博弈论的几个经典模型

合集下载

聊聊四种经典的博弈论模型

聊聊四种经典的博弈论模型

聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。

但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。

为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。

官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。

但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。

这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。

如此考虑,最终,两名犯人都会选择坦白交代。

上面的案例就是博弈论所说的“囚徒困境”。

犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。

囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。

虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。

2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。

为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。

于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。

如果二猪同时到食槽边,则吃食比是7:3。

这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。

上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。

博弈论3-4经典动态博弈模型

博弈论3-4经典动态博弈模型

3.4 几个经典动态博弈模型453.4.1 寡占的斯塔克博格模型46动态的寡头产量竞争博弈厂商1先选择,厂商2后选择。

21q q Q +=121111112)](8[)(q q q q q c Q P q u -+-=-=221222222)](8[)(q q q q q c Q P q u -+-=-=策略空间:[0,Q max ]中所有实数。

Q max 为不至于使价格降到亏本的最大限度的产量。

Q Q P P -==8)(价格函数:边际生产成本:无固定成本得益函数:221==c c 2121116q q q q u --=2221226q q q q u --=47两阶段动态博弈。

第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。

1 、第二阶段厂商2的选择目标:得益最大化。

求使自己得益最大化下的产量值,即最大化时的一阶条件:得益函数:2221226q q q q u --=用逆推归纳法进行分析:02602122=--⇒=∂∂q q q u 112213)6(21q q q -=-=求出厂商2对厂商1产量的反应函数:48两阶段动态博弈。

第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。

2 、第一阶段厂商1的选择。

用逆推归纳法进行分析:12213q q -=厂商1可直接求出使自己得益最大化时的产量:厂商1知道2的决策思路:直接将上式代入厂商1的得益函数,得到:2112111121*211*211213)213(66),(q q q q q q q q q q q q u -=---=--=3030*1*111=⇒=-⇒=∂∂q q q u厂商1的最佳产量是生产3单位。

将之代入厂商2的反应函数,得到厂商2的最佳产量5.15.13*2=-=q 此时市场价格为3.5,双方的得益别为4.5和2.25单位。

3*1=q 12213q q -=用逆推归纳法分析得出,该动态博弈的唯一的子博弈完美纳什均衡:厂商1在第一阶段生产3单位产量,厂商2第二阶段生产1.5单位产量。

博弈论的数学模型

博弈论的数学模型

博弈论的数学模型作者:竺可桢学院01混合班王大方何霈邹铭摘要博弈论现在得到了广泛的应用,涉及到人的决策问题都可以用博弈论的模型加以解释。

本文首先用数学的方法表述实际生活中的博弈行为,并导出一般情况下的博弈的结果,进而讨论一些不同的外部约束条件对博弈过程的影响。

我们用经济学中的垄断竞争现象作为博弈问题的一个实例,讨论生产者在不同状态下的决策,进而分析双方共谋的动机和可能性。

(一)基本博弈模型的建立一, 博弈行为的表述博弈的标准式包括:1.1.博弈的参与者。

2.2.每一个参与者可供选择的战略集。

3.3.针对所有参与者可能选择的战略组合,每一个参与者获得的利益在n人博弈中,用Si为参与者i的可以选择战略空间,其中任意一个特定的纯战略为s i,其中任意特定的纯战略为s i,s i∈Si,n元函数u i(s1,s2,……s n), 当n个博弈者的决策为s1,s2,……s n时,表示第I各参与者的收益函数。

二, 博弈的解当博弈进入一个稳定状态时,参与者选择的战略必然是针对其他参与者既定战略的最优反应,在此状态下没有人愿意单独背离当前的局势。

这个局势叫纳什均衡:在n个参与者标准式博弈,G={ S1,S2,……S n;u1,u2,……u n}中,若战略组合{s1*,s2*,……s n*}满足对每一个参与者i,s i*是针对{ s1*,s2*,……s i-1*,s i+1*……s n*}的最优反应战略,,目标战略组合{s1*,s2*,……s n*}为该博弈的纳什均衡。

即:u i { s1*,s2*,……s i-1*,s i*,s i+1*……s n*}≥u i { s1*,s2*,……s i-1*,s i,s i+1*……s n*},对一切s i∈Si均成立。

纳什于1950年证明在任何有限个参与者,且每个参与者可选择的纯战略为有限个的博弈中,均存在纳什均衡。

(包括混合战略)混合战略指认某种概率分布来取一个战略空间中的战略,在本文中不加讨论。

十大经典博弈论模型

十大经典博弈论模型

十大经典博弈论模型博弈论是一门研究决策者之间互动的学科,其应用范围广泛,涉及到经济、政治、生物学等领域。

在博弈论中,经典博弈论模型是基础和核心,以下是介绍十大经典博弈论模型:1. 囚徒困境博弈模型囚徒困境博弈模型是博弈论中最为著名的模型之一,也是最为典型的非合作博弈模型。

