固体激光器的基本结构与工作物质
激光加工_03常用激光器

10
为了提高激光器的输出功率,二氧化碳激光器 一般都加进氮(N2)、氦(He)、氙(Xe)等 辅助气体和水蒸汽。
气体混合比对输出功率有很大影响,一般采用 的比例是: CO2: N2:He:Xe:H2O=1:1.5~2:6~8:0.5: 0.1
¾He--在CO2+ N2的激光器中加入大量的He,可使输出功率提高5~10倍。它的作用是抽
空低能级。因为He的导热性好,使放电管内热量向管壁传递的速率提高,使激光介质冷
却,降低工作气体的温度,十分有利于提高激光器的输出功率。
¾Xe-在CO2+ N2+He的激光器中加进Xe,可使输出功率提高25~30%。Xe的作用是降低放
32
调Q技术
• 在激光技术中,通常用Q值,即谐振腔的品质 因素,来表示腔损耗的大小,其定义是
Q
=
2πγ
21
⋅
腔内存贮能量 每秒损耗能量
• 所谓调Q技术,就是通过一定的方法使谐振腔 内的品质因素Q值按一定的规律变化。
调Q工作原理
• 当激励刚刚开始时,先使谐 振腔内具有高损耗(低Q 值),激光器由于损耗高 (即阈值高),而不能产生 波长为的激光振荡。于是激 光工作物质中的粒子反转数 可以积累到很高的水平。然 后在适当的时候,使腔内损 耗突然降低到很低水平(高 Q值),阈值也随之突然降 低。此时粒子反转数大大超 过阈值,于是在极短时间内 原来贮存的大部分粒子的能 量转变为激光能量,在输出 端有一个很强的波长为的激 光巨脉冲输出
• 氙灯发出的光能在聚光器的作用下聚集在工作 物质上,一般可将氙灯发出来的80%左右的光 能集中在工作物质上。
固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作物质的激光器,它通
过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。
固体激光器的工作原理主要包括激发、增益、反射和输出四个过程。
首先,固体激光器的工作原理涉及到激发过程。
在固体激光器中,通常采用激发源(如闪光灯、半导体激光二极管等)照射固体
材料,激发固体材料中的原子或离子,使其跃迁至高能级。
这种激
发过程会导致固体材料中的原子或离子处于一个高能级的激发态。
其次,固体激光器的工作原理还涉及到增益过程。
在激发过程中,固体材料中的原子或离子处于高能级的激发态,这时如果有入
射光子与其相互作用,就会引发受激辐射,从而产生激光。
这种受
激辐射会引起原子或离子从高能级跃迁到低能级,释放出更多的光子,使激光光子数目急剧增加,形成所谓的增益。
然后,固体激光器的工作原理还包括反射过程。
在固体激光器中,通常会设置一个光学反射器,用来反射激光。
这种光学反射器
可以将激光反射回固体材料中,使其在其中来回反射,增强激光的
增益效果。
最后,固体激光器的工作原理还涉及到输出过程。
在固体激光器中,设置一个输出镜,用来从激光腔中输出激光。
这种输出镜通常只透过一部分激光,反射大部分激光,使得激光可以从固体激光器中输出。
总的来说,固体激光器的工作原理是通过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。
固体激光器的工作原理涉及到激发、增益、反射和输出四个过程,这些过程共同作用,使得固体激光器能够产生高能、高亮度的激光,被广泛应用于医疗、通信、材料加工等领域。
板条激光器

板条激光器与光速质量测量试验实验目的1.了解板条固体激光器的结构和工作原理2.学会调整谐振腔3.了解光速质量的定义和多种测量方法1.板条激光器的特点激光工作物质为板条形状的固体激光器。
普通固体激光器激光工作物质的几何形状为圆棒状,温度梯度的方向与光传播方向垂直,在热负荷条件下运转时,将产生严重的热透镜效应和热光畸变效应,使得光束质量降低,并限制了激光功率的进一步提高。
在板条激光器中,温度梯度发生在板条厚度方向上(板条宽度方向上的两侧面被热绝缘),而光在厚度方向的两侧面(即泵浦面)上发生内全反射,呈锯齿形光路在两泵浦面之间传播,光传播方向近似与温度梯度方向平行,可基本避免热透镜效应和热光畸变效应,大幅度提高了激光输出功率。
热透镜效应是指LD(半导体激光器)工作时产生的温度会使晶体表面发生热形变,造成了晶体各部分密度不同,而光在经过不同密度的分界线时发生不同程度的折射,因此就形成了像是光线通过普通透镜一样的折射效果。
2.激光器的组成1) 工作物质工作物质——激光器的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。
根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。
工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状。
2)泵浦系统泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目前主要采用光泵浦。
泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。
3)聚光系统聚光腔的作用有两个:一个是将泵浦源与工作物质有效的耦合;另一个是决定激光物质上泵浦光密度的分布,从而影响到输出光束的均匀性、发散度和光学畸变。
工作物质和泵浦源都安装在聚光腔内,因此聚光腔的优劣直接影响泵浦的效率及工作性能。
4)光学谐振腔光学谐振腔由全反射镜和部分反射镜组成,是固体激光器的重要组成部分。
实验1NdYAG固体激光器实验

