特殊平行四边形专项培优训练
北师大版九年级数学上期末备考压轴题专项培优:特殊的平行四边形(解析版)
期末备考压轴题专项培优:特殊的平行四边形1.如图,四边形AB C D是正方形,△ABE是等边三角形,M为对角线B D(不含B点)上任意一点,将绕点逆时针旋转60°得到BN,连接、、.设点的坐标E N A M C MB M B N为(,).m n(1)若建立平面直角坐标系,满足原点在线段上,点(﹣1,0),(0,1).且B AB D=(0<≤2),则点的坐标为(1,0),点的坐标为(0,﹣1);请B M tt D C直接写出点纵坐标的取值范围是0<≤;N n n(2)若正方形的边长为2,求的长,以及++的最小值.A MB MC ME C(提示:连结M N:=+1,=﹣1)解:(1)如图1,以直线为轴,直线x为轴,建立平面直角坐标系,A C yB D∵四边形是正方形,AB C D∴===O A O B O C O D,∵点(﹣1,0),(0,1),B A∴(1,0),(0,﹣1);D C过作⊥于,hN N H B D∴∠N HB=90°,∵将绕点逆时针旋转60°得到BN,B M B∴∠NB H=60°,=,B M B N∴=N HB N=t,∵0<≤2,t∴点纵坐标的取值范围是0<≤;N n n故答案为:(1,0),(0,﹣1);0<≤;n()如图所示,连接2,过作M N E⊥,交E H B C的延长线于,C B H由旋转可得,=,∠=°,B M B N NBM60∴△B M N是等边三角形,∴=,M N B M∵△ABE是等边三角形,∴=,∠=°,BE BA ABE60∴∠AB M=∠EBN,∴△AB M≌△(),EB N SAS∴∴=,A M E NA M+B M+C M=E N+M N+C M,∴当,,,在同一直线上时,E N M C 的最小值是的长,C EA M+B M+C N 又∵∠=°,∠=°,ABE60AB H90∴∠=°,EB H30∴△Rt EB H 中,=E H=×=,EB21∴=B H==,∴=,C H2+∴△Rt CE H 中,=C E===;∴A M+B M+C M的最小值为.+2.如图,在▱ABC D 中,∠BA D 的平分线交 B C 于点 ,交 E D C 的延长线于 ,以 F 、 E C CF 为邻边作▱ECF G .( )证明▱ 1是菱形; E CF G ( )若∠ = °,连结 2 AB C 120、 ,求∠ B D C G BD G 的度数; ( )若∠ = °, = , = , 是 3 AB C 90 AB 6 A D 8 M EF的中点,求 的长. D M 解:( )证明:, 1∵AF 平分∠BA D ,∴∠BAF =∠DAF ,∵四边形 是平行四边形,AB C D ∴ ∥ , ∥ , A D B C AB CD∴∠DAF =∠CEF ,∠BAF =∠CFE ,∴∠CEF =∠CFE ,∴ = , C E CF又∵四边形 是平行四边形,E CFG ∴四边形 为菱形;E CFG ( )∵四边形 2是平行四边形, AB C D ∴ ∥ , = , ∥ , AB D C AB D C A D B C∵∠ = °, AB C 120∴∠ = °,∠ = B C D 60 BC F 120° 由( )知 ,四边形 1是菱形, C E G F ∴ = ,∠BCG = ∠ C E G E = °, B CF 60∴ = = ,∠ = °, C G G E CE D C G 120∵ ∥ , E G D F∴∠ = °=∠D C G , BE G 120∵AE是∠BA D的平分线,∴∠DAE=∠BAE,∵∥,A DB C∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴=,AB BE∴=,BE C D∴△BE G≌△(),D C G SAS∴=,∠BG E=∠D G CB G D G,∴∠B G D=∠C G E,∵==,C G G E CE∴△CE G是等边三角形,∴∠=°,C G E60∴∠=°,B G D60∵=,B G D G∴△B D G是等边三角形,∴∠=°;B D G60()如图中,连接32,,B M M C∵∠=°,四边形AB C90是平行四边形,AB C D∴四边形是矩形,AB C D又由()可知四边形1为菱形,E CF G∠=°,E CF90∴四边形为正方形.E CF G∵∠BAF=∠DAF,∴==,BE AB D C∵为M中点,EF∴∠CE M=∠ECM=45°,∴∠BE M=∠D C M=135°,在△B M E和△D M C中,∵,∴△B M E≌△(),D M C SAS∴=,M B M D∠D M C=∠B M E.∴∠B M D=∠B M E+∠E M D=∠D M C+∠E M D=90°,∴△B M D是等腰直角三角形.∵=6,=8,AB A D∴=10,B D∴D M=B D=5.3.如图,在正方形AB C D中,对角线AC、B D相交于点O,以A D为边向外作等边△AD E,连接CE,交于.B D F(1)如图1,若AE=,求的长;D F(2)如图2,点为M的延长线上一点,连接C M,连接且平分∠A M C,求F MAB F M证:C M=﹣.M F A M解:(1)如图1,连接OE,∵四边形是正方形,AB C D∴=,∠=90°,===A D C D A D C OA O D OB O C∵△A DE 是等边三角形∴ = = = ,∠ A D D E AE = °A D E 60 ∴ = = , = =C D A D O D O B ∵= , = AE D E O D O A ∴OE 垂直平分 A D即 ⊥ , = O E A D D H AH∴ = = = ,O E O H+E H + ∵∠A D C =∠ = °D HE 90 ∴ ∥ C D O E∴△C DF ∽△E OF∴ ∵ = ,即 D F = O F= D F+O F O D =∴ = ﹣ O F D F∴ = ( ﹣ ),解得: = ﹣ .D F D F D F 1( )如图 ,连接 2 2 ,过点 作 E O F ⊥ P Q C D 交 于 ,在 N 上截取 = M T M C ,连接E O M A ,设正方形边长为 ,a FT ∵四边形 是正方形,△A DE 是等边三角形AB C D ∴ = = = = ,∠A D C =∠ A D AB C D D E a DAB 90 = °∠ = °A D E 60 易证 ⊥ O E A D∴ = O E , a O D = a ,由( )知△C DF ∽△E OF1 ∴ = ,即 • = • a DF a OF∵DF+O F = a∴ = O F ﹣ a DF∴ • = ( a DF a ﹣ )a DF ∴ = D F a ,∵△DPF 是等腰直角三角形∴==D P PFD F=a=a,∴=﹣F Q a=,a CP∵F M平分∠A M C,∴∠C M F =∠A M F在△M C F和△MTF中∴△M CF≌△(M T F SAS)∴=C F FT∴△≌△()Rt CFP Rt FT Q HL ∴==Q T PFa,∵=A Q D P∴=A Q QT∵∴﹣==B M+AB AT MTC M﹣=﹣=﹣×C M B M AB AT a2a=,==a C M+B M M T+B M BT+2B M a2=﹣×a+2B M =a+2B M∴∵∴2﹣C M B M2=(﹣)(C M+B M)=C M B Ma(a+2B M)2﹣2=2=2,C M B M B C aa()=2,aa+2B M∴B M =a在△Rt BC M 中,∠===,t an B M C∴∠=°B M C60∴∠=°A M F30∴=∠=°=cos A M F cos30∴2M Q =M F∵===(B M+BT)+(B M+BT+AT )=CM+A M2M Q2B M+2B Q2B M+2BT+2Q T∴ 即 C M A M += M F C M = ﹣ M F A M. 4.在菱形 AB C D 中,∠ABC =60°,B D 为菱形的一条对角线.(1)如图 1,过 作 ⊥ AE B C 于点 ,交 E于点 ,若 =2,求菱形 的面积; A B D F EF AB C D (2)如图 2, 为菱形 M 外一点,过 作 A ⊥ A N B M 交 的延长线于点 ,连接 N AB C D B M , , ⊥ A M D M A G D M于点 ,且∠A M N =∠A M D ,求证:D M =B M + G A M . (1)解:如图 1 中,∵四边形 都是菱形,∠ABC =60°,AB C∴∠AB D=∠=°,D B C30∵⊥,AE B C∴∠=°,BEF90∵=,EF2∴==,∠=°,BFE60BF2EF4∵∠BFE=∠∠ABF+FAB,∴∠ABF=∠=°,FAB30∴==,BF AF4∴==,AE AF+EF6∴=AB=4,,∴==B C AB4∴S=•=B C AE24.菱形AB C D()证明:如图中,22∵∠A M N=∠A M G,A N⊥M N,A G⊥D M,∴=,A N A G∵∠M NA=∠=°,=,=,M G A90A M A M A N A G∴△≌△(),Rt M A N Rt M A G HL∴=N M M G,∵∠ANB=∠=°,=,=,A G D90AN A G AB A D∴△≌△(),Rt ANB Rt AG D HL∴∠ABN=∠,=,A D GB N D G∴∠B M D=△=°,BA D120∴∠=°,N M G60∴∠A M N=∠=°,A M G30∴ ∴ ﹣ + D M B M M G D G B N M N= ﹣( ﹣ )=2M N = A M , = D M B M + A M . 5.如图,点 A 、B 、C 、D 在同一条直线上,点 E 、F 分别在直线 AD 的两侧,且 AE =DF , ∠ =∠ , = .A D AB DC (1)求证:四边形 是平行四边形;BF C E (2)若 =12, =3,∠EB D =60°,则 BE = 6 时,四边形A D D C 是菱形.(只 BF C E 需完成填空,不需写出具体过程.)(1)证明:∵在△ABE 和△D CF 中,∴△ABE ≌△ ( ),D C F SAS ∴ = ,∠ABE =∠D CF BE F C ,∴∠EBC =∠FCB ,∴ ∥ ,BE F C ∴四边形 是平行四边形;BF C E (2)解:当四边形 是菱形,BF C E 则 = ,BE E C ∵ =12, =3, = ,A D D C AB DC ∴ =6,B C ∵∠EB D =60°, = ,EB E C ∴△EBC 是等边三角形,∴ =6.BE 故答案为:6.6.已知:如图,在▱AB C D中, 、 分别是 G H 、 A D B C 的中点, 、 、 分别是对角线 E O F BD 上的四等分点,顺次连接 、 、 、 . G E H F( )求证:四边形 1是平行四边形; G E H F ( )当▱ 2满足 , ⊥ AB B D 条件时,四边形 是菱形; AB C D G E H F ( )若 3= B D 2AB ①探究四边形 的形状,并说明理由;G E H F ②当 = ,∠ = AB 2 AB D 120 °时,直接写出四边形 的面积. G E H F ( )证明:连接 ,如图 所示: 1 AC 1∵四边形 是平行四边形,AB C D ∴ = , = O A O C O B O D, ∴B D 的中点在 上,A C ∵ 、 、 分别是对角线 E O F上的四等分点, B D ∴ 、 分别为 E F 、 O B O D的中点, ∵ 是 G 的中点, A D∴GF 为△A O D 的中位线,∴ ∥ , = OA , G F O A G F同理: ∥ , = O C , E H O C E H∴ = , ∥ , E H G F E H G F∴四边形 是平行四边形;G E H F ( )解:当▱ 2满足 ⊥ AB B D 条件时,四边形 是菱形;理由如下: AB C D G E H F 连接 则 ,如图 所示: G H 2= , ∥ , A G B H A G BH∴四边形 是平行四边形,AB H G ∴ ∥ ,AB G H ∵ ⊥ , AB B D∴ ∴ ⊥ , G H B D⊥ , G H EF∴四边形 是菱形;G E H F 故答案为: ⊥ ; AB B D( )解:①四边形 是矩形;理由如下:是平行四边形, G E H F 3 G E H F 由( )得:四边形 2∴ = , G H AB∵ = ,B D 2AB ∴ = AB = , B D EF∴ = , G H EF∴四边形 是矩形;G E H F ②作 ⊥ 于 , ⊥ A M B D M G N B D 于 ,如图 所示: N 3则 ∥ , A M G N∵ 是 G 的中点, A D∴G N 是△A D M 的中位线,∴ = A M , G N∵∠ ∴∠ ∴∠ = °, AB D 120 = °, AB M 60= °, BA M 30∴B M == , AB 1 A M = B M = ,∴ = G N , ∵ = = ,B D 2AB 4 ∴ = EF = , B D 2∴△EF G 的面积= × = × × EF G N 2 = ,∴四边形 的面积= △ 的面积= . 2 EF GG E H F7.如图,边长为6 的正方形 ABC D 中,E ,F 分别是 A D ,AB 上的点,AP ⊥BE ,P 为垂足.(1)如图1, =, =2 ,点 是射线 上的一个动点,当△ABT 为直角三角 PFAF BF AE T 形时,求 的长;AT (2)如图 2,若 = ,连接 ,求证: ⊥ . AE AF CP C P FP (1)解:在正方形 中,可得∠DAB =90°.AB C D ∵在 Rt △BAE 中,tan ∠ABE ∴∠ABE =30°.== = ,点 是射线 T 上的一个动点,当△ABT 为直角三角形时,分三种情况: 的上方,∠ATB =90°, PF AB ① 当点 在 T显然此时点 和点 重合,即 = = T P AT AP=3;②当点 在 的下方,∠ATB =90°, T AB AB 如图①所示.在 Rt △APB 中,由 = , AF BF可得: = = =3, AF BF PF∴∠BPF =∠FBP =30°,∴∠BFT =60°.在 Rt △ATB 中, = = =3, TF BF AF∴△FTB 是等边三角形,∴ =3, = TB AT =3 ;的下方,∠ABT =90°时,如图②所示.③当点 在 T AB 在 Rt △FBT 中,∠BFT =60°, =3, = •t an60°=3 . BF BT BF在 Rt △ATB 中: = AT =3 .综上所述:当△ABT 为直角三角形时, 的长为 3 或 3 或 3 ; AT(2)证明:如图③所示,∵四边形 是正方形,AB C D ∴ = = , ∥ ,∠DAB =90°, AB A D B C AD B C∴∠3=∠4.∵在 Rt △EAB 中, ⊥ , AP BE∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4,∵tan ∠1=,tan ∠3= , ∴ = ,∵ = , = , AE AF AB BC∴ = ,∴△PBC ∽△PA F,∴∠5=∠6.∵∠6+∠ 7=90°,∴∠∠=°,即∠=°,5+790CPF90∴⊥.C P FP8.已知:如图,在中,、分别是G H、的中点,⊥,⊥,垂足分A D B C AE B D CF BDAB C D 别为、.E F()求证:四边形1是平行四边形;G E H F()已知=,=.求四边形2AB5A D8是矩形时的长.B DG E H F()证明:∵四边形1是平行四边形,AB C D∴∥,=,A D B C A D BC ∴∠G D E=∠FB H,∵、分别是G H、的中点,⊥,⊥,A D B C AE BD CF B D∴在△和△Rt AE D Rt C FB 中,=E G=,=A D G D F H=,B C H B∴=,∠GE D=∠G D E,∠FB H=∠BF HE GF H,∴∠GE D=∠BF H,∴∥,E GF H∴四边形是平行四边形;G E H F()解:连接GH,2当四边形是矩形时,∠E HF=∠=°,BF C90G E H F∵∠FB H=∠BF H ∴△EF H∽△CBF ,,∴=,由()可得:∥,=,1GA H B G A H B∴四边形是平行四边形,G A B H∴==,G H AB5∵在矩形∴=中,=,且=,=,EF G H AB5A D8G E H F,解得:=BF,∴=﹣=﹣=,BE BF EF5在△ABE和△C D F中∴△ABE≌△(),C D F AAS∴==,BE D F∴ = = = .B D BF+D F + .如图,点 是正方形 M 的边 上一点,连接 ,点 是线段 A M 上一点,∠CDE A M E9 AB C D B C 的平分线交 延长线于点 . FA M ( )如图 ,若点 为线段 1 1 E 的中点, : = : , =B MC M 1 2 BE,求 的长; AB A M ( )如图 ,若 2 2 = ,求证:BF+DF = AF .D A DE 解:( )设 1 = ,则 B M x = , = ,C M 2x BC 3x ∵ = ,∴ = .BA B C BA 3x 在 △ Rt AB M 中, 为斜边 E 中点,A M ∴ = = A M 2BE 2 .由勾股定理可得 2= 2 A M M B +AB 2,即 = 2 2,解得 = .40 x +9x x 2 ∴ = = .AB 3x 6 ( )延长 2 交过点 作垂直于 A 的直线于 点,过点作 H D ⊥ 于 点.D P AF P F D AF ∵DF 平分∠C DE ,∴∠ =∠ .1 2 ∵ = , ⊥ D E D A D P AF∴∠ =∠ .3 4 ∵∠ ∠ ∠ ∠ = °,1+ 2+ 3+ 4 90 ∴∠ ∠ = °.2+ 3 45 ∴∠ = °﹣ °= °.D F P 90 45 45 ∴ = .A H AF ∵∠ ∠ BAF+ DAF 90 = °,∠ ∠ = °,H A D + D AF 90 ∴∠BAF =∠DA H .又 = , AB A D∴△ABF ≌△ ( ). A D H SAS∴ = , = AF A H BF D H. ∵ △ Rt FAH是等腰直角三角形, ∴ = AF . H F∵ = = , H F D H+D F BF+D F∴BF+DF = AF .10.在四边形 AB C D 中,对角线、 A C B D 相交于点 ,过点 的两条直线分别交边 O OAB 、 、 、 于点 、 、 、 . C D A D B C E F G H【感知】如图①,若四边形 是正方形,且 = = = ,则 A G BE C H D F S = AB C D AB C D AE O G 四边形 ;S AB C D 正方形 【拓展】如图②,若四边形 是矩形,且 = ,设 = , AB a A DS SAE O G AB C D 四边形 矩形 = , = ,求 b BE m 的长(用含 、 、 的代数式表示); a b mA G 【探究】如图③,若四边形 是平行四边形,且 = , = , = ,试确定 、 AB 3 A D 5 BE 1 F ABCD 、 的位置,使直线 G H 、 EF G H 把四边形 的面积四等分. AB C D解:【感知】如图①,∵四边形 是正方形, AB C D∴∠OA G =∠ = °, = , O B E 45 OA OB在△A O G 与△B OE 中,, ∴△A O G ≌△B OE ,∴S =S = ;S AE O G △A O B AB C D 四边形 正方形 故答案为: ;【拓展】如图②,过 作 ⊥ 于 , ⊥ 于 , O N A D N O M AB MO ∵S ∴S = ,S = , S S △A O BAB C D AE O G AB C D 矩形 矩形 四边形 =S , △A O BAE O G 四边形 ∵S△A OB =S △B OE +S △A O E ,S AE O G =S △A O G +S △A OE ,四边形 ∴S =S , △B O E △B O E△A O G∵S = • BE O M = b = , mb S = • = A G • a = A G O N • , A G am △A O G ∴ mb =• , A G a ∴ = A G ; 【探究】如图③,过 作 ⊥ , ⊥ , KL AB P Q ADO 则 = , = , KL 2O K P Q 2O Q∵S = • = • , AB KL A D P QAB C D 平行四边形 ∴ × = × 3 2O K 5 2OQ, ∴ = ,∵S = ,S = , S S△A O BAB C D AE O G AB C D 平行四边形 平行四边形 四边形 ∴S ∴S =S =S ,△A O B AE O G 四边形 , △B O E △A O G∵S = • = × × , BE O K 1 O K S= • , A G O Q △B O E △A O G ∴ × × = 1 O K• ,∴ = = , A G O Q A G∴当 = = , = = 时,直线 A G C H BE DF 1、 EF G H 把四边形 的面积四等分. AB C D 11.如图,在矩形ABC D 中, = , = ,点 从点 出发向点 运动,运动到 AB 8cm BC 16cm P D A点 停止,同时,点 从点 出发向点 运动,运动到点 即停止,点 、 的速度都 Q B C C P Q A 是 1cm/s .连接 、 、 .设点 、 运动的时间为 . P Q A Q CP P Q ts( )当 为何值时,四边形 是矩形;1 t AB Q P A Q C P A Q C P ( )当 为何值时,四边形 是菱形;2 t ( )分别求出( )中菱形3 2的周长和面积. 解:( )∵在矩形 1 中, = , = , AB 8cm BC 16cmAB C D ∴ = = , = = , B C A D 16cm AB C D 8cm由已知可得, = = , = =( ﹣ ) , B Q D P tcm AP C Q 16 t cm在矩形 中,∠ = °, ∥ , B 90 A D BCAB Q PAB C D 当 = B Q AP 时,四边形 为矩形, ∴ = ﹣ ,得 = , t 16 t t 8故当 = 时,四边形 t 8s为矩形; AB Q P ( )∵ = , ∥ , 2 AP C Q AP C Q∴四边形 为平行四边形,A Q C P ∴当 即 = A Q C Q 时,四边形 为菱形 A Q C P= ﹣ 时,四边形 16 t 为菱形,解得 = , t 6A Q C P 故当 = 时,四边形 t 6s 为菱形; A Q C P( )当 = 时, = = = = ﹣ = 3 t 6s AQ C Q CP AP 16 6 10cm, 则周长为 × = ; 4 10cm 40cm面积为 × = 2. 10cm 8cm 80cm12.如图,在四边形 连接 DF .中, = , = , 是 AB A D CB CD E C D上的 点,BE 交 于点 , A C F AB C D ( )求证:∠BAF =∠DAF ,∠AFD =∠CFE 1 ;( )若 ∥ ,试证明:四边形 2 AB C D 是菱形;AB C D ( )在( )的条件下,试确定点 的位置,使得∠EF D =∠BC D ,并说理由.3 2 E证明:( )在△ 1 AB C 和△A D C 中, ,∴△ABC ≌△A D C ,∴∠BAC = ∠DAC 在△ABF 和△A DF ,中,∴△ABF ≌△A DF ,∴∠AFB =∠AF D ,∵∠CFE =∠AFB ∴∠AF D =∠CFE ∴∠BAF =∠DA C ,∠AF D =∠CFE ,,;( )∵ ∥ ,2 AB C D ∴∠BAC =∠AC D ,, ∵∠BAC =∠DA C∴∠BAC =∠AC D ,∴∠DA C =∠AC D ,∴ = , A D C D∵ = , = , AB A D CB CD∴ = = = , AB CB C D AD∴四边形 是菱形;AB C D ( )∵四边形 3是菱形, AB C D ∴ = ,∠BC F =∠D CF B C C D, ∵ = , C F CF∴△BCF ≌△D CF ,,∴∠CBF =∠C D F ∵ ⊥ , BE C D∴∠BEC =∠ = °, .D E F 90 ∴∠EF D =∠BC D 13.如图,在△AB C 中,点 是边 O A C 上一个点,过点 作直线 M N ∥BC 分别交∠ACB 、O外角∠AC D 的平分线于点 、 . E F( )若 = , = ,求 1 CE 8 CF 6的长; O C ( )连接 、 .问:当点 在边 2 AE AF O上运动到什么位置时,四边形 是矩形? AE C F A C 证明你的结论. ( )证明:∵ 交∠ACB 的平分线于点 ,交∠ 1 EF E ACB的外角平分线于点 , F ∴∠O CE =∠BCE ,∠O CF =∠D CF ,∵ ∥ , EF B C∴∠ OE C =∠BCE ,∠OF C =∠D C F ,∴∠OE C =∠O CE ,∠OF C =∠O CF ,∴ = , = , O E O C O F O C∴ = ; O E O F∵∠ ∠ ∠ ∠ = O C E+ BCE+ O C F+ D C F 180°, ∴∠ = °, E CF 90在 △ Rt CEF中,由勾股定理得: = EF = , 10 ∴ = = O C O E = ; EF 5( ) 当点 在边 2 O上运动到 中点时,四边形 是矩形.理由如下: AE C F A C A C 当 为 O 的中点时, = , A C AO C O∵ = , E O F O∴四边形 是平行四边形,AE C F ∵∠ = °, E CF 90∴平行四边形 是矩形.的对角线 AE C F 14.如图,菱形 AB C D 、 A C B D 相交于点 ,过点 作 O DD E A C ∥ 且 DE = AC , 连接 、 ,连接 C E O E 交 AE O D 于点 . F( )求证: = ; 1 OE CD( )若菱形 2 的边长为 ,∠ = °.求 的长. 2 ABC 60 AEAB C D ( )证明:在菱形 1中, = AC . AB C D O C ∴ = . D E O C∵ ∥ , D E A C∴四边形 是平行四边形.是矩形.O C E D ∵ ⊥ , A C B D∴平行四边形 O C E D ∴ = . O E C D( )在菱形 2 中,∠ = °, AB C 60AB C D∴ = = . A C AB 2∴在矩形 中,O C E D = = C E O D. 在 △中, Rt ACE AE = 15.如图,以△AB C ( )求证:△B D E ≌△BAC .的各边,在边 的同侧分别作三个正方形 , , AB DI BCFE AC H G. B C ;1 ( )求证:四边形2 是平行四边形.A D E G ( )直接回答下面两个问题,不必证明:3 ①当△ABC 满足什么条件时,四边形 是矩形?A D E G ②当△ABC 满足什么条件时,四边形 是正方形? A D E G ( )证明:∵四边形 AB DI 、四边形 BCFE 、四边形 1 都是正方形, AC H G ∴ = , = , = ,∠GA C =∠EBC =∠ = °. A C A G AB BD B C BE D B A 90 ∴∠ABC =∠EB D (同为∠EBA 的余角).在△B DE 和△BAC 中,,∴△B DE ≌△ ( ),BA C SAS ( )∵△B DE ≌△BAC 2 ,∴ = = ,∠BAC =∠B DE D E A C A G .∵A D 是正方形 ∴∠B DA =∠ 的对角线,AB DI = °.BA D 45 ∵∠E DA =∠B DE ﹣∠B DA =∠ ﹣ °,B D E 45 ∠DA G 360°﹣∠GAC ﹣∠BA C ﹣∠BA D==360°﹣ °﹣∠ ﹣ ° 90 BAC 45 =225°﹣∠BAC∴∠ ∠ =∠ ﹣ ° °﹣∠ = ° E D A+ DA G B D E 45 +225 BAC 180∴ ∥ , D E A G∴四边形 是平行四边形(一组对边平行且相等). A D E G ( )①当四边形 是矩形时,∠ = °. D A G 903 A D E G 则∠ = °﹣∠BA D ﹣∠DA G ﹣∠ = °﹣ °﹣ °﹣ °=135°, BA C 360 G A C 360 45 90 90 即当∠ = °时,平行四边形 BA C 135 是矩形;A D E G ②当四边形 是正方形时,∠ = °,且 D A G 90 = . A G A D A D E G 由①知,当∠ = °时,∠ = °.BA C 135 D A G 90 ∵四边形 是正方形,AB DI ∴ = AB .A D 又∵四边形 是正方形,A C H G ∴ = ,A C A G ∴ = AB .A C ∴当∠ = °且 AC = BA C 135 时,四边形 是正方形.A D E G AB∴ = = . A C AB 2∴在矩形 中,O C E D = = C E O D. 在 △中, Rt ACE AE = 15.如图,以△AB C ( )求证:△B D E ≌△BAC .的各边,在边 的同侧分别作三个正方形 , , AB DI BCFE AC H G. B C ;1 ( )求证:四边形2 是平行四边形.A D E G ( )直接回答下面两个问题,不必证明:3 ①当△ABC 满足什么条件时,四边形 是矩形?A D E G ②当△ABC 满足什么条件时,四边形 是正方形? A D E G ( )证明:∵四边形 AB DI 、四边形 BCFE 、四边形 1 都是正方形, AC H G ∴ = , = , = ,∠GA C =∠EBC =∠ = °. A C A G AB BD B C BE D B A 90 ∴∠ABC =∠EB D (同为∠EBA 的余角).在△B DE 和△BAC 中,,∴△B DE ≌△ ( ),BA C SAS ( )∵△B DE ≌△BAC 2 ,∴ = = ,∠BAC =∠B DE D E A C A G .∵A D 是正方形 ∴∠B DA =∠ 的对角线,AB DI = °.BA D 45 ∵∠E DA =∠B DE ﹣∠B DA =∠ ﹣ °,B D E 45 ∠DA G 360°﹣∠GAC ﹣∠BA C ﹣∠BA D==360°﹣ °﹣∠ ﹣ ° 90 BAC 45 =225°﹣∠BAC∴∠ ∠ =∠ ﹣ ° °﹣∠ = ° E D A+ DA G B D E 45 +225 BAC 180∴ ∥ , D E A G∴四边形 是平行四边形(一组对边平行且相等). A D E G ( )①当四边形 是矩形时,∠ = °. D A G 903 A D E G 则∠ = °﹣∠BA D ﹣∠DA G ﹣∠ = °﹣ °﹣ °﹣ °=135°, BA C 360 G A C 360 45 90 90 即当∠ = °时,平行四边形 BA C 135 是矩形;A D E G ②当四边形 是正方形时,∠ = °,且 D A G 90 = . A G A D A D E G 由①知,当∠ = °时,∠ = °.BA C 135 D A G 90 ∵四边形 是正方形,AB DI ∴ = AB .A D 又∵四边形 是正方形,A C H G ∴ = ,A C A G ∴ = AB .A C ∴当∠ = °且 AC = BA C 135 时,四边形 是正方形.A D E G AB∴ = = . A C AB 2∴在矩形 中,O C E D = = C E O D. 在 △中, Rt ACE AE = 15.如图,以△AB C ( )求证:△B D E ≌△BAC .的各边,在边 的同侧分别作三个正方形 , , AB DI BCFE AC H G. B C ;1 ( )求证:四边形2 是平行四边形.A D E G ( )直接回答下面两个问题,不必证明:3 ①当△ABC 满足什么条件时,四边形 是矩形?A D E G ②当△ABC 满足什么条件时,四边形 是正方形? A D E G ( )证明:∵四边形 AB DI 、四边形 BCFE 、四边形 1 都是正方形, AC H G ∴ = , = , = ,∠GA C =∠EBC =∠ = °. A C A G AB BD B C BE D B A 90 ∴∠ABC =∠EB D (同为∠EBA 的余角).在△B DE 和△BAC 中,,∴△B DE ≌△ ( ),BA C SAS ( )∵△B DE ≌△BAC 2 ,∴ = = ,∠BAC =∠B DE D E A C A G .∵A D 是正方形 ∴∠B DA =∠ 的对角线,AB DI = °.BA D 45 ∵∠E DA =∠B DE ﹣∠B DA =∠ ﹣ °,B D E 45 ∠DA G 360°﹣∠GAC ﹣∠BA C ﹣∠BA D==360°﹣ °﹣∠ ﹣ ° 90 BAC 45 =225°﹣∠BAC∴∠ ∠ =∠ ﹣ ° °﹣∠ = ° E D A+ DA G B D E 45 +225 BAC 180 ∴ ∥ , D E A G∴四边形 是平行四边形(一组对边平行且相等). A D E G ( )①当四边形 是矩形时,∠ = °. D A G 903 A D E G 则∠ = °﹣∠BA D ﹣∠DA G ﹣∠ = °﹣ °﹣ °﹣ °=135°, BA C 360 G A C 360 45 90 90 即当∠ = °时,平行四边形 BA C 135 是矩形; A D E G ②当四边形 是正方形时,∠ = °,且 D A G 90 = . A G A D A D E G 由①知,当∠ = °时,∠ = °.BA C 135 D A G 90 ∵四边形 是正方形,AB DI ∴ = AB .A D 又∵四边形 是正方形,A C H G ∴ = ,A C A G ∴ = AB .A C ∴当∠ = °且 AC = BA C 135 时,四边形 是正方形. A D E G AB。