该模型主要讲述的是两个囚犯被抓后面临的选择问题,如果两个人都招供,那么都将受到较重的惩罚;如果两个人都不招供,那么都将受到轻微的惩罚;如果一个人招供而另一个人不招供,那么招供的人将受到宽大处理,而另一个人将受到较重的惩罚。

2. 零和博弈模型零和博弈模型是博弈论中最为简单的模型之一,其特点是参与者之间的利益完全相反,即一方获得利益就意味着另一方的利益受到损失。

在这种情况下,参与者之间的互动往往是竞争和对抗的。

3. 博弈树模型博弈树模型是一种用于描述博弈过程的图形模型,它可以清晰地展示出参与者在不同阶段的选择和决策,以及每个选择所带来的收益和风险。

4. 纳什均衡模型纳什均衡模型是博弈论中最为重要的概念之一,它指的是一个博弈中所有参与者都采取了最优策略的状态。

换句话说,如果所有参与者都遵循纳什均衡,那么任何一个人单方面改变策略都将无法获得更多的利益。

5. 最小最大化模型最小最大化模型是一种解决零和博弈问题的方法,其思想是在所有可能的情况中,选择让对手收益最小的情况,从而实现自己的最大化收益。

6. 帕累托最优解模型帕累托最优解模型是一种解决多人博弈问题的方法,其核心思想是通过合作和协商,使得所有参与者都能获得最大的收益,而不是只有某个人获得了最大的收益。

7. 博弈矩阵模型博弈矩阵模型是一种常用的博弈论分析工具,它可以清晰地展示出参与者在不同策略下的收益和风险,从而帮助参与者做出最优决策。

8. 拍卖模型拍卖模型是博弈论中的一个重要应用领域,其目的是通过竞价的方式,让参与者以最低的价格获得所需的商品或服务。

9. 逆向选择模型逆向选择模型是一种解决信息不对称问题的方法,其核心思想是通过知道对方的信息,来预测对方的行为和决策,从而做出最优策略。

博弈论在经济学中的应用

博弈论在经济学中的应用

博弈论在经济学中的应用在当今的经济学领域,博弈论已成为一个至关重要的分析工具。

它为我们理解经济现象、预测市场行为以及制定合理的经济策略提供了有力的理论支持。

博弈论的核心在于研究决策主体在相互作用时的决策以及这种决策所产生的均衡结果。

简单来说,就是当多个参与者在做决策时,他们的选择会相互影响,而博弈论就是帮助我们分析在这种情况下每个人可能采取的最优策略。

在经济学中,博弈论有着广泛的应用。

例如在寡头垄断市场中,少数几个大型企业占据了大部分市场份额。

这些企业在制定价格、产量等决策时,必须考虑竞争对手的反应。

假设市场上只有两家企业 A 和B,它们生产相似的产品。

如果A 企业决定降低价格以吸引更多客户,那么 B 企业可能会有几种选择:跟随 A 企业降价以保持市场份额;或者保持价格不变,试图通过产品质量或服务来吸引客户;亦或是提高价格,将自己定位为高端品牌。

A 企业在做决策时,就需要预测 B 企业的可能反应,并选择对自己最有利的策略。

这就是一个典型的博弈过程。

再来看国际贸易领域。

国家之间在制定贸易政策时,也存在着博弈。

假设两个国家 C 和 D,C 国考虑对 D 国的某种商品加征关税。

D 国可能会选择采取报复性措施,对 C 国的商品也加征关税,这可能导致双方的贸易战,两败俱伤;或者 D 国选择通过谈判来解决争端,寻求双方都能接受的贸易条件。

C 国在决定是否加征关税时,必须权衡各种可能的结果,并选择最符合自身利益的策略。

博弈论在劳动力市场中也发挥着重要作用。

雇主和雇员之间存在着一种博弈关系。

雇主希望以最低的成本雇佣到最优秀的员工,而员工则希望获得最高的薪酬和最好的工作条件。

在招聘过程中,雇主可能会提供不同的薪酬待遇和工作条件来吸引人才,而员工则会根据这些条件来决定是否接受这份工作。

同时,员工在工作中的表现也会影响雇主对其的评价和晋升决策,员工需要在努力工作和适当放松之间找到平衡,以实现自身利益的最大化。

除了上述领域,博弈论在公共政策的制定中也具有重要意义。

博弈论伯川德模型推导

博弈论伯川德模型推导

博弈论伯川德模型推导1. 博弈论简介说到博弈论,大家可能会想:“这是什么高大上的东西?”其实,博弈论就是研究决策的科学,简单来说,就是在竞争和合作的场合下,怎么做决策才能赢得最多的利益。