hv21(a) 2 1 (b) 2 E 1(c) 图1、光与物质作用的吸收过程Nd :YAG 固体激光器实验一、 实验内容与器件1、了解半导体激光器的工作原理和光电特性2、掌握半导体泵浦固体激光器的工作原理和调试方法二、 实验原理概述1. 激光产生原理光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。
如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。
在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。
激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。
自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。
处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。
只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。
激光的产生主要依赖受激辐射过程。
激光器主要有:工作物质、谐振腔、泵浦源组成。
工作物质主要提供粒子数反转。
hv 21 2 E 1(a) E 2E 1(b)hv 21 hv 21图2、光与物质作用的受激辐射过程泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。
E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。
激光产生必须有能提供光学正反馈的谐振腔。
处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。
固体激光器的原理及应用

产生激光有三个必要的条件[2]:
1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;
2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;
3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。
如表1是我国激光器的发展。
1.2.3激光器的分类
1960年,梅曼首次在实验室用红宝石晶体获得了激光输出,开创了激光发展的先河。此后,激光器件和技术获得了突飞猛进的发展,相继出现了种类繁多的激光器。
2)相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。激光为我们提供了最好的相干光源。正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。
3)方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。
1.1.3激光的特性
激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。
1)单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。而激光发射的各个光子频率相同,因此激光是最好的单色光源。
由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。
第3讲 典型激光器介绍及光线传输矩阵

能级
图
封离式CO2激 光器结构示意 图
12
3.1 典型激光器介绍
13
3.1 典型激光器介绍
▪ Ar+离子激光器
➢ Ar+激光器一般由放电管、谐振腔、轴向磁场和回气管等几部分组 成。如下图所示为石墨放电管的分段结构 。
分段石墨结构Ar+激光器示意图
14
3.1 典型激光器介绍
15
3.1 典型激光器介绍
3、不同介质介面(平面)
ro ri 0
ro
0
1 2
ri
1
ro ro
0
0
1 2
ri ri
Байду номын сангаас
由近轴近似,折射定律可以写成
1 sin ri 2 sin ro 1 ri 2 ro
辐射不是基于原子分子或离子的束缚电子能级间的跃磁韧致辐射带电粒子在磁场中受到洛伦兹力的作用会作加速运动从而产生辐射当速度接近光速的电子作圆周运动时将会辐射出光子由于这种辐射1947年在同步加速器上被发现的因而被命名为同步辐射synchrotronradiation切伦科夫辐射当电子在介质中运动时如果它们的速度比光在介质中的相速度大电子也会产生光辐射其波长随着电子速度而变化虽然光很弱但却是单色性很好的辐射光
➢ 谱线范围宽 ---目前有数百种气体和蒸气可以产生激光,已经观测到 的激光谱线近万余条,谱线覆盖范围从亚毫米波到真空紫外波段, 甚至 X射线、射线波段。
➢ 光束质量优---工作物质均匀一致保证了气体激光束的优良光束质量, 在光束的相干性、单色性方面优于固体、半导体激光器,如He-Ne 激光的单色性很高,Δλ很容易达到10-9~10-11nm,其发散角只有l~ 2毫弧度。
355固体激光器工作原理