初二数学培优卷―特殊的平行四边形(知识点+例题+练习)
B CE D AF A BCD E F G H ABCDE初二数学培优卷―特殊的平行四边形一、知识点(1)矩形:有一个角是直角的平行四边形 菱形:有一组邻边相等的平行四边形正方形:有一个角是直角并且有一组邻边相等的平行四边形(注:矩形、菱形、正方形的定义既是性质又是判定) (2)矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形是轴对称图形菱形的性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角正方形的性质:正方形既是矩形又是菱形,它具有矩形和菱形的全部性质(3)矩形的判定:有三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形菱形的判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形正方形的判定:先判定是矩形,再判定是菱形;或者先判定是菱形,再判定是矩形(4)直角三角形斜边上的中线等于斜边的一半;菱形的面积等于对角线乘积的半—二、例题:例1、如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE=2,矩形的周长为16,且CE=EF ,求AE 的长。
·例2、如图,E 是菱形ABCD 边AD 的中点,EF ⊥AC 于H ,交CB 的延长线于F ,交AB 于G ,求证:AB 与EF 互相平分。
例3、如图,以正方形ABCD 的DC 边为一边向外作一个等边三角形,①求证:△ABE 是等腰三角形②求∠BAE 的度数 三、训练题: 1、选择题(1) 平行四边形的周长等于56cm ,两邻边长的比是31,那么这平行四边形的较长的边长为( )。
(A )10.5cm (B )21cm—(C )42cm (D )14cm(2) 平行四边形两邻角的平分线交成的角为( )。
(A )锐角 (B )直角(C )钝角 (D )不确定(3) 能够判定一个四边形是平行四边形的条件是( )。
(A )一组对角相等 (B )两条对角线互相垂直(C )两条对角线互相平分(D )一对邻角的和为180° (4) 下面性质中菱形有而矩形没有的是( ) |(A )邻角互补(B )内角和为360(C )对角线相等(D )对角线互相垂直 (5) 在矩形ABCD 中,对角线AC 、BD 相交于O ,OF AB,若AC=2AD ,OF=9cm ,那么BD 的长为( )(A )180cm (B )9 3 cm (C )36cm (D)18 3 cm (6) 在菱形ABCD 中,D A=51,若菱形的周长为80cm,则菱形的高DE=( ) (A)20cm (B)10cm (C)10 3 cm (D)20 3 cm (7) ? (8) 菱形ABCD 中,AC 、BD 交于O 点,AM AB 交BD于M 点,且DAM=14 BAD 则四个内角的度数分别为( )。
专题4-4平行四边形的判定定理专项提升训练(重难点培优)--2023-2024(0002)
【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【浙教版】专题4.4平行四边形的判定定理专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•滕州市期末)下列不能判断一个四边形是平行四边形的是()A.一组对边平行且相等的四边形B.两组对边分别相等的四边形C.对角线互相平分的四边形D.一组对边相等,且另一组对边平行的四边形2.(2022春•庄河市期末)如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB=DC,AD=BC B.∠DAB=∠DCB,∠ABC=∠ADCC.AO=CO,BO=DO D.AB∥CD,AD=BC3.(2021秋•让胡路区校级期末)下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:24.(2022春•平原县期末)下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等5.(2022春•北京期中)在四边形ABCD中,AB∥CD,要判定四边形ABCD为平行四边形,可添加条件()A.AD=BC B.∠CDB=∠ABD C.AC平分∠DAB D.AO=CO6.(2022春•滦南县期末)如图,已知在▱ABCD中,E,F是对角线BD上的两点,则以下条件不能判断四边形AECF为平行四边形的是()A.BE=DF B.AF⊥BD,CE⊥BDC.AF=CE D.∠BAE=∠DCF7.(2022春•藁城区校级月考)四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD是平行四边形的条件有()A.1组B.2组C.3组D.4组8.(2022春•南海区校级月考)如图,点E、F是平行四边形ABCD对角线上两点,在条件:①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AFB=∠CED中,添加一个条件,使四边形DEBF是平行四边形,可添加的条件是()A.①②③B.①②④C.①③④D.②③④9.(2022春•杭州期中)如图,在▱ABCD中,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,CF=,EF=3,则AB的长是()A.B.1C.D.10.(2022春•海曙区校级期中)如图,O是▱ABCD对角线AC上一点,过O作EF∥AD交AB于点E,交CD于点F,GH∥AB交AD于点G,交BC于点H,连结GE,GF,HE,HF,若已知下列图形的面积,不能求出▱ABCD面积的是()A.四边形EHFGB.△AEG和△CHFC.四边形EBHO和四边形GOFDD.△AEO和四边形GOFD二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•河北区校级月考)如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF与GH交于点O,则图中平行四边形的个数是.12.(2022春•南海区校级期中)已知平面直角坐标系中的三个点:A(1,1)、B(3,1)、C(2,3),以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.13.(2022秋•靖江市校级月考)如图所示,AB∥DC,CA平分∠BAD,BD平分∠ADC,AC和BD交于点E,若S△ABE=4,则S△ACD=.14.(2022春•集贤县期末)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=24cm,则当OA=cm时,四边形ABCD是平行四边形.15.(2022春•海陵区校级期末)定义:作▱ABCD的一组邻角的角平分线,设交点为P,P与这组邻角的公共边组成的三角形为▱ABCD的“伴侣三角形”,△PBC为平行四边形的伴侣三角形.AB=m,BC=4,连接AP并延长交直线CD于点Q,若Q点落在线段CD上(包括端点C、D),则m的取值范围.16.(2022春•社旗县期末)在四边形ABCD中,AD=6cm,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C 运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•荣县期中)已知:如图,四边形ABCD中,AB∥CD,AB=CD.求证:(1)AD=BC;(2)AD与BC的位置关系为:.18.(2022春•南海区月考)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:四边形ABFC是平行四边形;(2)若AF平分∠BAD,∠D=60°,AD=8,求▱ABCD的面积.19.(2022•云冈区二模)如图,四边形ABCD是平行四边形AE⊥BD于点E,CF⊥BD于点F,连接AF和CE.(1)证明:四边形AECF是平行四边形;(2)已知BD=6,DF=2,BC=5,求CE的长.20.(2022秋•碑林区校级期中)如图,已知在四边形BCDE中,CD∥BE,点F是DE的中点,连接CF交BE于点A,且点E是AB的中点,求证:四边形BCDE是平行四边形.21.(2022秋•南岗区校级月考)如图,已知点A,C在线段EF上,且AE=CF.作AD∥BC,DE∥BF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).22.(2022春•南阳期末)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面的横线上,并完成下面的证明.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,点E,F在AC上,连接BE,DF,BF,DE,且(填写序号).(1)选择的条件的序号是;(2)求证:BE=DF;(3)求证:四边形DEBF是平行四边形.23.(2022春•城固县期末)如图,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD 上的两个动点(点E、F始终在▱ABCD的外面),连接AE、CE、CF、AF.(1)若DE=OD,BF=OB,①求证:四边形AFCE为平行四边形;②若CA平分∠BCD,∠AEC=60°,求AE的长.(2)若DE=OD,BF=OB,四边形AFCE还是平行四边形吗?请写出结论并说明理由.(3)若DE=OD,BF=OB,四边形AFCE还是平行四边形吗?请写出结论并证明.。
专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)
2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2023•肃州区校级开学)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形.(2)若∠ACB=30°,菱形OCED的面积为2,求AC的长.2.(2022•南京模拟)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)求证:∠BAC=∠DAC.(2)若AB∥CD,试证明四边形ABCD是菱形.3.(2022春•沂南县期末)如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形ADFE是矩形;(2)连接OF,若AD=6,EC=4,∠ABF=60°,求OF的长度.4.(2022春•铜官区期末)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F(1)求证:四边形AECF是平行四边形;(2)如图2,当EF⊥AC时,求EF的长度.5.(2022•邢台模拟)如图,菱形ABCD的周长为8,对角线BD=2,E、F分别是边AD,CD上的两个动点;且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由.6.(2022•浑南区二模)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC 于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.7.(2021春•柳南区校级期末)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在AC上,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AD=2,∠AOB=120°,求AB的长.8.(2022秋•礼泉县期末)按如图所示的方法分别以AB和AC为边作正方形ABDE和正方形AGFC,连接CE、BG,求证:△ACE≌△AGB.9.(2022秋•毕节市期末)如图,在Rt△ABC中,∠ABC=90°,D为AB的中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论;(2)当∠ABC= °时,四边形ADCE为正方形.10.(2022秋•汉台区期末)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N,连接BM、DN.(1)求证:四边形BNDM是菱形;(2)若四边形BNDM的周长为52,MN=10,求BD的长.B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022秋•南安市期末)如图,在正方形ABCD中,AB=24cm.动点E、F分别在边CD、BC上,点E 从点C出发沿CD边以1cm/s的速度向点D运动,同时点F从点C出发沿CB边以2cm/s的速度向点B 运动(当点F到达点B时,点E也随之停止运动),连结EF.问:在AB边上是否存在一点G,使得以B、F、G为顶点的三角形与△CEF全等?若存在,求出此时BG的长;若不存在,请说明理由.12.(2022秋•竞秀区期末)如图,四边形ABCD为平行四边形,对角线AC,BD交于点O,E,F分别在OB,OD上,AC=4,BD=6.(1)当BE=DF=1时,判断四边形AECF的形状并证明;(2)当四边形AECF为菱形时,求平行四边形ABCD的周长.13.(2023•惠阳区校级开学)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形.(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8.①求菱形ABCD的面积.②求四边形ABED的周长.14.(2022秋•平昌县校级期末)如图:在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=16,DF=8,求CD的长.15.(2022秋•南关区校级期末)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形.(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=6,则▱ABCD的面积为 .16.(2022秋•渠县校级期末)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,则当∠EBA= °时,四边形BFDE是正方形.17.(2022秋•郑州期末)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,点G是CD的中点,点E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①直接写出:当AE= cm时,四边形CEDF是菱形(不需要说明理由);②当AE= cm时,四边形CEDF是矩形,请说明理由.18.(2022秋•通川区期末)已知如图,M为正方形ABCD边AB上一点,P为边AB延长线上一点,连接DM,以点M为直角顶点作MN⊥DM交∠CBP的角平分线于N,过点C作CE∥MN交AD于E,连接EM,CN,DN.(1)求证:DM=MN;(2)求证:EM∥CN.19.(2022秋•绿园区校级期末)如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=6,∠ABC=60°,BF平分∠ABC,则平行四边形ABCD的面积为 .20.(2022秋•朝阳区校级期末)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接DF、CF.(1)求证:四边形ABDF为平行四边形;(2)求证:四边形ADCF为矩形.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022秋•皇姑区校级期末)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=2时,直接写出EA的长.22.(2022秋•礼泉县期末)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且,连接CE.(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.23.(2022秋•鼓楼区校级期末)如图,四边形ABCD是正方形,△ABE是等腰三角形,AB=AE,∠BAE=θ(0°<θ<90°).连接DE,过B作BF⊥DE于F,连接AF,CF.(1)若θ=60°,求∠BED的度数;(2)当θ变化时,∠BED的大小会发生变化吗?请说明理由;(3)试用等式表示线段DE与CF之间的数量关系,并证明.24.(2023•深圳模拟)如图,已知△ABC中,D是BC边上一点,过点D分别作DE∥AC交AB于点E,作DF∥AB交AC于点F,连接AD.(1)下列条件:①D是BC边的中点;②AD是△ABC的角平分线;③点E与点F关于直线AD对称.请从中选择一个能证明四边形AEDF是菱形的条件,并写出证明过程;(2)若四边形AEDF是菱形,且AE=2,CF=1,求BE的长.25.(2022秋•安丘市校级期末)如图,正方形ABCD的对角线AC、BD相交于点O,G是CD边上一点,连接BG交AC于E,过点A作AM⊥BG,垂足M,AM交BD于点F.(1)求证:OE=OF.(2)若H是BG的中点,BG平分∠DBC,求证:DG=2OE.26.(2022春•南谯区校级月考)如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.(1)求证:BE=DE;(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.27.(2022春•沂水县期中)(1)将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,如图1.求证:四边形AEA'D是正方形;(2)将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C'处,点B落在点B'处,得到折痕EF,B'C'交AB于点M,如图2.线段MC'与ME是否相等?若相等,请给出证明;若不等,请说明理由.28.(2022秋•迎江区校级期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠ADC=90°,点E、F 分别在边BC、CD上,且EF=BE+DF,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小明探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是 .(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,且EF=BE+DF,探究上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系为 .29.(2022秋•宜春期末)【问题解决】在一节数学课上,张老师提出了这样一个问题:如图1,点E是正方形ABCD内一点,BE=2,EC=4,DE=6.你能求出∠BEC的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BEC绕点C逆时针旋转90°,得到△DE'C,连接EE',求出∠BEC的度数;思路二:将△DEC绕点C顺时针旋转90°,得到△BE'C,连接EE',求出∠BEC的度数.(1)请参考小明的思路,写出两种思路的完整解答过程.【类比探究】(2)如图2,若点E是正方形ABCD外一点,EB=8,EC=2,DE=6,求∠BEC的度数.30.(2022秋•邗江区校级期末)综合与实践.(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .(2)如图2,在四边形ABCD中,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系.。
人教版 八年级数学下册 18.2 特殊的平行四边形 培优训练(含答案)
人教版八年级数学18.2 特殊的平行四边形培优训练一、选择题(本大题共10道小题)1. 矩形具有而平行四边形不具有的性质为()A.对角线相等B.对角相等C.对角线互相平分D.对边相等2. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为()A.15︒或30︒B.30︒或45︒C.45︒或60︒D.30︒或60︒3. (2020·菏泽)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分4. 如图,在▱ABCD中,对角线AC与BD交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC5. (2020台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②6. (2020·襄阳)已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=OD B.当AB=CD时,四边形ABCD 是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形7. 如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.8. (2020·黑龙江龙东)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( )A .72B .24C .48D .969. (2020·滨州)下列命题是假命题的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直且平分的四边形是正方形10. (2020·达州)如图,∠BOD =45°,BO=DO ,点A 在OB 上,四边形ABCD 是矩形,连接AC 、BD 交于点E ,连接OE 交AD 于点F .下列4个判断:①OE 平分∠BOD ;②OF=BD ;③DF=AF ;④若点G 是线段OF 的中点,则△AEG 为等腰直角三角形.正确判断的个数是( ) A.4 B.3 C.2 D.1二、填空题(本大题共6道小题)11. 正方形有 条对称轴.12. 如图,矩形ABCD 中,AC BD ,相交于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠=EODC BA13. 如图,已知E 、F分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别DCA B F EO与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠=.NMFEDCBA14. 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______.ABCDEF15. 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE ∆的面积为GFEDCB A16. 如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG . 其中正确的是______________.(把所有正确结论的序号都选上)三、解答题(本大题共5道小题)17. 已知:如图,在菱形ABCD 中,点E ,F 分别在边BC ,CD 上,且BE=DF ,连结AE ,AF.求证:AE=AF.18.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果8AB =,10BC =,求EC 的长.BDCAEF19. 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE ∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA20. 如图,正方形ABCD 中,在AD 的延长线上取点E ,F,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA21. 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BA人教版 八年级数学 18.2 特殊的平行四边形培优训练-答案一、选择题(本大题共10道小题) 1. 【答案】A2. 【答案】D3. 【答案】C【解析】利用三角形的中位线定理,可得中点四边形有如下结论:任意四边形的中点四边形是平行四边形;对角线相等的四边形的中点四边形是菱形;对角线互相垂直的四边形的中点四边形是矩形;对角线相等且垂直的四边形的中点四边形是正方形.由此可知,该题选项C 符合题意.4. 【答案】C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.5. 【答案】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B ,C ,D 错误,故选:A .【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.6. 【答案】B【解析】由平行四边形的对角线互相平分,知A选项正确;由有一个角是直角的平行四边形是矩形,知C选项正确;由对角线垂直且相等的平行四边形是正方形,知D选项正确;由一组邻边相等的平行四边形是菱形,知B选项错误(因为B选项中是一组对边相等了),故选B.7. 【答案】添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.8. 【答案】C【解析】本题考查了菱形的性质,对角线互相垂直平分以及直角三角形的斜边上中线的性质,解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积.故选:C.9. 【答案】D【解析】本题考查了正方形的判定,对角线互相垂直且相等的平行四边形是正方形、对角线互相垂直的矩形是正方形、对角线相等的菱形是正方形是真命题,对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,因此本题选D.10. 【答案】A【解析】由矩形的性质可知:BE=DE=BD,∠OAD=∠BAD=90°,在△ODE和△OBE中,BO=DO,BE=DE,OE=OE,所以△ODE≌△OBE,∠OED=∠OEB=90°,∠OBD=∠ODB=67.5°,∠BOE=∠DOE=22.5°,故①正确;在R t△AOD中,∠BOD=45°,∴OA=AD,在R t△ABD中,∠BAD=90°,∠OBD=67.5°,所以∠BDA=22.5°,在△BDA和△FOA中,∠BDA=∠FOA,OA=AD,∠OAD=∠BAD=90°,所以△BDA≌△FOA,所以OF=BD,故②正确;如答图,过点F作FQ⊥OD于点Q,由角平分线的性质得AF=FQ,由题可知∠ADO=45°,所以△FDQ是等腰直角三角形即DF=AF,故③正确;如答图,AG=OG=OF,所以OG=DE,由题意可得△OAG≌△DAE,所以∠OAG=∠DAE,AG=AE,又由∠OAG+∠GAF=90°可得∠GAE=90°,所以△GAE是等腰直角三角形,故④正确.二、填空题(本大题共6道小题) 11. 【答案】412. 【答案】75︒.【解析】∵四边形ABCD 是矩形 ∴90DAB ABC OA OB ∠=∠=︒=,∵AE 平分BAD ∠,所以1452BEA BAD ∠=∠=︒ ∴BA BE = ∵1560CAE BAC ∠=︒∠=︒, 所以ABO ∆为等边三角形 ∴60OB AB BE ABO ==∠=︒,,所以30OBE ∠=︒ ∴()1180752BOE OBE ∠=︒-∠=︒13. 【答案】100︒【解析】如图,连结AC .NMFEDCBA14. 【答案】连接CE ,作过B 、E 点的AC 垂线,垂足分别为H ,G ,则四边形BEGH是矩形,1122GE BH AC AE ===, 所以30GAE ∠=︒,所以15EAB ∠=︒.AB CDEFG H15.【解析】过E 作EH CD ⊥交CD 延长线于H ,CDE ADG DEH DAG EH AG S S ∆∆∆∆==≌,,GQD C ABF E O16. 【答案】①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴EDFD =43≠AB AG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S △FGH =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG=5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.三、解答题(本大题共5道小题)17. 【答案】∵四边形ABCD 是菱形, ∴AB=AD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△ADF ,∴AE=CF .18. 【答案】由题意可知,AD AF =,DE EF =. ∵8AB =,10BC =,AB BF ⊥∴6BF === ∴4CF =∵CE CF ⊥,DE EF = ∴222DE CE CF =+∴222(8)43CE CE CE -=+⇒=19. 【答案】⑴ ∵四边形ABCD 是平行四边形,∴AO CO =.又∵ACE ∆是等边三角形,∴EO AC ⊥,即DB AC ⊥. ∴平行四边形ABCD 是菱形.⑵ ∵ACE ∆是等边三角形,∴60AEC ∠=︒.∵EO AC ⊥,∴1302AEO AEC ∠=∠=︒.∵2AED EAD ∠=∠,∴15EAD ∠=︒.∴45ADO EAD AED ∠=∠+∠=︒. 四边形ABCD 是菱形,∴290ADC ADO ∠=∠=︒ ∴四边形ABCD 是正方形.20. 【答案】首先证明:GDH GHD ∠=∠.因为DE BC DE BC =∥,,所以四边形BCED 为平行四边形, 14∠=∠,又BD FD =,所以1123452∠=∠=∠=⨯︒,134452∠=∠=⨯︒,BC GC CD ==.因此,DCG ∆为等腰三角形,故()11351804522CDG ︒∠=︒-︒=. 又451359039022GHD ︒︒∠=︒-∠=︒-=,所以CDG GHD ∠=∠.从而GD GH =.21. 【答案】12【解析】过C 作CG AD ⊥于G ,连接EG 、FG .∵AE BC ⊥,FM AE ⊥,∴FM ∥EC 又∵EM AF ⊥,CD AF ⊥,∴EM ∥CF ∴四边形EMFC 为平行四边形,∴MF EC = 又∵AE BC ⊥,CG AD ⊥且BC ∥AD ∴90EAG AGC GCE AEC ∠=∠=∠=∠=︒ ∴四边形AGCE 为矩形∴EC AG =,EG AC =,∴MF AG = 又∵MF ∥AG∴四边形AGFM 为平行四边形,∴GF AM = ∵AM EF ⊥,∴GF EF ⊥,即90GFE ∠=︒∴GF =12AM ==GMF E DC BA。