想象一下,几个小伙伴在一起打麻将,每个人都想赢,得时刻考虑其他人可能的动作和反应,这就是博弈论的基本思路。

那今天咱们就聊聊伯川德模型,听起来有点复杂,但其实它就像是个有趣的游戏。

1.1 伯川德模型概述伯川德模型(BurkovDear model)是博弈论中的一个经典模型,主要用于分析参与者在重复博弈中的策略选择。

它的核心思想是,参与者会根据之前的结果来调整自己的策略。

比如说,你和朋友一起打扑克,如果你发现朋友总是先出一张高牌,那你下次就得琢磨琢磨怎么应对,是不是该出个小牌试试?通过不断观察和调整,最终找到对策,嘿,赢的机会就大大增加了。

1.2 模型的基本假设在这个模型里,有几个基本的假设。

首先,参与者都是理性的,意味着他们会根据自己的利益最大化来做出决策。

想想啊,谁会自愿跳进火坑呢?其次,信息是对称的,所有参与者都能获得相同的信息。

这就像是你和朋友们都在同一桌子上,大家都能看到牌,只是看谁出牌更聪明。

最后,参与者之间存在着策略的可重复性,换句话说,他们可以根据之前的结果调整自己的行为。

这就好比,玩游戏的时候,你总会总结经验,下次再也不犯同样的错误。

2. 模型的推导过程接下来,我们就要进入推导过程了。

乍一看,推导可能有点晦涩,但其实只要耐心点,慢慢来,就能明白其中的奥妙。

2.1 基本方程式在这个模型中,参与者的收益可以用一个简单的方程表示。

假设有两个参与者A 和B,他们的收益分别是R_A和R_B。

根据博弈的不同阶段,他们的收益可以通过计算对手的策略来得出。

比如说,如果A选择合作而B选择背叛,那么A的收益会减少,B 的收益则会增加。

就像是一个你死我活的游戏,谁都想在最后成为赢家。

2.2 策略选择当我们分析参与者的策略选择时,通常会用“纳什均衡”这个概念。

博弈论思维模型

博弈论思维模型

博弈论思维模型引言:博弈论是研究决策制定和结果预测的数学模型。

它通过分析参与者之间的策略选择和收益关系,为我们理解人类决策提供了重要的思维模型。

本文将探讨博弈论思维模型的核心概念,并解读其在现实生活中的应用。

一、博弈论的基本概念1.1 策略与收益在博弈论中,参与者面临多种策略选择,并根据自身选择和其他参与者的选择获得相应的收益。

策略是参与者根据自身利益进行的决策,而收益则是这些决策所带来的结果。

1.2 纳什均衡纳什均衡是博弈论中的一个重要概念,指的是参与者在互相了解对方策略的情况下,无法通过改变自己的策略来获得更高收益的状态。

纳什均衡是一种稳定的策略选择,参与者在该状态下没有足够的动机改变策略。

1.3 零和博弈与非零和博弈零和博弈指的是参与者的收益总和为零,即一方的收益必然是另一方的损失。

非零和博弈则允许参与者在博弈过程中都能获得正向的收益。

这两种博弈模式在分析决策时需要考虑不同的因素。

二、博弈论在现实生活中的应用2.1 商业竞争中的策略选择博弈论在商业竞争中有广泛的应用。

企业在制定定价策略、市场拓展策略等方面都需要考虑竞争对手的策略选择和可能获得的收益,以达到自身利益最大化。

通过分析竞争对手的策略选择,企业可以制定出更具竞争力的策略,提高市场份额和利润。

2.2 政治决策的影响因素博弈论也可以用来分析政治决策中的各种因素。

政治家在制定政策时需要考虑到不同利益相关者的策略选择和可能获得的收益,以平衡各方利益并获得最大的政治支持。

通过博弈论的思维模型,政治家可以更好地预测和理解各方的行为,从而做出更明智的决策。

2.3 国际关系与战略决策博弈论在国际关系和战略决策中也有重要应用。

不同国家之间的政治、经济和军事行为都可以被视为一个复杂的博弈过程。

通过分析各方的策略选择和可能获得的收益,可以帮助国家制定更具战略性和长远眼光的决策,维护自身的国家利益。

三、博弈论思维模型的局限性虽然博弈论提供了一种强大的思维模型,但也存在一些局限性。

博弈论的几个经典模型

博弈论的几个经典模型

模型二、囚徒困境/非合作博 弈
囚徒困境可以用来说明许多现象。
寡头定价 拍卖出价 推销员的努力 政治上的讨价还价 军备竞赛等(冲突中出现两败俱伤的情况,
往往要考虑到囚徒困境)
*(纯策略)纳什均衡
问题与思考
• 什么是博弈论?试举两个你生活中的例子说明。
• 某年在荷兰召开了一次“合作及社会两难困境研讨 会”,与会者都是博弈论的专家。
基本术语
• 博弈涉及哪些内容呢?
博弈涉及至少两个独立的博弈参与者 (player)。
博弈涉及行动者存在着策略(strategy)选 择的可能,博弈论用策略空间来表示参与 者可以选择的策略。
参与者在不同策略组合下会得到一定的支 付(payoff)。
对于博弈参与者来说,存在着一博弈结果。
对于游戏设计者,这是一个最好的
模型二、囚徒困境/非合作博 弈
