初一数学月考模拟试卷
北师大版2024-2025学年七年级数学上册第一次月考模拟测试卷(一)(原卷版)
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________. 15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面). 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.。
2024-2025学年初中数学七年级上册第一次月考模拟卷含答案解析
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+− B. 11()23++ C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表:食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×;(3)115486812 −+×; (4)()()32482233−−−÷×−. 21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810×【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+− B. 11()23++ C. 11()23−− D. 1123 −+【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表:食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +> 【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B 的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×;(3)115486812 −+×; (4)()()32482233−−−÷×−. 【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+−36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511716046151216 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】解:通过比较第①、②、③的数据可知:第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:1.5+0.4=1.9(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
2024-2025学年第一学期七年级数学11月模拟测评卷(含答案)
2024-2025学年第一学期七年级数学11月模拟测评卷一.选择题(每题4分,共36分)1.以下各数是分数的是( )2.如果将气温上升6℃记作+6℃,那么气温下降4℃记作( )3.在数轴上,点M,N 所表示的数分别是4和-9,则线段MN 的长度为( )4.下列说法正确的是( )A.底数越大,幂就越大B.互为相反数的两个数的绝对值相等C.单项式的系数为-2D.多项式的二次项为5.下列计算正确的是( )6.七年级3班参加朗诵社团的学生有m 人,4班人数比3班的2倍少5人,则两个班参加朗诵社团的总人数为( )7.如果关于x,y 的多项式是三次三项式,则m 的值为( )3.-A 0.B 3.2.-C 5.D ℃4.+A ℃4.-B ℃2.-C ℃6.-D 9.A 4.B 5.C 13.D 32ab -15423-+-x x x 2x 189.=-a a A xy y x B 734.=+0.=--mn mn C ba b a b a D 222275.-=-52.-m A 53.-m B 5.-m C 53.+m D y y x m x m 5)2(22+--8.将多项式合并化简后,按字母a 降幂排列的结果是( )9.已知,则化简的结果是( )二.填空题(每题4分,共24分)10.气温从-6℃上升4℃后的温度是______.11.将84000000用科学记数法表示,结果是_______.12.按四舍五入法将9.0253精确到百分位的近似数是_______.13.“a 的相反数与b 的3倍的差”用代数式表示为_________.14.若单项式的同类项是,则m-2n 的值为________.15.如图长方形的长为2,宽为2-x,则该长方形的周长为_______.三.解答题(共5小题,共40分)16.(8分)计算2.A 2.-B 2.±C 1.D a a a a 3435232-+--a a a A 342.32-+-a a a B 342.23-++-432.23+-+-a a a C 32432.a a a D -+-31<<<n m n m m m -+-+-31n m A -.1.+-m n B 2.+-m n C 2.--m n D m y x 24-517y x n -)1(5)4(3)1(-⨯⨯-⨯-)8(2432(12)1)(2(7-÷--⨯+-17.(8分)化简18.(6分)先化简,再求值19.(6分)已知整式(1)化简M-3N.(2)若,求M-3N 的值.20.(6分)已知.(1)求a,b 的值.(2)化简,并求值.a a a a 6335)1(22--+xyx x xy 9764)2(+-+-.2,1)(3)35(2222=-=---y x xy y x xy y x ,其中.,2622ab a N ab a M -=-=0)2(12=-++b a 00,4,6<,>且ab b a b a +==b b a a 3)(25---21.(6分)飞机在无风状态下的航速为每小时m 千米,某飞机先顺风航行2小时,再逆风航行0.5小时,若风的速度为每小时n 千米,求飞机顺风航行和逆风航行的总路程.答案一.选择题1.C2.B3.D4.B5.D5.B 7.B 8.C 9.C二.填空题10.-211.12.9.0313.-a-3b14.-115.8-2x三.解答题16.计算17.化简7104.8⨯60)1(5)4(3)1(-=-⨯⨯-⨯-6381)8(2432(12)1)(2(7-=+-+-=-÷--⨯+-)(a a a a a a 326335)1(222-=--+xxy xy x x xy -=+-+-59764)2(18.(6分)先化简,再求值当x=-1,y=2时,原式=419.已知整式(1)(2)若,求M-3N 的值.当a=-1,b=2时,M-3N=3-2=120.(1)a=6,b=-4(2)当a=6,b=-4时,原式=18+4=2221.答:飞机顺风航行和逆风航行的总路程为2.5m+1.5n.)(3)35(2222xy y x xy y x ---22223335xy y x xy y x +--=yx 22=.,2622ab a N ab a M -=-=)(326322ab a ab a N M ---=-aba ab a ab a N M +=+--=-2223332630)2(12=-++b a ba b b a a -=---33)(25nm n m n m 5.15.2)(5.0)(2+=-++。
七年级数学第一次月考卷(人教版2024)(考试版)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.12024-的相反数是( )A .2024-B .12024C .12024-D .以上都不是2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .880.1610´B .98.01610´C .100.801610´D .1080.1610´3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤a -一定是负数,其中正确的个数是( )A .1B .2C .3D .44.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A .4.4mmB .4.5mmC .4.6mmD .4.8mm5.下列各组数相等的有( )A .()22-与22-B .()31-与()21--C .0.3--与 0.3D .a 与a 6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A . 1.4-B . 1.6-C . 2.6-D .1.67.观察下图,它的计算过程可以解释( )这一运算规律A .加法交换律B .乘法结合律C .乘法交换律D .乘法分配律8.如图,A 、B 两点在数轴上表示的数分别为a ,b ,有下列结论:①0a b -<;②0a b +>;③()()110b a -+>;④101b a ->-.其中正确的有( )个.A .4个B .3个C .2个D .1个9. 定义运算:()1a b a b Ä=-.下面给出了关于这种运算的几种结论:①()226Ä-=,②a b b a Ä=Ä,③若0a b +=,则()()2a a b b ab Ä+Ä=,④若0a b Ä=,则0a =或1b =,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32´方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66´方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第II 卷二、填空题(本题共6小题,每小题3分,共18分.)11.甲地海拔高度为50-米,乙地海拔高度为65-米,那么甲地比乙地 .(填“高”或者“低”).12.绝对值大于1且不大于5的负整数有 .13.若2(21)a -与23b -互为相反数,则b a = .14.电影《哈利•波特》中,小哈利波特穿越墙进入“394站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于23-,83处,2AP PB =,则P 站台用类似电影的方法可称为“ 站台”.15.若2a b c d a b c d +++=,则abcd abcd 的值为 .16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字 的点与数轴上表示2023的点重合.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.计算.(1)()()()()59463473---+--+(2)3112(3)(2)(4)(5)14263---+----18.计算:(1)134 2.5624æö´--+--ç÷èø;(2)()()241110.5233éù---´---ëû.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是3-.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4-,152,122-,| 1.5|-,( 1.6)-+.20.(1)已知5a =,3b =,且a b b a -=-,求a b -的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: ()a b x a b cd cd+-+++的值.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减5+2-4-13+6-6+3-(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.23.观察下列三列数:1-、3+、5-、7+、9-、11+、……①3-、1+、7-、5+、11-、9+、……②3+、9-、15+、-、……③+、21-、27(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;-,求k的值.(3)若在每行取第k个数,这三个数的和正好为10124.如图,数轴上有A ,B ,C 三个点,分别表示数208--,,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),24PQ MN ==,,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当20t =时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ PM =时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.。