完整版八年级下册数学特殊平行四边形培优试题
八年级〔下〕特殊平行四边形培优一.选择题〔共13小题〕1.〔2021?达州〕如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,那么∠P=〔〕A.90°﹣αB.90°+αC.D.360°﹣α2.〔2021?河南模拟〕如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,那么S△CEF:S△DGF等于〔〕A.2:1B.3:1C.4:1D.5:13.〔2005?湖州〕如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于 AB,AC于点E,F.假设=6,那么△ABC的边长为〔〕A.B.C.D.14.〔2002?无锡〕:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,那么线段MN的取值范围是〔〕第1页〔共27页〕A.1<MN<5B.1<MN≤5C.<MN<D.<MN≤5.〔2021?鄂州〕在平面直角坐系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、ABCD⋯按如所示的方式放置,其中点B在y上,点C、E、E、C、E、E、C⋯33311122343在x上,正方形A1B1C1D1的1,∠B1C1O=60°,B1C1∥B2C2∥B3C3⋯正方形A2021B2021C2021D2021的是〔〕A.〔〕2021B.〔〕2021C.〔〕2021D.〔〕20216.〔2021?渝中区校模〕如,矩形ABCD中,BC=2AB,角相交于O,C点作CE⊥BD交BD于E点,H BC中点,接AH交BD于G点,交EC的延于F点,以下5个:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有〔〕个.A.2 B.3 C.4 D.57.〔2021?重模〕如,正方形 ABCD中,点E是角BD上一点,点 F是BC上一点,点G是CD上一点,BE=2ED,CF=2BF,接AE并延交CD于G,接AF、EF、FG.出以下五个:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确的个数是〔〕A.5个B.4个C.3个D.2个第2页〔共27页〕8.〔2021?鹿城区校级二模〕如图,在正方形ABCD中,四边形IJFH是正方形,面积为S1,四边形BEFG是矩形,面积为S2,以下说法正确的选项是〔〕A.S1>S2B.S1=S2C.S1<S2D.2S1=3S29.〔2021?承德县一模〕如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,那么PE+PF等于〔〕A.B.C.D.10.〔2021?瑞安市校级一模〕如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,那么图中阴影局部的面积为〔〕A.15 B.20 C.35 D.4011.〔2021春?内江期末〕如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出以下五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中有正确结论的个数是〔〕A.2个B.3个C.4个D.5个12.〔2021?盘锦〕如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O,DP,CP分别交AC,BD于点E,F且△ADE和BCF的面积之和 4cm2,那么四边形P EOF的面积为〔〕第3页〔共27页〕A.1cm2B.2C.2cm2D.213.〔1997?内江〕如图,四边形ABCD和MNPQ都是边长为 a的正方形,点A是MNPQ的中心〔即两条对角线MP和NQ的交点〕,点E是AB与MN的交点,点F是NP与AD的交点,那么四边形AENF的面积是〔〕A.B.C.D.二.填空题〔共17小题〕14.〔2021?广州〕如图,四边形ABCD中,∠A=90°,AB=3 ,AD=3,点M,N分别为线段BC,AB上的动点〔含端点,但点M不与点B重合〕,点E,F分别为DM,MN的中点,那么EF长度的最大值为.15.〔2021?无锡〕:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,那么AC的长等于.16.〔2021?安徽〕如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,那么以下结论中一定成立的是.〔把所有正确结论的序号都填在横线上〕①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.第4页〔共27页〕17.〔2021?乌鲁木齐〕如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,那么DF的长为.18.〔2021?南岗区校级一模〕如图,AD、BE为△ABC的中线交于点O,∠AOE=60°,OD= ,OE= ,那么AB= .19.〔2021?枣庄〕如下图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,假设AB=5,BC=8,那么EF的长为.20.〔2021?凉山州〕菱形0BCD在平面直角坐标系中的位置如下图,顶点B〔2,0〕,∠DOB=60°,点P是对角线OC上一个动点,E〔0,﹣1〕,当EP+BP最短时,点P的坐标为.21.〔2021?天水〕正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,那么点A3的坐标为.第5页〔共27页〕22.〔2021?潮南区一模〕如所示,如果以正方形ABCD的角AC作第二个正方形ACEF,再以AE作第三个正方形AEGM,⋯正方形ABCD的面S1=1,按上述方法所作的正方形的面依次S2,S3,⋯Sn〔n正整数〕,那么第8个正方形面S8=.23.〔2021?南区二模〕如,正方形 ABCD的角AC、BD相交于点O,∠CAB的平分交BD于点E,交BC于点F.假设OE=1,CF= .24.〔2021?德州〕如,在正方形ABCD中,2的等三角形AEF的点E、F 分在BC和CD上,以下:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是〔把你正确的都填上〕.25.〔2021?广安区校模〕如,在菱形ABCD中,∠A=60°,E、F分是AB,AD的中点,DE、BF相交于点G,接BD,CG.有以下,其中正确的有〔填正确的序号〕.①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2.第6页〔共27页〕26.〔2021?金城江区一模〕如,点P是矩形ABCD的AD的一个点,矩形的两条AB、BC的分3和4,那么点P到矩形的两条角AC和BD的距离之和是.27.〔2021?山区校三模〕如,矩形ABCD中,点E,F,G,H分在AB,BC,CD,DA上,点P在矩形ABCD内.假设AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四形AEPH的面 5cm2,四形PFCG的面cm2.28.〔2021?成都模〕将n个都1cm的正方形按如所示的方法放,点A、A⋯A12分是各正方形的中心,n个的正方形重叠局部〔阴影局部〕的面的和cm2.29.〔2021?州模〕如,在平面直角坐系中,正方形ABCD点A的坐〔0,2〕,B点在x上,角AC,BD交于点M,OM= ,点C的坐.第7页〔共27页〕参考答案与试题解析一.选择题〔共13小题〕1.〔2021?达州〕如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,那么∠P=〔〕A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣〔∠A+∠D〕=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=〔∠ABC+∠BCD〕= 〔360°﹣α〕=180°﹣α,那么∠P=180°﹣〔∠PBC+∠PCB〕=180°﹣〔180°﹣α〕= α.应选:C.2.〔2021?河南模拟〕如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,那么S△CEF:S△DGF等于〔〕A.2:1B.3:1C.4:1D.5:1【解答】解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH〔ASA〕,∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△EFC=3S△EFH,∴S△EFC=3S△DGF,因此,S△CEF:S△DGF=3:1.应选B.第8页〔共27页〕3.〔2005?湖州〕如,在等△ABC中,M、N分是AB,AC的中点,D MN上任意一点,BD,CD的延分交于AB,AC于点E,F.假设=6,△ABC的〔〕A.B.C.D.1【解答】解:点A作直PQ∥BC,延BD交PQ于点P;延CD,交PQ于点Q.∵PQ∥BC,∴△PQD∽△BCD,∵点D 在△ABC的中位上,∴△PQD与△BCD的高相等,∴△PQD≌△BCD,∴PQ=BC,AE=ACCE,AF=ABBF,在△BCE与△PAE中,∠PAE=∠ACB,∠APE=∠CBE,∴△BCE∽△PAE,= ⋯①同理:△CBF∽△QAF,= ⋯②①+②,得:+ = .∴+ =3,又∵=6,AC=AB,∴△ABC的= .故C.4.〔2002?无〕:四形ABCD中,AB=2,CD=3,M、N分是AD,BC的中点,段MN的取范是〔〕第9页〔共27页〕A.1<MN <5B.1<MN≤5C.<MN<D.<MN≤【解答】解:接BD,M作MG∥AB,接NG.∵M是AD的中点,AB=2,MG∥AB,∴MG是△ABD的中位,BG=GD,MG=AB=×2=1;∵N是BC的中点,BG=GD,CD=3,∴NG是△BCD的中位,NG=CD=×3=,在△MNG中,由三角形三关系可知NGMG<MN<MG+NG,即1<MN<+ 1,∴<MN<,当MN=MG+NG,即MN=,四形ABCD是梯形,故段MN的取范是<MN≤.故D.5.〔2021?鄂州〕在平面直角坐系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、ABCD⋯按如所示的方式放置,其中点B在y上,点C、E、E、C、E、E、C⋯33311122343在x上,正方形A1B1C1D1的1,∠B1C1O=60°,B1C1∥B2C2∥B3C3⋯正方形A2021B2021C2021D2021的是〔〕A.〔〕2021B.〔〕2021C.〔〕2021D.〔〕2021【解答】方法一:第10页〔共27页〕解:如所示:∵正方形A1B1C1D1的1,∠B1C1O=60°,B1C1∥B2C2∥B3C3⋯∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D11122=〔〕1,E =CDsin30°=,BC同理可得:B3C3==〔〕2,故正方形AnBnCnDn的是:〔〕n﹣1.正方形A2021202120212021的是:〔2021.故:D.B D〕方法二:∵正方形A1B1C1D1的1,∠B1C1O=60°,∴D1E1=B2E2=,C∥BC∥BC⋯∴∠EBC=60°,∴BC=,同理:∵B1 1223322222B3C3=×=⋯∴a1=1,q=,∴正方形B2021D2021的=1×.A202120216.〔2021?渝中区校模〕如,矩形ABCD中,BC=2AB,角相交于O,C点作CE⊥BD交BD于E点,HBC中点,接AH交BD于G点,交EC的延于F点,以下5个:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有〔〕个.A.2 B.3 C.4 D.5【解答】解:①在△BCE中,∵CE⊥BD,HBC中点,∴BC=2EH,又BC=2AB,∴EH=AB,正确;②由①可知,BH=HE∴∠EBH=∠BEH,又∠ABG+∠EBH=∠BEH+∠HEC=90°,∴∠ABG=∠HEC,正确;③由AB=BH,∠ABH=90°,得∠BAG=45°,同理:∠DHC=45°,∴∠EHC>∠DHC=45°,∴△ABG≌△HEC,;④作AM⊥BD,AM=CE,△AMD≌△CEB,∵AD∥BC,∴△ADG∽△HGB,∴=2,即△ABG的面等于△BGH的面的2倍,根据不能推出△ AMG的面等于△ABG的面的一半,第11页〔共27页〕即S△GAD≠S四边形GHCE,∴④错误⑤∠ECH=∠CHF+∠F=45°+∠F,又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,∴F=∠HAC,∴CF=BD,正确.正确的有三个.应选B.7.〔2021?重庆模拟〕如图,正方形ABCD中,点E是对角线BD上一点,点 F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出以下五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确结论的个数是〔〕A.5个B.4个C.3个D.2个【解答】解:①∵BE=2DE∴=∴∵AB=CD∴DG=CD∴DG=CG故本选项正确②设BF=1,那么CF=2,AB=AD=3,DG=CG=过点E作AB的平行线,交AD于M,交BC于N,可得四边形MNCD是矩形,△AME∽△ADG,且相似比为AD=3,∴AM=2,DM=1,NC=1,那么BN=BC﹣NC=2,FN=BN﹣BF=1,∵MD∥BN,∴△MDE∽NBE,且相似比,∴ME=1,EN=2,在Rt△EFN中,EF= = ,在Rt△AME中,AE= = ,在Rt△ABF中,AF= ,∴AE2+EF2=AF2,∴∠AEF=90°,∵AG= =∴EG=,第12页〔共27页〕∴tan∠AGF==2,又tan∠FGC=,∴∠FGC≠∠AGF,故本选项错误③∵×=∴S△ABF=SFCG故本选项正确④连接EC,过E点作EH⊥BC,垂足为H,由②可知AF=,∵BE=2ED,∴BH=2HC,EH=CD=2,又∵CF=2BF,∴H为FC的中点,FH=1,∴在Rt△HEF中:∵EF===AF=∴AF=EF故本选项正确.⑤过A点作AO⊥BD,垂足为O,∵,∴Rt△ABF∽Rt△AOE,∴∠AFB=∠AEB.故本选项正确.应选B.8.〔2021?鹿城区校级二模〕如图,在正方形ABCD中,四边形IJFH是正方形,面积为S,1四边形BEFG是矩形,面积为S2,以下说法正确的选项是〔〕A.S1>S2 B.S1=S2 C.S1<S2 D.2S1=3S2 【解答】解:∵AC是正方形ABCD的对角线,∴∠BAC=∠DAC=∠ACB=∠ACD=45°,∵四边形 IJFH是正方形,四边形BEFG是矩形,第13页〔共27页〕∴∠AJI=∠CFH=AEF=∠CGF=90°,∴△AIJ、△AEF、△CFH、△CFG都是等腰直角三角形,设JF=x,那么S1=x2,根据等腰直角三角形的性质, EF= AF= ×2x=x,FG= FC= x,所以S2=EF?FG= x? x=x2,所以S1=S2.应选B.9.〔2021?承德县一模〕如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,那么PE+PF等于〔〕A.B.C.D.【解答】解:设AP=x,PB=3﹣x.∵∠EAP=∠EAP,∠AEP=∠ABC;∴△AEP∽△ABC,故= ①;同理可得△BFP∽△DAB,故= ②.①+②得= ,∴PE+PF=.应选B.10.〔2021?瑞安市校级一模〕如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,那么图中阴影局部的面积为〔〕A.15 B.20 C.35 D.40【解答】解:连接EF,∵S△ABF=S△EBF∴S△EFG=S△ABG=15;同理:S△EFH=S△DCH=20∴S阴影=S△EFG+S△DCH=15+20=35.应选C.11.〔2021春?内江期末〕如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出以下五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中有正确结论的个数是〔〕第14页〔共27页〕A.2个B.3个C.4个D.5个【解答】解:延长FP交AB于点N,延长AP交EF于点M.∵四边形ABCD是正方形.∴∠ABP=∠CBD又∵NP⊥AB,PE⊥BC,∴四边形BNPE是正方形,∠ANP=∠EPF,NP=EP,∴AN=PF在△ANP与△FPE中,∵,∴△ANP≌△FPE〔SAS〕,∴AP=EF,∠PFE=∠BAP〔故①④正确〕;△APN与△FPM中,∠APN=∠FPM,∠NAP=∠PFM∴∠PMF=∠ANP=90°∴AP⊥EF,〔故②正确〕;P是BD上任意一点,因而△APD是等腰三角形和PD=2EC不一定成立,〔故③⑤错误〕;故正确的选项是:①②④.应选:B.12.〔2021?盘锦〕如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O,DP,CP分别交AC,BD于点E,F且△ADE和BCF的面积之和4cm2,那么四边形PEOF的面积为〔〕A.1cm2B.2C.2cm2D.2【解答】解:矩形ABCD,∴△APD的面积+△BPC的面积=矩形ABCD的面积﹣△CPD的面积=4×3﹣×4×3=6cm2〕,∴△AEP的面积+△BFP的面积=〔△APD的面积+△BPC的面积〕﹣△ADE和BCF的面积之和=6﹣4=2〔cm2〕,矩形ABCD,∴△AOB的面积= ×4×〔3×〕=3〔cm2〕,第15页〔共27页〕2∴四边形PEOF的面积=△AOB的面积﹣〔△AEP的面积+△BFP的面积〕=3﹣2=1〔cm〕.13.〔1997?内江〕如图,四边形ABCD和MNPQ都是边长为 a的正方形,点A是MNPQ的中心〔即两条对角线MP和NQ的交点〕,点E是AB与MN的交点,点F是NP与AD的交点,那么四边形AENF的面积是〔〕A.B.C.D.【解答】解:连接AP,AN,点A是正方形的对角线的交点,那么AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,正方形的面积为 a2,∴四边形AENF的面积为;应选A二.填空题〔共17小题〕14.〔2021?广州〕如图,四边形ABCD中,∠A=90°,AB=3 ,AD=3,点M,N分别为线段BC,AB上的动点〔含端点,但点M不与点B重合〕,点E,F分别为DM,MN的中点,那么EF长度的最大值为 3 .【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB== 6,第16页〔共27页〕∴EF的最大值为3.故答案为3.15.〔2021?无锡〕:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,那么AC的长等于.【解答】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=6,那么DF=3,AF==3,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AC=AF= ×3= .故答案为:.16.〔2021?安徽〕如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF,那么以下结论中一定成立的是①②④.〔把所有正确结论的序号都填在横线上〕①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.【解答】解:①∵F是AD的中点,AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,第17页〔共27页〕F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF〔ASA〕,∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,那么∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠A EF,故此选项正确.故答案为:①②④.17.〔2021?乌鲁木齐〕如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,那么DF的长为.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC〔ASA〕,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF= BG= 〔AB﹣AG〕= 〔AB﹣AC〕= .故答案为:.第18页〔共27页〕18.〔2021?南岗区校级一模〕如图,AD、BE为△ABC的中线交于点O,∠AOE=60°,OD= ,OE= ,那么AB= 7 .【解答】解:如图,过点E作EF⊥AD于F,连接DE,∵∠AOE=60°,∴∠OEF=90°﹣60°=30°,∵OE=,∴OF=OE= ×= ,在Rt△OEF中,EF= = = ,∵OD=,∴DF=OD+OF=+ = ,在Rt△DEF中,DE= = = ,∵AD、BE为△ABC的中线,∴DE是△ABC的中位线,∴AB=2DE=2×=7.故答案为:7.19.〔2021?枣庄〕如下图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,假设AB=5,BC=8,那么EF的长为.第19页〔共27页〕【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=,∵DE为△ABC的中位线,∴DE= BC=4,∴EF=DE﹣,故答案为:.20.〔2021?凉山州〕菱形0BCD在平面直角坐标系中的位置如下图,顶点B〔2,0〕,∠DOB=60°,点P是对角线OC上一个动点,E〔0,﹣1〕,当EP+BP最短时,点P的坐标为〔〕.【解答】解:连接ED,如图,∵点B关于OC的对称点是点∵四边形OBCD是菱形,顶点D,∴DP=BP,∴ED即为EP+BP最短,B〔2,0〕,∠DOB=60°,∴点D的坐标为〔1,〕,∴点C的坐标为〔3,〕,∴可得直线OC的解析式为:y= x,∵点E的坐标为〔0,﹣1〕,∴可得直线ED的解析式为:y=〔1+〕x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为〔〕,故答案为:〔〕.21.〔2021?天水〕正方形OABC、AABC、AABC,按如图放置,其中点A 、A、12223312在x轴的正半轴上,点B、B、B在直线y=﹣x+2上,那么点A的坐标为〔,0〕.123第20页〔共27页〕【解答】解:正方形OA1B1C1的t,B1〔t,t〕,所以t=t+2,解得t=1,得到B1〔1,1〕;正方形A1222的2,得到2A B C a,B〔1+a,a〕,a=〔1+a〕+2,解得a=B 〔〕;正方形A2A3B3C3的b,B3〔+b,b〕,b=〔+b〕+2,解得b=,得到B3〔,〕,所以A3〔,0〕.故答案〔,0〕.22.〔2021?潮南区一模〕如所示,如果以正方形ABCD的角AC作第二个正方形ACEF,再以AE作第三个正方形AEGM,⋯正方形ABCD的面S1=1,按上述方法所作的正方形的面依次S2,S3,⋯Sn〔n正整数〕,那么第8个正方形面S8=128.【解答】解:根据意可得:第 n个正方形的是第〔n 1〕个的倍;故面是第〔n1〕个的2倍,第一个面1;那么第8个正方形面S8=27=128.故答案128.23.〔2021?南区二模〕如,正方形ABCD的角AC、BD相交于点O,∠CAB的平分交BD于点E,交BC于点F.假设OE=1,CF=2.【解答】解:作EG⊥AB于G,根据角平分的性可得,EG=OE=1,又BD平分∠ABC,∠ABE=45°第21页〔共27页〕∴△EBG是等腰直角三角形,可得BE=,那么OB=1+,可得BC=2+又∠AFB=90°﹣∠FAB,∠FEB=∠OEA=90°﹣∠FAC,∴∠AFB=∠FEB∴BF=BE=那么CF=BC﹣BF=2+ ﹣=2.24.〔2021?德州〕如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,以下结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④〔把你认为正确的都填上〕.【解答】解:∵四边形ABCD是正方形,AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF〔HL〕,∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+〔a﹣〕2=4,解得a=,那么a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.第22页〔共27页〕25.〔2021?广安区校模〕如,在菱形ABCD中,∠A=60°,E、F分是AB,AD的中点,DE、BF相交于点G,接BD,CG.有以下,其中正确的有①②〔填正确的序号〕.①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2.【解答】解:①由菱形的性可得△ABD、BDC是等三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG〔30°角所直角等于斜一半〕BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得BG≠FD,因BG=DG,DG>FD,故可得△BDF不全等△CGB,即③;A BD =AB?DE=AB?〔BE〕=AB?AB=AB2,即④不正确.④S上可得①②正确,共2个.故答案①②.26.〔2021?金城江区一模〕如,点P是矩形ABCD的AD的一个点,矩形的两条AB、BC的分3和4,那么点P到矩形的两条角AC和BD的距离之和是.【解答】解:P点作PE⊥AC,PF⊥BD,∵四形ABCD是矩形,∴AD⊥CD,∴△PEA∽△CDA,∴,∵AC=BD==5,∴⋯①,同理:△PFD∽△BAD,∴,∴⋯②,∴①+②得:,∴PE+PF=,即点P到矩形的两条角AC和BD的距离之和是:.第23页〔共27页〕故答案:.27.〔2021?山区校三模〕如,矩形 ABCD中,点E,F,G,H分在AB,BC,CD,DA上,点P在矩形ABCD内.假设AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四形AEPH的面5cm2,四形PFCG 的面8cm2.【解答】解:接AP,CP,△AHP在AH上的高x,△AEP在AE上的高y.△CFP在CF上的高 4 x,△CGP在CG上的高 6 y.AH=CF=2cm,AE=CG=3cm,∴S四边形AEPH=S△AHP+S△AEP.=AH×x×+AE×y×=2x×+3y×=5cm22x+3y=10S四边形PFCG=S△CGP+S△CFP=CF×〔4 x〕×+CG×〔6 y〕×=2〔4 x〕×+3〔6 y〕×=〔26 2x 3y〕×=〔26 10〕×=8cm2.故答案8.28.〔2021?成都模〕将n个都1cm的正方形按如所示的方法放,点A1、A2⋯An分是各正方形的中心,n个的正方形重叠局部〔阴影局部〕的面的和cm2.第24页〔共27页〕【解答】解:由题意可得阴影局部面积等于正方形面积的,即是,5个这样的正方形重叠局部〔阴影局部〕的面积和为×4,n个这样的正方形重叠局部〔阴影局部〕的面积和为×〔n﹣1〕= cm2.故答案为:.29.〔2021?郑州模拟〕如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为〔0,2〕,B点在x轴上,对角线AC,BD交于点M,OM= ,那么点C的坐标为〔6,4〕.【解答】解:过点C作CE⊥x轴于点E,过点M作MF⊥x轴于点F,连结EM,∴∠MFO=∠CEO=∠AOB=90°,AO∥MF∥CE,∵四边形ABCD是正方形,AB=BC,∠ABC=90°,AM=CM,∴∠OAB=∠EBC,OF=EF,MF是梯形AOEC的中位线,∴MF=〔AO+EC〕,∵MF⊥OE,∴MO=ME.∵在△AOB和△BEC中,,∴△AOB≌△BEC〔AAS〕,∴OB=CE,AO=BE.∴MF=〔BE+OB〕,又∵OF=FE,∴△MOE是直角三角形,第25页〔共27页〕∵MO=ME,∴△MOE是等腰直角三角形,∴OE= =6,∴A〔0,2〕,OA=2,BE=2,OB=CE=4.C〔6,4〕.故答案为:〔6,4〕.30.〔2021?荣成市模拟〕如图,在正方形ABCD中,AB=1,E、F分别是BC、CD边上点,假设CE= CB,CF= CD,那么图中阴影局部的面积是.【解答】解:延长GE到M,使GE=EM,连接CG、CM、BM,过C作CN⊥DE于N,∵E为BC中点,BE=EC=,在△BEG和△CEM中第26页〔共27页〕∴△BEG≌△CEM〔SAS〕,∴S△BEG=S△CEM,∵E、F分别为BC、CD中点,∴DG:EG=2:1,∴GM=DG=2EG,∴S△MGC=S△DGC,∴S△DMC=2S△DGC=2×S△DEC,∵S△DEC= ×1×= ,∴S△DMC= ,∴阴影局部的面积S=S正方形ABCD﹣S△DMC=1×1﹣= ,故答案为:.第27页〔共27页〕。