355固体激光器工作原理
固体激光器是一种利用固体材料产生激光的装置。
其工作原理
涉及激发态、受激辐射和光放大等过程。
首先,固体激光器的工作原理涉及能级结构。
固体材料中的原
子或离子具有不同的能级,当这些原子或离子受到外部能量激发时,会跃迁到较高的能级。
这种激发态的原子或离子被称为激发态。
其次,激光器利用受激辐射产生激光。
当激发态的原子或离子
受到外部辐射的刺激时,会发生受激辐射过程。
在受激辐射过程中,激发态的原子或离子会跃迁到较低能级,释放出与刺激辐射具有相
同频率、相干相位和同一方向传播的光子,这些光子就是激光。
最后,固体激光器利用光放大实现激光输出。
在固体激光器中,激光通过光学增益介质(通常是激光晶体)时会受到受激辐射的影
响而得到放大,形成高强度、单色、相干的激光输出。
综上所述,固体激光器的工作原理涉及能级结构、受激辐射和
光放大等过程。
通过这些过程,固体激光器能够产生高质量的激光
输出,广泛应用于科研、医疗、工业加工等领域。
固体激光器原理及应用

编号赣南师范学院学士学位论文固体激光器原理及应用教学学院物理与电子信息学院届别 2010届专业电子科学与技术学号 060803013姓名丁志鹏指导老师邹万芳完成日期 2010.5.10目录摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。
介绍固体激光器的工作原理及应用,更能够加深对其的了解。
本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。
(1)关键词:固体激光器基本原理基本结构应用 (1)Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applications were described in the paper and it can enhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical and cosmetic applications in three areas and future development direction were introduced (1)Key words:Solid-state Laser Basic Principle Basic Structure Application (1)1引用 (2)2激光与激光器 (2)2.1激光 (2)2.2激光器 (3)3固体激光器 (4)3.1工作原理和基本结构 (4)3.2典型的固体激光器 (8)3.3典型固体激光器的比较 (11)3.4固体激光器的优缺点 (12)4固体激光器的应用 (13)4.1军事国防 (13)4.2工业制造 (15)4.3医疗美容 (16)5结束语 (17)参考文献 (19)摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。
激光器的工作原理

激光器的工作原理激光器是一种产生激光的设备,它的工作原理基于受激辐射和光放大的过程。
激光器的关键组件包括激活介质、光腔和光源。
1.激活介质:激活介质是激光器中的工作物质,通过激发其内部原子或分子的能级跃迁来实现产生激光。
常见的激活介质包括气体、固体和液体。
2.光腔:激光器中的光腔起到存储和放大激射光的作用。
光腔通常由两个反射镜构成,一个是部分透明镜(输出镜),另一个是反射镜(输入镜)。
输入镜对激光光束具有高反射率,而输出镜对光束的反射率较低。
3.光源:激励激活介质产生光的光源可以是光电或电能。
常见的光源包括氙灯、氮气激光、半导体激光二极管等。
根据激光器的不同类型,其工作原理略有不同。
1.激光二极管:激光二极管利用电流对半导体中电子与空穴的复合作用产生光子。
当电流通入激光二极管时,通过激活介质发射出的光从一个反射镜反射回激光二极管,而另一个反射镜使部分光透射出来,形成激光束。
2.气体激光器:气体激光器的工作原理是在气体放电管内通入电流,并通过电流激发气体中的原子或分子,使其跃迁到高能级。
当这些原子或分子从高能级退回至低能级时,激光波长的光子被释放出来,并被两个反射镜之间的储存介质反射和放大,形成激光束。
3.固体激光器:固体激光器的激活介质是固体晶体(如Nd:YAG晶体),通过激光二极管或氙灯的激励发射激光。
当激光经过激活介质时,与其相互作用,使得激活介质中的电子被激发至高能级,并随后跃迁回低能级,放出激光光子。
这些光子通过两个反射镜(输入镜和输出镜)之间的激发介质来放大,并形成激光束。
无论是哪种类型的激光器,其工作原理的基本过程都是通过能量激发原子或分子的跃迁,随后利用反射和放大来产生高强度、高单色性和高聚束性的激光束。
激光器在医学、通信、测量、切割等领域都有广泛的应用。
固体激光器 组成及 工作原理