江西省永修县2023-2024学年七年级下学期月考数学模拟试题(含答案)
江西省永修县2023-2024学年七年级下学期月考数学模拟试题考生须知:1.全卷满分120分,考试时间120分钟;2.试卷和答题卡都要写上班级、姓名;3.请将答案写在答题卡上的相应位置上,否则不给分。
一、单选题(本大题共6个小题,每小题3分,共18分)1.下列运算正确的是()A .B .C .D .22x x x ⋅=()325n n =623a a a ÷=()222xy x y =2.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上,如果,那120∠=︒么∠2的度数是( )第2题图A .15°B .20°C .25°D .30°3.下列说法中,正确的是()A .相等的角是对顶角B .两条直线被第三条直线所截,同位角相等C .在同一平面内,过一点有且只有一条直线垂直于已知直线D .一个锐角的补角等于该锐角的余角4.在同一平面内有三条直线a ,b ,c ,若,,则a 与c 的位置关系为()a b ⊥c b ⊥A .平行B .垂直C .相交D .以上都不对5.下列各式中,应用乘法公式计算正确的是()A .B .()()22x y y x y x ---=-()2221421a a a -=-+C .D .()()22224x y y x y x --=--()2239x x -=-6.如图,点E 在CD 延长线上,在①,②,③,④12∠=∠34∠=∠5B ∠=∠这些条件中,能判定的是( )180B BDC ∠+∠=︒AB CD ∥第6题图A .①②③B .②③④C .①③④D .①②④二、填空题(本大题共6个小题,每小题3分,共18分)7.如果一个角是30°,那么这个角的余角是.8.人体红细胞的直径约为0.0000077m ,用科学记数法表示为m .9.已知,,则的值为.24x =28y =2x y +10.将一长方形纸片如图所示的方式折叠,若,则.150∠=︒2∠=第10题图11.如果二次三项式可以化为完全平方式,则常数k 的值是.29x kx -+12.如图,有一张三角形纸片ABC ,,,D 是AC 边上一定点,过点80A ∠=︒60B ∠=︒D 将纸片的一角折叠,使点C 落在BC 的下方C '处,折痕DE 与BC 交于点E ,当AB 与∠C '的一边平行时,.'DEC ∠=第12题图三、解答题(本大题共5个小题,每小题6分,共30分.)13.计算:(1)木地板和地砖分别需要多少平方米?20.如图1是一个长为4a、宽为图1图2∥(1)试说明AB DG(1)根据上面各式的规律可得:(1);()()2311n x x x x x -++++= (2)根据(1)中规律计算的值;23202312222++++ (3)求的个位数字.2310013333++++ 六、解答题(本大题共12分)23.如图1,E 是直线AB ,CD 内部一点,,连接EA ,ED .AB CD ∥图1(1)若,,则°;20A ∠=︒40D ∠=︒AED ∠=(2)如图2,直接写出∠AED ,∠EAB ,∠EDC 之间的数量关系,并说明理由;图2(3)拓展应用:如图3,射线FE 与AB 、CD 分别交于点E 、F ,,a ,b ,c ,d AB CD ∥分别是被射线FE 隔开的4个区域(不含边界),P 是位于以上四个区域上的点,猜想:∠PEB ,∠PFC ,∠EPF 之间的数量关系(任写出两种答案,无需说明理由).图3备用七年级数学答案一、D C C A A B二、7.60°8.9.3210.65°11.12.100°或120°67.710-⨯6±三、13.(1)解:原式22512=⨯--=-(2)解:原式()()()2100110011003=+---()2210011006009=---+590=14.解:原式()()42345959x y xy x y =⋅-÷-()()5545459x y x y =-÷-5x=15.解:原式()()22224442x xy y x y y⎡⎤=++--÷⎣⎦()2422xy y y=+÷2x y=+将,代入原式.12x =1y =12122=⨯+=16.解:根据题意有:()24622a ab a a -+÷231a b =-+因此该长方形的周长为:()()223122431862a b a a b a b -++=-+=-+⎡⎤⎣⎦17.解:因为(已知)12∠=∠所以(内错角相等,两直线平行)DE BC ∥所以(两直线平行,同位角相等)A B DE ∠=∠又因为,所以(等量代换)3B ∠=∠3ADE ∠=∠所以(内错角相等,两直线平行)AB EF ∥18.解:(1)卧室的面积是:(平方米),()2424b a a ab -=厨房、卫生间、客厅的面积是:()()4242242811b a a a a b b a b ab ab ab ab⋅--+⋅-+⋅=++=(平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米;(2)(元)1143111223ab x ab x abx abx abx ⋅+⋅=+=即王老师需要花23abx 元.19.解:∵,,CM 平分∠BCEAB DE ∥70B ∠=︒∴,.()111805522BCM BCE B ∠=∠=︒-∠=︒70BCD B ∠=∠=︒∵90MCN ∠=︒∴35BCN ∠=︒∴35DCN BCD BCN B BCN ∠=∠-∠=∠-∠=︒20.(1)、①、②、写也可以,①②答案互换也可以.()24a b ab +-()2a b -()2b a -③、或或()()224a b a b ab +--=()()224a b a b ab +=-+()()224a b ab a b +-=-(2)、解:∵,7x y +=134xy =∴,()249x y +=413xy =∴()()224491336x y x y xy -=+-=-=当时,.x y >6x y -=当时,.x y <6x y -=-21.解:(1)、∵EF AD ∥∴23∠=∠又∵12∠=∠∴13∠=∠∴AB DG∥(2)、∵,AB DG ∥80BAC ∠=︒∴80DGC BAC ∠=∠=︒又∵180AGD DGC ∠+∠=︒∴180AGD DGC∠=︒-∠18080100=︒-︒=︒22.解:(1)、11n x +-(2)、原式()()2320232024211222221=-⨯+++++=- (3)、原式()()()231001011131133333122=⨯-⨯+++++=⨯- ∵的个位数字是3,减去1之后的个位数字是2,再除以2之后个位数字就是11013∴的个数数字就是1.2310013333++++ 23.解:(1)、60°(2)、360AED EAB EDC ∠+∠+∠=︒理由:过点E 作,因此.EF AB ∥EF AB CD ∥∥∴,180AEF EAB ∠+∠=︒180DEF EDC ∠+∠=︒∵AEF DEF AED∠+∠=∠∴180180360AED EAB EDC ∠+∠+∠=︒+︒=︒(3)、①、PFC PEB EPF∠=∠+∠②、PEB PFC EPF∠=∠+∠③、EPF PEB PFC∠=∠+∠④、360EPF PEB PFC ∠+∠+∠=︒。
初一月考试卷人教版2024湖北黄冈数学
初一月考试卷人教版2024湖北黄冈数学一、下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2(答案)B。
解析:正整数是大于0的整数,0不是正整数,-1是负整数,2是正整数但比1大,所以最小的正整数是1。
二、若a=3,b=2,则a加b的平方等于多少?A. 5B. 13C. 11D. 9(答案)B。
解析:根据题意,需要先计算b的平方,即2的平方等于4,然后再将a与b的平方相加,即3加4等于7加4等于13。
三、下列哪个选项表示的是互为相反数的两个数?A. 5和-5B. 5和5C. -5和-5D. 5和0(答案)A。
解析:互为相反数的两个数,它们的和等于0。
5和-5的和为0,所以它们互为相反数。
四、一个角的余角是这个角的补角的四分之一,求这个角的度数。
A. 30度B. 45度C. 60度D. 90度(答案)C。
解析:设这个角为x,则其余角为90-x,补角为180-x。
根据题意,90-x等于四分之一倍的180-x,解方程得x等于60度。
五、下列哪个选项的图形是轴对称图形?A. 等腰梯形B. 平行四边形C. 一般三角形D. 梯形(答案)A。
解析:轴对称图形是指沿一条直线折叠后,两边能够完全重合的图形。
等腰梯形有一条对称轴,沿此轴折叠后两边能够完全重合,所以它是轴对称图形。
六、小明有12本书,给了小红3本后,他还剩下多少本书?A. 6本B. 9本C. 12本D. 15本(答案)B。
解析:小明原来有12本书,给了小红3本后,他剩下的书为12减3等于9本。
七、下列哪个数不是质数?A. 2B. 3C. 4D. 5(答案)C。
解析:质数是只有1和它本身两个正因数的自然数,且必须大于1。
2、3、5都是质数,而4除了1和它本身外,还有2是它的因数,所以4不是质数。
八、若一个长方形的长为8厘米,宽为x厘米,且它的周长为20厘米,则x等于多少?A. 2厘米B. 3厘米C. 4厘米D. 6厘米(答案)A。
解析:长方形的周长等于两倍的长加两倍的宽,即2乘8加2乘x等于20,解方程得x等于2厘米。
2024—2025学年华东师大版七年级上册数学第一次月考模拟试卷
2024—2025学年华东师大版七年级上册数学第一次月考模拟试卷一、单选题1.2021-的相反数是()A .2021-B .2021C .12021D .12021-2.计算:﹣2﹣5的结果是()A .﹣7B .﹣3C .3D .73.在数2-,0,7.11-,π-,6+,59-中,负数有()A .1个B .2个C .3个D .4个4.飞机上升为正,下降为负.若原来飞机在距离地面10000米处,后来两次的活动记录分别为1000+米、1500-米,则现在飞机在距地面()米的位置.A .11000B .8500C .9500D .105005.已知||5a =,||4b =,且0a b +<,则a b -的值是()A .-9或-1B .-9或1C .9或-1D .9或16.下列说法错误的是()A .相反数等于本身的数只有0B .平方后等于本身的数只有0、1C .立方后等于本身的数是1±、0D .绝对值等于本身的数只有17.如果0a b ->,且0a b +<,那么一定正确的是()A .a 为正数,且||b a >B .a 为正数,且b a <C .b 为负数,且||b a >D .b 为负数,且b a<8.若a a =-,则a 是()A .0B .负数C .非正数D .非负数9.如果a b c 、、是非零有理数,且0a b c ++=,那么||||||||a b c abc a b c abc ++-的所有可能的值为()A .0B .1或1-C .0或2-D .2或2-10.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上画出一条长2020cm 的线段AB ,则线段AB 盖住的整点个数是()A .2020B .2021C .2020或2021D .2019或2020二、填空题11.郑州市冬季里某一天的气温为56- ℃℃,则这一天的温差是℃.12.已知202220210m n ++-=,则2023m n ++=.13.数字0.064精确到了位.14.若、b 互为相反数,c 、d 互为倒数,且2m =,则代数式()432022cd a b m -++的值为.15.A 、B 为同一数轴上两点,且3AB =,若点A 所表示的数是1-,则点B 所表示的数是.16.观察与思考:222211⨯=+,333322⨯=+,444433⨯=+,…若1010a ab b ⨯=+(a 、b 都是正整数)满足上述规律,则--=a b .