《第1章特殊平行四边形》专题培优提升训练2021-2022学年北师大版九年级数学上册
2021年北师大版九年级数学上册《第1章特殊平行四边形》专题培优提升训练(附答案)1.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,求∠DAE的度数;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.2.如图,O是正方形ABCD对角线AC,BD的交点,AF平分∠BAC,交BD于点M,DE ⊥AF于点H,分别交AB,AC于点E,G.(1)证明△AED≌△BF A;(2)△ADM是等腰三角形吗?请说明理由;(3)若OG的长为1,求BE的长度.3.已知:如图,在矩形ABCD中,E是BC上一点,且AE=AD,DF⊥AE于点F.(1)求证:CE=FE;(2)若FD=5,CE=1,求矩形的面积.4.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.5.如图,在矩形ABCD的BC边上取一点E,连接AE,使得AE=EC,在AD边上取一点F,使得DF=BE,连接CF.过点D作DG⊥AE于G.(1)求证:四边形AECF是菱形;(2)若AB=4,BE=3,求DG的长.6.如图,在正方形ABCD和正方形CEFG中,点D在CG上,H是AF的中点.(1)求证:CH=AF;(2)若BC=1,CE=3,求CH的长.7.四边形ABCD是正方形,点M在边BC上(不与端点B、C重合),点N在对角线AC上,且MN⊥AC,连接AM,点G是AM的中点,连接DN、NG.(1)若AB=10,BM=2,求NG的长;(2)求证:DN=NG.8.如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EB,GD.(1)如图1,求证EB=GD;(2)如图2,若点E在线段DG上,AB=5,AG=3,求BE的长.9.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.10.已知:如图所示的一张矩形纸片ABCD(AD>AB),O是对角线AC的中点,过点O的直线EF⊥AC交AD边于E,交BC边于F.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.11.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.12.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.13.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.14.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF ∥BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若ED=6,AE=10,则菱形AECF的面积是多少?15.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.16.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.17.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE =EN,连接CN、CE.(1)求证:△CAN为直角三角形.(2)若AN=4,正方形的边长为6,求BE的长.18.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.19.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.20.探究:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF与EF三条线段之间的数量关系,直接写出判断结果:;(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF绕点A逆时针旋转,当点分别E、F运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明.21.如图,正方形ABCD的对角线交于点O,点E是线段OD上一点,连接EC,作BF⊥CE于点F,交OC于点G.(1)求证:BG=CE;(2)若AB=4,BF是∠DBC的角平分线,求OG的长.参考答案1.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DA=DE,∴∠DAE=∠DEA=×(180°﹣70°)=55°.(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).2.解:(1)∵四边形ABCD为正方形,∴∠DAE=∠ABF=90°,AD=AB,∵DE⊥AF,∴∠DAH+∠ADE=90°,∵∠DAH+∠BAF=90°,∴∠ADE=∠BAF,在△AED和△BF A中,,∴△AED≌△BF A(ASA).(2)△ADM是等腰三角形,理由如下:∵∠BAC=45°,AF平分∠BAC,∴∠BAF=∠CAF=∠BAC=22.5°,∴∠DAM=∠DAC+∠CAF=67.5°,∴∠DMA=180°﹣∠DAM﹣∠ADM=180°﹣67.5°﹣45°=67.5°,∴∠DAM=∠DMA,∴△ADM是等腰三角形.(3)∵∠ADE=∠BAF=22.5°,∴∠CDG=∠ADC﹣∠ADE=67.5°,∴∠DGC=180°﹣∠GCD﹣∠CDG=67.5°,∴CG=CB,∵AE∥CD,∴∠AEG=∠CDG=67.5°,∴AE=AG,如图,作FK⊥AC于点K,设AG=AE=x,∵AO=AG+OG=x+1,∴AB=BC=AO=(x+1),AC=2AO=2(x+1),∵△AED≌△BF A,∴BF=AE=x,∵AF平分∠BAC,∴FK=BF=x,∵S△ABF=AB•BF,S△ACF=AC•FK,∴==,又∵=,∴==,即=,解得x=,∴BE=AB﹣AE=(x+1)﹣x=2.解法二:BF=x之后,可以直接AB=(x+1),BC=x+x,由AB=BC,可以直接解出x.3.解:(1)连结DE,如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DF A中,,△ABE≌△DF A(AAS),∴AB=CD=DF,在Rt△DFE和Rt△DCE中,,∴Rt△DFE≌Rt△DCE(HL).∴CE=FE.(2)∵△DEF≌△DEC,∴FE=CE=1,DC=DF=5,设AD=x,则AF=AE﹣EF=AD﹣1=x﹣1,在Rt△AFD中,由勾股定理得:AF2+DF2=AD2,∴(x﹣1)2+52=x2,∴x=13,即AD=13,∴S矩形ABCD=AD•DC=65.4.(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)解:过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.5.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形,∵AF=FC,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,在Rt△ABE中,AB=4,BE=3,根据勾股定理,得AE===5,∵四边形AECF是菱形,∴EC=AE=5,∴AD=BC=BE+EC=3+5=8,∵AD∥BC,∴∠EAD=∠AEB,∵DG⊥AE,∴∠DGA=∠B=90°,∴DG=.6.(1)证明:如图,延长AD交EF于M,连接AC,CF,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴;(2)解:方法一:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,在Rt△AMF中,由勾股定理得:=,∴.方法二:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,∴AC=,CF=3,∴AF==,∴.7.解:(1)∵∠B=90°,AB=10,BM=2∴AM=∵MN⊥AC,点G是AM的中点∴GN=(2)证明:过点D作DE⊥AC于点E∵四边形ABCD是正方形∴DE=∵AC为正方形对角线∴∠ACB=45°∵MN⊥AC∴MN=NC设MN=NC=a,AN=b∴由勾股定理AM=∵MN⊥AC,点G是AM的中点∴GN=∵AC=a+b∴DE=EC=∴EN=EC﹣NC=DN=∴DN=NG8.(1)证明:∵四边形ABCD和四边形BEFG都是正方形,∴AB=AD,AG=AE,∠BAD=∠GAE=90°,∴∠BAE=∠DAG,在△AGD和△AEB中,,∴△AGD≌△AEB(SAS),∴EB=GD;(2)解:作AH⊥DG于H,∵四边形ABCD和四边形BEFG都是正方形,∴AD=AB=5,AE=AG=3.∴由勾股定理得:EG==6,AH=GH=EG=3(直角三角形斜边上的中线等于斜边的一半),∴DH==4,∴BE=DG=DH+GH=3+4=7.9.解:(1)结论:PB=PQ,理由:如图①中,过P作PE⊥BC,PF⊥CD,垂足分别为E,F.∵P为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形.∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,在△PQF和△PBE中,,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)结论:PB=PQ.理由:如图②,过P作PE⊥BC,PF⊥CD,垂足分别为E,F,∵P为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,在△PQF和△PBE中,,∴Rt△PQF≌Rt△PBE,∴PB=PQ.10.(1)证明:∵O是对角线AC的中点,∴AO=CO,∵矩形ABCD的边AD∥BC,∴∠ACB=∠CAD,∵EF⊥AC,∴∠AOE=∠COF=90°,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形;(2)解:∵AE=10cm,四边形AFCE是菱形,∴AF=AE=10cm,设AB=x,∵△ABF的面积为24cm2,∴BF=,在Rt△ABF中,根据勾股定理,AB2+BF2=AF2,即x2+()2=102,x4﹣100x2+2304=0,解得,x1=6,x2=8,∴BF==8cm,BF==6cm,所以,△ABF的周长=6+8+10=24cm.11.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.12.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.13.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.14.(1)证明:∵PQ为线段AC的垂直平分线,,∴AE=CE,AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,∴△AED≌△CFD(AAS);(2)证明:∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=F A,∴EC=EA=FC=F A,∴四边形AECF为菱形;(3)解:∵四边形AECF是菱形,∴AC⊥EF,∵ED=6,AE=10,∴EF=2ED=12,AD==8.∴AC=2AD=16,∴菱形AECF的面积=AC•EF=×16×12=96.15.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.16.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,由(1)可知,FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∴∠AOE=∠ACB∵∠ACB=90°,∴∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.17.解:(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;∵AE=CE,AE=EN,∴∠EAC=∠ECA,CE=EN,∴∠ECN=∠N,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN为直角三角形;(2)∵正方形的边长为6,∴AC=BD=6,∵∠ACN=90°,AN=4,∴CN==2,∵OA=OC,AE=EN,∴OE=CN=,∵OB=BD=3,∴BE=OB+OE=4.18.证明:(1)∵AF∥BC,∴∠AFC=∠FCD.在△AFE和△DCE中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形;(2)∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.19.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD(直角三角形斜边上的中线等于斜边的一半),∴四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.20.解:(1)如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,∵∠EAF=45°,∴∠EAF′=∠EAF=45°,在△AEF和△AEF′中,,∴△AEF≌△AEF′(SAS),∴EF=EF′,又EF′=BE+BF′=BE+DF,∴EF=BE+DF;(2)结论EF=BE+DF仍然成立.理由如下:如图2,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,则△ADF≌△ABF′,∴∠BAF′=∠DAF,AF′=AF,BF′=DF,∠ABF′=∠D,又∵∠EAF=∠BAD,∴∠EAF=∠DAF+∠BAE=∠BAE+∠BAF′,∴∠EAF=∠EAF′,又∵∠ABC+∠D=180°,∴∠ABF′+∠ABE=180°,∴F′、B、E三点共线,在△AEF与△AEF′中,,∴△AEF≌△AEF′(SAS),∴EF=EF′,又∵EF′=BE+BF′,∴EF=BE+DF;(3)发生变化.EF、BE、DF之间的关系是EF=BE﹣DF.理由如下:如图3,将△ADF绕点A顺时针旋转,使AD与AB重合,点F落在BC上点F′处,得到△ABF′,∴△ADF≌△ABF′,∴∠BAF′=∠DAF,AF′=AF,BF′=DF,又∵∠EAF=∠BAD,且∠BAF′=∠DAF,∴∠F′AE=∠BAD﹣(∠BAF′+∠EAD)=∠BAD﹣(∠DAF+∠EAD)=∠BAD﹣∠F AE=∠F AE,即∠F′AE=∠F AE,在△F′AE与△F AE中,,∴△F′AE≌△F AE(SAS),∴EF=EF′,又∵BE=BF′+EF′,∴EF′=BE﹣BF′,即EF=BE﹣DF.21.(1)证明:∵正方形ABCD中,AC、BD相交于O,∴BO=CO,BO⊥CO,∵BF⊥EC,∴∠5=∠6=∠7=90°,∵∠3=∠4,∴∠1=∠2,∴△BOG≌△CEO,(AAS)∴BG=CE.(2)解:∵BF是∠DBC的角平分线,∴∠1=∠8,∵BF=BF,∠9=∠6=90°,∴△BEF≌△BCF(ASA),∴BE=BC=4,∵四边形BCD是正方形∴∠AOB=90°,AO=BO设AO为x,由勾股定理,得2x2=42解得x=2∵△BOG≌△COE∴OG=OE∵OE=BE﹣BO=4﹣2,∴OG=4﹣2.。
初三培优-易错-难题平行四边形辅导专题训练附详细答案
初三培优 易错 难题平行四边形辅导专题训练附详细答案一、平行四边形1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.2.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②4222【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB //DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=,DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF 2AE ∴=. ②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-=-=,综上所述,满足条件的AE 的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.3.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)23【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=223BD AD-=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22AB AF+=23.5.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE ⊥AG ,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.6.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC 273 【解析】【分析】(1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E 为AB 的中点,∴AE=BE ,又∵∠AEF=∠BEC ,∴△AEF ≌△BEC ,在△ABC 中,∠ACB=90°,E 为AB 的中点,∴CE=12AB ,BE=12AB ,∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC ∥BD ,又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即FD ∥BC ,∴四边形BCFD 是平行四边形;(2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=∴S 平行四边形BCFD =3×,S △ACF =12×3×,S 平行四边形ADBC . 【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.(问题情境)在△ABC 中,AB =AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE =CF .证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE =CF .(不要证明)(变式探究)(1)当点P 在CB 延长线上时,其余条件不变(如图3),试探索PD 、PE 、CF 之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =16,CF =6,求PG+PH 的值.(迁移拓展)(3)在直角坐标系中,直线l 1:y =-43x+8与直线l 2:y =﹣2x+8相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为2.求点P 的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222-=-8.106DF CF∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2210,BC=10.68∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.8.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.9.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E 是BC 的中点,可证得△B'EC 是等腰三角形,再有条件证明∠AEF=90°即可得到AE ⊥EF ;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B ,由E 是BC 的中点,可得EB′=EC ,∠ECB′=∠EB′C ,从而可证△BB′C 为直角三角形,在Rt △AOB 和Rt △BOE 中,可将OB ,BB′的长求出,在Rt △BB′C 中,根据勾股定理可将B′C 的值求出.【详解】(1)由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∠AEB =∠AEB ′,∴△B 'EC 是等腰三角形,又∵EF ⊥B ′C∴EF 为∠B 'EC 的角平分线,即∠B ′EF =∠FEC ,∴∠AEF =180°﹣(∠AEB +∠CEF )=90°,即∠AEF =90°,即AE ⊥EF ;(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;又∵△BB 'C 三内角之和为180°,∴∠BB 'C =90°;∵点B ′是点B 关于直线AE 的对称点,∴AE 垂直平分BB ′;在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2将AB =4cm ,BE =3cm ,AE =5cm ,∴AO =165 cm ,∴BO =125cm , ∴BB ′=2BO =245cm ,∴在Rt △BB 'C 中,B ′C 518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.10.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .()1如图1,求证:四边形ADCF 是矩形;()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【详解】()1证明:∵//AF BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在AEF 和CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF CED ≅,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥,∴90ADC ∠=,∴四边形ADCF 是矩形.()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.11.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME ,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.12.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.13.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB 与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3a<3a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处 ∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x , ∵IJ=6cm ,∴3,∴33cm ). (3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6,则tan60°=3=2a b ,∴a=32b , ∴0<b≤632=33; ②如图当DF 与DC 重合时,DF=DE=6,∴a=sin60°×DE=632=33, 当DE 与DA 重合时,a=6643sin6032==︒, ∴33<a <43;③如图∵△DEF 是等边三角形∴∠FDC=30°∴DF=6643 cos3032==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.14.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).(2)当点M落在边BC上时,求t的值.(3)求S与t之间的函数关系式.(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A 上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH .设MH将正方形PQMN分成的两部分图形面积分别为S 1、S 2(平方单位)(0<S1<S 2),直接写出当S2≥3S1时t 的取值范围.【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.【解析】试题分析:(1)分两种情况讨论:当点Q 在线段AC 上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;(3)当0<t≤时,当<t≤4,当4<t<7时;(4)或或.试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.当点Q在线段BC上时,PQ=7-t.(2)当点M落在边BC上时,如图③,由题意得:t+t+t=7,解得:t=.∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,S=.当<t≤4,如图⑤,.当4<t<7时,如图⑥,.(4)或或..考点:四边形综合题.15.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.。
2023学年北师大版九年级数学上学期专项讲练1-29 《特殊平行四边形》全章复习与巩固(培优篇)
