引导。目标导学三:结合注释
e jMw0
1 e jw1 e j 2w1
e jMw1
1 e jw2 e j 2w2
e jMw2
1
e jwN1 e j 2wN1
e jMwN1
连续时间信号傅立叶变换的数值计算(P225)
例4:已知 f (t) u(t 1) u(t 1),求其傅立叶变换F(jw)
琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),参知政事范仲淹等人遭谗离职,欧阳
修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字1.
初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
环滁/皆山也。其/西南诸峰,林壑/尤美,望之/蔚然而深秀者,琅琊也。山行/六七里,渐闻/水声潺潺,而泻出于/两峰之间者,酿泉也。峰回/路转,有亭/翼然临于泉上者,醉翁亭也。作亭者/谁?山之僧/曰/智
仙也。名之者/谁?太守/自谓也。太守与客来饮/于此,饮少/辄醉,而/年又最高,故/自号曰/醉翁也。醉翁之意/不在酒,在乎/山水之间也。山水之乐,得之心/而寓之酒也。节奏划分思考“山行/六七里”为什
于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导
学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世
强译文的美感,培养学生的翻译兴趣,但可能会降低译文的准确性。因此,需两种翻译方式都做必要引导。全文直译内容见《我的积累本》。目标导学四:解读文段,把握文本内容1.赏析第一段,说说本
文是如何引出“醉翁亭”的位置的,作者在此运用了怎样的艺术手法。
明确:首先以“环滁皆山也”五字领起,将滁州的地理环境一笔勾出,点出醉翁亭坐落在群山之中,并纵观滁州全貌,鸟瞰群山环抱之景。接着作者将“镜头”全景移向局部,先写“西南诸峰,林壑尤美”
第8章 连续时间信号的 频谱分析
实验目的
掌握傅立叶变换(FT),了解傅立叶变换的 性质以及MATLAB实现。
非周期函数的傅立叶变换(P211)
非周期函数的傅立叶变换:
利用符号函数求傅立叶变换
傅立叶变换:F=fourier(f); F,f应为符号表达式 反傅立叶变换:f=ifourier(F);
时间推移,抓住朝暮及四季特点,描绘了对比鲜明的晦明变化图及四季风光图,写出了其中的“乐亦无穷”。第二段是第一段“山水之乐”的具体化。3.第三段同样是写“乐”,但却是写的游人之乐,作
者是如何写游人之乐的?明确:“滁人游”,前呼后应,扶老携幼,自由自在,热闹非凡;“太守宴”,溪深鱼肥,泉香酒洌,美味佳肴,应有尽有;“众宾欢”,投壶下棋,觥筹交错,说说笑笑,无拘无
0 n
当 取足够小时:
上式可表示 矩阵形式:
M
F (k) f (n )e jwkn , 0 k N n0
2 wk N k
1
e
jw0
[F (0), f (1),...., F (n 1)] [ f (0), f ( ), f (2 ),...., F (M )] e j2w0
clear all; R=0.01; t=-2:R:2; f=heaviside(t+1)-heaviside(t-1); W1=2*pi; N=2000; k=-1000:1000; W=k*W1/(N*R); F=f*exp(-j*t'*W)*R;
参见程序ex_5
பைடு நூலகம்
F_r=real(F); figure(1) subplot(2,1,1);plot(t,f); xlabel('t');ylabel('f(t)');title('f(t)=u(t+1)-u(t-1)'); subplot(2,1,2);plot(W,F_r); xlabel('w');ylabel('F(w)');title('f(t)的付氏变换F(w)'); axis([-30,30,-0.5,2]) F_A=abs(F);%幅频特性 F_P=angle(F_r);%相频特性 figure(2) subplot(2,1,1),plot(W,F_A),xlabel('w');ylabel('abs(F(w))');title('f(t)幅频特性)'); axis([-40,40,0,2]) subplot(2,1,2),plot(W,F_P),xlabel('w');ylabel('angle(F(w))');title('f(t)相频特性)'); axis([-40,40,-2,4])
系统的频率响应函数为
其中,H( j) 为系统的幅频特性
() 为系统的相频特性
六、连续系统的频率响应(P240)
MATLAB提供了专门对连续系统频率响应 H(jw)进行分析的函数freqs()
该函数可以求出系统频率响应的数值解,并可 绘出系统的幅频和相频响应曲线。
freqs(b,a,w), w=[w1:p:w2] [h,w]=freqs(b,a) [h,w]=freqs(b,a,n) freqs(b,a)
称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居士。客有问曰:“六一何谓也?”居士曰:“吾家藏书一万卷,集录三代以来金石遗文一千卷,有
季的景色。意译法:太阳升起,山林里雾气开始消散,烟云聚拢,山谷又开始显得昏暗,清晨自暗而明,薄暮又自明而暗,如此暗明变化的,就是山中的朝暮。春天野花绽开并散发出阵阵幽香,夏日佳树繁
茂并形成一片浓荫,秋天风高气爽,霜色洁白,冬日水枯而石底上露,如此,就是山中的四季。【教学提示】翻译有直译与意译两种方式,直译锻炼学生用语的准确性,但可能会降低译文的美感;意译可加
把握作者思想感情思考探究:作者以一个“乐”字贯穿全篇,却有两个句子别出深意,不单单是在写乐,而是另有所指,表达出另外一种情绪,请你找出这两个句子,说说这种情绪是什么。明确:醉翁之意
不在酒,在乎山水之间也。醉能同其乐,醒能述以文者,太守也。这种情绪是作者遭贬谪后的抑郁,作者并未在文中袒露胸怀,只含蓄地说:“醉能同其乐,醒能述以文者,太守也。”此句与醉翁亭的名称
非周期函数的傅立叶变换(P212)
例3:画出 f (t) 1 e2tu(t)的时域图形及幅频图
2
clear all;
syms t v w x;
x=1/2*exp(-2*t)*heaviside(t);
F=fourier(x);
subplot(3,1,1);
ezplot(x);
subplot(3,1,2);
参见程序ex_4
ezplot(abs(F));
subplot(3,1,3);
ezplot(atan(imag(F)/real(F)))
连续时间信号傅立叶变换的数值计算(P224)
连续信号傅立叶变换的数值计算方法的理论依据:
F ( jw) f (t)e jwtdt lim f (n )e jwn
%求相频
figure(1)
subplot(211);
plot(w,h1);grid,xlabel('角频率(W)');ylabel('幅度');title('H(jw)的幅频特性
subplot(212);
plot(w,h2*180/pi);grid,xlabel('角频率(w)');ylabel('相位(度)');title('H(jw) 频特性');
、“醉翁之意不在酒,在乎山水之间也”前后呼应,并与“滁人游”“太守宴”“众宾欢”“太守醉”连成一条抒情的线索,曲折地表达了作者内心复杂的思想感情。目标导学六:赏析文本,感受文本艺术