在博弈论中,含有占优战略均衡的 一个著名例子是由塔克给出的“囚徒困 境” (prisoners’dilemma)博弈模 型。该模型用一种特别的方式为我们讲 述了一个警察与小偷的故事。
模型二、囚徒困境/非合作博 假设:有两个小偷A弈和B联合犯事、私入
第四章 博弈论的几个经典模 型
讲授人 谭建国
引言
博 弈 论 又 被 称 为 对 策 论 ( Game Theory),按照2005年因对博弈论的贡献 而获得诺贝尔经济学奖的Robert Aumann 教授的说法,博弈论就是研究互动决策 的理论。所谓互动决策,即各行动方 (即局中人[player])的决策是相互影响 的,每个人在决策的时候必须将他人的 决策纳入自己的决策考虑之中,当然也 需要把别人对于自己的考虑也要纳入考 虑之中……在如此迭代考虑情形进行决

博弈论演讲稿范文

博弈论演讲稿范文

尊敬的各位领导、老师,亲爱的同学们:大家好!今天,我非常荣幸能在这里与大家分享关于博弈论的一些思考。

博弈论,作为一门研究具有冲突与合作的理性决策的学科,它在经济学、政治学、心理学等多个领域都有着广泛的应用。

今天,我将从以下几个方面来探讨博弈论的魅力。

一、博弈论的定义与起源博弈论,又称对策论,起源于20世纪初。

它是由数学家和经济学家共同创立的,旨在研究具有冲突与合作的理性决策问题。

博弈论的核心思想是,个体在决策时不仅要考虑自身利益,还要考虑其他参与者的行为和策略。

二、博弈论的基本要素博弈论包含以下基本要素:1. 参与者:博弈的参与者可以是个人、组织或国家等。

2. 行动:参与者可以选择的行动称为策略。

3. 信息:参与者掌握的信息会影响其决策。

4. 结果:根据参与者的策略和行动,博弈会产生一定的结果。

三、博弈论的经典模型博弈论中有许多经典的模型,如囚徒困境、纳什均衡、智猪博弈等。

这些模型揭示了人们在面对复杂决策时的心理和行为规律。

1. 囚徒困境:两个嫌疑人在被逮捕后,面临选择坦白或抵赖的困境。

如果两人都抵赖,则各判轻罪;如果一人坦白,另一人抵赖,则坦白者无罪,抵赖者被判重罪;如果两人都坦白,则各判重罪。

在这种情况下,双方的最佳策略是坦白。

2. 纳什均衡:在博弈中,如果所有参与者都采取对自己最有利的策略,且没有任何参与者有改进自己策略的动机,那么这种策略组合就是纳什均衡。

3. 智猪博弈:在一个猪圈里,有一头聪明的猪和一头笨拙的猪。

聪明的猪可以选择自己挤奶或让笨拙的猪挤奶。

如果聪明的猪自己挤奶,它会得到1单位的收益;如果让笨拙的猪挤奶,它会得到0.5单位的收益。

在这种情况下,聪明的猪会选择让笨拙的猪挤奶,自己享受剩余的奶。

四、博弈论的应用博弈论在现实生活中的应用非常广泛,如:1. 经济学:在市场竞争、价格谈判等领域,博弈论可以帮助企业制定合理的策略。

2. 政治学:在政治决策、选举策略等方面,博弈论可以指导政治家制定有效的政策。

博弈论简介

博弈论简介

双方都没有占优策略 存在两个稳定的状态(纳什均衡):(-1,1);(1,-1) 纳什均衡):( ,1);(1,):(- ;(1,
双方都避免两败俱伤,斗鸡博弈有两个纳什均衡, 双方都避免两败俱伤,斗鸡博弈有两个纳什均衡,一方 前进,另一方后退。由于有两个均衡点,结果无法预知。 前进,另一方后退。由于有两个均衡点,结果无法预知。 20世纪 年代苏美间的古巴导弹危机就是一个斗鸡博弈的 世纪60年代苏美间的古巴导弹危机就是一个斗鸡博弈的 世纪 很好例子 。 古巴导弹危机是冷战时期苏美之间最严重的一次危机, 古巴导弹危机是冷战时期苏美之间最严重的一次危机, 赫鲁晓夫1962年偷偷将导弹运到古巴对付美国,被美国 年偷偷将导弹运到古巴对付美国, 赫鲁晓夫 年偷偷将导弹运到古巴对付美国 U2飞机侦察到,美国派出携带核武器的战机、航母,威 飞机侦察到, 飞机侦察到 美国派出携带核武器的战机、航母, 胁苏联限期从古巴撤出导弹。苏美这两只大公鸡均在考虑 胁苏联限期从古巴撤出导弹。 进还是退? 进还是退? 战争的结果当然是两败俱伤, 战争的结果当然是两败俱伤,但任何一方退下来则是很 不光彩的事。博弈结果是苏联从古巴撤回了导弹, 不光彩的事。博弈结果是苏联从古巴撤回了导弹,做了丢 面子的“撤退的鸡” 而美国坚持了自己的策略, 面子的“撤退的鸡”,而美国坚持了自己的策略,做了 不退的鸡” 当然为了给苏联面子,同时也担心战争, “不退的鸡”。当然为了给苏联面子,同时也担心战争, 美国也从土耳其撤了一些导弹。 美国也从土耳其撤了一些导弹。
☺中国人研究博弈论是有优势的☺
三国演义》 孙子兵法》 三十六计》 《三国演义》、《孙子兵法》、《三十六计》、 厚黑学》都是博弈论教材, 《厚黑学》都是博弈论教材,如何在人与人的博 弈中取得成功。 弈中取得成功。