三、解答题17.简便计算:(1)(﹣48)×0.125+48×()1154884+-⨯(2)(5319418-+)×(﹣36)18.把下列各数:2,0,3-,122,在数轴上表示出来,并按从小到大的顺序用“<”连接起来.19.现定义新运算“⊕”,对于任意有理数a ,b ,规定a b ab a b ⊕=+-.例如:1212121⊕=⨯+-=.(1)求3(4)⊕-的值;(2)求3)[(2)1](-⊕-⊕的值.20.有理数a 、b 在数轴上如图,(1)在数轴上表示a b --、;(2)试把a 、b 、0、a b --、这五个数按从小到大的顺序排列.(3)用>=、或<填空:||a a ,||b b .21.新郑大枣来啦!新郑大枣是河南的一大特产,现有30筐新郑大枣,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值/千克2.5-2- 1.5-013筐数/筐256458(1)这30筐大枣中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量比较,这30筐大枣总计多少千克?(3)若大枣每千克市场售价10元,现在由于要减少库存,厂家搞活动按八折出售,则这30筐大枣全部卖完可卖多少元?22.若有理数x 、y 满足5x =,2y =.(1)求x 与y 的值;(2)若x y x y -=-,求x y +的值,23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:111122334++⨯⨯⨯11111122334=-+-+-13144=-=.(1)猜想并写出:1(1)n n =+________.(2)直接写出结果:111112233420182019++++=⨯⨯⨯⨯ ___________.(3)计算111124466820182020++++⨯⨯⨯⨯ .24.我们知道,数轴上表示数a 的点A 和表示数b 的点B 之间的距离AB 可以用a b -来表示.例如:5-1表示5和1在数轴上对应的两点之间的距离.(1)在数轴上,A 、B 两点表示的数分别为a 、b ,且a 、b 满足21(4)0a b ++-=,则a =________,b =________,A 、B 两点之间的距离为________.(2)点M 在数轴上,且表示的数为m ,且147m m ++-=,求m 的值.(3)若点M 、N 在数轴上,且分别表示数m 和n ,且满足20222023m n --=,20242025n m ++=,求M 、N 两点的距离.25.已知:数轴上点A ,C 对应的数分别为a ,c ,且满足720a c ++-=,点B 对应的数为3-.(1)a =________,c =________.(2)若在数轴上有两动点P 、Q 分别从A ,B 同时出发向右运动,点P 的速度为2个单位长度/秒,点Q 的速度为1个单位长度/秒,求经过多长时间P ,Q 两点的距离为3.(3)若在数轴上找一个点P ,使得点P 到点A 和点C 的距离之和为15,请求出点P 所对应的值.(要求写详细解答过程)。
江苏省淮安市2024~2025学年七年级上学期第一次月考数学模拟卷
江苏省淮安市2024~2025学年七年级上学期第一次月考数学模拟卷一、单选题1.下列化简不正确的是( )A . 4.9 4.9--=()+B . 4.9 4.9-=-(+)C . 4.9[] 4.9--=+()+ D . 4.9[] 4.9-=+(+)+ 2.在22-,()22-,()2--,|2|--中,负数的个数是( )A .1个B .2个C .3个D .4个3.国家提倡“低碳减排”,湛江某公司计划在海边建能源发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示应为( )A .621310⨯B .721.310⨯C .82.1310⨯D .92.1310⨯ 4.有四包洗衣粉,每包以标准克数(500克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+6 B .-7 C .-14 D .+185.若4a -与3b +|互为相反数,则()1b a -+-的结果为( )A .6-B .7-C .8-D .9-6.若11111()1632375210++-÷=,则计算111180163()2375-÷++-的结果是( ) A .130- B .130 C .290- D .2907.如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示1-的点重合,将圆沿数轴向左无滑动地滚动一周,点A 到达点A '的位置,则点A '表示的数是( )A .21π-B .21π--C . 1π-D .1p -- 8.定义一种新运算“⊗”,规定:23a b a b ⊗=-等式右边的运算就是加、减、乘、除四则运算,例如:2(3)223(3)4913⊗-=⨯-⨯-=+=,122132264⊗=⨯-⨯=-=-.则()()132⎡⎤-⊗⊗-⎣⎦的值是( ).A .2-B .18-C .28-D .38-二、填空题9.比较大小:43-65-(填“>”、“<”或“=”). 10.113-的倒数是.11.绝对值大于2且小于5的所有整数的积是.12.数轴上,与表示−2的点的距离等于4的点表示的数是.13.已知,a b 互为倒数,,c d 互为相反数,1m =,且0m <,那么()()201320142015ab c d m --+-的值为.14.有一个直径为1的小圆可以在数轴上无滑动的滚动,小圆上的一点A 从数轴上表示3的点开始,沿数轴正方向滚动一周后这个点A 表示的数为.15.如图,按下面的程序计算,当输入4x =时,最后输出的y 的值是.16.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A '落在点B 的右边,并且3A B '=,则C 点表示的数是.三、解答题17.把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.+(﹣4),412,0,﹣|﹣2.5|,﹣(﹣3).18.把下列各数填在相应的大括号中:3228,, 2.8,,,0.003,0,100,6,2.11414141414,3.12112111287π⋅⋅⋅-+-⋅⋅⋅⋅-+⋅⋅⋅⋅⋅ 正数集合{ …}负数集合{ …}有理数集合{ …}无理数集合{ …}19.脱式计算,能简算的要简算:(1)9.43 2.88.67 3.2-+- (2)101313111177⨯+÷ (3)81122114053⎛⎫⨯+÷ ⎪⎝⎭ (4)4444442446688101012360+++++⋅⋅⋅+⨯⨯⨯⨯⨯ 20.若a 、b 、c 是有理数,2=a 、7b =、6c =,且a 、b 同号,b 、c 异号,a c >,求a b c ---的值.21.根据如图给出的数轴,解答下面的问题:(1)点A 表示的数是,点B 表示的数是.若将数轴折叠,使得A 与-5表示的点重合,则B 点与数表示的点重合;(2)观察数轴,与点A 的距离为4的点表示的数是:;(3)已知M 点到A 、B 两点距离和为8,求M 点表示的数.22.某模具厂规定每个工人每周要生产某种模具280个,平均每天生产40个;但由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小张的生产情况(超产记为正减产记为负):(1)根据记录的数据计算小张本周实际生产模具的数量;(2)该厂实行“每日计件工资制”.每生产一个玩具可得工资6元,若超额完成任务,则超过部分每个另奖4元;少生产一个则倒扣2元,那么小张这一周的工资总额是多少元? 23.探索规律:观察下面※由组成的图案和算式,解答问题:21342+==213593++==21357164+++==213579255++++==(1)请猜想135719++++⋅⋅⋅+=_________;(2)请猜想()135721n ++++⋅⋅⋅+-=_________;(3)请用上述规律计算:616365199+++⋅⋅⋅+的值.24.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向右移动3cm 到达B 点,然后再向右移动8cm 3到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =_______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ?(4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA CB -的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA CB -的值.。
七年级数学第一次月考卷02(考试版A4)【测试范围:人教版2024七上第一章~第二章】(人教版24)
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七上第一章~第二章。
5.难度系数:0.8。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( )A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( )A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A .1个B .2个C .3个D .4个a b c19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含。
2023-2024学年全国初中七年级下数学人教版模拟考试试卷(含答案解析)
20232024学年全国初中七年级下数学人教版模拟考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 2/3D. 1.52.下列各数中,是负数的是()A. 3B. 4C. 5/6D. 03.下列各数中,是正数的是()A. 3B. 0C. 2/3D. 44.下列各数中,是分数的是()A. 0B. 2C. 3/4D. 15.下列各数中,是正整数的是()A. 3B. 0C. 2/3D. 56.下列各数中,是负整数的是()A. 4B. 5C. 2/3D. 07.下列各数中,是正分数的是()A. 3/4B. 0C. 5/6D. 28.下列各数中,是负分数的是()A. 3/4B. 0C. 2/3D. 59.下列各数中,是零的是()A. 3B. 0C. 2/3D. 510.下列各数中,是自然数的是()A. 3B. 0C. 2/3D. 5二、填空题(每题2分,共20分)1.下列各数中,是整数的是__________。
2.下列各数中,是负数的是__________。
3.下列各数中,是正数的是__________。
4.下列各数中,是分数的是__________。
5.下列各数中,是正整数的是__________。
6.下列各数中,是负整数的是__________。
7.下列各数中,是正分数的是__________。
8.下列各数中,是负分数的是__________。
9.下列各数中,是零的是__________。
10.下列各数中,是自然数的是__________。
三、解答题(每题5分,共20分)1.解方程:2x + 3 = 7。
2.解方程:3x 2 = 5。
3.解方程:4x + 5 = 9。
4.解方程:5x 3 = 7。
四、应用题(每题10分,共20分)1.小明有5个苹果,小红有7个苹果,小华有3个苹果。
他们一共有多少个苹果?2.小明有3个苹果,小红有5个苹果,小华有7个苹果。
他们一共有多少个苹果?五、简答题(每题5分,共20分)1.简述整数的概念。
2024年江苏南京七年级数学下学期第一次月考模拟练习试卷
2024年江苏省南京市七年级数学下学期第一次月考模拟练习试卷
(测试内容:第7-8章满分:100分)
学校:___________姓名:___________班级:___________考号:___________
.如图所示的图案分别是四种汽车的车标,其中可以看作是由基本图案”经过平移得到的是(....