专题1.29 《特殊平行四边形》全章复习与巩固(培优篇)(专项练习)一、单选题1.如图,菱形OABC 的顶点O 与原点重合,点C 在x 轴上,点A 的坐标为(3,4).将菱形OABC 绕点O 逆时针旋转,每次旋转90°,则第2022次旋转结束时,点B 的坐标为( )A .(-8,-4)B .(-9,-4)C .(-9,-3)D .(-8,-3) 2.如图,在边长为4的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 方向平移,得到△EFG ,连接EC 、GC .则EC +GC 的最小值为( )A .B .C .D .3.如图,在平面直角坐标系中,点A 的坐标为(1,0),四边形OABC 是菱形,60AOC ∠=︒,以OB 为边作菱形11OBB C ,使顶点1B 在OC 的延长线上,再以1OB 为边作菱形122OB B C ,使顶点2B 在1OC 的延长线上,再以2OB 为边作菱形233OB B C ,使顶点3B 在2OC 的延长线上,按照此规律继续下去,则2021B 的坐标是( )A .101130-(,)B .101132(,)C .20210-(,)D .202310113322(-,)4.如图,点H ,F 分别在菱形ABCD 的边AD ,BC 上,点E ,G 分别在BA ,DC 的延长线上,且AE AH CG CF ===.连结EH ,EF ,GF ,GH ,若菱形ABCD 和四边形EFGH 的面积相等,则AH AD的值为( )A .12 B C D .15.如图,矩形ABCD 中,AB =8,AD =4,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.4 B .8 C .D .6.如图,在矩形ABCD 中,1AB =,AD =O 是对角线的交点,过C 作CE BD ⊥于点E ,EC 的延长线与BAD ∠的平分线相交于点H ,AH 与BC 交于点F .给出下列四个结论:∠AF FH =;∠BF BO =;∠AC CH =;∠3BE DE =.其中正确结论有( ).A .1个B .2个C .3个D .4个7.如图,四边形ABCD 是矩形纸片,6AB =,对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF .展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕为BM ,再次展平,连接BN ,MN ,延长MN 交BC 于点G .有如下结论:∠60ABN ∠=︒;∠3AM =;∠∠BMG是等边三角形;∠EN =∠P 为线段BM 上一动点,H 是线段BN 上的动点,则PN PH+的最小值是 )A .∠∠∠∠B .∠∠∠∠C .∠∠∠∠D .∠∠∠∠∠8.如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点M 处,折痕为AP ;再将PCM △,ADM △分别沿PM ,AM 折叠,此时点C ,D 落在AP 上的同一点N 处.下列结论不.正确的是( )A .M 是CD 的中点B .MN AP ⊥C .当四边形APCD 是平行四边形时,AB =D .AD BC ∥ 9.如图,在∠ABC 中,∠ACB =90°, 分别以AC , BC 为边向外作正方形ACDE 与正方形BCFG , H 为EG 的中点,连接DH ,FH .记∠FGH 的面积为S 1,∠CDH 的面积为S 2,若S 1-S 2=6,则AB 的长为( )A .B .C .D .10.如图,正方形ABCD 边长为4,点E 是CD 边上一点,且75ABE ∠=︒.P 是对角线BD 上一动点,则12AP BP +的最小值为( )A.4 B .C D 11.如图,在平面直角坐标系中,正方形纸片ABCD 的顶点A 的坐标为(-1,3),在纸的正方形1111D C B A ,将该纸片以O 为旋转中心进行逆时针旋转,每次旋转45°,则第298次旋转后,点C 和点1B 的坐标分别为( )A .(-3,-1),(1,0)B .(-3,-1),(0,-1)C .(3,1),(0,-1)D .(3,1),(1,0) 12.如图,将正方形纸片ABCD 沿EF 折叠,使点B 落在AD 边的点P 处(不与点A ,点D 重合),点C 落在G 点处,PG 交DC 于点H ,连接BP ,BH .BH 交EF 于点M ,连接PM .下列结论:∠PB 平分∠APG ;∠PH =AP +CH ;∠BM ,∠若BE =53,AP =1,则S 四边形BEPM =113,其中正确结论的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠二、填空题 13.如在菱形ABCD 中,2BC =,120C ∠=︒,E 为AB 的中点,P 为对角线BD 上的任意一点,则PA PE +的最小值为__________.14.如图,已知ABC 中,5AB AC ==,8BC =,将ABC 沿射线BC 方向平移m 个单位得到DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,则m 的值是___________.15.如图,在菱形ABCD 中,∠ABC =120°,对角线AC 、BD 交于点O ,BD =4,点E 为OD 的中点,点F 为AB 上一点,且AF =3BF ,点P 为AC 上一动点,连接PE 、PF ,则PF ﹣PE 的最大值为 ___.16.如图,在菱形ABCD 中,∠BAD =60°,点E 在边BC 上,将∠ABE 沿直线AE 翻折180°,得到∠AB ′E ,点B 的对应点是点B ′.若AB ′∠BD ,BE =2,则BB ′的长是___.17.如图,在矩形ABCD 中,E 是BC 上一动点,将ABE △沿AE 折叠后得到AFE △,点F 在矩形ABCD 内部,延长AF 交CD 于点G ,3AB =,4=AD .当点E 是BC 的中点时,线段GC 的长为______;点E 在运动过程中,当∠CFE 的周长最小时,BE 的长为______.18.如图,在等腰Rt ABC 中,CA BA =,90CAB ∠=︒,点M 是AB 上一点,点P 为射线CA (除点C 外)上一个动点,直线PM 交射线CB 于点D ,若1AM =,3BM =,CPD ∆的面积的最小值为________.19.如图,在四边形ABCD 中,AB ∠BC ,AD ∠AC ,AD =AC ,∠BAD =105°,点E 和点F 分别是AC 和CD 的中点,连接BE ,EF ,BF ,若CD =8,则BEF 的面积是_____.20.如图,点E 是矩形ABCD 的边AB 的中点,点P 是边AD 上的动点,沿直线PE 将△APE 对折,点A 落在点F 处. 已知AB =6,AD =4,连结CF 、CE ,当△CEF 恰为直角三角形时,AP 的长度等于___________.21.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,∠ECF 的周长为8,则正方形ABCD 的边长为_____.22.如图,Rt ABC 中,90ABC ∠=︒,30C ∠=︒,1AB =,点D 为AC 边上任意一点,将BCD 沿BD 折叠,点C 的对应点为点E ,当30ADE ∠=︒时,CD 的长为______.23.如图,正方形ABCD 的边长为4,E ,F ,H 分别是边BC ,CD ,AB 上的一点,将正方形ABCD 沿FH 折叠,使点D 恰好落在BC 边的中点E 处,点A 的对应点为点P ,则折痕FH 的长为______.24.图,正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,若F 是BC 的中点,45EDF ∠=︒,则DE 的长为 _____.三、解答题25.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y x m =+经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点()0,P t 是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于.N 当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点()0,P t 是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?26.综合与实践:如图,在平面直角坐标系中,A ,B 两点的坐标分别为(0,)A a ,点(,0)B b ,且a .b 满足:4b +=C 与点B 关于y 轴对称,点P ,点E 分别是x 轴,直线AB 上的两个动点.(1)求点C 的坐标;(2)连接PA ,PE .∠如图1,当点P 在线段BO (不包括B ,O 两个端点)上运动,若APE 为直角三角形,F 为PA 的中点,连接EF ,OF ,试判断EF 与OF 的关系,并说明理由;∠如图2,当点P 在线段OC (不包括O ,C 两个端点)上运动,若APE 为等腰三角形,M 为底边AE 的中点,连接MO ,请直接写出PA 与OM 的数量关系.27.操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E 、F 分别在正方形的边CB 、CD 上,连接AF ;取AF 中点M ,EF 的中点N ,连接MD ,MN .(1)连接AE ,求证:△AEF 是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD 、MN 的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是___________________________;结论2:DM、MN的位置关系是___________________________;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.28.正方形ABCD的边长为6,点E是BC边上一动点,点F是CD边上一动点,过点E作AF的平行线,过点F作AE的平行线,两条线交于点G.(1)如图1,若BE=DF,求证:四边形AEGF是菱形;(2)如图2,在(1)小题条件下,若∠EAF=45°,求线段DF的长;(3)如图3,若点F运动到DF=2的位置,且∠EAF依然保持为45°,求四边形AEGF的面积.参考答案1.A【分析】过点A作AE∠OC于E,设第一次旋转点B的对应点为B1,作B1F∠y轴于F,利用全等三角形的性质求出的坐标,根据循环性规律,得出第2022次旋转结束时,点B的坐标即可.解:过点A作AE∠OC于E,设第一次旋转点B的对应点为B1,作B1F∠y轴于F,∠点A的坐标为(3,4),∠5OA,∠菱形OABC的顶点O与原点重合,∠5AB OA==,AB∠OC,∠点B的坐标为(8,4),延长BA交y轴于H,∠BH∠OF,∠∠BHO=∠B1FO=90°,∠∠BOB1=90°,∠∠BOH+∠FOB1=90°,∠BOH+∠OBH=90°,∠∠FOB1=∠OBH,∠OB1=OB,∠∠OBH∠∠OB1F,∠FB1=OH=4,FO1=BH=8,B1的坐标为(-4,8);同理可求,第二次旋转点B的坐标为(-8,-4),第三次旋转点B的坐标为(4,-8),第四次旋转点B的坐标为(8,4),四次一循环,∠2022÷4=505……2,故第2022次旋转结束时,点B的坐标(-8,-4),故选:A.【点拨】本题考查了菱形的性质、勾股定理、点的坐标变换,解题关键是熟练运用相关性质求出变换后点的坐标,发现规律求解.2.B【分析】连接AE ,作点D 关于直线AE 的对称点H ,连接DE ,DH ,EH ,AH ,CH .由平移和菱形的性质可证明四边形CDEG 为平行四边形,即得出HE CG =,从而可得出EC GC EC HE CH +=+≥,即CH 的长为EC GC +的最小值.最后根据等边三角形的判定和性质,含30度角的直角三角形的性质与勾股定理求出CH 的长即可.解:如图,连接AE ,作点D 关于直线AE 的对称点H ,连接DE ,DH ,EH ,AH ,CH .由平移的性质可知AB EG =,AB EG .∠四边形ABCD 为菱形,∠AB CD =,AB CD ,1302ADB ABD ABC ∠=∠=∠=︒, ∠CD EG =,∥EG CD ,∠四边形CDEG 为平行四边形,∠GC DE =.由轴对称的性质可知HE DE =,DAE HAE ∠=∠,AH AD =,∠HE CG =,∠EC GC EC HE CH +=+≥,即CH 的长为EC GC +的最小值.∠AB EG =,AB EG ,∠四边形ABGE 为平行四边形,∠AE BG ∥,∠30EAD ADB ∠=∠=︒,∠260HAD EAD ∠=∠=︒,∠ADH 为等边三角形,∠4DH AD CD ===,60ADH ∠=︒,∠2120CDH ADH ∠=∠=︒,∠30HCD ∠=︒,即CDH △为顶角是120°,底角为30°的等腰三角形,结合含30°角的直角三角形和勾股定理即可求224CH === 故选B .【点拨】本题考查平移的性质,菱形的性质,平行四边形的判定和性质,等边三角形的判定和性质,轴对称变换,含30°角的直角三角形的性质以及勾股定理等知识,综合性强,为选择题中的压轴题.正确的作出辅助线是解题关键.3.A【分析】连接AC 、BC 1,分别交OB 、OB 1于点D 、D 1,利用菱形的性质及勾股定理即可得OB 的长,进一步在菱形OBB 1C 1计算出OB 1,过点B 1作B 1M ∠x 轴于M ,利用勾股定理计算出B 1M ,OM ,从而得B 1的坐标,同理可得B 2,B 3,B 4,B 5,B 6,B 7,B 8,B 9,B 10,B 11,B 12,根据循环规律可得B 2021的坐标.解:如图所示,连接AC ,1BC 分别交OB ,1OB 与D 、1D ,∠点A 的坐标为(1,0),∠OA =1,∠四边形OABC 是菱形,∠AOC =60°,∠OC =OA =1,OB =2OD ,∠COD =30°,∠CDO =90°, ∠1122CD OC ==,∠OD ==∠OB =∠∠AOC =60°,∠∠B 1OC 1=90°-60°=30°,∠四边形OBB 1C 1是菱形,11111902C DO OC OB OB OD ∴∠=︒===,,在Rt ∠OC 1D 1中11112C D OC ==,∠132OD ==, ∠OB 1=2OD 1=3,过点B 1作B 1M ∠x 轴于点M ,在Rt ∠OMB 1中,11322OM OB ==∠1B M ==∠13(2B ,同理可得2345927(((27,0)22B B B B ---,,,6788181(,(,(0,22B B B ---,,,91011243729(,(,(729,0)22B B B ,,,12729)2B , 由此可以发现规律“每经过12次作图后点的坐标符号与第一次坐标符号相同,每次1n n OB +=,∠2021÷12=168……5,∠B 2021的纵坐标符号与B 5的相同,则B 2021在y 轴的负半轴上,又2022101120213OB ==∠B 2021的坐标为1011(3,0)-,故选A【点拨】本题考查平面直角坐标系找规律,利用菱形的性质处理条件,掌握循环规律的处理方法是解题的关键.4.D【分析】根据题意先证四边形EFGH 是平行四边形,由平行四边形的性质求出EH ∠AC ,进而由面积关系进行分析即可求解.解:连接HC 、AF 、HF 、AC ,HF 交AC 于O ,连接EG .∠四边形ABCD 是菱形,∠D =∠B ,AB =CD =AD =BC ,∠AE =AH =CG =CF ,∠DH =BF ,BE =DG ,在∠DHG 和∠BFE 中,DH BF D B BE DG =⎧⎪∠=∠⎨⎪=⎩,∠∠DHG ∠∠BFE ,∠HG =EF ,∠DHG =∠BFE,∠BC ∠AD ,∠∠BFE =∠DKF ,∠∠DHG =∠DKG ,∠HG ∠EF ,∠四边形EFGH 是平行四边形.∠AH =CF ,AH ∠CF ,∠四边形AHCF 是平行四边形,∠AC 与HF 互相平分,∠四边形EFGH 是平行四边形,∠HF 与EG 互相平分,∠HF 、AC 、EG 互相平分,相交于点O ,∠AE =AH ,DA =DC ,BE ∠DC ,∠∠EAH =∠D ,∠∠AEH =∠AHE =∠DAC =∠DCA ,∠EH ∠AC ,∠S △AEH =S △EHO =S △AHO =12S △AHC =14S 四边形EFGH =14S 四边形ABCD , ∠S △AHC =12S 四边形ABCD =S △ADC ,∠AD =AH , ∠AH AD =1. 故选:D .【点拨】本题考查菱形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,证明EH ∠AC 是解题的关键.5.C【分析】取CD 中点H ,连接AH ,BH ,根据矩形的性质题意得出四边形AECH 是平行四边形,可知AC CE ∥,然后根据三角形中位线的性质得PH CE ∥,得出点P 在AH 上,然后判断BP 的最小值,再求出值即可.解:如图,取CD 中点H ,连接AH ,BH ,设AH 与DE 的交点为O ,∠四边形ABCD 是矩形,∠AB =CD =8,AD =BC =4,CD AB ∥,∠点E 是AB 中点,点H 是CD 中点,∠CH =AE =DH =BE =4,∠四边形AECH 是平行四边形,∠AH CE ∥,∠点P 是DF 的中点,点H 是CD 的中点,∠PH 是∠CDF 的中位线,∠PH CE ∥,∠点P 在AH 上,∠当BP ∠AH 时,此时点P 与H 重合,BP 有最小值,∠AD =DH =CH =BC =4,∠∠DHA=∠DAH =∠CBH =∠CHB =45°,AH BH ==∠∠AHB =90°,∠BP 的最小值为故选:C .【点拨】本题主要考查了矩形的性质,平行四边形的判定,中位线的性质和定义等,确定点P 的位置是解题的关键.6.C【分析】利用矩形性质及勾股定理,30所对的直角边等于斜边的一半,可知60ABO ∠=︒,进一步可得AOB 为等边三角形,得到1BO BA ==,再利用角平分线的性质可证明1BF BA ==,故∠正确;证明15CHA OAH ∠=∠=︒,即可知∠正确;求出1122DE CD ==,13222BE =-=,即可知∠正确;无法证明F 是AH 中点,故∠错误.解:∠ABCD 为矩形,1AB =,AD =,∠90DAB ∠=︒,30ADB ∠=︒,2BD =,∠AF 平分DAB ∠,∠45FAB AFB ∠=∠=︒,即1BF BA ==,∠30ADB ∠=︒,∠60ABO ∠=︒,∠OA OB =,∠AOB 为等边三角形,∠1BO BA ==,∠BF BO =,故∠正确;∠AOB 为等边三角形,且45FAB ∠=︒,∠15OAH ∠=︒,同理:COD △为等边三角形,∠CE BD ⊥,∠30ECO ∠=︒,∠15CHA ∠=︒,∠15CHA OAH ∠=∠=︒,即AC CH =,故∠正确;∠30ECO ∠=︒,∠30DCE ∠=︒,∠1CD AB ==, ∠1122DE CD ==, ∠2DB =, ∠13222BE =-=, ∠3BE DE =,故∠正确;∠AC CH =,但是无法证明F 是AH 中点,故∠错误;综上所述:正确的有∠∠∠.故选:C .【点拨】本题考查矩形性质及勾股定理,30所对的直角边等于斜边的一半,等边三角形,角平分线,三角形外角的定义及性质.解题的关键是熟练掌握以上知识点,证明1BO BA ==, 1BF BA ==;证明15CHA OAH ∠=∠=︒;求出1122DE CD ==,13222BE =-=. 7.C【分析】∠首先根据EF 垂直平分AB ,可得AN =BN ,然后根据折叠的性质,可得AB =BN ,据此判断出∠ABN 为等边三角形,即可判断出∠ABN =60°;∠首先根据∠ABN =60°,∠ABM = ∠NBM ,求出∠ABM =∠NBM =30°,然后在Rt ∠ABM 中,根据AB =6,求出AM 的大小即可;∠求出∠AMB =60°,得到∠BMG =60°,根据AD ∠BC ,求出∠BGM =60°即可;∠根据勾股定理求出EN 即可;∠根据轴对称图形的性质得到AP =PN ,PN +PH =AH ,且当AH ∠BN 时,PN +PH 最小,应用勾股定理,求出AH 的值即可.解:如图,连接AN ,∠EF 垂直平分AB ,∠AN =BN ,根据折叠的性质,可得AB =BN ,∠AN =AB =BN ,∠△ABN 为等边三角形,∠∠ABN =60°,∠PBN =12⨯60°=30°,即结论∠正确; ∠∠ABN =60°,∠ABM =∠NBM ,∠∠ABM =∠NBM =12⨯60°=30°, ∠BM =2AM ,∠AB =6,222AB AM BM +=,∠62+AM 2=(2AM )2,解得AM =∠不正确;∠∠AMB =90°-∠ABM =60°,∠∠BMG=∠AMB=60°,∠ AD∠BC,∠∠MBG=∠AMB=60°,∠∠BGM=60°,∠BMG是等边三角形;即结论∠正确;∠BN=AB=6,BN=3,∠EN=∠正确;连接AN,∠△ABM与∠NBM关于BM轴对称,∠AP=NP,∠PN+PH=AP+PH,∠当点A、P、H三点共线时,AP+PH=AH,且当AH∠BN时AH有最小值,∠AB=6,∠ABH=60°,∠∠BAH=30°,∠BH=3,∠AH=∠PN+PH的最小值是∠正确;【点拨】此题考查了矩形的性质,轴对称的性质,全等三角形的判定及性质,等边三角形的判定及性质,直角三角形30度角的性质,熟记等边三角形的判定及性质是解题的关键.8.B【分析】由折叠的性质可得DM=MN,CM=MN,即M是CD的中点;故∠正确;∠B=∠AMP,∠DAM=∠MAP=∠P AB,∠DMA=∠AMN,∠CMP=∠PMN,∠D=∠ANM,∠C=∠MNP,由平角的性质可得∠D+∠C=180°,∠AMP=90°,可证AD∠BC,由平行线的性质可得∠DAB=90°,由平行四边形和折叠的性质可得AN=PN,由直角三角形的性质可得ABMN.解:由折叠的性质可得:DM=MN,CM=MN,∠DM=CM,即M是CD的中点;故A正确;由折叠的性质可得:∠B=∠AMP,∠DAM=∠MAP=∠P AB,∠DMA=∠AMN,∠CMP =∠PMN,∠D=∠ANM,∠C=∠MNP,∠∠MNA+∠MNP=180°,∠∠D+∠C=180°,∠AD∥BC,故D正确;∠∠B+∠DAB=180°,∠∠DMN+∠CMN=180°,∠∠DMA+∠CMP=90°,∠∠AMP=90°,∠∠B=∠AMP=90°,∠∠DAB=90°,若MN∠AP,则∠ADM=∠MNA=∠C=90°,则四边形ABCD为矩形及AB∥CD,而题目中无条件证明此结论,故B不正确;∠∠DAB=90°,∠∠DAM=∠MAP=∠P AB=30°,由折叠的性质可得:AD=AN,CP=PN,∠四边形APCD是平行四边形,∠AD=PC,∠AN=PN,又∠∠AMP=90°,AP,∠MN=12∠∠P AB=30°,∠B=90°,AP,∠PB=12∠PB=MN∠AB,故C正确;故选:B .【点拨】本题考查了翻折变换,平行四边形的性质及直角三角形的性质等知识,熟练掌握相关知识点并灵活运用这些性质是解题的关键.9.A【分析】连接AD 交EC 于点M ,连接BF 交CG 于点N ,设,AC a BC b ==,分别求出EC ,AD =,DM =,,CG FN ==,)EG a b =+,)HG EH a b ==+,)CH b a =-,分别求得1S ,2S ,由126S S -=得,2224a b +=,由勾股定理可得结论. 解:连接AD 交EC 于点M ,连接BF 交CG 于点N ,∠四边形ACDE ,BCFG 是正方形,∠,,,AD EC BF CG AD EC BF CG ⊥⊥==,1122DM AD FN BF ==,, 设,AC a BC b ==,∠∠90,=EAC AE AC a =︒=,∠EC ∠AD =,∠1122DM AD ===,同理可证:,CG FN ==, ∠EG EC CG =+,∠)EG a b =+,∠H 为EG 的中点,∠1))2HG EH a b a b ==+=+,∠)CH EH EC b a =-=-, ∠121124FG H ab b S S HG FN ∆+==⋅⋅=,22(124DH ab a S S CH DM ∆-=== 又∠126S S -=,∠22644ab b ab a +--=, 整理得,2224a b +=,∠∠90ACB =︒,∠AB ,故选:A .【点拨】本题主要考查了正方形的性质,勾股定理等知识,正确作出辅助线是解答本题的关键.10.D【分析】连接AC ,作PG BE ⊥,证明当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG ,再利用勾股定理,30所对的直角边等于斜边的一半即可求出结果.解:连接AC ,作PG BE ⊥∠ABCD 是正方形且边长为4,∠45ABO ∠=︒,AC BD ⊥,AO =∠75ABE ∠=︒,∠30PBG ∠=︒,∠12PG BP =, ∠当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG ,∠75ABE ∠=︒,AG BE ⊥,∠15BAG ∠=︒,∠45BAO ∠=︒,∠30PAO ∠=︒,设OP b =,则2AP b =,∠(()222=2b b +,解得:b 设PG a =,则2BP a =,∠BO =∠2a b +=a∠2AG AP PG b a =+=+=故选:D【点拨】本题考查正方形的性质,动点问题,勾股定理,30所对的直角边等于斜边的一半,解题的关键是证明当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG .11.C【分析】由该纸片以О为旋转中心进行逆时针旋转,每次旋转45°,可得旋转一周360458︒÷︒=次,由2988372÷=⋅⋅⋅,可得第298次旋转后,实际是将纸片逆时针旋转37周后再转90°,由正方形纸片ABCD 对角线中点位于原点,可求点C (1,-3)由11A B =根据勾股定理,2221111+2OA OB A B ==求出B 1(-1,0),连结OD 与OC ,过D 作ED ∠x 轴于E ,CF ∠y 轴于F ,可证△FOC ∠△EOD (AAS ),可求点D (3,1),与点C 1(0,-1)即可.解:∠该纸片以О为旋转中心进行逆时针旋转,每次旋转45°,∠旋转一周360458︒÷︒=次,∠2988372÷=⋅⋅⋅,∠第298次旋转后,实际是将纸片逆时针旋转37周后再转90°,∠正方形纸片ABCD 对角线中点位于原点,∠点A 与点C 关于点O 成中心对称,∠点A (-1,3),∠点C (1,-3),∠11A B又∠11OA OB =,根据勾股定理,2221111+2OA OB A B ==,∠111OA OB ==,∠B 1(-1,0),连结OD 与OC ,过D 作ED ∠x 轴于E ,CF ∠y 轴于F ,绕点O 逆时针旋转90°后点C 位置转到点D 位置,∠四边形ABCD 为正方形,OD OC =,90FOE COD ∠==︒,∠∠FOC +∠COE =∠COE +∠EOD =90°,∠∠FOC =∠EOD ,在△FOC 和△EOD 中,90FOC EOD CFO DEO OC OD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∠∠FOC ∠∠EOD (AAS ),∠CF =DE =1,OF =OE =3,∠点D (3,1),∠点B 1转到C 1位置,点C 1(0,-1),∠第298次旋转后,点C 和点1B 的坐标分别为(3,1)与(0,-1).故选:C .【点拨】本题主要考查坐标与旋转规律问题,涉及了正方形性质、中心对称性质、勾股定理应用、三角形全等判定与性质等知识,熟练掌握正方形旋转性质、中心对称性质、勾股定理应用、三角形全等判定与性质,根据旋转一周8次,确定旋转37周再转90°是解题关键.12.B【分析】根据折叠的性质,90EPG EBC ∠∠==,EB EP =,从而得到EPB EBP ∠=∠,根据直角三角形两锐角互余,得到APB BPG ∠=∠,即可判定∠;过点B 作BQ ∠PH ,利用全等三角形的判定与性质,得到CH QH =,AP PQ =,即可判定∠;通过证明BMP 为等腰直角三角形,即可判定∠;根据BEP BMP BEPM S S S =+△△四边形求得对应三角形的面积,即可判定∠.解:由题意可得:90EPG EBC ∠∠==,EB EP =,∠90EPG EPB BPG ∠∠∠=+=,EPB EBP ∠=∠,∠90EBP BPG ∠∠+=,由题意可得:1801809090EBP APB A ∠∠∠+=-=-=,∠APB BPG ∠=∠,∠PB 平分∠APG ;∠正确;过点B 作BQ ∠PH ,如下图:∠90BQP A ∠∠==在APB 和QPB 中,A BQP APB QPB BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(AAS)APB QPB ≌∠AP PQ AB BQ ==,∠四边形ABCD 为正方形∠AB BC BQ ==,又∠BH BH=∠Rt Rt (HL)BCH BQH ≌,∠CH QH =∠PH PQ QH AP CH =+=+,∠正确;由折叠的性质可得:EF 是PB 的中垂线,∠PM BM =由题意可得:BAP BQP ≌,BCH BQH △≌△,∠,ABP PBQ CBH QBH ∠∠∠∠==, ∠1452PBQ QBH ABP CBH ABC ∠∠∠∠∠+=+==, ∠45PBM ∠=,∠45BPM PBM ∠∠==,∠BMP 为等腰直角三角形,∠222BM PM BP +=,即222BM BP =,∠BM ,∠正确; 若BE =53,AP =1,则53PE BE ==, 在Rt APE 中,222AE AP PE +=∠43AE ==,3AB AE BE ,∠PB =∠BM BP == 21110223BEP BMP BEPM S S S BE AP BM =+=⨯⨯+⨯=△△四边形,∠错误, 故选B ,【点拨】此题考查了正方形与折叠问题,涉及了折叠的性质,正方形的性质,直角三角形的性质,垂直平分线的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,综合性比较性,解题的关键是灵活运用相关性质进行求解.13【分析】连接AC ,CE ,则CE 的长即为AP +PE 的最小值,再根据菱形ABCD 中,120BCD ∠=︒得出∠ABC 的度数,进而判断出∠ABC 是等边三角形,故∠BCE是直角三角形,根据勾股定理即可得出CE 的长.