博弈论中的三个经济学模型

博弈论中的三个经济学模型
q1* = q2*= (a-c) /3 此时, u1*=u2*=(a-c)2 /9
考虑关系式:qi*= (a-c-qj*) /2 无论qj是否最优,由 qi= (a-c-qj) /2决定的qi总是 厂商i针对厂商j产出水平的最优反应;我们称 关系式qi= (a-c-qj) /2为厂商i针对厂商j的策略的 反应函数,并记为:qi*= Ri(qj)= (a-c-qj) /2.由此 NE( qi* , qj* )必须是方程组: q1= (a-c-q2) /2 q2= (a-c-q1) /2 的解。-------------------------反应函数法
q2 a-c
R1(q2) =(a-c- q2)/2
(a-c)/2 (a-c)/3 NE R2(q1)=(a-c- q1)/2 (a-c) 3 q1
0
(a-c) 2
a-c
(二)Bertrand Model of Duopoly
*两厂商决策的相互影响在于需求函数 Di(pi ,pj)=a- pi +b pj 两厂商的产品具有一定的差异性;b是厂商i 的产品对厂商j的产品的替代系数。 ●标准式表述 1、参与人:厂商1与厂商2;他们生产同类但 存在一定差异的产品。
2、他们选择价格,Si={pi: pi≥0}; 3、他们的支付函数就是他们的利润函数: ui= ui(pi,pj) 假定两厂商 =Di(pi ,pj) pi - Di(pi ,pj) c 均无固定成本, 只有常数边际 =(a- pi +b pj) (pi-c) 成本c。 厂商i的反应函数: a+c+bpj Ri(pj) = 2
Max ui(qi ,qj*) =Max [-q 2 +(a-c-q *)q ] i j i qi∈Si qi∈Si

博弈论的经典模型

博弈论的经典模型

博弈论的经典模型在自然界和人类社会中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论。

它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。

令人惊奇的是,有三次诺贝尔奖获得者是博弈论研究方面的杰出科学家,他们是1985年获得诺贝尔经济学奖的公共选择学派的领导者布坎南,1994年获奖的美国普林斯顿大学的纳什、塞尔屯、哈桑尼3位博弈论专家以及1995年获奖的理性主义学派的领袖卢卡斯。

博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。

进入20世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维、竞争与合作的模式。

博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。

博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。

博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。

为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和发展了许多博弈模型,比较著名的有三个模型:囚徒困境、"雪堆"博弈和"少数者"博弈模型,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家来了解博弈论及其应用概况。