2.如图,∠1和∠2是同位角的图形有( )
A.1个B.2个C.3个D.4个
A.CF B.BE C.AD
第3题第6题
.下列运算中,正确的是()
∠的度数为.
则DAE
第12题第13题第14题
13.如图,将一副三角尺按如图所示的方式摆放,则∠AED的大小为
∠的度数为
52
∠=°.已知AM与CB平行,则MAC
BAC
图1 图2
条件的t的值为.
三、解答题(本大题10个小题,共68分.)
17.计算:
′′的面积为______.
AA B B
∴∥.(________________________
AD BC
20.如图,已知∥
DE AC,CD
(1)求证:CD EF
∥.
α
DC边上,且∠1=∠2.
(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.为。
人教版2024年七年级下册第一次月考数学模拟卷 含详解
人教版2024年七年级下册第一次月考数学模拟卷(范围:第5-7章满分120分)一.选择题(共10小题,满分30分,每小题3分)1.下列四个图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.2.下列各数中是无理数的是( )A.﹣1B.0C.D.3.143.点P(3,m2+1)位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等5.下列说法不正确的是( )A.±0.3是0.09的平方根,即B.=﹣C.的平方根是±9D.存在立方根和平方根相等的数6.如图,一辆汽车经过两次拐弯后,行驶方向与原来平行,若第一次是向左拐30°,则第二次拐弯的角度是( )A.右拐30°B.左拐30°C.左拐150°D.右拐150°7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.428.在平面直角坐标系中,点A(x,y),B(4,3),AB=4,且AB∥y轴,则A点的坐标为( )A.(4,7)B.(4,﹣1)C.(0,3),或(8,3)D.(4,7),或(4,﹣1)9.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为( )A.1个B.2个C.3个D.4个10.如图的象棋盘中,“卒”从A点到B点,规定只能向右和向上走,每次走一格,则不同的路径共有( )A.14条B.15条C.20条D.35条二.填空题(共6小题,满分24分,每小题4分)11.比较大小: 2(填“>”、“<”或“=”号).12.把命题“对顶角相等”改写成“如果…,那么…”形式为如果 ,那么 .13.第四象限内的点P(x,y)满足|x|=7,y2=9.则点P的坐标是 .14.一个实数的平方根为3x+3与x﹣1,则这个实数是 .15.已知AO⊥BO,DO⊥CO,∠AOD=4∠BOC,则∠AOD的度数为 .16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为 .三.解答题(共8小题,满分66分)17.(6分)解答下列问题:(1)计算:;(2)求出式子中x的值:(x﹣1)2﹣25=0.18.(6分)已知4x﹣37的立方根是3,求2x+4的平方根.19.(6分)如图,已知AB∥CD,∠A=140°,∠C=130°,求∠E的度数.20.(8分)请把下面证明过程补充完整.如图,已知AD⊥BC于点D,点E在BA的延长线上,EG⊥BC于点G,交AC于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC= °( ).∴AD∥EG( ).∴∠1=∠2( ),∠E=∠3( ).∵∠E=∠1(已知),∴∠2=∠ ( ).∴AD平分∠BAC( ).21.(8分)(1)已知a是的整数部分,b是的小数部分,求(﹣a)3+(b+3)2的值;(2)实数a在数轴上对应的位置如图,化简:.22.(10分)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A′B′C′,且点C的对应点坐标是C′.(1)画出△A′B′C′,并直接写出点C′的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P′,直接写出点P′的坐标;(3)求△ABC的面积.23.(10分)如图1,已知AD∥BC,∠B=∠D=120°.(1)求证:AB∥CD;(2)若点E,F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图2,求∠FAC的度数;(3)若点E在直线CD上,且满足∠EAC=∠BAC,求∠ACD:∠AED的值.(请自己画出正确图形,并解答)24.(12分)如图,在平面直角坐标系中,点A(a,0),点B(b,c),点C(0,c),其中a是算术平方根等于本身的正数,且,AB与y轴交于点E.(1)求点E的坐标;(2)如图2,点P为线段BC延长线上一点,连接OP,OM平分∠KOP,OM⊥ON,当点P运动时,∠OPC与∠MOC是否有确定的数量关系?写出你的结论并说明理由;(3)如图3,点G是线段AB上一点,点F是射线BS上一点,射线FH平分∠GFS,射线GT平分∠AGF,GQ∥FH,求的值.人教版2024年七年级下册第一次月考数学模拟卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.能通过其中一个四边形平移得到,不合题意;B.能通过其中一个四边形平移得到,不合题意;C.能通过其中一个四边形平移得到,不合题意;D.不能通过其中一个四边形平移得到,符合题意.故选:D.2.【解答】解:A、﹣1是有理数,不符合题意;B、0是有理数,不符合题意;C、是无理数,符合题意;D、3.14是有理数,不符合题意.故选:C.3.【解答】解:∵m2+1≥1,∴点P(3,m2+1)位于第一象限.故选:A.4.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.5.【解答】解:A、±0.3是0.09的平方根,即,该说法正确,故选项不符合题意;B、=﹣,该说法正确,故选项不符合题意;C、,9的平方根是±3,所以的平方根是±3,该说法不正确,故选项符合题意;D、0的立方根和平方根都是它本身,所有存在立方根和平方根相等的数,该说法正确,故选项不符合题意,故选:C.6.【解答】解:如图,延长AB到C,∵BD∥AE,∴∠CBD=∠BAE=30°,∴第二次拐弯的角度是右拐30°,故选:A.7.【解答】解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.8.【解答】解:∵AB∥y轴,∴A、B两点的横坐标相同,又∵AB=4,∴A点纵坐标为:3+4=7或3﹣4=﹣1,∴A点的坐标为:(4,7)或(4,﹣1).故选:D.9.【解答】解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选:C.10.【解答】解:如图所示,利用“标数法”可得:共35条路径,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵>,∴>2,故答案为:>.12.【解答】答案:两个角是对顶角;这两个角相等.解:“对顶角相等”改写成“如果……,那么……”的形式是“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.【解答】解:∵第四象限内的点P(x,y),∴x>0,y<0,∵|x|=7,y2=9,∴x=7,y=﹣3.故点P的坐标是:(7,﹣3).故答案为:(7,﹣3).14.【解答】解:根据题意得:①这个实数为正数时:3x+3+x﹣1=0,∴x=﹣,∴(x﹣1)2=,②这个实数为0时:3x+3=x﹣1,∴x=﹣2,∵x﹣1=﹣3≠0,∴这个实数不为0.故答案为:.15.【解答】解:由AO⊥BO,DO⊥CO,得∠AOB=∠COD=90°.由余角的性质,得∠AOC=∠BOD,由角的和差,得∠AOC+∠BOC+∠BOD=∠AOD,即2∠AOC+∠BOC=4∠BOC,解得∠AOC=∠BOC.由于角的定义,得∠AOC+∠BOC=90°,即∠BOC+∠BOC=90°,解得∠BOC=36°,∠AOD=4∠BOC=4×36°=144°,故答案为:144°.16.【解答】解:观察可得到第n列有(1+2+3+4+…+n)个点,当n=13时,有91个点.所以排到横坐标为13的点是第91个点横坐标为13的点最后一个是(13,0)∴(13,0)是第91个点∴可数得第100个点是(14,8);故答案为:(14,8).三.解答题(共8小题,满分66分)17.【解答】解:(1)=3+(﹣1)﹣3=﹣1;(2)(x﹣1)2﹣25=0,(x﹣1)2=25,x﹣1=±5,x=6或x=﹣4.18.【解答】解:由题意得:4x﹣37=33,4x﹣37=27,4x=64,解得x=16,∴2x+4=36,∴2x+4的平方根是±6.19.【解答】解:过点E作EF∥AB,如图:则EF∥AB∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°∴∠AEF=180°﹣∠A=40°,∠CEF=180°﹣∠C=50°,∴∠AEC=∠AEF+∠CEF=90°.20.【解答】解;∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直的定义).∴AD(同位角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等).∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:90;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;3;等量代换;角平分线的定义.21.【解答】解:(1)∵,∴的整数部分为3,的小数部分为,∴,∴;(2)由实数a在数轴上对应的位置可知,a<π,∴==.22.【解答】解:(1)如图,△A′B′C′即为所求,点C′的坐标(5,﹣2);(2)点P′的坐标(a+4,b﹣3);(3)△ABC的面积=5×5﹣3×52×52×3=.23.【解答】(1)证明:∵AD∥BC,∴∠A+∠B=180°,又∵∠B=∠D=120°,∴∠D+∠A=∠180°,∴AB∥CD.(2)解:∵AD∥BC,∠B=∠D=∠120°,∴∠DAB=60°,∵AC平分∠BAE,AF平分∠DAE,∴,,∴∠FAC=∠EAC+∠EAF==30°.