固体激光器组成及工作原理固体激光器是一种利用固体材料来产生激光的装置,它由多种组成部分和复杂的工作原理构成。
在固体激光器的组成中,最核心的部分是工作物质、泵浦源、共振腔和输出镜。
而其工作原理主要包括受激辐射和光放大的过程。
在本文中,将详细介绍固体激光器的组成及工作原理。
固体激光器的核心部分是工作物质。
固体激光器的工作物质通常采用固体晶体或者玻璃材料,如氧化物晶体、掺杂晶体、玻璃体等。
这些材料受到光或电的激发后,能够发射激光。
固体激光器的性能和特性很大程度上取决于选用的工作物质,因此工作物质的选择至关重要。
固体激光器还需要泵浦源来提供能量。
泵浦源通常采用闪光灯、半导体激光二极管等,通过光或电的形式向工作物质提供激发能量,使其处于激发态。
泵浦源提供的激发能量将激发工作物质内的原子或分子跃迁至激发态,为固体激光器的激射提供能量。
固体激光器的第三个重要组成部分是共振腔。
共振腔由两个反射镜构成,其中一个是部分透明的输出镜,另一个是完全反射的输入镜。
这一腔体结构能够形成光波的多次反射,从而增强光的密集程度,促进激光产生。
输出镜是固体激光器输出激光的关键组成部分。
它具有一定的透过率,使得一部分激光能够逃逸出腔体形成输出激光。
固体激光器的工作原理主要包括受激辐射和光放大两个过程。
受激辐射是指利用泵浦源提供的能量,使得工作物质中的原子或分子跃迁至激发态。
而光放大是指激发态的原子或分子受到外界光的刺激后,向激光波长辐射能量,使得激光得以产生和放大。
固体激光器作为一种重要的激光器件,具有复杂的组成结构和工作原理。
通过对固体激光器的组成及工作原理的深入了解,可以更好地设计和应用激光器,从而推动激光技术在多个领域的应用和发展。
固体激光器的基本结构和工作物质 李迎鑫 1102

固体激光器的基本结构与工作物质摘要1960年,T.H.梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。
到1960年底,人们分别在固体(掺铀氟化钙)和气体(氦氖)中实现了四能级激光器系统。
固体激光器的发明梅曼发明的红宝石激光器为激光技术的发展完全打开了新的大门。
本文就固体激光器的基本结构与工作物质进行阐释。
关键词固体激光器基本结构工作物质基本结构固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。
工作物质,激光器的核心部分,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。
这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。
激励能源,固体激光器一般采用光激励源。
通常为光泵。
它的作用是给工作物质以能量,即将原子由低能级激发到高能级的外界能量。
通过强光照射工作物质而实现粒子数反转的方法称为光泵法。
例如红宝石激光器,是利用大功率的闪光灯照射红宝石(工作物质)而实现粒子数反转,造成了产生激光的条件。
通常可以有光能源、热能源、电能源、化学能源等。
常用的脉冲激励源有充氙闪光灯;连续激励源有氪弧灯、碘钨灯、钾铷灯等。
在小型长寿命激光器中,可用半导体发光二极管或太阳光作激励源。
一些新的固体激光器也有采用激光激励的。
聚光腔的作用有两个:一个是将泵浦源与工作物质有效的耦合;另一个是决定激光物质上泵浦光密度的分布,从而影响到输出光束的均匀性、发散度和光学畸变。
工作物质和泵浦源都安装在聚光腔内,因此聚光腔的优劣直接影响泵浦的效率及工作性能。
谐振腔,由全反射镜和部分反射镜组成,是固体激光器的重要组成部分。
光学谐振腔除了提供光学正反馈维持激光持续振荡以形成受激发射,还对振荡光束的方向和频率进行限制,以保证输出激光的高单色性和高定向性。
最简单常用的固体激光器的光学谐振腔是由相向放置的两平面镜(或球面镜)构成。
受激辐射光通过反馈在其中形成放大与振荡, 并由部分反射镜输出。
第1章-典型激光器简介-续分解