斗鸡模型斗鸡博弈(Chicken Game).在西方,鸡是胆小的象征,斗鸡博弈指在竞争关系中,谁的胆小,谁先失败。

现在假设,有两个人要过一条独木桥,这条桥一次只能过一个人,两个人同时相向而进,在河中间碰上了。

这个博弈的结果第一种就是如果两个人继续前进,双方都会掉水里,双方丢面子,这是一种组合。

经济博弈大赛知识点总结

经济博弈大赛知识点总结

经济博弈大赛知识点总结一、博弈论基本概念1.博弈论的定义博弈论是研究决策者之间相互影响的一种数学分析方法。

在该理论中,参与者的每一种决策都会影响到其他参与者的收益,因此需要在多方利益中进行权衡和选择。

2.博弈论的基本概念(1)参与者:指参与决策的一方或多方。

(2)策略:指参与者的行动选择。

(3)效用:指参与者从某种行动选择中得到的收益。

(4)收益矩阵:指博弈过程中不同参与者在不同策略组合下得到的收益组合。

3.博弈论的基本分类(1)合作与非合作博弈:合作博弈是指参与者之间可以进行合作协商,共同选择最优策略;非合作博弈是指参与者之间没有合作协商,各自选择最优策略。

(2)零和博弈与非零和博弈:零和博弈是指参与者的利益总和为零,一方得利即另一方受损;非零和博弈是指参与者的利益总和不为零,可以互惠互利或共同受益。

二、博弈论的基本模型1.纳什均衡纳什均衡是指在博弈论中,参与者的策略选择达到一种平衡状态,任何一个参与者都没有动机改变自己的策略。

纳什均衡是博弈理论的核心概念,对于非合作博弈中的理性参与者来说,最终会达到纳什均衡状态。

2.囚徒困境囚徒困境是博弈论中的一个经典模型,描述了两名囚犯被捕后面临的选择。

在这种情况下,即使两名囚犯都采取自己最佳的策略,他们最终都会面临到一种不利的结果。

这个模型的实质是说明了在自利最大化的前提下,最终可能导致共同损失的结果。

3.拍卖博弈拍卖博弈是指卖家和买家之间进行的策略与竞争。

在这种场景下,卖家需要选择出售物品的方式,而买家需要决定出价的高低。

这种博弈的结构包括英国拍卖、封闭式拍卖、荷兰拍卖等不同的竞争方式。

4.博弈树博弈树是一种博弈模型的图形表示方式,以树状的形式展现参与者的策略选择和结果。

博弈树有助于分析博弈的决策过程和可能的结果,帮助参与者制定最优策略。

5.拉力博弈拉力博弈是指在博弈中的一种竞争形式,即参与者面对的是关于资源的竞争和纷争。

这种博弈模型常见于市场竞争和企业之间的竞争,对于提高市场份额和竞争力有重要意义。

博弈论模型精编版

博弈论模型精编版

博弈论模型集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-1.囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。

“囚徒困境”说的是两个囚犯的故事。

这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。

在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。

这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。

但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。

而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。

当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。

那么,这两个囚犯该怎么办呢是选择互相合作还是互相背叛从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。

但他们不得不仔细考虑对方可能采取什么选择。

A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。

这种想法的诱惑力实在太大了。

但他也意识到,他的同伙也不是傻子,也会这样来设想他。

所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。

而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。

所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。

企业在信息化过程中需要与咨询企业、软件供应商打交道的。

在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。

博弈论的几个经典模型课件

博弈论的几个经典模型课件

02
在这个模型中,如果双方都抵赖,则各自获得2年的监禁;如果双方都坦白,则 各自获得3年的监禁;如果一方坦白而另一方抵赖,则坦白的一方获得1年的监 禁,抵赖的一方获得10年的监禁。
03
囚徒困境反映了人类在有限理性和不完全信息下的决策问题。
囚徒困境的策略和最优解
01
02
03
在囚徒困境中,每个参 与者都有两种策略:坦
博弈论的发展趋势和应用前景
发展趋势
随着计算机科学的发展,博弈论在人工智能、机器学 习等领域的应用逐渐增多。同时,博弈论也在生物学 、环境科学、社会学等多个学科中得到广泛应用和发 展。未来,博弈论将继续探索更为复杂和现实的模型 ,以解释和预测更为复杂的行为和现象。
应用前景
博弈论在经济学、政治学、军事等领域有着广泛的应 用前景。例如,博弈论可以帮助理解国际贸易中的策 略行为、国际政治中的权力均衡以及军事战略中的最 优攻击策略等。此外,博弈论也在社交网络分析、市 场机制设计等领域展现出强大的应用潜力。
政治学中的应用
投票悖论
投票悖论是指在某些情况下,多数投票的结 果可能导致无法达成一致意见或产生不合理 的结果。在政治学中,投票悖论被用于探讨 民主制度的缺陷和改进方法。
权力均衡
权力均衡是一种政治博弈模型,它描述了政 治权力在多个参与者之间的分配和转移。在 政治学中,权力均衡被用于分析权力斗争、
政治制度稳定性和政策制定等问题。
纳什均衡模型被广泛应用于市场均衡、产业组织、公共经济学
等领域。
生物学
02
纳什均衡模型也被用于解释生物种群竞争、生态系统平衡等问
题。
社会学
03
纳什均衡模型可以用来分析社会现象,如犯罪、婚姻、教育等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不按(等待)
(9,-1)
(0,0)
大猪和小猪分别该如何选择。
博弈论的几个经典模型
模型一、智猪博弈/完全信息静态博弈
选择等待是小猪的占优策略。
大猪的最佳选择取决于小猪的行动,如果小猪 去按,大猪最好选择等待;如果小猪不去按, 则最佳选择是大猪亲自去按。 也就是说,在智猪博弈中,大猪没有占优策略, 而小猪有占优策略,它的最佳选择就是耐心 等待大猪去按钮,才能获得最佳结果。 “小猪躺着大猪跑”的现象是由于故事中的游 戏规则所导致的。规则的核心指标是:每次落 下的事物数量和踏板与投食口之间的距离。
学大辞典》“博弈论”辞条的看法,标准的
博弈论分析出发点是理性的,而不是心理的
或社会的角度。不过,近30年来结合心理学
和行为科学、实验经济学的研究成就而对博 弈 论 进 行 一 定 改 造 的 行 为 博 弈 论 (behavoiral game theory )也日益兴起。
博弈论的几个经典模型
失火了,你往哪个门跑——这就是博弈论
博弈论的几个经典模型
模型二、囚徒困境/非合作博弈