解:连接AC ,CE ,∠四边形ABCD 是菱形,∠A 、C 关于直线BD 对称,∠CE 的长即为AP +PE 的最小值,∠120BCD ∠=︒,∠60ABC ∠=︒,∠∠ABC 是等边三角形,∠E 是AB 的中点,∠CE AB ⊥,112122BE BC ==⨯=∠CE ==【点拨】本题考查了轴对称-最短路线问题,熟知菱形的性质及两点之间线段最短是解答此题的关键.14.258或5或8 【分析】∠ADE 是等腰三角形,所以可以分3种情况讨论:∠当AD =AE 时,∠ADE 是等腰三角形.作AM ∠BC ,垂足为M ,利用勾股定理列方程可得结论;∠当AD =DE 时,四边形ABED 是菱形,可得m =5;∠当AE =DE 时,此时C 与E 重合,m =8.解:分3种情况讨论:∠当AD =AE 时,如图1,过A作AM∠BC于M,∠AB=AC=5,BM=12BC=4,∠AM=3,由平移性质可得AD=BE=m,∠AE=m,EM=4−m,在Rt∠AEM中,由勾股定理得:AE2=AM2+EM2,∠m2=32+(4−m)2,m=258,∠当DE=AD时,如图2,由平移的性质得AB DE∥,AB DE,∠四边形ABED是菱形,∠AD=BE=ED=AB=5,即m=5;∠当AC=DE时,如图3,此时C与E重合,m=8;综上所述:当m=258或5或8时,∠ADE是等腰三角形.故答案为:258或5或8.【点拨】本题考查了等腰三角形的性质、勾股定理、平移的性质,解题的关键是分三种情况求出BE的长;本题属于基础题,难度不大,但在解决该题时,部分同学会落掉两种情况,故在解决该题型题目时,全面考虑等腰三角形的三种情况是关键.15.1【分析】取OB中点E',连接PE',作射线FE'交AC于点P'.则PE=PE',当P与P'重合,P'、E'、F三点在同一直线上时,PF﹣PE'有最大值,即为FE'的长.解:如图,取OB中点E',连接PE',作射线FE'交AC于点P'.则PE=PE',∠PF﹣PE=PF﹣PE'≤FE',当P与P'重合,P'、E'、F三点在同一直线上时,PF﹣PE'有最大值,即为FE'的长,∠在菱形ABCD中,∠ABC=120°,∠∠ABD=60°,∠DAB=60°,∠∠ABD为等边三角形.∠AB=BD=AD=4.∠OD=OB=2.∠点E'为OB的中点,E'B=1,AF=3BF,∠BF1AB=1,4∠∠ABD=60°,∠∠BE'F为等边三角形,∠E'F=FB=1.故PF﹣PE的最大值为1.故答案为:1.【点拨】本题考查了轴对称﹣最大值问题、菱形的性质、等边三角形的判定与性质,熟练运用轴对称的性质和三角形三边关系是解题的关键.16.【分析】根据菱形ABCD 中,∠BAD =60°可知∠ABD 是等边三角形,结合三线合一可得∠BAB '=30°,求出∠ABB '=75°,可得∠EB 'B =∠EBB '=45°,则∠BEB '是直角三角形,借助勾股定理求出BB '的长即可.解:∠菱形ABCD ,∠AB =AD ,AD //BC ,∠∠BAD =60°,∠∠ABC =120°,∠AB ′∠BD ,∠∠BAB '1302BAD =∠=︒, ∠将∠ABE 沿直线AE 翻折180°,得到∠AB ′E ,∠BE =B 'E ,AB =AB ',∠∠ABB '()118030752=⨯︒-︒=︒, ∠∠EBB '=∠ABE ﹣∠ABB '=120°﹣75°=45°,∠∠EB 'B =∠EBB '=45°,∠∠BEB '=90°,在Rt∠BEB '中,由勾股定理得:BB '==故答案为:.【点拨】本题考查了翻折的性质、菱形的性质、等腰三角形的性质、以及勾股定理等知识,明确翻折前后对应线段相等是解题的关键.17. 43##113 32 【分析】连接GE ,根据点E 是BC 的中点以及翻折的性质可以求出BE =EF =EC ,然后利用“HL ”证明GFE 和GCE 全等,根据全等三角形对应边相等即可得证FG =CG ,设GC =x ,表示出AG 、DG ,然后在Rt ADG 中,利用勾股定理列式进行计算即可得解;先判断出EF AC ⊥时,GEF △的周长最小,最后用勾股定理即可得出结论.解:∠如图,连接GE ,∠E 是BC 的中点,∠BE =EC ,∠ABE △沿AE 折叠后得到AFE △,∠BE =EF ,∠EF =EC ,∠在矩形ABCD 中,∠∠C =90°,∠∠EFG =90°,∠在Rt GFE 和Rt GCE 中,EG EG EF EC =⎧⎨=⎩∠()GFE GCE HL ≌△△, ∠GF =GC ;设GC x =,则3AG x =+,3DG x =-,在Rt ADG 中,2224(3)(3)x x +-=+,解得x =43,即43GC =; ∠如图:由折叠知,∠AFE =∠B =90°,EF =BE ,∠4EF CE BE CE BC AD +=+===,∠当CF 最小时,CEF △的周长最小,∠CF AC AF ≥-,∠当点A ,F ,C 在同一条直线上时,CF 最小,由折叠知,AF =AB =3,在Rt ABC 中,AB =3,BC =AD =4,∠AC =5,∠2CF AC AF =-=,在Rt CEF 中,222EF CF CE +=,∠222(4)BE CF BE +=-,∠2222(4)BE BE +=-, ∠3=2BE . 【点拨】此题是四边形综合题,主要考查了矩形的性质,折叠的性质,全等三角形的判定和性质,勾股定理,解题的关键是构造出直角三角形,利用勾股定理解决问题.18.6【分析】设点M 是PD 的中点,过点M 作直线P D ''与射线CA 、CB 分别交于点,P D '',得到当点M 是PD 的中点时,CPD △的面积最小,再根据直角三角形的性质及三角形的面积公式求解即可.解:设点M 是PD 的中点,过点M 作直线P D ''与射线CA 、CB 分别交于点,P D '',则点M 不是P D ''的中点当MD MP ''>时,在MD '上截取ME MP '=,连接DEPMP DME'∠=∠()PMP DME SAS '∴≅=P CD PCD P CDE S S S '''∴>四边形当MD MP ''<时,同理可得P CD PCD S S ''>∴当点M 是PD 的中点时,CPD △的面积最小如图,作DH AB ⊥于H则DHM PAM ≌,90,AM MH DHM PAM AP DH ∴=∠=∠=︒=90BHD =∴∠︒1AM =,3BM =1AM MH ∴==2BH ∴=在等腰Rt ABC △中,314CA BA ==+=45B C ∴∠=︒=∠45B BDH ∴∠=∠=︒2BH DH AP ∴===426CP AC AP ∴=+=+=过点D 作DK PC ⊥交于K∴四边形AKDH 是矩形2DK AH AM HM ∴==+=1162622CDP S CP DK ∴=⋅=⨯⨯= 故答案为:6 【点拨】本题考查了全等三角形的判定和性质、矩形的判定和性质、直角三角形的性质,熟练掌握知识点是解题的关键.19.【分析】过点E作EH∠BF于H,利用三角形的中位线定理以及直角三角形斜边中线定理证明∠BFE是顶角为120°的等腰三角形即可解决问题.解:过点E作EH∠BF于H.∠AD=AC,∠DAC=90°,CD=8,∠AD=AC∠DF=FC,AE=EC,∠EF=1AD,EF//AD,2∠∠FEC=∠DAC=90°,∠∠ABC=90°,AE=EC,∠BE=AE=EC∠EF=BE∠∠BAD=105°,∠DAC=90°,∠∠BAE=105°-90°=15°,∠∠EAB=∠EBA=15° ,∠∠CEB=∠EAB+∠EBA=30°,∠∠FEB=90°+30°=120°,∠∠EFB=∠EBF=30°,∠EH∠BF,EF,FH∠EH=1∠ BF=2FH,S △EFB =11··22BF EH =⨯=故答案为【点拨】本题考查三角形中位线定理,直角三角形斜边中线的性质,等腰三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.94或1 【分析】分∠CFE =90°和∠CEF =90°两种情况根据矩形的性质、勾股定理、全等三角形的判定及性质求解.解:∠如图,当∠CFE =90°时,∠四边形ABCD 是矩形,点E 是矩形ABCD 的边AB 的中点,AB =6,AD =4,∠∠P AE =∠PFE =∠EBC = 90°,AE =EF =BE =3,∠∠PFE +∠CFE =180°,∠P 、F 、C 三点一线,∠△EFC ∠△EBC ,∠FC =BC =4,EC ,∠FEC =∠BEC ,∠∠PEF +∠FEC =90°,设AP =x ,则PC =x +4,∠2222(4)35x x +=++,解得x =94; ∠如图,当∠CEF =90°∠∠CEB+2∠PEA =90°,∠∠CEB+∠PEA =90°-∠PEA,延长PE、CB,二线交于点G,∠AE=BE,∠P AE=∠GBE =90°,∠AEP=∠BEG,∠△P AE∠△GBE,∠P A=BG,∠AEP=∠BEG,∠∠G =90°-∠GEB= 90°-∠PEA,∠CEB+∠PEA =90°-∠PEA,∠∠G =∠CEB+∠PEA=∠CEB+∠GEB=∠CEG,∠CE=CBC+BG=BC+AP,∠5=4+AP,解得P A=1,故答案为:94或1.【点拨】本题考查了矩形的性质,折叠的性质,勾股定理,三角形全等的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的性质,勾股定理是解题的关键.21.4【分析】将△DAF绕点A顺时针旋转90度到△BAF′位置,根据旋转的性质得出∠EAF′=45°,进而得出∠F AE∠∠EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=2BC=8,求出BC即可.解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF ∠∠BAF ′,∠DF =BF ′,∠DAF =∠BAF ′,∠∠EAF ′=45°,在△F AE 和△EAF ′中,AF AF FAE EAF AE AE ''=⎧⎪∠=∠⎨⎪=⎩, ∠∠F AE ∠∠EAF ′(SAS ),∠EF =EF ′,∠∠ECF 的周长为8,∠EF +EC +FC =FC +CE +EF ′=FC +BC +BF ′=DF +FC +BC =2BC =8,∠BC =4,即正方形的边长为4.故答案为:4.【点拨】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△F AE ∠∠EAF ′是解题关键.22.3【分析】根据翻折的性质和已知条件可得点F 和点A 重合,过点D 作DH BC ⊥,DG AB ⊥,垂足分别为H ,G ,得四边形BHDG 是正方形,设DG DH x ==,1x x +=,求出x 的值,进而可以解决问题.解:如图,由折叠可知:30E C ∠=∠=︒,FE FD ∴=,当30ADE ∠=︒时,260BFD E ∠=∠=︒,在Rt ABC 中,90ABC ∠=︒,30C ∠=︒,60A ∴∠=︒,∴点F 和点A 重合,如图,过点D 作DH BC ⊥,DG AB ⊥,垂足分别为H ,G ,由折叠可知:45CBD EBD ∠=∠=︒,DG DH ∴=,∴四边形BHDG 是正方形,设DG DH x ==,AG DG ∴==,AB AG BG AG GD x ∴=+=++,1x x +=,解得x =DG ∴=, 30C ∠=︒,CD DH∴==.23故答案为:3.【点拨】本题考查翻折变换,正方形的判定与性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.【分析】过点H作HG∠CD于点G,连接DE,DE交FH于点Q,得到∠HGF=∠HGD=90°,推出∠HFG+∠FHG=90°,根据正方形ABCD中,AD=CD=BC=4,∠A=∠ADC=∠C=90°,得到四边形DAHG中,∠AHG=90°,推出四边形DAHG是矩形,得到GH=AD,GH=CD,根据折叠知,FH∠DE,得到∠DQF=90°,推出∠QFD+∠QDF=90°,得到∠GHF=∠CDE,根据∠HGF=∠C=90°,推出△DCE∠∠HGF(ASA),得到FH=DE,根据E是BC中点,得到CE=12BC=2,推出DE FH=解:过点H作HG∠CD于点G,连接DE,DE交FH于点Q,则∠HGF=∠HGD=90°,∠∠HFG+∠FHG=90°,∠正方形ABCD中,AD=CD=BC=4,∠A=∠ADC=∠C=90°,∠四边形DAHG中,∠AHG=90°,∠四边形DAHG是矩形,∠GH=AD,∠GH=CD,由折叠知,FH∠DE,∠∠DQF=90°,∠∠QFD+∠QDF=90°,∠∠GHF=∠CDE,∠∠HGF=∠C=90°,∠∠DCE∠∠HGF(ASA),∠FH=DE,∠E是BC中点,∠CE =12BC=2,∠DE ==,∠FH=故答案为【点拨】本题主要考查了正方形,折叠,矩形,全等三角形,勾股定理.解决问题的关键是熟练掌握正方形的性质,折叠的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理解直角三角形.24.【分析】延长BA 到点G ,使AG CF =,连接DG ,EF ,利用SAS 证明ADG CDF ≌,得ADG CDF ∠=∠,DG DF =,再证明()GDE FDE SAS △≌△,得=GE FE ,设AE x =,则6BE x =-,3EF x =+,再利用勾股定理即可解决问题.解::如图,延长BA 到点G ,使AG CF =,连接DG ,EF ,∠ 四边形ABCD 是正方形,∠AD CD =,90DAG DCF ∠=∠=︒,90ADC BAD ABC ∠=∠=∠=︒,在ADG 和CDF 中,AD CD DAG DCF AG CF =⎧⎪∠=∠⎨⎪=⎩∠()ADG CDF SAS △≌△,∠ADG CDF ∠=∠,DG DF =,∠45EDF ∠=︒,。
平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.1平行四边形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•南海区校级月考)下面性质中,平行四边形不一定具备的是()A.邻角互补B.邻边相等C.对边平行D.对角线互相平分2.(2022春•隆安县期中)在▱ABCD中,∠B=60°,那么下列各式中成立的是()A.∠A+∠C=180°B.∠D=60°C.∠A=100°D.∠B+∠D=180°3.(2022春•曹妃甸区期末)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x之间的关系是()A.y=x B.y=90﹣x C.y=180﹣x D.y=180+x4.(2022春•淇滨区校级期末)如图,已知▱ABCD中,对角线AC,BD相交于点O,AD=3,AC=8,BD =4,那么BC的长度为()A.6B.5C.4D.35.(2022春•辉县市期末)在▱ABCD中,AC,BD交于点O,△OAB的周长等于5.5cm,BD=4cm,AB+CD =5cm,则AC的长为()A.3cm B.2.5cm C.2cm D.1.5cm6.(2022春•宁都县期末)将平行四边形ABCD放在平面直角坐标系中,顶点A,B,C的坐标分别是(0,0),(4,0),(5,2),则顶点D的坐标是()A.(4,3)B.(1,3)C.(1,2)D.(4,2)7.(2021秋•平阳县校级月考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22B.18C.22或20D.18或228.(2021秋•宁阳县期末)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.B.4C.D.89.(2022秋•永嘉县校级月考)在平行四边形ABCD中,五块阴影部分的面积分别为S1,S2,S3,S4,S5,如图所示,则下列选项中的关系正确的是()A.S1+S2+S3=S4+S5B.S2+S3=S1+S4+S5C.S3+S4=S1+S2+S5D.S2+S4=S1+S3+S510.(2022春•鼓楼区校级期中)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,点C(4,0),B(6,2),直线y=2x+1以每秒3个单位的速度向下平移,经过多少秒该直线可将▱OABC的面积平分()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022春•姑苏区校级月考)平行四边形ABCD中,∠B:∠C=3:2,则∠C=°.12.(2022秋•任城区校级月考)▱ABCD中,∠A=45°,BC=,则AB与CD之间的距离是;若AB=3,四边形ABCD的面积是,△ABD的面积是.13.(2022•襄汾县一模)如图,在▱ABCD中,点E在AD上,EC平分∠BED,若∠EBC=30°,BE=10,则四边形ABCD的面积为.14.(2022春•遂溪县期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,若AC=10,BD=6,BC=4,则平行四边形ABCD的面积为.15.(2022秋•九龙坡区校级月考)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若▱ABCD的面积为16,且AH:HD=1:3.则图中阴影部分的面积为.16.(2022•景德镇模拟)在▱ABCD中,AB=4,∠ABC,∠BCD的平分线BE,CF分别与直线AD交于点E,F,当点A,D,E,F相邻两点间的距离相等时,BC的长为.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•自贡期末)如图,在▱ABCD中,AF∥CE;求证:BE=DF.18.(2022春•新化县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AC=10,BD=14,CD=5.2,求△AOB的周长.19.(2022春•望城区期末)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.20.(2022春•社旗县月考)如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.21.(2021春•玉林期中)如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.22.(2021春•拱墅区校级期中)如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.23.(2021秋•东平县期末)如图①,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.(1)求证:BE=DF;(2)若图中的条件都不变,将EF转动到图②的位置,那么上述结论是否成立?说明理由.24.(2022春•成华区校级期中)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,点F为CE的中点,点G是CD上的一点,连接DF、EG、AG.(1)若CF=4,AE=6,求BE的长;(2)若∠CEG=∠AGE,那么:①判断线段AG和EG的数量关系,并说明理由;②求证:∠1=∠2.。
特殊平行四边形培优训练含答案
特殊平行四边形培优训练一.选择题:1.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( )A. 45°, 135°B. 60°, 120°C. 90°, 90°D. 30°, 150°2.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE=3∶1,则∠EAC 的度数是( )A. 18°B. 36°C. 45°D. 72°3.如图,矩形ABCD 中,AB=8,AD=6,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形A ′BC ′D ′.若边A ′B 交线段CD 于H ,且BH=DH ,则DH 的值是( ) A. 47 B.328 C. 425 D.264.下列命题中,真命题是( )A. 对角线相等且互相垂直的四边形是菱形B. 有一条对角线平分对角的四边形是菱形C. 菱形是对角线互相垂直平分的四边形D. 菱形的对角线相等 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC=4,则四边形OCED 的周长为( )A.4B.6C.8D.106.如图,正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为( )7.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是( )A .12B .24C .312D .3168.如图,正方形ABCD 的边长为10, AG =CH =8,BG =DH =6,连接GH . 则线段GH 的长为( )145D. 10-9.如图,在正方形ABCD 中,△ABE 和△CDF 为直角三角形,∠AEB =∠CFD =90°,AE =CF =5, BE =DF =12,则EF 的长是( )A .7B .8 C..10.一组正方形按如图所示的方式放置,其中顶点1B 在y 轴上,顶点1C 、1E 、2E 、2C 、3E 、4E 、3C ……x 在轴上,已知正方形1111A B C D 的边长为1,∠11B C O =60°,11B C ∥22B C ∥33B C ……则正方形2018201820182018A B C D 的边长是( ) A. 201721⎪⎭⎫⎝⎛ B. 201821⎪⎭⎫⎝⎛ C. 201733⎪⎪⎭⎫ ⎝⎛ D. 201833⎪⎪⎭⎫ ⎝⎛ 二.填空题: 11.如图,矩形ABCD 中,对角线AC=8cm ,0120=∠BOC ,则AD 的长为________ cm .12.如图,若将四根木条钉成的矩形木框变形为□ABCD 的形状,并使其面积变为矩形面积的一半,则□ABCD 的最小内角的大小为______________13.如图,将两条宽度都为3的纸片重叠在一起,使∠ABC=600,则四边形ABCD 的面积为__________14.如图,在△ABC 中,∠A =90°,D 是AC 上的一点,BD =DC ,P 是BC 上的任意一点,PE ⊥BD,PF⊥AC,E,F为垂足.则线段PE,PF,AB之间的数量关系为______________________15.如图,在Rt△ABC中,∠ACB=90°,D,E分别为AB,AC边的中点,连接DE,将△ADE 绕点E旋转180°,得到△CFE,连接AF.若BC=8,AC=6,则四边形ABCF的周长为______ 16.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第n个正方形的边长为________三.解答题:17.如图,在△ABC中,∠CAB=900,DE,DF是△ABC的中位线,连结EF,AD.求证:EF=AD.18.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.19.如图,在等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.20.如图,在▱ABCD中,E、F分别为边AB、CD的中点,AC是对角线,过点B作BG∥AC交DA 的延长线于点G.(1)求证:CE∥AF;(2)若∠G=90°,求证:四边形CEAF是菱形.21.如图,在矩形纸片ABCD中,AB=3,AD=5,在BC上取一点E,使BE=4,剪下△ABE,将它BC方向平移至△DCF的位置,拼成四边形AEFD.①求证:四边形AEFD是菱形;②求四边形AEFD的两条对角线的长.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD 的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.23.四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;3,请直接写出此时AE的长.(3)若BF=10特殊平行四边形培优训练答案一.选择题:1.答案:B解析:∵菱形的一条对角线与边长相等,∴这条对角线与一组邻边所构成的三角形为正三角形,∴则菱形的邻角度数分别为060和0120,故选择B2.答案:C解析:∵090=∠BAD ,∠DAE ∶∠BAE =3∶1,∴05.67=∠DAE ,∵BD AE ⊥,∴05.22=∠ADB ,∵OA=OD ,∴05.22=∠=∠OAD ODA ,∴000455.225.67=-=∠EAC ,故选择C3.答案:C解析:设x CH =,∴x BH DH -==8,在BCH Rt ∆中,()22268+=-x x , 解得:47=x ,∴425478=-=DH , 故选择C4.答案:C解析:∵ 对角线相等且互相垂直的四边形是正方形,故A 选项错误;∵有一条对角线平分对角的四边形是筝形,故B 选项错误;∵菱形是对角线互相垂直平分的四边形 ,故C 选项正确;∵菱形的对角线不相等,故D 选项错误。
特殊平行四边形综合题(培优)
特殊平行四边形综合题(培优)一.选择题(共9小题)1.如图.任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点,且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点,四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点,四边形EFGH不可能是菱形2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.14B.12C.24D.483.依次连接四边形ABCD的四边中点得到的图形是正方形,则四边形ABCD的对角线需满足()A.AC=BD B.AC⊥BDC.AC=BD且AC⊥BD D.AC⊥BD且AC与BD互相平分4.顺次连接正方形各边中点所成的四边形的面积与原正方形的面积之比为()A.1:B.1:C.1:3D.1:25.如图,正方形ABCD中,AE=BF,下列说法中,正确的有()①AF=DE;②AF⊥DE;③AO=OF;④S△AOD=S四边形BEOF.A.1个B.2个C.3个D.4个6.顺次连接凸四边形各边中点所得到的四边形是正方形时,原四边形对角线需满足的条件是()A.对角线相等且垂直B.对角线相等C.对角线垂直D.一条对角线平分另一条对角线7.如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=35°,那么∠AOB的度数为()A.35°B.45°C.70°D.110°8.下列命题中,正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.两组邻边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形9.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=6,则OC=()A.12B.C.6D.3二.填空题(共21小题)10.如图,点A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在无数个中点四边形MNPQ是正方形.所有正确结论的序号是.11.如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是.12.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.14.小明作生成“中点四边形”的数学游戏,具体步骤如下:(1)任画两条线段AB、CD,且AB与CD交于点O,O与A、B、C、D任意一点均不重合.连接AC、BC、BD、AD,得到四边形ACBD;(2)分别作出AC、CB、BD、DA的中点A1,B1,C1,D1,这样就得到一个“中点四边形”.①若AB⊥CD,则四边形A1B1C1D1的形状一定是,这样作图的依据是.②请你再给出一个AB与CD之间的关系,并写出在该条件下得到的“中点四边形”A1B1C1D1的形状.15.如图,矩形ABCD中,AD=a,AB=b,依次连接它的各边中点得到第一个四边形E1F1G1H1,再依次连接四边形E1F1G1H1的各边中点得到第二个四边形E2F2G2H2,按此方法继续下去,得到的第n个四边形E n F n G n H n的面积等于.16.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有个;第2014个图形中直角三角形的个数有个.17.已知:四边形ABCD的面积为1.如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.18.梯形的高为4cm,中位线长为5cm,则梯形的面积为cm2.19.如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边,其中正确结论的序号是.形DEOF20.若梯形的面积为12cm2,高为3cm,则此梯形的中位线长为cm.21.已知一个梯形的面积为22cm2,高为2cm,则该梯形的中位线的长等于cm.22.如图,正方形ABCD中,O是AC的中点,E是AD上一点,连接BE,交AC于点H,作CF⊥BE于点F,AG⊥BE于点G,连接OF,则下列结论中,①AG=BF;②OF平分∠CFG;⑤CF﹣BF=EF;④GF=OF,正确的有.(填序号)23.如图,点E是正方形ABCD的对角线BD上一点.EF⊥BC,EG⊥CD,垂足分别是F,G,GF=5,则AE=.24.如图,平行四边形ABCD的对角线AC与BD相交于点O,且∠OCD=90°.若E是BC边的中点,AC=6,BD=10,则OE的长为.25.如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=2,BC=5,则DE =.26.如图,菱形ABCD的边长为2,∠BAD=60°,点E是AD边上一动点(不与A,D重合),点F是CD边上一动点,DE+DF=2,则∠EBF=°,△BEF面积的最小值为.27.在平面直角坐标系xOy中,菱形ABCD的四个顶点都在坐标轴上.