• 平坦的EF段。该区域的特点是电流增加,但管压降几乎保 持不变,放电管内出现明暗相间的辉光,称之为正常辉光放 电。辉光放电阶段,由于二次发射的电子随电场的增加而迅 速增加,故当放电管端电压略有增加时,放电电流就增大很 多。辉光放电的电流范围一般在10-4~10-1 A之间
染料激光器主要应用于科学研究、医学等领域,如激光光 谱学、光化学、同位素分离、光生物学等方面。
1966年,世界上第一台染料激光器——由红宝石激光器泵 浦的氯铝钛花青染料激光器问世。
4)半导体激光器
半导体激光器也称为半导体激光二极管,或简称激光二极管 (LaserDiod,缩写LD)。由于半导体材料本身物质结构的特 异性以及半导体材料中电子运动规律的特殊性,使半导体 激光器的工作特性有其特殊性。
• 分子激光器中产生激光作用的是未电离的气体分子,激光跃迁 发生在气体分子不同的振-转能级之间。采用的气体主要有 CO2、CO、N2、O2、N2O、H2O、H2 等分子气体。分子激光 器的典型代表是CO2 激光器。
• 准分子激光器。所谓准分子,是一种在基态离解为原子而在激 发态暂时结合成分子(寿命很短)的不稳定缔合物,激光跃迁产 生于其束缚态和自由态之间。采用的准分子气体主要有XeF* 、KrF* 、ArF* 、XeCl* 、XeBr* 等。其典型代表为XeF* 准 分子激光器。
• 半导体激光器广泛应用于光纤通信、光存储、光信息处 理、科研、医疗等领域,如激光光盘、激光高速印刷、全 息照相、办公自动化、激光准直及激光医疗等方面。
• 1962年,世界上第一台半导体激光器———GaAs激光器 问世。
5)化学激光器 化学激光器是通过化学反应实现粒子数反转从而产生受激光 辐射的。工作物质可以是气体或液体,但目前主要是气体,如 氟化氢(HF)、氟化氚(DF)、氧碘(COIL)等。
激光原理与技术期末总复习

激光原理与技术期末总复习激光原理与技术期末总复习考试题型一. 填空题(20分)二.选择题(30分)三.作图和简答题(30分)四.计算题(20分)第一章辐射理论概要与激光产生的条件1、激光与普通光源相比较的三个主要特点:方向性好,相干性好和亮度高2、光速、频率和波长三者之间的关系:线偏振光:如果光矢量始终只沿一个固定方向振动。
3、波面——相位相同的空间各点构成的面4、平波面——波面是彼此平行的平面,且在无吸收介质中传播时,波的振幅保持不变。
5、单色平波面——具有单一频率的平面波。
6、ε= h v v —光的频率 h —普朗克常数7、原子的能级和简并度(1)四个量子数:主量子数n、辅量子数l、磁量子数m和自旋磁量子数ms。
(2)电子具有的量子数不同,表示电子的运动状态不同。
(3)电子能级:电子在原子系统中运动时,可以处在一系列不同的壳层状态活不同的轨道状态,电子在一系列确定的分立状态运动时,相应地有一系列分立的不连续的能量值,这些能量通常叫做电子的能级,依次用E1,E2,…..En表示。
基态:原子处于最低的能级状态成为基态。
激发态:能量高于基态的其他能级状态成为激发态。
(4)简并能级:两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫做简并能级。
简并度:同一能级所对应的不同电子运动状态的数目,叫做简并度,用g表示。
8、热平衡状态下,原子数按能级分布服从波耳兹曼定律(1)处在基态的原子数最多,处于越高的激发能级的原子数越少;(2)能级越高原子数越少,能级越低原子数越多;(3)能级之间的能量间隔很小,粒子数基本相同。
9、跃迁: 粒子由一个能级过渡到另一能级的过程(1.)辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象①发射跃迁: 粒子发射一光子ε = hv=E2-E1而由高能级跃迁至低能级;②吸收跃迁: 粒子吸收一光子ε=hv=E2-E1 而由低能级跃迁至高能级.(2)非辐射跃迁:原子在不同能级跃迁时并不伴随光子的发射和吸收,而是把多余的能量传给了别的原子或吸收别的原子传给它的能量10、光和物质相互作用的三种基本过程:自发辐射、受激辐射和受激吸收(要求会画图,会说原理过程)(1)普通光源中自发辐射起主要作用(2)激光器工作中受激辐射起主要作用(3)自发辐射、受激辐射和受激吸收的定义(4)三者之间的关系:自发辐射光子数+受激辐射光子数=受激吸收光子数11、光谱线增宽(1)光谱线的半宽度即光谱线宽度:相对光为最大值的1/2处的频率间隔(2)三种谱线增宽:自然增宽、碰撞增宽和多普勒增宽自然增宽:粒子的衰减碰撞增宽:发光原子间相互碰撞作用多普勒增宽:发光原子相对于观察者运动(3)均匀增宽:每一发光原子所发的光,对谱线宽度内任一频率都有贡献,而且这个贡献对每个原子都是相同的。
固体激光器简介