(3)解:当点E在线段CD上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,∵∠EAC=,∴∠ACD:∠AED=2:3;当点E在线段DC的延长线上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,又∵,∴∠ACD:∠AED=2:1,综上,∠ACD:∠AED=2:1或∠ACD:∠AED=2:3.24.【解答】解:(1)∵a是算术平方根等于本身的正数,∴a=1,∵,∴b+2=0,c﹣3=0,∴b=﹣2,c=3,∴A(1,0),B(﹣2,3),C(0,3),连接OB,作BF⊥x轴于点F,∴BF=3,OA=1,BC=2,S△OAB=S△AOE+S△BOE,∴∴∴OE=1,∴E(0,1);(2)∵OM平分∠KOP,∴∠KOM=∠POM=α,∵OM=ON,∴∠MON=90°,∴∠PON=90°﹣α=∠AON,∵BC∥OA,∴∠OPC=∠POA=180°﹣2α,∠MOC=∠KOC﹣∠KOM=90°﹣α,∴∠OPC=2∠COM;(3)∵射线FH平分∠GFS,射线GT平分∠AGF,∴∠SFH=∠GFH=α,∠AGT=∠FGT=β,∵GQ∥FH,∴∠GFH+∠QGF=180°,∴∠QGF=180°﹣α,∴∠TGQ=∠QGF﹣∠FGT=180°﹣α﹣β,∵BC∥OA,∴∠ABC=∠KAB,由“U型”可得:∠KAB+∠AGF+∠SFG=360°,∴∠KAB=360°﹣2α﹣2β,即∠ABC=360°﹣2α﹣2β,∴.。
2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、选择题1. −4的倒数是( )A.14B.−14C.4D.−42. 下列各数中是有理数的是( )A.π2B.πC.12D.0.1010010001⋯3. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10∘C记作+10∘C,则−2∘C表示气温为( )A.零上8∘C B.零下8∘C C.零上2∘C D.零下2∘C4. −114的倒数乘14的相反数,其结果是( )A.5B.−5C.15D.−155. 在下列各数:−(+2),−32,(−13)4,−225,−(−1)2023,−∣−3∣中,负数的个数是( )A.2个B.3个C.4个D.5个6. 如图,数轴上A,B两点所表示的两数的关系不正确的是( )A.两数的绝对值相等B.两数互为相反数C.两数互为倒数D.两数的平方相等7. 已知点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为( )A.−2或1B.−2或2C.−2D.18. 已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b<0B.a<0,b>0C.a−b<0D.a,b异号,且负数的绝对值较大9. 式子∣x−1∣−3取最小值时,x等于( )A.1B.2C.3D.410. 已知a,b,c为非零的实数,且不全为正数,则a∣a∣+ab∣ab∣+ac∣ac∣+bc∣bc∣的所有可能结果的绝对值之和等于( )A.4B.6C.8D.10二、填空题11. 南海海域面积约为3500000 km2,该面积用科学记数法应表示为km2.12. 用>,<,=号填空.−(+34)−∣−23∣,−227−3.14,−(−0.3)∣−13∣.13. 近似数2.30万精确到位.14. 若a,b互为相反数,c,d互为倒数,则a+b2+2cd=.15. 你会玩“二十四点”游戏吗?现有“2,−3,−4,5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):=24.16. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,得到的结果依次是−2,−3,3,5,从轻重的角度看,最接近标准的工件是第个.17. 点M表示的有理数是−1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.18. 如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出12+14+18+⋯+126的值.三、解答题(共5题)19. 观察下列各数,按要求完成下列各题5,−12,(−2)2,−5,∣−1.5∣,+(−2),0,−∣−0.5∣,−(−72)2(1) 将下列各数填在相应的括号里.整数集合:{ };分数集合:{ };正数集合:{ };负数集合:{ }.(2) 在数轴上表示出所有的分数.(3) 用“<”把各负数连接起来.20. 计算.(1) −20−(+14)+(−18)−(−13).(2) (14+16−12)×(−12).(3) −12024−6÷(−2)×∣−13∣.(4) [2−(1−0.5×23)]×[7+(−1)3].21. 阅读材料:计算 130÷(23−110+16−25).分析:利用通分计算 23−110+16−25 的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数是: =(23−110+16−25)÷130=(23−110+16−25)×30=23×30−110×30+16×30−25×30=10.故 原式=110.请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23).22. 某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5,+6.(1) 养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2) 养护过程中,最远处离出发点有多远?(3) 若汽车耗油量为 0.5 升/千米,则这次养护共耗油多少升?23. 如图,数轴上A,B两点分别对应有理数a,b;A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,如:∣5−(−2)∣实际上可理解为数轴上表示5与−2的两点之间的距离.利用数形结合思想回答下列问题.(1) ∣8−(−1)∣=.(2) 写出所有符合条件的整数x,使∣x+2∣+∣x−1∣=3成立.(3) 根据以上探索猜想,对于任何有理数x,∣x−3∣+∣x−8∣是否有最小值?如果有,指出当x满足什么条件时∣x−3∣+∣x−8∣取得最小值,并写出最小值,如果没有,请说明理由.答案一、选择题1. B2. C3. D4. C5. C6. C7. A8. D9. A10. C二、填空题11. 3.5×10612. <;<;<13. 百14. 215. 答案不唯一16. 117. −6或418. 6364三、解答题19.(1) 5,−12,(−2)2,+(−2),0;−5,∣−1.5∣,−(−72);25,(−2)2,∣−1.5∣,−(−72);−12,−52,+(−2),−∣−0.5∣(3) ∵∣−12∣=1,∣−52∣=52,∣+(−2)∣=2,∣−∣−0.5∣∣=0.5,∴∣−∣−0.5∣∣<∣−12∣<∣+(−2)∣<∣−52∣,∴−∣−0.5∣>−12>+(−2)>−52,∴−52<+(−2)<−12<−∣−0.5∣.20.(1) 原式=−20−14−18+13=−39.(2) 原式=−3−2+6=1.(3) 原式=−1+3×13=−1+1=0.(4) 原式=(2−1+13)×6=6+2=8.21. 原式的倒数是:(1 12−316+524+23)÷148=(112−316+524+23)×48 =4−9+10+32=37.故原式=137.22.(1) 17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米).答:养护小组最后到达的地方在出发点的北方距出发点5千米.(2) 第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5.答:最远距出发点17千米.(3) (17+∣−9∣+7+∣−15∣+∣−3∣+11+∣−6∣+∣−8∣+5+6)×0.5=87×0.5=43.5(升).答:这次养护共耗油43.5升.23.(1) 9(2) ∵∣x+2∣+∣x−1∣=3,∴x=−2,−1,0,1.(3) 对于任何有理数x,∣x−3∣+∣x−8∣有最小值.当3≤x≤8时,原式可以取得最小值,最小值为5.。
2024七年级上册数学月考试卷
2024七年级上册数学月考试卷一、选择题(每题3分,共30分)1. -5的相反数是()A. 5B. -5C. (1)/(5)D. -(1)/(5)2. 下列四个数中,最小的数是()A. 0B. -1C. 2D. -3.3. 计算:(-2)+3的结果是()A. -1B. 1C. -5D. 5.4. 化简:3x - 2x的结果是()A. xB. 5xC. -xD. 1.5. 单项式-(2)/(3)xy^2的系数是()A. -(2)/(3)B. (2)/(3)C. -2D. 2.6. 若a = 3,b=-2,则a + b的值为()A. 1B. -1C. 5D. -5.7. 把方程2x - 1 = 3x + 2移项后,正确的是()A. 2x+3x = 2 + 1B. 2x - 3x=2 - 1C. 2x - 3x = 2+1D. 2x+3x = 2 - 18. 一个数的绝对值是5,则这个数是()A. 5B. -5C. ±5D. (1)/(5)9. 若x = 3,y = 2,且x< y,则x + y的值为()A. 1或5B. -1或 - 5C. -1或1D. -5或 - 1。
10. 某商品原价为a元,打八折后的价格是()A. 80%a元B. (1 - 80%)a元。
C. (a)/(80%)元D. (a)/(1 - 80%)元。
二、填空题(每题3分,共15分)11. 比较大小:- (3)/(4)___-(4)/(5)(填“>”或“<”)。
12. 地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示为___。
13. 若3x^m + 1y^2与x^3y^n是同类项,则m + n的值为___。
14. 当x =___时,代数式2x - 1的值为3。
15. 若a - 1+(b + 2)^2=0,则a + b的值为___。