坦白 抵赖
坦白 (-8,-8) (-10,0)
抵赖 (0,-10) (-1,-1)
不难看出,“坦白”是任一犯罪嫌疑人的占 优战略,而(坦白,坦白)是一个占优战略 均衡。
博弈论的几个经典模型
模型二、囚徒困境/非合作博弈
对于两个犯罪嫌疑人总体而言,他们设想 的最好的策略可能是都不交代。但任何一个 犯罪嫌疑人在选择不交代的策略时,都要冒 很大的风险,一旦自己不交代而另一犯罪嫌 疑人交代了,自己就将可能处于非常不利的 境地。对于A而言,不管B采取何种策略,他的 最佳策略都是交代。对于B而言也是如此。最 后两人都会选择交代。
博弈论的几个经典模型
博弈的类型
根据参与者能否形成约束性的协议,以便 集体行动,博弈可分为合作性博弈和非合作 性博弈。纳什等博弈论专家研究得更多的是 非合作性博弈。 • 合作性博弈:是指参与者从自己的利益出发 与其他参与者谈判达成协议或形成联盟,其 结果对联盟方均有利; • 非合作性博弈:是指参与者在行动选择时无 法达成约束性的协议。人们分工与交换的经 济活动就是合作性的博弈,而囚徒困境则是 非合作性的博弈。
博弈论的几个经典模型
模型三、独立私人价值下的一级密 封拍卖/不完全信息静态博弈
• 海萨尼转换的具体方法
一个虚拟的参与人“自然”,自然首先决定参 与人的类型,赋予各参与人的类型向量 t,其 中 t (t1, t2 ,, tn ) ; 自然告知参与者自己的类型,却不告诉其他参 与者的类型; 参与者同时选择行动,每一参与者i 从可行集 Ai中 选择行动方案 ; 各方得到收益 Ai (a1, a2 ,, ai , ti ) 。
第四章 博弈论的几个经典模型
讲授人 谭建国
引言
博弈论又被称为对策论(Game Theory), 按照2005年因对博弈论的贡献而获得诺贝尔经 济学奖的Robert Aumann教授的说法,博弈论 就是研究互动决策的理论。所谓互动决策, 即各行动方(即局中人[player])的决策是相互 影响的,每个人在决策的时候必须将他人的 决策纳入自己的决策考虑之中,当然也需要 把别人对于自己的考虑也要纳入考虑之 中……在如此迭代考虑情形进行决策,选择 最有利于自己的战略(strategy)。
博弈论的几个经典模型
引言
你的选择必须考虑其他人的选择,而其 他人的选择也考虑你的选择。你的结果—— 博弈论称之为支付,不仅取决于你的行动选 择——博弈论称之为策略选择,同时取决于 他人的策略选择。你和这群人构成一个博弈 (game)。 上述博弈是一个叫张翼成的中国人在1997 年提出的一个博弈论模型,被称之为少数者 博弈或少数派博弈(Minority Game)。 生活中博弈的案例很多,你会见到很多 例子。只要涉及到人群的互动,就有博弈。
博弈论的几个经典模型
引言
博弈论的应用领域十分广泛,在经济学、 政治科学(国内的以及国际的)、军事战略问
题、进化生物学以及当代的计算机科学等领域
都已成为重要的研究和分析工具。此外,它还与
会计学、统计学、数学基础、社会心理学以及
诸如认识论与伦理学等哲学分支有重要联系。
博弈论的几个经典模型
引言
按照Aumann所撰写《新帕尔格雷夫经济
博弈论的几个经典模型
模型三、独立私人价值下的一级密 封拍卖/不完全信息静态博弈
• 什么是海萨尼转换? 海萨尼提出了一种处理不完全信息博弈的方 法,即引入一个虚拟的局中人——“自然”。 自然首先行动,它决定每个局中人的特征。 每个局中人知道自己的特征,但不知道别的 局中人特征。这种方法将不完全信息静态博 弈变成一个两阶段动态博弈,第一个阶段是 自然N的行动选择,第二阶段是除N外的局中 人的静态博弈。这种转换被称为“海萨尼转 换”,这个转换把“不完全信息”转变成为 完全但不完美信息,从而可以用分析完全信 息博弈的方法进行分析。
博弈论的几个经典模型
参考书
• 汪贤裕、肖玉明编著,博弈论及其应用,
科学出版社,2008年2月
• 潘天群著,博弈生存(第二版),中央编
译出版社,2004年10月
• 王春永编著,博弈论的诡计,中国发展出 版社,2007年1月
博弈论的几个经典模型
基本术语
• 博弈论研究的对象:是理性的行动者或参与 者如何选择策略或如何作出行动的决定。理 性的人是对现实的人的基本假定,即假定参 与者努力用自己的推理能力使自己的目标最 大化。“理性的”与“道德的”不是一回事, 理性的与道德的有时会发生冲突,但是理性 的人不一定是不道德的。