4
I 11 / 2
(4 F3 / 2 谱线)
4
I 11 / 2
,对应1.06μ m
E1:基态, 一条激光谱线的激光 下能级(三能级系统):
4
I9/2
(
4
F3 / 2
4
I9/2
对应0.9μm谱线)
跃迁谱线: ①1.06μm:四能级系统, 跃迁几率大, 通常可观 察到; ②1.4μm: 四能级系统, 跃迁几率较小, 不一定 可观 察到;
红宝石中铬离子的吸收光谱
红宝石中铬离子的能级结构
红宝石有两条强荧光谱线(R1和R2线),分别为E和2A能态向4A2跃迁产生的,室温下对应 的中心波长分别为0.6943um和0.6929um。
通常红宝石激光器中只有 R1=0.6943μm线才能形成激光输出。
应指出,红宝石激光器通常只产生0.6943um的受激辐射。这是因为亚稳态能级2E分裂 成2A和E两能级,跃迁到2E上的粒子按波尔兹曼分布规律分布于2A和E上,2A能级上约占 47%,E能级上约占53%。这就是说E能级比2A能级有更多的粒子数。而且R1线荧光强度 比R2线高,使得R1线的受激辐射几率比R2线高。因此,R1线容易达到阈值而形成激光振荡。 同时,2A和E相距很近,一旦E上的粒子跃迁后,2A上的粒子便迅速地(约10ns)转移到E上去, 这就加强了R1线,而抑制了儿线。在激光脉冲持续时间远大于10-9s时,亚稳态上的位子均 将通过R1线的受激辐射回到基态,因此可把E,2A合并起来看成一个简并度g2=4的能级。 红宝石突出的缺点是阈值高(因是三能级)和性能易随 温度变化。 但具有很多优点,如: 机械强度高,能承受很高的激光功率密度;容易生长成较大 尺寸;亚稳态寿命长,储能大,可得到大能量输出;荧光谱线 较宽,容易获得大能量的单模输出;低温性能良好,可得到连 续输出;红宝石激光器输出的红光(0.6943um),不仅能为 人眼可见,而且很容易被探测接收(目前大多数光电元件和 照相乳胶对红光的感应灵敏度较高)。因此,红宝石仍属一 种优良的工作物质而得到广泛应用。用红宝石制成的大尺 寸单脉冲器件输出能量已达上千焦耳。单级调Q器件很容 易得到几十兆瓦的峰值功率输出(用这类器件已成功地对 载有角反射器的人造卫星进行了测距试验)。多级放大器 件的输出峰值功率已达数千兆瓦到一万兆瓦。红宝石在激 光发展上是贡献比较大的一种晶体。
激光器件2-工作物质

17
§2.1.3 固体工作物质 2.破坏 2.破坏
18
当激光工作物质使用不当,会出现破坏性损伤, 当激光工作物质使用不当,会出现破坏性损伤,主要 是断裂与炸裂,有的出现端面膜层损坏、 是断裂与炸裂,有的出现端面膜层损坏、内部出现气 破坏丝等。引起破坏的主要原因是: 泡、破坏丝等。引起破坏的主要原因是: (1) 激光器内光泵过强或腔内能量密度过强 , 超过材 激光器内光泵过强或腔内能量密度过强, 料破坏阈值引起材料破坏。 料破坏阈值引起材料破坏。 (2) 表面污染及缺陷造成局部光场强度大大增加 。引 表面污染及缺陷造成局部光场强度大大增加。 起局部吸收过高,形成破坏中心, 起局部吸收过高,形成破坏中心,使表面破坏阈值下 降。 (3) 冷却不当或无冷却 , 使工作物质中温升过高 ,造 冷却不当或无冷却,使工作物质中温升过高, 成杂质粒子体积膨胀、熔化和气化, 成杂质粒子体积膨胀、熔化和气化,在杂质周围产生 很大的局部应力,使基质破坏。 很大的局部应力,使基质破坏。
§2.1.3 固体工作物质
11
晶体氧化物 4. 硫氧化物
• 稀土硫氧化物,如硫氧化镧,硫氧化镥, 硫氧化钇,均有相同晶体结构,为单轴晶 体。 • 稀土激活离子在稀土硫化物基质中可形成 任意浓度的固体溶液 • 硫氧化镧,硫氧化镥,硫氧化钇,硫氧化 钆可透过0.35um~7um波长。 • Nd:LOS(La2O2S)的1.075um波长处激光跃迁 截面约为Nd:YAG的1/3。
16
§2.1.3 固体工作物质 三、工作物质的劣化与破坏 1. 劣化 若输出效率下降过大, 以上, 若输出效率下降过大,达50%以上,称为工作物质 以上 的劣化。造成劣化原因主要为: 的劣化。造成劣化原因主要为: (1) 色心吸收 光泵中紫外光的作用,工作物质的颜色 光泵中紫外光的作用, 会产生部分或全部变化, 会产生部分或全部变化,如红宝石由粉红变成橙色或 由淡紫色变为棕红色, 棕色, 由淡紫色变为棕红色 棕色,Nd3+:YAG由淡紫色变为棕红色,钕玻璃由紫 红色变成棕红色等,此现象称为色心。 红色变成棕红色等,此现象称为色心。 (2) 杂质离子变价 杂质离子变价,可能产生对激光 杂质离子变价, 辐射的自吸收,使激光衰减。 辐射的自吸收,使激光衰减。
固体激光器的应用