三、解答题(共55分)16. (8分)计算:(1) (-12)-(-20)+(-8)-15(2) (-(3)/(4))×(-1(1)/(2))÷(-2(1)/(4))17. (8分)化简求值:已知A = 3x^2-2xy + y^2,B = x^2+xy - 2y^2,求A - 2B的值,其中x = -1,y = 2。
模拟卷七年级上册秋季数学第三次月考模拟考试试卷人教版2024—2025学年
模拟卷七年级上册秋季数学第三次月考模拟考试试卷人教版2024—2025学年第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.如果将向东行驶3km记作+3km,那么向西行驶2km应记作()A.+2km B.﹣2km C.+3km D.﹣3km2.已知水星的半径约为24400000米,用科学记数法表示为()米.A.0.244×108B.2.44×106C.2.44×107D.24.4×1063.下列各组式子中,是同类项的是()A.3x2y与﹣3xy2B.3xy与﹣2yxC.2x与2x2D.5xy与5yz4.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2B.系数是,次数是2C.系数是﹣2,次数是3D.系数是﹣,次数是35.已知关于x的方程3x+2a=2的解是x=a﹣1,则a的值是()A.1B.C.D.﹣16.下列去括号与添括号变形中,正确的是()A.2a﹣(3b﹣c)=2a﹣3b﹣c B.3a+2(2b﹣1)=3a+4b﹣1C.a+2b﹣3c=a+(2b﹣3c)D.m﹣n+a﹣b=m﹣(n+a﹣b)7.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①a>0>b;②|a|>|b|;③ab>0;④a+b<a﹣b.A.①②B.①④C.②③D.③④8.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空:二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.4(x﹣1)=2x+8B.4(x+1)=2x﹣8C.+1=D.+1=9.若关于x的方程的解是正整数,且关于y的多项式(a﹣2)y2+ay﹣1是二次三项式,那么所有满足条件的整数a的值之和是()A.1B.3C.5D.710.如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,按此规律排列下去,若第n个图案由1234个基础图形组成,则n的值为()A.411B.412C.413D.414二、填空题(6小题,每题3分,共18分)11.若5x2﹣x﹣7=0,则代数式3﹣2x+10x2的值为.12.比较大小:﹣﹣.13.已知A、B、C是数轴上的三个点,点A、B表示的数分别是1和3,且BC=3AB,则点C表示的数是;14.若关于m的多项式2m|n﹣1|+(2n﹣8)m﹣7是三次三项式,则n=.15.某商场A种中高档玩具每件的进价为50元,B种玩具每件的进价为40元,若该商场同时购进A、B两种玩具共50件,恰好总进价为2100元,则这次购进A种玩具件.16.如果a,b为定值,关于x的一次方程,无论k为何值时,它的解总是1,则6a+b=.第II卷模拟卷七年级上册秋季数学第三次月考模拟考试试卷人教版2024—2025学年姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:(1)8x﹣3(3x+2)=6;(2);18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.已知方程(1﹣m2)x2﹣(m+1)x+8=0是关于x的一元一次方程.(1)求m的值及方程的解.(2)求代数式5x2﹣2(xm+2x2)﹣3(xm+2)的值.20.已知:A=2ab﹣a,B=﹣ab+2a+b.(1)计算:5A﹣2B;(2)若5A﹣2B的值与字母b的取值无关,求a的值.21.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.22.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在第一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.23.已知,有7个完全相同的边长为m、n的小长方形(如图1)和1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.(1)当m=5,n=2时,大长方形的面积为;(2)请用含m,n的代数式表示下面的问题:大长方形的长:;阴影A的面积:;阴影B的周长;(3)请说明阴影A与阴影B的周长的和与m的取值无关.24.一般情况下,对于数m和n(mn≠0),(≠表示不等号),但是对于某些特殊的数m和n(mn≠0),能使等式成立,我们把这些特殊的数m和n称为等式的“分型数对”,记作〈m,n〉.例如当m=1,n=﹣4时,有,那么〈1,﹣4〉就是等式“分型数对”.(1)〈﹣2,6〉,〈5,﹣20〉可以称为等式“分型数对”的是;(2)如果〈2,x〉是等式的“分型数对”,求x的值;(3)若〈a,b〉是等式的“分型数对”(ab≠0),求代数式(6a+3b ﹣3)﹣(b﹣2a﹣1)的值.25.如图点A、B在数轴上分别表示有理数a、b,且(a+2)2+|b﹣4|=0.请回答以下问题:(1)点A表示的数为,点B表示的数为,A,B中点对应的数为.(2)若点C对应的数为﹣3,只移动C点,要使得A,B,C其中一点到另两点之间的距离相等,请写出所有的移动方法.(3)若点P从A点出发,以每秒3个单位长度的速度向左做匀速运动,点Q 从B出发,以每秒5个单位长度的速度向左做匀速运动,P,Q同时运动,设运动时间为t秒,则:①当t为何值时,点P和点Q重合?②当t为何值时,P,Q之间的距离为3个单位长度?。
人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷
人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷选择题(每题只有一个正确选项,每小题3分,满分36分)1.下列四个有理数中,最小的是()A.﹣(﹣4)B.|﹣2|C.0D.﹣32.70000000用科学记数法表示为()A.7×107B.70×107C.0.70×108D.7×1083.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃4.某中学开学后购买了一批篮球,随机检测了4个,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最不接近标准的球是()A.B.C.D.5.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则9a=4bC.若3a=2b,则3a﹣5=2b﹣5D.若3a=2b,则6.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()A.2B.1C.0D.﹣17.下列去括号正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣4y)=﹣2x+4yC.+(﹣m+2)=﹣m+2D.x﹣(y﹣1)=x﹣y﹣18.点M在数轴上距原点6个单位长度,将M向右移动2个单位长度至N点,点N表示的数是()A.8B.﹣4C.﹣8或4D.8或﹣49.当x=1时,代数式ax5+bx3+cx+1值为2024,则当x=﹣1时,代数式ax5+bx3+cx+1值为()A.﹣2022B.﹣2021C.2024D.﹣202410.苯是一种石油化工基本原料,其产量和生产的技术水平是一个国家石油化工发展水平的标志之一,如图,小明用9根相同的木棒搭建的第1个图形就是类似于苯的结构简式,他继续用相同的木棒搭建与苯有关联的各个图形,按此规律,用含n的式子表示搭建第n (n为正整数)个图形所需木棒的根数()A.10n+1B.8n+1C.6n+1D.4n+1二、填空题(6小题,每题3分,共18分)11.比较大小:﹣﹣.12.若2a m b与是同类项,则m+n=.13.已知(m﹣1)x|m|﹣1=0,是关于x的一元一次方程,那么m=.14.若代数式x2﹣3kxy+y2﹣9xy+9不含xy项,则k的值为.15.若代数式4x﹣5与3x﹣9的值互为相反数,则x的值为.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出五张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.第II卷人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:(1)(﹣20)+(+3)﹣(+7)﹣(﹣5);(2).18.解方程.(1)x+7=3﹣3x;(2).19.先化简,再求值:3(m2﹣2mn﹣n2)﹣(3m2﹣2mn﹣3n2),其中,n=﹣4.20.已知关于x的方程(m+2)x|m|﹣1+8n=0是一元一次方程.(1)求m的值;(2)若该方程的解与关于x的方程的解相同,求n的值.21.若A=x2﹣3x+6,B=5x2﹣x﹣6.(1)请计算:A﹣2B;(2)求当x=﹣2时,A﹣2B的值.22.已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.23.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B 零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?24.我们规定,若关于x的一元一次方程ax=b(a≠0)的解为x=a﹣b,则称该方程为“有趣方程”.例如,2x=的解为x=,而2﹣,则该方程2x=就是“有趣方程”.请根据上述规定解答下列问题:(1)若关于x的一元一次方程﹣2x=c是“有趣方程”,则c=.(2)若关于x的一元一次方程3x=a﹣ab(a≠0)是“有趣方程”,且它的解为x=a,求a、b的值.(3)若关于x的一元一次方程x=3m﹣mn和关于y的一元一次方程﹣3y=mn﹣2n都是“有趣方程”,求代数式2(mn﹣3n)+(27m﹣6mn)﹣3的值.25.已知:关于x,y的多项式﹣24xy3﹣xy+2nxy3+nx2y2+3mx2y2﹣y不含四次项.数轴上A、B两点对应的数分别是m、n.(1)点A表示的数为;点B表示的数为;(2)如图1,线段CD在线段AB上,且CD=4,点M为线段AD的中点,若AM=BD,求点C表示的数;(3)如图2,在(2)的条件下,线段CD沿着数轴以每秒2个单位长度的速度向右运动,同时点Q从B点出发,以每秒4个单位长度的速度向左运动,是否存在时间t,使AM﹣DC=BC,若存在,求出C点表示的数;若不存在,说明理由.。