若A(﹣4,0),B (0,﹣3),则菱形ABCD的面积是.28.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,使得点D落在点D'处,则FC=.29.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.30.在数学家吴文俊主编的《“九章算术”与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用“出入相补”原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到“筝形的面积等于其对角线乘积之半”.(说明:一条对角线垂直平分另一条对角线的四边形是筝形)请根据如图完成这个数学问题的证明过程.证明:证明:S筝形ABCD=S△AOB+S△AOD+S△COB+S△COD.易知,S△AOD=S△BEA,S△COD=S△BFC,由等量代换可得:S筝形ABCD=S△AOB++S△COB+=S矩形EFCA=AE•AC=•.三.解答题(共30小题)31.在正方形ABCD中,P是边BC上一动点(不与点B、C重合),E是AP的中点,过点E作MN⊥AP,分别交AB、CD于点M,N.(1)判定线段MN与AP的数量关系,并证明;(2)连接BD交MN于点F.①根据题意补全图形;②用等式表示线段ME,EF,FN之间的数量关系,直接写出结论.32.如图,已知在四边形中,AC⊥BD交于点O,E、F、G、H分别是四边上的中点,求证:四边形EFGH是矩形.33.我们规定:一组邻边相等且对角互补的四边形叫做“完美四边形”.(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是(请填序号);(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①如图1,求证:AC平分∠BCD;小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在一条直线上,从而可证AC平分∠BCD.请你参考上面的想法,帮助小明证明AC平分∠BCD;②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.34.如图,在等边△ABC中,作∠ACD=∠ABD=45°,边CD、BD交于点D,连接AD.(1)请直接写出∠CDB的度数;(2)求∠ADC的度数;(3)用等式表示线段AD、BD、CD三者之间的数量关系,并证明.35.如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.36.在正方形ABCD中,点E是边BC上的中点,在边CD上取一点F,使得AE平分∠BAF.(1)依题意补充图形;(2)小玲画图结束后,通过观察、测量,提出猜想:线段AF等于线段BC与线段CF 的和.小玲把这个猜想与同学们进行交流.通过讨论,形成了证明该猜想的几种想法:想法1:考虑到AE平分∠BAF,且∠B=90°.若过点E作EM⊥AF,则易证AM=AB =BC.这样,只需证明FM=FC即可.因∠EMF=∠C=90°,证FM=FC即证EF平分∠MEC,所以连接EF.想法2:考虑到E是BC中点,若延长AE,交DC的延长线于点G,则易证CG=AB,则CF+BC=CF+CG=FG.要证AF=BC+CF,只需证F A=FG即可.想法3:小米在课外小组学习了梯形中位线的相关知识,考虑到正方形ABCD所以有BC =AB,因此BC+CF=AB+CF,是梯形上、下底之和,结合“E是BC中点”,易联想到梯形中位线的性质,从而解决问题.…请你参考上面的想法,帮助小玲证明AF=BC+CF.(一种方法即可)37.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.38.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;(3)如图3,在(2)的条件下,连接GF、HD.求证:①FG+BE≥BF;②∠HGF=∠HDF.39.已知:如图,梯形ABCD中,AD∥BC,AD+BC=10,M是AB的中点,MD⊥DC,D 是垂足,sin∠C=,求梯形ABCD的面积.40.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连接AE、BF相交于点G.现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.请在这些结论中,选择一个你认为正确的结论,并加以证明.结论:.41.如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.(1)请再写出图中另外一对相等的角;(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.42.已知:如图,梯形ABCD中,AB∥CD,中位线EF长为20,AC与EF交于点G,GF ﹣GE=5.求AB、CD的长.43.已知:在梯形ABCD中,AD∥BC,点E在AB上,点F在DC上,且AD=a,BC=b.(1)如果点E、F分别为AB、DC的中点,如图.求证:EF∥BC,且EF=;(2)如果,如图,判断EF和BC是否平行,并用a、b、m、n的代数式表示EF.请证明你的结论.44.如图,在正方形ABCD中,点E在线段CB的延长线上,连接AE,并将线段AE绕点E 顺时针旋转90°,得到线段FE,连接AF,BD,CF,线段AF与线段BD相交于点M.(1)请写出∠ECF的度数,并给出证明;(2)求证:点M是线段AF的中点;(3)直接写出线段CF,BM和AD的数量关系.45.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,CE=CD,连接DE,过点B作BF⊥DE交DE的延长线于点F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.46.在正方形ABCD中,P是射线CB上的一个动点,过点C作CE⊥AP于点E,射线CE 交直线AB于点F,连接BE.(1)如图1,当点P在线段CB上时(不与端点B,C重合).①求证:∠BCF=∠BAP;②求证:EA=EC+EB;(2)如图2,当点P在线段CB的延长线上时(BP<BA),依题意补全图2并用等式表示线段EA,EC,EB之间的数量关系.47.如图,在正方形ABCD中,点E是直线AC上任意一点(不与点A,C重合),过点E 作EF⊥BE交直线CD于点F,过点F作FG⊥AC交直线AC于点G.(1)如图1,当点E在线段AC上时,猜想EG与AB的数量关系;(2)如图2,当点E在线段AC的延长线上时,补全图形,并判断(1)中EG与AB的数量关系是否仍然成立.如果成立,请证明;如果不成立,请说明理由.48.已知正方形ABCD,点E是直线BC上一点(不与B,C重合),∠AEF=90°,EF交正方形外角的平分线CF所在的直线于点F.(1)如图1,当点E在线段BC上时,①请补全图形,并直接写出AE,EF满足的数量关系;②用等式表示CD,CE,CF满足的数量关系,并证明.(2)当点E在直线BC上,用等式表示线段CD,CE,CF之间的数量关系(直接写出即可).49.如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB',FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是.(2)请你结合图1写出一条完美筝形的性质.(3)当图3中的∠BCD=120°时,∠AEB′=.(4)当图2中的四边形AECF为菱形时,对应图③中的“完美筝形”有(写出筝形的名称:例筝形ABCD).50.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明:CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),求出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.51.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF.(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并判断四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG,请在图2中补全图形,猜想线段EG,AG,BG之间的数量关系,并证明你的结论;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),直接写出线段EG,AG,BG之间的数量关系(用含α的式子表示).52.如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文根据筝形的定义得到筝形边的性质是;(2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:.证明:(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)53.如果一个四边形ABCD满足AB=AD且BC=CD,则称四边形ABCD为筝形.(1)如图1,连接筝形ABCD的对角线AC、BD交于点H,求证:AC⊥BD.(2)求证:筝形ABCD的面积S=AC•BD.(3)如图2,在筝形ABCD中,AB=AD=5,BC=CD,BD=8,过点B作BF⊥CD于点,交AC于点E,过点F作FM⊥AB于点M,若四边形ABED是菱形,求FM的长.54.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.(1)①依题意补全图1;②线段EF、CF、AE之间的等量关系是.(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)55.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠P AB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.56.在菱形ABCD中,∠ABC=60°,点P在对角线BD上,点Q在直线AD上,且∠CPQ =120°.(1)如图1,若点P为菱形ABCD的对角线的交点.①依题意补全图1;②猜想PC与PQ的数量关系并加以证明;(2)如图2,若∠CPD=80°,连接CQ,写出求∠PQD度数的思路.57.在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:.58.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B 重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC =AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.59.请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及数量关系.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及的值;(2)如图2,在正方形ABCD和正方形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC,探究PG与PC的位置关系及数量关系;(3)将图2中的正方形BEFG绕点B顺时针旋转,原问题中的其他条件不变(如图3),你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.60.在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=.。
第一章特殊的平行四边形培优习题
九年级上册第一章特殊的平行四边形培优习题(资料编辑:薛思优)一.选择题(共4小题)1.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.若∠BEC=80°,则∠EFD的度数为()A.20°B.25°C.35°D.40°2.如图,正方形ABCD的边长为2,E为线段AB上一点,点M为边AD的中点,EM的延长线与CD的延长线交于点F,MG⊥EF,交CD于N,交BC的延长线于G,点P是MG的中点.连接EG、FG.下列结论:①当点E为边AB的中点时,S△EFG=5;②MG=EF;③当AE=时,FG=;④若点E从点A运动到点B,则此过程中点P移动的距离为2.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个3.如图,在正方形ABCD中,四边形IJFH是正方形,面积为S1,四边形BEFG 是矩形,面积为S2,下列说法正确的是()A.S1>S2B.S1=S2C.S1<S2D.2S1=3S24.如图,将矩形ABCD分成15个大小相等的正方形,E、F、G、H分别在AD、AB、BC、CD边上,且是某个小正方形的顶点,若四边形EFGH的面积为1,则矩形ABCD的面积为()A.2 B.C.D.二.填空题(共8小题)5.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为.6.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.7.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过点C作CE⊥BE于E,延长AF、EC交于点H,那么下列结论:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.其中正确结论的序号是(多填或错填的得0分,少填的酌情给分)8.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值.9.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.10.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C 点的坐标为.11.如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO度.12.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.13.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.三.解答题(共25小题)14.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点.(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.15.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.16.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE、BE,求证:四边形AEBD是矩形.17.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.18.已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=,AB=BC,求矩形ABCD的面积;(2)若CD=PM,求证:AC=AP+PN.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)若ED:DC=1:2,EF=12,试求DG的长.(2)观察猜想BE与DG之间的关系,并证明你的结论.21.如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.证明:△ABG≌△ADE.22.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.23.已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB 有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)。
2023学年北师大版九年级数学上学期专项讲练1-23 特殊平行四边形“将军饮马”(培优篇)
专题1.23 特殊平行四边形“将军饮马”专题(培优篇)(专项练习)一、单选题【知识点一】菱形将军饮马问题1.如图,在边长为4的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 方向平移,得到△EFG ,连接EC 、GC .则EC +GC 的最小值为( )A .B .C .D .2.如图,AC 是菱形ABCD 的对角线,120ABC ∠=︒.点E ,F 是AC 上的动点,且14EF AC =,若2AD =,则DE BF +的最小值为( )A B C .2 D .23.如图,已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是( )A .5B .10C .6D .84.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .B .C .D .【知识点二】矩形将军饮马问题5.如图,矩形ABCD 中,AB =8,AD =4,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .4B .8C .D .6.如图,矩形ABCD 中,AB AD <,∠EFG 为等腰直角三角形,90G ∠=︒,点E 、F分别为AB 、BC 边上的点(不与端点重合),4EF AB ==.现给出以下结论:∠GEA GFB ∠=∠;∠点G 始终在ABC ∠的平分线上;∠点G 可能在ADC ∠ 的平分线上;∠点G 到边BC 的距离的最大值为 )A .0个B .1个C .2个D .3个7.如图,在Rt∠ABC 中,∠ACB =90°,AC =6,BC =4.点F 为射线CB 上一动点,过点C 作CM ∠AF 于M ,交AB 于E ,D 是AB 的中点,则DM 长度的最小值是( )AB C .1 D 28.如图,点P 是矩形ABCD 的对角线BD 上的点,点M ,N 分别是AB ,AD 的中点,连接PM ,PN .若2AB =,4BD =,则PM PN +的最小值为( )AB .2C .2D .1【知识点三】正方形将军饮马问题9.如图,已知正方形ABCD 的边长为4,以点C 为圆心,2为半径作圆,P 是C 上的任意一点,将点P 绕点D 按逆时针方向旋转90︒,得到点Q ,连接BQ ,则BQ 的最大值是( )A .6B .2C .4D .410.如图,正方形ABCD 边长为4,点E 是CD 边上一点,且75ABE ∠=︒.P 是对角线BD 上一动点,则12AP BP +的最小值为( )A .4B .CD 11.如图,已知正方形ABCD 的边长为3,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接,DF CF ,则当DF CF +之和取最小值时,DCF 的周长为( )A .3B .3C .3D .312.如图,矩形ABCD 中,2AB =,4BC =,P ,Q 分别是BC ,AB 上的两个动点,1AE =,AEQ △沿EQ 翻折形成FEQ ,连接PF ,PD ,则+PF PD 的最小值是( )A.5B .4C .D .二、填空题 【知识点一】菱形将军饮马问题13.如在菱形ABCD 中,2BC =,120C ∠=︒,E 为AB 的中点,P 为对角线BD 上的任意一点,则PA PE +的最小值为__________.14.如图,在菱形ABCD 中,∠ABC =120°,对角线AC 、BD 交于点O ,BD =4,点E 为OD 的中点,点F 为AB 上一点,且AF =3BF ,点P 为AC 上一动点,连接PE 、PF ,则PF ﹣PE 的最大值为 ___.15.在菱形ABCD 中,∠D =60°,CD =4,E 为菱形内部一点,且AE =2,连接CE ,点F 为CE 中点,连接BF ,取BF 中点G ,连接AG ,则AG 的最大值为_____.16.如图,菱形ABCD 的边长为2,∠A =60°,E 是边AB 的中点,F 是边AD 上的一个动点,将线段EF 绕着点E 顺时针旋转60°得到EG ,连接DG 、CG ,则DG +CG 的最小值为 _____.【知识点二】矩形将军饮马问题17.如图,在等腰Rt ABC 中,CA BA =,90CAB ∠=︒,点M 是AB 上一点,点P 为射线CA (除点C 外)上一个动点,直线PM 交射线CB 于点D ,若1AM =,3BM =,CPD ∆的面积的最小值为________.18AD,点P为边AB上一点,以DP.如图,四边形ABCD为矩形,AB为折痕将∠DAP翻折,点A的对应点为点A′,连接AA′,AA′交PD于点M,点Q为线段BC 上一点,连接AQ,MQ,则AQ+MQ的最小值是________.19.如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为_______.20.如图,在矩形ABCD中,AB=6,AD=8,E是AB边的中点,F是线段BC的动点,将△EBF沿EF所在直线折叠得到△EB´F,连接B´D,则B′D的最小值是_____.【知识点三】正方形将军饮马问题21.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD 于点G,连接BE交AG于点H.若正方形的边长为4,则线段DH长度的最小值是______.22.如图,在矩形ABCD 中,线段EF 在AB 边上,以EF 为边在矩形ABCD 内部作正方形EFGH ,连接AH ,CG .若10AB =,6AD =,4EF =,则AH CG +的最小值为______.23.如图,在∠ABC 中,∠C =90°,AC =BC =3,E ,F 为边AC ,BC 上的两个动点,且CF =AE ,连接BE ,AF ,则BE +AF 的最小值为_________.24.如图,点E 是正方形ABCD 的边BC 上一点,以AE 为对称轴将∠ABE 对折得到∠AFE ,再将AD 与AF 重合折叠,折痕与BF 的延长线交于点H ,BH 与AE 交于点G ,连接DH .(1)∠AHB 的度数为______;(2)若AB =2,则点H 到AB 的距离最大值为______.三、解答题25.问题情境:在数学课上,老师给出了这样一道题:如图1,在∠ABC中,AB=AC=6,∠BAC=30°,求BC的长.探究发现:(1)如图2,勤奋小组经过思考后发现:把∠ABC绕点A顺时针旋转90°得到∠ADE,连接BD,BE,利用直角三角形的性质可求BC的长,其解法如下:==-.过点B作BH∠DE交DE的延长线于点H,则BC DE DH HE∠ABC绕点A顺时针旋转90°得到∠ADE,AB=AC=6,∠BAC=30°,∠……请你根据勤奋小组的思路,完成求解过程.拓展延伸:(2)如图3,缜密小组的同学在勤奋小组的启发下,把∠ABC绕点A顺时针旋转120°后得到∠ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;(3)奇异小组的同学把图3中的∠BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度不断变化,直接写出AF的最大值和最小值.26.如图,矩形ABCD中,CD=4,∠CAD=30°,一动点P从A点出发沿对角线AC方向以每秒2个单位长度的速度向点C匀速运动,同时另一动点Q从C点出发沿CD方向以每秒1个单位长度的速度向点D匀速运动,当其中一个点到这终点时,另一个点也随之停止运动,设点P、Q运动的时间为t秒(t>0),过点P作PE∠AD于点E连接EQ,PQ.(1)求证:PE=CQ;(2)四边形PEQC能成为菱形吗?如果能,求出相应的t值:如果不能,说明理由(3)当t为何值时,∠PQE为直角三角形?请说明理由;(4)若动点Q从C点出发沿CD方向以每秒2个单位长度的速度向点D匀速运动,其它条件不变,当t=____时,PQ+EQ有最小值.27.(1)【探究·发现】正方形的对角线长与它的周长及面积之间存在一定的数量关系.已知正方形ABCD的对角线AC长为a,则正方形ABCD的周长为______,面积为______(都用含a 的代数式表示).(2)【拓展·综合】如图1,若点M 、N 是某个正方形的两个对角顶点,则称M 、N 互为“正方形关联点”,这个正方形被称为M 、N 的“关联正方形”.∠在平面直角坐标系xOy 中,点P 是原点O 的“正方形关联点”.若()3,2P ,则O 、P 的“关联正方形”的周长是______;若点P 在直线3y x =-+上,则O 、P 的“关联正方形”面积的最小值是______.28.∠如图2,已知点33,22A ⎛⎫- ⎪⎝⎭,点B 在直线3:64l y x =-+上,正方形APBQ 是A 、B的“关联正方形”,顶点P 、Q 到直线l 的距离分别记为a 和b ,求22a b +的最小值.参考答案1.B【分析】连接AE ,作点D 关于直线AE 的对称点H ,连接DE ,DH ,EH ,AH ,CH .由平移和菱形的性质可证明四边形CDEG 为平行四边形,即得出HE CG =,从而可得出EC GC EC HE CH +=+≥,即CH 的长为EC GC +的最小值.最后根据等边三角形的判定和性质,含30度角的直角三角形的性质与勾股定理求出CH 的长即可.解:如图,连接AE ,作点D 关于直线AE 的对称点H ,连接DE ,DH ,EH ,AH ,CH .由平移的性质可知AB EG =,AB EG . ∠四边形ABCD 为菱形,∠AB CD =,AB CD ,1302ADB ABD ABC ∠=∠=∠=︒,∠CD EG =,∥EG CD , ∠四边形CDEG 为平行四边形, ∠GC DE =.由轴对称的性质可知HE DE =,DAE HAE ∠=∠,AH AD =, ∠HE CG =,∠EC GC EC HE CH +=+≥,即CH 的长为EC GC +的最小值. ∠AB EG =,AB EG , ∠四边形ABGE 为平行四边形, ∠AE BG ∥,∠30EAD ADB ∠=∠=︒, ∠260HAD EAD ∠=∠=︒, ∠ADH 为等边三角形,∠4DH AD CD ===,60ADH ∠=︒, ∠2120CDH ADH ∠=∠=︒,∠30HCD ∠=︒,即CDH △为顶角是120°,底角为30°的等腰三角形,结合含30°角的直角三角形和勾股定理即可求224CH === 故选B .【点拨】本题考查平移的性质,菱形的性质,平行四边形的判定和性质,等边三角形的判定和性质,轴对称变换,含30°角的直角三角形的性质以及勾股定理等知识,综合性强,为选择题中的压轴题.正确的作出辅助线是解题关键.2.D 【分析】如图,作出辅助线,当点G ,F ,B 共线时,DE BF +有最小值,利用题目中的条件,在Rt BDG ∆中,求出BD ,DG 的长度,即可求出BG 的长度,即为DE BF +的最小值.解:如图,过点//DG EF ,过点F 作FG DE ∥,DG 与FG 交于点G ,则四边形DEFG 是平行四边形, ∠DG EF =,DE FG =,当点G ,F ,B 共线时,DE BF +有最小值. 连接BD ,由菱形的性质可知AC BD ⊥,()111803022OAD BAD ABC ∠=∠=︒-∠=︒,∠112OD AD ==,OA ==22BD OD ==,AC =14DG AC ==, 又∠DG AC ∥,∠603090BDG BDC CDG BDC ACD ∠=∠+∠=∠+∠=︒+︒=︒.当G,F,B共线时,BG故DE BF+2故选:D.【点拨】本题主要考查了动点几何问题中的最短线段问题,正确作出辅助线,得到点G,F,B共线时,DE BF+有最小值,并利用菱形的性质和勾股定理求解是解题的关键.3.A【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、BP,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,则P是AC中点,∠四边形ABCD是菱形,∠AC∠BD,∠QBP=∠MBP,即Q在AB上,∠MQ∠BD,∠AC∠MQ,∠M为BC中点,∠Q为AB中点,∠N为CD中点,四边形ABCD是菱形,∠BQ∠CD,BQ=CN,∠四边形BQNC是平行四边形,∠PQ∠AD,而点Q是AB的中点,故PQ 是∠ABD 的中位线,即点P 是BD 的中点, 同理可得,PM 是∠ABC 的中位线, 故点P 是AC 的中点,即点P 是菱形ABCD 对角线的交点, ∠四边形ABCD 是菱形, 则∠BPC 为直角三角形, 113,422CP AC BP BD ====, 在Rt ∠BPC 中,由勾股定理得:BC =5, 即NQ =5,∠MP +NP =QP +NP =QN =5, 故选:A .【点拨】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.4.D 【分析】根据“两点之间线段最短”,当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长.解:如图,∠将△ABG 绕点B 逆时针旋转60°得到△EBF , ∠BE=AB=BC ,BF=BG ,EF=AG , ∠∠BFG 是等边三角形. ∠BF=BG=FG ,.∠AG+BG+CG=FE+GF+CG . 根据“两点之间线段最短”,∠当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长, 过E 点作EF∠BC 交CB 的延长线于F , ∠∠EBF=180°-120°=60°,∠BC=4,∠BF=2,Rt △EFC 中, ∠EF 2+FC 2=EC 2,∠∠CBE=120°, ∠∠BEF=30°, ∠∠EBF=∠ABG=30°, ∠EF=BF=FG ,∠EF=13故选:D .