博弈论的几个经典模型
模型二、囚徒困境/非合作博弈
该博弈刻划了两大难题: • 冲突情形下,参与人的目标是什么?是采用(作 为个人)他自己的最好策略,还是采用(作为集 体的一员)他们共同的最好策略?前者导致均衡 策略(坦白,坦白),支付为(-8,-8);后者的最 好策略是(抵赖,抵赖),支付为(-1,-1)。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
博弈论的几个经典模型
模型二、囚徒困境/非合作博弈
在博弈论中,含有占优战略均衡的一个
著名例子是由塔克给出的“囚徒困境”
(prisoners’dilemma)博弈模型。该模型用 一种特别的方式为我们讲述了一个警察与小 偷的故事。
博弈论的几个经典模型
模型二、囚徒困境/非合作博弈
假设:有两个小偷A和B联合犯事、私入民宅被 警察抓住。警方将两人分别臵于不同的两个 房间内进行审讯,对每一个犯罪嫌疑人,警 方给出的政策是:如果一个犯罪嫌疑人坦白 了罪行,交出了赃物,于是证据确凿,两人 都被判有罪。如果另一个犯罪嫌疑人也作了 坦白,则两人各被判刑8年;如果另一个犯罪 嫌人没有坦白而是抵赖,则以妨碍公务罪(因 已有证据表明其有罪)再加刑2年,而坦白者 有功被减刑8年,立即释放。如果两人都抵赖, 则警方因证据不足不能判两人的偷窃罪,但 可以私入民宅的罪名将两人各判入狱1年。
博弈论的几个经典模型
博弈的类型
博弈又可分静态博弈和动态博弈。
• 静态博弈:指参与者同时采取行动,或者尽 管参与者行动的采取有先后顺序,但后行动 的人不知道先采取行动的人采取的是什么行 动。
• 动态博弈:指参与者的行动有先后顺序,并 且后采取行动的人可以知道先采取行动的人 所采取的行动。
博弈论的几个经典模型
博弈论的几个经典模型
引言
博弈论的出现只有60多年的历史。博弈 论的开创者为诺意曼与摩根斯坦,他们1944 年出版了《博弈论与经济行为》。博弈论天 才纳什(John Nash)的开创性论文《n人博弈 的均衡点》(1950)、《非合作博弈》(1951)等 等,给出了纳什均衡的概念和均衡存在定理。 今天博弈论已发展成一个较完善的学科。 博弈论对于社会科学有着重要的意义, 它正成为社会科学研究范式中的一种核心工 具,以至于我们可称博弈论是“社会科学的 数学”,或者说是关于社会的数学。
博弈论的几个经典模型
引言
什么叫博弈? 博弈的英文为game,我们一般将它翻译成“ 游戏”。而在西方,game的意义不同于汉语 中的游戏。在英语中,game即是人们遵循一 定规则下的活动,进行活动的人的目的是使 自 己 “ 赢 ” 。 奥 林 匹 克 运 动 会 叫 Olympic Games。在英文中,game有竞赛的意思,进 行game的人是很认真的,不同于汉语中游戏 的概念。在汉语中,游戏有儿戏的味道。因 此将关于game的理论,即game theory翻译成 博弈论或者对策论,是恰当的。
博弈论的几个经典模型
模型一、智猪博弈/完全信息静态博弈
例:猪圈里有两只猪,一只比较大,一只比较 小。猪圈狭长,猪食槽在一头,猪食按钮在 另一头,按一下会有10个单位的猪食落进槽 里。由于按钮和食槽距离较远,按按钮的体 力耗费相当于2个单位的食物。
小猪 大猪 按 按 (5,1) 不按(等待) (5,3)
博弈论的几个经典模型
模型二、囚徒困境/非合作博弈
囚徒困境可以用来说明许多现象。 寡头定价 拍卖出价 推销员的努力 政治上的讨价还价 军备竞赛等(冲突中出现两败俱伤的情况, 往往要考虑到囚徒困境) *(纯策略)纳什均衡
博弈论的几个经典模型
问题与思考
• 什么是博弈论?试举两个你生活中的例子说明。 • 某年在荷兰召开了一次“合作及社会两难困境研讨 会”,与会者都是博弈论的专家。 当大会结束之后,有两个学者,麦息克和路特提议 大家玩一个游戏。 他们将一个大信封拿出来,请在场的43位专家拿 出金钱装到这个信封里。如果到最后这信封里的钱 超过250元,麦息克和路特将自己掏腰包,退还 每人10元。不过,如果最后信封内的钱不足25 0元,就统统没收,大家拿不到半毛钱。 仔细想一想,如果你也在场,你会奉献多少钱呢?
相关文档
最新文档