人教版2024—2025学年七年级上学期数学第一次月考模拟试卷
人教版2024—2025学年七年级上学期数学第一次月考模拟试卷(考试考查范围:有理数、有理数运算、代数式、整式的加减) 姓名:____ 学号:_____ 座位号:______ 准考证号:______ 考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、﹣2024的绝对值等于( ) A .2024B .﹣2024C .20241D .±20242、我国是最早使用负数的国家,如果盈利20元记作“+20元”,那么亏损30元记作( ) A .﹣30元B .30元C .50元D .﹣50元3、一实验室检测A ,B ,C ,D 四个元件的质量(单位:g ),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .4、下列各对数中,互为相反数的是( ) A .﹣(+5)与+(﹣5) B .与﹣(+0.5) C .﹣|﹣0.01|与﹣(﹣)D .与0.35、若|m ﹣2|+(n ﹣3)2=0,则(m ﹣n )2024的值是( ) A .﹣1B .1C .2023D .﹣20236、下列说法中,正确的是( )A .正整数和负整数统称整数B .整数和分数统称有理数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数7、若3a﹣2b=6,则代数式9a﹣6b﹣10的值是()A.﹣4B.4C.﹣8D.88、如果点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O9、若﹣1<m<0,m、m2、的大小关系是()A.B.C.D.10、a、b、c是有理数且abc<0,则++的值是()A.﹣3B.3或﹣1C.﹣3或1D.﹣3或﹣1二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.(填“>”、“<”或“=”)12、若3a n+1b2与a3b m+3的差仍是单项式,则m﹣n=.13、某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是元.14、把数2024.09精确到十分位是.15、已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2﹣+x=.16、如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,按此规律排列下去,若第n个图案由1234个基础图形组成,则n的值为三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1)|﹣27|﹣(﹣12)+11;(2)﹣(﹣2)2﹣3÷(﹣1)3+(﹣2)3×(﹣3)2;18、化简:(1)6a2+2a+3﹣5a2﹣2a﹣2;(2)3x﹣[5x﹣2(x﹣4)].19、先化简,再求值:2m2n﹣[6mn﹣2(4mn﹣2n2)﹣m2n]+3n2,其中m=﹣2,n=﹣1.20、甲三角形的周长为3a2﹣6b+10,乙三角形的第一条边长为a2﹣2b,第二条边长为a2﹣3b,第三条边比第二条边短a2﹣2b﹣4.(1)求乙三角形第三条边的长;(2)甲、乙两个三角形的周长哪个大?请说明理由;21、已知有理数x、y满足|x|=9,|y|=5.(1)若x<0,y>0,求x+y的值;(2)若|x+y|=x+y,求x﹣y的值.22、已知关于x的多项式2mx3﹣2x2+3x﹣(2x3+nx)不含三次项和一次项,求(m﹣n)3的值.23、(1)已知|x﹣5|+|y+4|=0,则x=,y=;(2)已知a、b互为相反数,|c﹣2024|=2024a+2024b,求a+b+c的值.24、定义新运算:X⊕Y=X﹣2Y.(1)计算(﹣2)⊕4的值;(2)当X=﹣a2﹣2ab+3b,Y=a2﹣ab﹣b,化简X⊕Y;(3)若|a+1|+(b﹣2)2=0.求第(2)问中X⊕Y的值.25、如图,在数轴上点A表示数a,点B表示数b,且(a+5)2+|b﹣16|=0.(1)填空:a=,b=;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3)若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD﹣5AD的值始终是一个定值,求此时m的值.。
2024—2025学年湘教版七年级上册数学第一次月考模拟试卷
2024—2025学年湘教版七年级上册数学第一次月考模拟试卷一、单选题1.2024的倒数是( ) A .12024B .12024-C .2024D .2024-2.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行10000000000次运算,它工作2024秒可进行的运算次数用科学记数法表示为( ) A .140.202410⨯B .1220.2410⨯C .132.02410⨯D .142.02410⨯3.在3.5-,227,7π,0,0.121121112L (每两个2之间依次增加一个1)中,有理数有( )个. A .1B .2C .3D .44.《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入150元记作150+,则30-元表示( ) A .收入30元B .收入60元C .支出60元D .支出30元5.下列各对数互为相反数的是( ) A .(8)--与(8)++ B .(8)-+与|8|+-C .(8)-+与|8|--D .|8|--与(8)+-6.在有理数-4,0,-1,3中,最小的数是( ) A .-4B .0C .-1D .37.下列算式正确的是( ) A .()033--= B .()1459--=- C .()()336---=-D .()5353-=--8.图中所画的数轴,正确的是( ) A .B .C .D .9.有理数a ,b 在数轴上的位置如图所示,则下列各式:①a +b >0;②a ﹣b >0;③|b |>a ;④ab <0.一定成立的是( )A .①②③B .③④C .②③④D .①③④10.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的是( )A .5B .1-C .5或1-D .以上答案都不对11.有理数a ,b 在数轴上表示的点如图所示,则a ,a -,b ,b -的大小关系是( )A .b a a b ->>->B .a a b b >->>-C .b a b a >>->-D .b a a b >->>-12.轩轩在数学学习中遇到一个有神奇魔力的“数值转换机”,按如图所示的程序计算,若开始输入的值x 为正整数,最后输出的结果为41,则满足条件的x 值最多有( )个.A .1B .2C .3D .4二、填空题13.若|a +2|与(b -4)2互为相反数,则a -b 的值为. 14.比较大小:23-12-(填“<”、“=”、“>”). 15.如果a a -=,那么a =.16.绝对值大于4而小于7的所有整数之和是. 17.若三个非零有理数a ,b ,c 满足1a b c a b c ++=,则abc abc=.18.有一列数1a 、2a 、3a 、…、n a ,从第二个数开始,每一个数等于1与它前面那个数的倒数的差,若12a =,则2024a =.三、解答题 19.计算(1)()75336964⎛⎫-+-⨯- ⎪⎝⎭(2)()()241110.5153---⨯⨯--20.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2. (1)写出a b +,cd ,m 的值; (2)求a bm cd m+++的值. 21.现定义新运算“⊕”,对于任意有理数a ,b ,规定a b ab a b ⊕=+-.例如:1212121⊕=⨯+-=.(1)求3(4)⊕-的值; (2)求3)[(2)1](-⊕-⊕的值.22.若|x |=3,|y |=5,且|x +y |=﹣x ﹣y ,求x ﹣y 的值.23.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,9-,+7,15-,3-,+11,6-,8-,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)若汽车耗油量为a 升/千米,则这次养护共耗油多少升? 24.有理数a ,b ,c 在数轴上的位置如图所示.(1)比较大小:a c - ___0,a b + ___0,a ____0(直接填写“>”“<”或“=”) (2)化简:2a b a a c a --+-+.25.已知点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,A 、B 之间的距离记为|AB |=|a ﹣b |或|b ﹣a |,请回答问题:(1)当a =﹣3,b =2时,|AB |= .(2)设点P 在数轴上对应的数为x ,若|x ﹣3|=5,则x = .(3)如图,点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为﹣1,动点P 表示的数为x .①若点P 在点M 、N 之间,则|x +1|+|x ﹣4|= .②若|x+1|+|x﹣4|=10,则x=.③若点P表示的数是﹣5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?26.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,从图可以看到终点表示的数是2-,已知点A,B是数轴上的点,请思考完成下列各题:(1)如果点A表示数3-,将点A向右移动7个单位长度到B,那么终点B表示的数是___________,A,B两点间的距离是___________.(2)如果点A表示数3-,点A向左移动7个单位长度到B,那么终点B表示的数是___________,A,B两点间的距离是___________.(3)如果点A表示数3-,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数___________,A,B两点间的距离为___________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?。