【点拨】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.5.C 【分析】取CD 中点H ,连接AH ,BH ,根据矩形的性质题意得出四边形AECH 是平行四边形,可知AC CE ∥,然后根据三角形中位线的性质得PH CE ∥,得出点P 在AH 上,然后判断BP 的最小值,再求出值即可.解:如图,取CD 中点H ,连接AH ,BH ,设AH 与DE 的交点为O ,∠四边形ABCD 是矩形,∠AB =CD =8,AD =BC =4,CD AB ∥, ∠点E 是AB 中点,点H 是CD 中点, ∠CH =AE =DH =BE =4, ∠四边形AECH 是平行四边形, ∠AH CE ∥,∠点P 是DF 的中点,点H 是CD 的中点,∠PH 是∠CDF 的中位线, ∠PH CE ∥, ∠点P 在AH 上,∠当BP ∠AH 时,此时点P 与H 重合,BP 有最小值, ∠AD =DH =CH =BC =4,∠∠DHA =∠DAH =∠CBH =∠CHB =45°,AH BH == ∠∠AHB =90°,∠BP 的最小值为 故选:C .【点拨】本题主要考查了矩形的性质,平行四边形的判定,中位线的性质和定义等,确定点P 的位置是解题的关键.6.B 【分析】根据矩形的性质可知90B ∠=︒,又因为90G ∠=︒,由四边形内角和为360°可判定结论∠;过点G 作GM AB ⊥、GN BC ⊥,垂足分别为M 、N ,根据△EFG 为等腰直角三角形,90G ∠=︒,可求出GEM GFN ∠=∠,证明GEM GFN △≌△,推导出GM GN =,可判定结论∠;由AB AD <,并由结论∠可判定结论∠;由Rt GFN △中GN GF ≤,可知当点F 、N 重合时点G 到边BC 的距离的最大,从而可以判定结论∠.解:∠四边形ABCD 为矩形,∠90B ∠=︒,又∠90G ∠=︒,四边形内角和为360°, ∠180GEB GFB ∠+∠=︒, ∠180GEB GEA ∠+∠=︒, ∠GEA GFB ∠=∠, ∠故结论∠正确;如下图,过点G 作GM AB ⊥、GM BC ⊥,垂足分别为M 、N ,∠△EFG 为等腰直角三角形,90G ∠=︒, ∠GE GF =,∠45GEF GFE ∠=∠=︒, ∠90B ∠=︒,∠90BEF BFE ∠+∠=︒,即90BFE BEF ∠=︒-∠,∠18018045(90)45GFN GFE BFE BEF BEF ∠=︒-∠-∠=︒-︒-︒-∠=∠+︒, 又∠45GEM GEF BEF BEF ∠=∠+∠=∠+︒, ∠GEM GFN ∠=∠, 在GEM △和GFN 中,90GEM GFN GME GNF GE GF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∠()GEM GFN AAS △≌△, ∠GM GN =,∠点G 在ABC ∠的平分线上,故结论∠正确;∠AB AD <,并由结论∠可知,点G 到边AD 、DC 的距离不相等, ∠点G 不可能在ADC ∠ 的平分线上,故结论∠不正确; 在Rt GFN △中,GN GF ≤, 当点F 、N 重合时GN 最大, ∠4EF AB ==,∠4GE GF === 即点G 到边BC的距离的最大值为∠正确. 故选:B .【点拨】本题主要考查了矩形的性质、全等三角形的判定与性质、角平分线的判定以及三角形内角和定理等知识,解题关键是对相关知识的掌握和运用.7.C【分析】如图,取AC的中点T,连接DT,MT.利用三角形的中位线定理求出DT,利用直角三角形的中线的性质求出MT,再根据DM≥MT-DT,可得结论.解:如图,取AC的中点T,连接DT,MT.∠AD=DB,AT=TC,BC=2,∠DT=12∠CE∠AF,∠∠AMC=90°,AC=3,∠TM=12∠点M的运动轨迹是以T为圆心,TM为半径的圆,∠DM≥TM-DT=3-2=1,∠DM的最小值为1,故选:C.【点拨】本题考查了三角形中位线定理,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线,直角三角形斜边中线解决问题.8.A【分析】作出如图的图形,根据轴对称的性质得到PM+PN的最小值为M1N的长,利用三角形中位线定理以及勾股定理即可求解.解:如图,以BD为对称轴作∠ABD的轴对称图形∠A1BD,取A1B的中点M1,则点M 和点M1关于直线BD对称,连接MN,MM1,M1N,AA1,AA1与BD交于点O,M1N与BD交于点P,此时PM +PN 最小,最小值为M 1N 的长,在矩形中ABCD 中,AB =2,BD =4,则∠ABD =60°,∠BAO =30°,∠BO =12AB =1,则AO∠AA 1∠点M ,N ,M 1分别是AB ,AD ,A 1B 的中点,∠MM 1和MN 分别是∠ABA 1和∠ABD 的中位线,且AA 1∠BD ,∠MM 1//AA 1, MN //BD , MM 1=12AA 1MN =12BD =2,MM 1∠M 1N ,∠M 1N则PM +PN故选:A .【点拨】本题考查了矩形的性质,轴对称的性质,三角形中位线定理,勾股定理等知识,根据轴对称的性质得到PM +PN 的最小值为M 1N 的长是解题的关键.9.A【分析】连接CP ,AQ ,以A 为圆心,以AQ 为半径画圆,延长BA 交A 于E .根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ 的长度,根据三角形三边关系确定当点Q 与点E 重合时,BQ 取得最大值,最后根据线段的和差关系计算即可.解:如下图所示,连接CP ,AQ ,以A 为圆心,以AQ 为半径画圆,延长BA 交A 于E .∠正方形ABCD 的边长为4,C 的半径为2,∠AD =CD =AB =4,∠ADC =90°,CP =2.∠点P 绕点D 按逆时针方向旋转90°得到点Q ,∠∠QDP =90°,QD =PD .∠∠ADC =∠QDP .∠∠ADC -∠QDC =∠QDP -∠QDC ,即∠ADQ =∠CDP .∠()SAS ADQ CDP △≌△.∠AQ =CP =2.∠AE =AQ =2.∠P 是C 上任意一点,∠点Q 在A 上移动.∠BE AE AB AQ AB BQ =+=+≥.∠当点Q 与点E 重合时,BQ 取得最大值为BE .∠BE =AE +AB =6.故选:A .【点拨】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键.10.D【分析】连接AC ,作PG BE ⊥,证明当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG ,再利用勾股定理,30所对的直角边等于斜边的一半即可求出结果.解:连接AC ,作PG BE ⊥∠ABCD 是正方形且边长为4,∠45ABO ∠=︒,AC BD ⊥,AO =∠75ABE ∠=︒,∠30PBG ∠=︒, ∠12PG BP =, ∠当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG , ∠75ABE ∠=︒,AG BE ⊥,∠15BAG ∠=︒,∠45BAO ∠=︒,∠30PAO ∠=︒,设OP b =,则2AP b =,∠(()222=2b b +,解得:b 设PG a =,则2BP a =,∠BO =∠2a b +=a∠2AG AP PG b a =+=+=故选:D【点拨】本题考查正方形的性质,动点问题,勾股定理,30所对的直角边等于斜边的一半,解题的关键是证明当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG .11.A【分析】连接 BF ,过点F 作FG ∠AB 交AB 延长线于点G ,通过证明△AED ∠∠GFE (AAS ),确定F 点在BF 的射线上运动;作点C 关于BF 的对称点C ',由三角形全等得到∠CBF =45°,从而确定C '点在AB 的延长线上;当D 、F 、C '三点共线时,DF +CF =DC '最小,在Rt △ADC '中,AD=3,AC'=6,求出DC解:连接BF,过点F作FG∠AB交AB延长线于点G,∠将ED绕点E顺时针旋转90°到EF,∠EF∠DE,且EF=DE,∠∠AED∠∠GFE(AAS),∠FG=AE,∠F点在BF的射线上运动,作点C关于BF的对称点C',∠EG=DA,FG=AE,∠AE=BG,∠BG=FG,∠∠FBG=45°,∠∠CBF=45°,∠BF是∠CBC′的角平分线,即F点在∠CBC′的角平分线上运动,∠C'点在AB的延长线上,当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∠DC∠DF+CF的最小值为∠此时DCF的周长为3.故选:A.【点拨】本题考查了旋转的性质,正方形的性质,轴对称求最短路径;能够将线段的和通过轴对称转化为共线线段是解题的关键.12.B【分析】作点D 关于BC 的对称点D ′,连接PD ′,ED ′,证得DP =PD ′,推出PD +PF =PD ′+PF ,又EF =EA =2是定值,即可推出当E 、F 、P 、D ′四点共线时,PF +PD ′定值最小,最小值=ED ′-EF即可得出结果.解:作点D 关于BC 的对称点D ,连接PD ',ED ',如图所示:矩形ABCD 中,2AB =,4BC =,1AE =,3DE AD AE BC AE ∴=-=-=,'224DD DC AB ===,'5ED ∴=,在PCD 和'PCD 中,''90CD CD PCD PCD PC PC =⎧⎪∠=∠=︒⎨⎪=⎩,PCD ∴∠()PCD SAS ',DP PD '∴=,PD PF PD PF '∴+=+,1EF EA ==是定值,∴当E 、F 、P 、'D 四点共线时,'PF PD +定值最小,最小值514=-=,PF PD ∴+的最小值为4,故选:B【点拨】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.13【分析】连接AC ,CE ,则CE 的长即为AP +PE 的最小值,再根据菱形ABCD 中,120BCD ∠=︒得出∠ABC 的度数,进而判断出∠ABC 是等边三角形,故∠BCE 是直角三角形,根据勾股定理即可得出CE 的长.解:连接AC ,CE ,∠四边形ABCD 是菱形,∠A 、C 关于直线BD 对称,∠CE 的长即为AP +PE 的最小值,∠120BCD ∠=︒,∠60ABC ∠=︒,∠∠ABC 是等边三角形,∠E 是AB 的中点,∠CE AB ⊥,112122BE BC ==⨯=∠CE ==【点拨】本题考查了轴对称-最短路线问题,熟知菱形的性质及两点之间线段最短是解答此题的关键.14.1【分析】取OB 中点E ',连接PE ',作射线FE '交AC 于点P '.则PE =PE ',当P 与P '重合,P '、E '、F 三点在同一直线上时,PF ﹣PE '有最大值,即为FE '的长.解:如图,取OB 中点E ',连接PE ',作射线FE '交AC 于点P '.则PE =PE ',∠PF﹣PE=PF﹣PE'≤FE',当P与P'重合,P'、E'、F三点在同一直线上时,PF﹣PE'有最大值,即为FE'的长,∠在菱形ABCD中,∠ABC=120°,∠∠ABD=60°,∠DAB=60°,∠∠ABD为等边三角形.∠AB=BD=AD=4.∠OD=OB=2.∠点E'为OB的中点,E'B=1,AF=3BF,∠BF1=AB=1,4∠∠ABD=60°,∠∠BE'F为等边三角形,∠E'F=FB=1.故PF﹣PE的最大值为1.故答案为:1.【点拨】本题考查了轴对称﹣最大值问题、菱形的性质、等边三角形的判定与性质,熟练运用轴对称的性质和三角形三边关系是解题的关键.15.12【分析】先根据题目条件中的中点可联想中位线的性质,构造中位线将OF和GH的长度先求出=+时最大.来,再利用三角形的三边关系判断,当AG AH HG解:如图所示:连接BD交AC于点O,连接FO,取OB的中点H,连接HG和AH,在菱形ABCD 中,O ∴为AC 中点, F 为CE 中点,112OF AE ∴==, 当C 、F 、E 、A 共线时,OF 也为1, G 为BF 中点、H 为OB 中点,1122GH OF ∴==, 在菱形ABCD 中且60D ∠=︒,113022ABO ABC ADC ∴∠=∠=∠=︒,90BOA ∠=︒, 122OA AB ∴==,,OB ∴=,OH ∴=AH ∴=AG AH HG +, 172AG ∴+,AG ∴的最大值为12故答案为:12【点拨】本题难点在于辅助线的添加,要根据菱形的性质和题目条件中的中点构造中位线,然后借助三角形的三边关系可判断出当A、H、G三点共线时AG最大.16【分析】取AD的中点N.连接EN,EC,GN,作EH∠CB交CB的延长线于H.根据菱形的性质,可得∠ADB是等边三角形,从而得到∠AEN是等边三角形,可证得∠AEF∠∠NEG,进而得到点G的运动轨迹是射线NG,继而得到GD+GC=GE+GC≥EC,在Rt∠BEH和Rt∠ECH 中,由勾股定理,即可求解.解:如图,取AD的中点N.连接EN,EC,GN,作EH∠CB交CB的延长线于H.∠四边形ABCD是菱形∠AD=AB,∠∠A=60°,∠∠ADB是等边三角形,∠AD=BD,∠AE=ED,AN=NB,∠AE=AN,∠∠A=60°,∠∠AEN是等边三角形,∠∠AEN=∠FEG=60°,∠∠AEF=∠NEG,∠EA=EN,EF=EG,∠∠AEF∠∠NEG(SAS),∠∠ENG =∠A =60°,∠∠ANE =60°,∠∠GND =180°﹣60°﹣60°=60°,∠点G 的运动轨迹是射线NG ,∠D ,E 关于射线NG 对称,∠GD =GE ,∠GD +GC =GE +GC ≥EC ,在Rt ∠BEH 中,∠H =90°,BE =1,∠EBH =60°,∠BH =12BE =12,EH在Rt ∠ECH 中,EC∠GD +GC∠GD +GC【点拨】本题主要考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识是解题的关键.17.6【分析】设点M 是PD 的中点,过点M 作直线P D ''与射线CA 、CB 分别交于点,P D '',得到当点M 是PD 的中点时,CPD △的面积最小,再根据直角三角形的性质及三角形的面积公式求解即可. 解:设点M 是PD 的中点,过点M 作直线P D ''与射线CA 、CB 分别交于点,P D '',则点M 不是P D ''的中点当MD MP ''>时,在MD '上截取ME MP '=,连接DEPMP DME '∠=∠()PMP DME SAS '∴≅=P CD PCD P CDE S S S '''∴>四边形当MD MP ''<时,同理可得P CD PCD S S ''>∴当点M 是PD 的中点时,CPD △的面积最小如图,作DH AB ⊥于H则DHM PAM ≌,90,AM MH DHM PAM AP DH ∴=∠=∠=︒=90BHD =∴∠︒1AM =,3BM =1AM MH ∴==2BH ∴=在等腰Rt ABC △中,314CA BA ==+=45B C ∴∠=︒=∠45B BDH ∴∠=∠=︒2BH DH AP ∴===426CP AC AP ∴=+=+=过点D 作DK PC ⊥交于K∴四边形AKDH 是矩形2DK AH AM HM ∴==+=1162622CDP S CP DK ∴=⋅=⨯⨯= 故答案为:6【点拨】本题考查了全等三角形的判定和性质、矩形的判定和性质、直角三角形的性质,熟练掌握知识点是解题的关键.18.【分析】作点A 关于BC 的对称点T ,取AD 的中点R ,连接BT ,QT ,RT ,RM .根据直角三角形斜边上中线性质和勾股定理求出RM ,RT ,根据△RMT 三边关系求出MT 的最小值,再根据QA +QM =QM +QT ≥MT ,可得结论.解:如图,作点A 关于BC 的对称点T ,取AD 的中点R ,连接BT ,QT ,RT ,RM .∠四边形ABCD 是矩形,∠∠RAT =90°,∠AR =DRAT =2AB =∠RT, ∠A ,A′关于DP 对称,∠AA′∠DP ,∠∠AMD =90°,∠AR =RD ,∠RM =12AD , ∠MT ≥RT −RM ,∠MT∠MT的最小值为∠QA +QM =QT +QM ≥MT ,∠QA +Q M ,∠QA +QM 的最小值为.故答案为:【点拨】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出MT 的最小值.19.38【分析】根据题目要求,要使四边形AGCD 的面积最小,因为ACD ∆的面积固定,只需使AGC ∆的面积最小即可,即AGC ∆的高最小即可,又在Rt BEF ∆中,4EF =,则BG =2,AGC ∆高的最小值为点B 到AC 的距离减去BG 的长度,则可求解.解:依题意,在Rt BEF ∆中, G 为EF 的中点,4EF =,122BG EF ∴==, ∴点G 在以B 为圆心,2为半径的圆与长方形重合的弧上运动,168242ACD S ∆=⨯⨯=, ∴要使四边形AGCD 的面积最小,则B 所在直线垂直线段AC ,又10AC =,点B 到AC 的距离为68 4.810⨯=, ∴此时点G 到AC 的距离为4.82 2.8-=,故AGC ∆的最小面积为110 2.8142⨯⨯=, ∴142438AGCD ACG ACD S S S ∆∆=+=+=,故答案为:38.【点拨】本题考查了动点问题中四边形的最小面积问题,利用勾股定理,直角三角形中线的性质,三角形等积法求高等性质定理进行求解,对于相关性质定理的熟练运用是解题的关键.203【分析】如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时,B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,即可求出B′D.解:如图:由折叠可得:EB´=EB,∠E是AB边的中点,AB=6,∠AE=EB=EB´=3,∠点B´在以E为圆心EA为半径的圆上运动,当D、B′、E共线时,B′D的值最小,∠四边形ABCD矩形,∠∠A=90º,在Rt△ADE中,∠AD=8,AE=3,∠DE===∠B´D3.3.【点拨】本题主要考查了折叠的性质、勾股定理、两点之间线段最短、圆的性质的综合运用.确定点B′在何位置时,B′D的值最小是解决问题的关键.21.2【分析】根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠ABE=∠DCF,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠DCG=∠DAG,从而得到∠ABE=∠DAG,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH = 12 AB =2,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小.解:在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,在△ABE 和△DCF 中,AB CD BAD CDA AE DF ⎧⎪∠∠⎨⎪⎩===,∠∠ABE ∠∠DCF (SAS ),∠∠ABE =∠DCF ,在△ADG 和△CDG 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∠∠ADG ∠∠CDG (SAS ),∠∠DCG =∠DAG ,∠∠ABE =∠DAG ,∠∠BAH +∠DAG =∠BAD =90°,∠∠ABE +∠BAH =90°,∠∠AHB =180°-90°=90°,如图,取AB 的中点O ,连接OH 、OD ,则OH =AO = 12 AB =2,在Rt △AOD中,OD =根据三角形的三边关系,OH +DH >OD ,∠当O 、D 、H 三点共线时,DH 的长度最小,最小值=OD -OH=2.故答案为:2.【点拨】本题主要考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理等知识,熟练掌握正方形的性质是解题的关键.22.【分析】延长DA 到点O ,使AO =HE =4,连接OC ,可证得四边形AOEH 是平行四边形,OE =AH ,可得当点E 、点G 在OC 上时,OE CG +最小,即AH CG +最小,再根据勾股定理即可求得.解:如图:延长DA 到点O ,使AO =HE =4,连接OE 、EG ,HE AB ⊥,AO AB ⊥,HE AO ∴∥,又==4AO HE ,∴四边形AOEH 是平行四边形,=OE AH ∴,∴当点E 、点G 在OC 上时,OE CG +最小,即AH CG +最小,EG==64=10DO AD AO ++,OC ∴=OE CG OC EG ∴+-故AH CG +的最小值为故答案为:【点拨】本题考查了矩形及正方形的性质,平行四边形的判定与性质,勾股定理,作出辅助线是解决本题的关键.23.【分析】如图,作点C 关于直线AB 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH AD =,连接EH ,BH ,DE .想办法证明AF DE EH ==,BE AF +的最小值转化为EH EB +的最小值.解:如图,作点C 关于直线AB 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH AD =,连接EH ,BH ,DE ,如图所示:CA CB =,90C ∠=︒,45CAB CBA ∴∠=∠=︒, C ,D 关于AB 对称,DA DB ∴=,45DAB CAB ∠=∠=︒,45ABD ABC ∠=∠=︒, 90CAD CBD ADC C ∴∠=∠=∠=∠=︒, ∴四边形ACBD 是矩形, CA CB =,∴四边形ACBD 是正方形, CF AE =,CA DA =,90C EAD ∠=∠=︒, ΔΔ()ACF DAE SAS ∴≅, AF DE ∴=,AF BE ED EB ∴+=+, CA 垂直平分线段DH ,ED EH ∴=,AF BE EB EH ∴+=+,EB EH BH +,AF BE ∴+的最小值为线段BH 的长,BH =∴+的最小值为AF BE故答案为【点拨】本题考查全等三角形的判定和性质,等腰直角三角形的性质,轴对称最短问题等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.45°##45度11【分析】(1)根据折叠的性质:折叠前后的两个图形是全等图形,对称轴垂直平分对应点的连线;即可解答;(2)连接AC,BD,设AC与BD相交于点O,过点O作OM∠AB于点M,连接OH,HM;由HM≤OM+OH,根据直角三角形斜边中线等于斜边一半求得OH的长即可解答;解:(1)∠四边形ABCD是正方形,∠∠BAD=90°,由折叠得,AB=AF=AD,AE∠BH,∠BAE=∠F AE,∠F AH=∠DAH,∠∠BAE+∠F AE+∠F AH+∠DAH=∠BAD,∠∠F AE+∠F AE+∠F AH+∠F AH=90°,∠∠F AE+F AH=45°,即∠GAH=45°,∠∠AGH=90°,∠∠AHB=90-∠GAH=90°-45°=45°,故答案为:45°;(2)如图2,连接AC,BD,设AC与BD相交于点O,过点O作OM∠AB于点M,连接OH,HM,∠HM≤OM+OH,∠当M,O,H三点在同一条直线上时,点H到AB的距离最大,∠四边形ABCD是正方形,且AB=2,∠AC=BD∠OM =1AD=1,2将AD与AF重合折叠,折痕与BF的延长线交于点H,∠∠AHD=∠AHF =45°,∠BHD =∠AHD+∠AHB=45°+45°=90°,BD∠O2∠OM+OH=1∠HM≤1H到AB的距离最大值为1故答案为:1【点拨】本题考查了折叠的性质,正方形的性质,勾股定理,掌握折叠的性质是解题关键.25.(1)过程见分析;BC;(2)四边形ADFC是菱形;证明见分析;(3)AF的最大值是12-(1)过点B作BH∠DE交DE的延长线于点H,先证明∠AEB是等边三角形,再证明∠HBE 是等腰直角三角形,并且求得∠BDH=30°,根据直角三角形中30°角所对的直角边等于斜边的一半及勾股定理即可求出EH的长和DH的长,进而求出DE的长,再由DE=BC求得BC 的长;(2)四边形ADFC是菱形,先求出∠ACF=∠AEF=30°,∠ADF=∠ABF=30°,∠CAD =∠CAE+∠DAE=150°,则∠CFD=360°−∠ACF−∠ADF−∠CAD=150°,可证明FC∠AD,FD∠AC,则四边形ADFC是平行四边形,而AD=AC,即可证明四边形ADFC是菱形;(3)作FK∠AB于点K,连接AF,先证明∠KAF=∠KF A=45°,则AK=FK,由∠FBK,然后再由FK=6,求出FK的=30°得BF=2FK,根据勾股定理求得BK长,即可求出BF的长,再根据两点之间线段最短求出AF的最大值和最小值即可.解:(1)如图2,过点B作BH∠DE交DE的延长线于点H,则BC=DE=DH-HE.∠∠ABC绕点A顺时针旋转90°得到∠ADE,AB=AC=6,∠BAC=30°,∠∠CAE=∠BAD=90°,∠DAE=∠BAC=30°,AD=AB,AE=AC,DE=BC,∠∠BAE=∠CAE-∠BAC=60°,AD=AB=AE=6,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊平行四边形专项训练)(一)
B卷(20分填空题每题3分)
1.一个多边形除一个内角外其余内角的和为1510°,则这个多边形的边数是_________.
2.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是_________
3.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿
直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是______
4.菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为_____________ .
第2题第3题第4题
5.在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P 都在∠AOB的平分线上;
(3)设点P到x轴的距离为h,请直接说出h的取值范围.(8分)
6.如图,已知点E ,F 分别是□ABCD 的边BC ,AD 上的中点,且∠BAC =90°.(10分)
(1)求证:四边形AECF 是菱形;
(2)若∠B =30°,BC =10,求菱形AECF 面积.
7.如图,矩形ABCD 中,AB =8,AD =6,点E 、F 分别在边CD 、AB 上.(12分) (1)若DE =BF ,求证:四边形AFCE 是平行四边形;
(2)若四边形
AFCE 是菱形,求菱形AFCE 的周长.
8. 如图,四边形ABCD 中,∠A =∠ABC =90°,AD =1,BC =3,E 是边CD 的中点,连接BE 并延长与AD 的延长线相交于点F . (1)求证:四边形BDFC 是平行四边形;
(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.(12分)
已知:在ABC △中,AB AC a ==,M 为底边BC 上的任意一点,过点M 分别作AB 、AC 的平行线交AC 于点P ,交AB 于点Q 。
(1)求四边形AQMP 的周长;(用含a 的代数式表示)
y
O P
D
C
x
B
A A
B
C
P
M
Q
(2)M 位于BC 的什么位置时,四边形AQMP 为菱形?说明你的理由。
(4 如图,在平行四边形ABCD 中,E 是CD 的中点,ABE △是等边三角形,求证:四边形ABCD 是矩形。
(8分)
9、如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,BE 平分∠DBC ,交DC 于点E ,延长BC 到点F ,使CF=CE ,连接DF ,交BE 的延长线于点G ,AC 交BG 于点H ,连接OG ,求证:①OG ∥AD ;②△CHE 为等腰三角形;③求S △BCE :S △BDE 的值。
B 卷(共20分)
一、填空题:(每小题4分,共12分)
21.若方程21
2x a
x +=-+的解是负数,则a 的取值范围是 。
22.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF 。
若菱形ABCD 的边长为2 cm , ∠A=120︒,则EF= cm 。
23.如图,在矩形ABCD 中,3AB =,4AD =,P 是AD 上一动点,PF BD ⊥于
F ,PE AC ⊥于E ,则PE PF +的值为 。
二、 解答题:(共8分)
24.已知,在矩形ABCD 中,10AB =,12BC =,四边形EFGH 的三个顶点E 、
F 、H 分别在矩形ABCD 的边AB 、BC 、DA 上,2AE =。
(1)如图1,当四边形EFGH 为正方形时,求GFC △的面积。
(2分) (2)如图2,当四边形EFGH 为菱形,且BF a =时,求GFC △的面积。
(用含a 的代数式表示)(3分)
(3)在(2)的条件下,GFC △的面积能否等于2?请说明理由。
(3分)
一、解答题(题型注释)
1.如图,在平面直角坐标系中,正方形OABC 的边长为a .直线y=bx+c 交x 轴于E ,交y 轴于F ,且a 、b 、c 分别满足
-(a-4)2
≥0
,
8c =
(1)求直线y=bx+c 的解析式并直接写出正方形OABC 的对角线的交点D 的坐标;
(2)直线y=bx+c 沿x 轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t 秒,问是否存在t 的值,使直线EF 平分正方形OABC 的面积?若存在,请求出t 的值;若不存在,请说明理由;
点P 为正方形OABC 的对角线AC 上的动点(端点A 、C 除外),PM ⊥PO ,交直线AB 于M ,求PC
BM
的值
2.如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,OA=3,OC=2,P 是BC 边上一点且不与B 重合,连结AP ,过点P 作∠CPD=∠APB ,交x 轴于点D ,交y 轴于点E ,过点E 作EF ∥AP 交x 轴于点F .
(1)若△APD 为等腰直角三角形,求点P 的坐标;
(2)若以A ,P ,E ,F 为顶点的四边形是平行四边形,求直线PE 的解析式.。