固体激光器的应用所谓固体激光器就是用固体激光材料作为工作物质的激光器。
I960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。
距今已有整整五十年了,在这五十年固体激光的发展与应用研究有了极大的飞跃并且对人类社会产生了巨大的影响。
固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。
固体激光器从其诞生开始至今一直是备受关注。
其输出能量大峰值功率高结构紧凑牢固耐用因此在各方面都得到了广泛的用途其价值不言而喻。
正是由于这些突出的特点其在工业、国防、医疗、科研等方面得到了广泛的应用给我们的现实生活带了许多便利。
现在激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域它标志着新技术革命的发展。
诚然如果将激光发展的历史与电子学及航空发展的历史相比我们不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。
一、固体激光器的类别:固体激光器的工作物质,主要由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。
常见的有红宝石(掺铬的刚玉,Cr:AI2O3)、掺钛的磷酸盐玻璃(简称钕玻璃)、掺钛的忆铝石榴石(Nd: YAG、掺钛的铝酸忆(Nd: 丫ALO、掺钛的氟化忆锂(Nd: YLF)等多种。
它们发出激光的波长主要取决于掺杂离子,如掺铬的红宝石,室温下的工作波长为694. 3纳米,深红色;又如掺钕的多种晶体和玻璃,工作波长为1微米多,为近红外。
二、固体激光器的构造及原理:在固体激光器中,能产生激光的晶体或玻璃被称为激光工作物质。
激光工作物质由基质和激活离子两部分组成,基质材料为激活离子提供了一个合适的存在与工作环境,而由激活离子完成激光产生过程。
常用的激活离子主要是过渡金属离子,如铬、钻、镍等离子以及稀土金属离子,如钕离子等。
固体激光器主要由闪光灯、激光工作物质(如红宝石激光晶体)和反射腔镜片组成,反射镜表面镀有介质膜,一片为全反射镜,另一片为部分反射镜。
掺铬红宝石是一种最早发现和使用的激光工作物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型
约为(510) s。泵浦光愈强,短脉冲数目愈多,其包络峰值并不增加。
激
光 器
2. 转换效率
介
➢总体效率定义为激光输出与泵浦灯的电输入之比。对于连续激光器(用功率
绍
描述)和脉冲激光器(用能量描述)分别表示为:
t
Pout Pin
1
Pth Pin
21 p
Lcab1
cou
§5.1
固
t
Eout Ein
1
5.1.1 固体激光器的基本结构与工作物质
第 五 章
1.固体激光器基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成 的。图5-1是长脉冲固体激光器的基本结构示意图(冷却、滤光系统未画出)。
典 型 激 光 器 介 绍
§5.1
2.红宝石激光器
图5-1 固体激光器的基本结构示意图
➢红宝石是在三氧化二铝(A12O3)中掺入少量的氧化铬(Cr2O3)生长成的晶体。它 的吸收光谱特性主要取决于铬离子(Cr3+),如图5-2所示。它属于三能级系统,
图(5-5) Nd3+:YAG 的能级结构
体
激
光
器
上一页 回首页 下一页 回末页 回目录
5.1.2 固体激光器的泵浦系统
第 五 章
1. 固体激光工作物质是绝缘晶体,一般都采用光泵浦激励。目前的泵浦光源多为 工作于弧光放电状态的惰性气体放电灯。泵浦光源应当满足两个基本条件。
典 2. 常用的泵浦灯在空间的辐射都是全方位的,因而固体工作物质一般都加工成圆
固 体
相应于图5-3的简化能级模型
激 光
➢红宝石激光器的优点和主要缺点 。
器
上一页 回首页 下一页 回末页 回目录
5.1.1 固体激光器的基本结构与工作物质
第 五 章
1.固体激光器基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成 的。图5-1是长脉冲固体激光器的基本结构示意图(冷却、滤光系统未画出)。
Eth Ein
21 p
Lc
ab 1 cou
体
激
光
器
上一页 回首页 下一页 回末页 回目录
5.1.4 新型固体激光器
第 五
1. 半导体激光器泵浦的固体激光器
章
➢半导体激光器泵浦固体激光器与闪光灯泵浦固体激光器相比有其主要优点
典
➢半导体激光器泵浦固体激光器的结构,有如图(5-7)(a)所示的端泵浦方式和
型
图(5-7)(b)所示的侧泵浦方式。
激
光
器
介
绍
§5.1
图(5-7) 半导体激光器泵浦固体激光器的结构示意图
2. 可调谐固体激光器 ➢可调谐固体激光器主要有两类,一类是色心激光器,一类是用掺过渡族金属 离子的激光晶体制作的可调谐激光器。
固 体 激 光 器
上一页 回首页 下一页 回末页 回目录
5.1.4 新型固体激光器
型 柱棒形状,所以为了将泵浦灯发出的光能完全聚到工作物质上,必须采用聚光腔。
激 光
3.图(5-6)所示的椭圆柱聚光腔是小型固体激光器中最常采用的聚光腔,它的内表
器
面被抛光成镜面,其横截面是一个椭圆。
介 绍
4. 固体激光器的泵浦系统还要冷却和滤光。 常用的冷却方式有液体冷却、气体冷却和
传导冷却等,其中以液冷最为普遍。
典 型 激 光 器 介 绍
§5.1
2.红宝石激光器
图5-1 固体激光器的基本结构示意图
➢红宝石是在三氧化二铝(A12O3)中掺入少量的氧化铬(Cr2O3)生长成的晶体。它 的吸收光谱特性主要取决于铬离子(Cr3+),如图5-2所示。它属于三能级系统,
固 体
相应于图5-3的简化能级模型
激 光
➢红宝石激光器的优点和主要缺点 。
器
上一页 回首页 下一页 回末页 回目录
5.1.1 固体激光器的基本结构与工作物质
第
五
章
2.红宝石激光器
典
型
激
光
器
介
绍
§5.1
图(5-2) 红宝石中铬离子的吸收光谱
图(5-3) 红宝石中铬离子的能级结构固体激 Nhomakorabea光
器
上一页 回首页 下一页 回末页 回目录
5.1.1 固体激光器的基本结构与工作物质
第 五
5.泵浦灯和工作物质之间插入滤光器件滤 去泵浦光中的紫外光谱。
图(5-6) 椭圆柱聚光腔
固 体 激 光 器
§5.1
上一页 回首页 下一页 回末页 回目录
5.1.3 固体激光器的输出特性
第 五
1. 固体激光器的激光脉冲特性
章
➢一般的脉冲固体激光器产生的激光脉冲是由一连串不规则振荡的短脉冲(或
典
称尖峰)组成的,各个短脉冲的持续时间约为(0.11)m,各短脉冲之间的间隔
第 五
3. 高功率固体激光器
章
➢高功率固体激光器主要是指输出平均功率在几百瓦以上的各种连续、准连续
典
及脉冲固体激光器,它一直是军事应用和激光加工应用所追求的目标。
型 激
➢从二十世纪七十年代起开始研制的板条形固体激光器,就是针对克服工作物
光
质中的热分布及其引起的一系列如折射率分布、应力双折射等固有矛盾而提
器
出的一种结构方案,其结构如图(5-8)所示。
介
绍
§5.1
固
图(5-8) 板条形固体激光器结构示意图
体
激
光
器
上一页 回首页 下一页 回末页 回目录
3.掺钕钇铝石榴石(Nd3+:YAG)
章
➢工作物质:将一定比例的A12O3、Y2O3,和Nd2O3在单晶炉中进行熔化结晶而
典
成的,呈淡紫色。它的激活粒子是钕离子(Nd3+),其吸收光谱如图(5-4)所示
型
激
光
器
介
绍
§5.1
图(5-4) Nd3+:YAG 晶体的吸收光谱
固
➢YAG中Nd3+与激光产生有关的能级结构如图(5-5) 所示。它属于四能级系统。