江苏省苏州市2023-2024学年七年级数学上第一次月考模拟检测试卷(解析版)
江苏省苏州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(本大题共8小题,每小题2分,共16分)1.下列各数:﹣(+2),﹣32,(﹣)4,﹣,﹣(﹣1)2015,﹣|﹣3|中,负数的个数是( )A.2个B.3个C.4个D.5个2.把向北移动记作“+”,向南移动记作“﹣”,下列说法正确的是( )A.﹣5米表示向北移动了5米B.+5米表示向南移动了5米C.向北移动﹣5米表示向南移动5米D.向南移动5米,也可记作向南移动﹣5米3.(2019秋•路南区校级月考)倒数等于它本身的数是( )A.1B.0、1C.﹣1、1D.﹣1、0、1 4.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数)(单位:m):星期一二三四五六日水位变化0.12﹣0.02﹣0.13﹣0.20﹣0.08﹣0.020.32则下列说法正确的有( )①这个星期的水位总体下降了0.01m;②本周中星期一的水位最高;③本周中星期六的水位比星期二下降了0.43m.A.0个B.1个C.2个D.3个5.(2020秋•镇海区期末)数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q从A、B同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A.PQ=2OQ B.OP=2PQ C.3QB=2PQ D.PB=PQ 6.(2023•双阳区二模)算式﹣3﹣5的结果对应图中的( )A.a B.b C.c D.d7.(2020秋•沂水县期中)点M,N在数轴上的位置如图所示,其对应的数分别是m和n.对于以下结论:①n﹣m>0,②mn>0,③|m|>|n|,④﹣m>n.其中正确的个数是( )A.1B.2C.3D.48.(2021秋•海门市校级月考)设abc≠0,且a+b+c=0,则+++的值可能是( )A.0B.±1C.±2D.0或±2二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上9.(2020秋•丹徒区月考)﹣5的相反数等于 .10.(2022秋•安乡县期中)比较大小:﹣(﹣1) ﹣|﹣1.35|.(填“<”、“>”或“=”)11.(2020秋•西固区校级月考)把(﹣12)﹣(﹣13)+(﹣14)统一成加法的形式是 ,写成省略加号的形式是 .12.(2021•江西模拟)= .13.(2020秋•成都期末)两个数a与2在数轴上对应的点之间的距离为3,已知b2=4,且a<b,则a﹣b的值为 .14.(2018秋•道里区校级期中)甲数相当于乙数的,甲数是30,则乙数是 .15.(2021秋•碑林区校级期末)若|x|=5,|y|=4,且xy<0,则x﹣y的值为 .16.(2020秋•武昌区期中)已知x,y互为相反数,a,b互为倒数,c的绝对值为3,则x+y+ab+|c|的值是 .17.(2020秋•门头沟区期末)如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是﹣4,2,那么金安桥站表示的数是 .18.(2020春•香坊区校级月考)已知:如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为2秒和4秒时,点M和点P 的距离都是6个单位长度,则当点P运动到点A时,动点Q所表示的数为 .评卷人得分三.解答题(本大题共8小题,共64分).解答时应写出文字说明、证明过程或演算步骤. 19.(8分)(2015秋•句容市校级期末)计算:(1)()×45(2)(﹣8)÷(﹣23)×()+1.20.(8分)(2022秋•滕州市校级期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)= ,(﹣5,25)= ;(2)若(x,16)=2,则x= ;(3)若(4,a)=2,(b,8)=3,求(b,a)的值.21.(6分)(2017秋•子长市期中)世界最高峰珠穆朗玛峰的海拔高度是8 844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?22.(8分)(2021秋•江夏区期末)如图,在数轴上有A,B两点,其中点A在点B的左侧,已知点B对应的数为4,点A对应的数为a.(1)若a=×72,则线段AB的长为 (直接写出结果).(2)若点C在射线AB上(不与A,B重合),且2AC﹣3BC=6,求点C对应的数(结果用含a的式子表示).(3)若点M在线段AB之间,点N在点A的左侧(M、N均不与A、B重合),且AM﹣BM=2.当=3,BN=6BM时.求a的值.23.(8分)(2021秋•昭阳区期中)一个外卖小哥骑摩托车从沃尔玛出发,在东西向的大道上送外卖.如果规定向东行驶为正,向西行驶为负,一天中外卖小哥的七次行驶记录如下(单位:km):﹣7,+8,﹣4,+6,+5,﹣2,﹣9(1)填空:第 次送外卖时距沃尔玛最远.(2)求七次外卖送完时小哥在沃尔玛的什么方向?距沃尔玛多远?(3)若每千米耗油0.2升,问这七次送外卖共耗油多少升?24.(8分)(2021秋•李沧区期中)把下列各数分别在数轴上表示出来,并用“<”连接起来:﹣,2,0,﹣3,|﹣0.5|,﹣(﹣4) < < < < < .25.(8分)(2022秋•京山市期中)已知买入股票与卖出股票均需支付成交金额的0.5%的交易手续费,李先生上周在股市以收盘价每股20元买进某公司的股票1000股,如表为在本周交易日内,该股票每股的涨跌情况:时间星期一星期二星期三星期四星期五每股涨跌/元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据为每天收盘价格相比前一天收盘价格的变化.(1)直接判断本周内价格最高的是星期 .(2)求本周三收盘时,该股票每股多少钱?(3)若李先生在本周五以收盘价将全部股票卖出,李先生周五当天需要支付多少元的交易手续费?26.(10分)(2021秋•慈溪市期中)如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,b 是最小的正整数,且a ,c 满足|a +2|+(c ﹣7)2=0.(1)a = ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB= ,AC= ,BC = .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.江苏省苏州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(本大题共8小题,每小题2分,共16分)1.下列各数:﹣(+2),﹣32,(﹣)4,﹣,﹣(﹣1)2015,﹣|﹣3|中,负数的个数是( )A.2个B.3个C.4个D.5个解:∵﹣(+2)=﹣2,﹣32=﹣9,=,=,﹣(﹣1)2015=1,﹣|﹣3|=﹣3,∴负数有﹣(+2),﹣32,,﹣|﹣3|,共4个.故选:C.2.把向北移动记作“+”,向南移动记作“﹣”,下列说法正确的是( )A.﹣5米表示向北移动了5米B.+5米表示向南移动了5米C.向北移动﹣5米表示向南移动5米D.向南移动5米,也可记作向南移动﹣5米解:A、﹣5米表示向南移动了5米,故本选项不合题意;B、+5米表示向北移动了5米,故本选项不合题意;C、向北移动﹣5米表示向南移动5米,故本选项符合题意;D、向南移动5米,也可记作向北移动﹣5米,故本选项不合题意;故选:C.3.(2019秋•路南区校级月考)倒数等于它本身的数是( )A.1B.0、1C.﹣1、1D.﹣1、0、1解:倒数等于它本身的数是﹣1、1,故选:C.4.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数)(单位:m):星期一二三四五六日水位变化0.12﹣0.02﹣0.13﹣0.20﹣0.08﹣0.020.32则下列说法正确的有( )①这个星期的水位总体下降了0.01m;②本周中星期一的水位最高;③本周中星期六的水位比星期二下降了0.43m.A.0个B.1个C.2个D.3个解:①0.12﹣0.02﹣0.13﹣0.20﹣0.08﹣0.02+0.32=﹣0.01,所以,这个星期的水位总体下降了0.01m,故①正确;②星期一:0.12,星期二:0.12﹣0.02=0.1,星期三:0.1﹣0.13=﹣0.03,星期四:﹣0.03﹣0.2=﹣0.23,星期五:﹣0.23﹣0.08=﹣0.31,星期六:﹣0.31﹣0.02=﹣0.33,星期天:﹣0.33+0.32=﹣0.01,所以本周内星期一的水位最高,故②正确.③本周内星期六的水位比星期二下降了0.1﹣(﹣0.33)=0.43m,故③正确;综上所述,说法正确的有3个.故选:D.5.(2020秋•镇海区期末)数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q从A、B同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A.PQ=2OQ B.OP=2PQ C.3QB=2PQ D.PB=PQ解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|,OQ=|﹣2+t﹣0|=|t﹣2|,OP=|﹣6+3t﹣0|=3|t﹣2|,BQ=t,PB=|﹣2﹣(﹣6+3t)|=|4﹣3t|,∴PQ=2OQ,OP=PQ,所以数量关系一定成立的是PQ=2OQ.故选:A.6.(2023•双阳区二模)算式﹣3﹣5的结果对应图中的( )A.a B.b C.c D.d解:﹣3﹣5=﹣3+(﹣5)=﹣8,观察数轴可知a表示的数是﹣8,故选:A.7.(2020秋•沂水县期中)点M,N在数轴上的位置如图所示,其对应的数分别是m和n.对于以下结论:①n﹣m>0,②mn>0,③|m|>|n|,④﹣m>n.其中正确的个数是( )A.1B.2C.3D.4解:由数轴知m<0<n,|m|>|n|,∴n﹣m>0,mn<0,﹣m>n∴①③④3个正确.故选:C.8.(2021秋•海门市校级月考)设abc≠0,且a+b+c=0,则+++的值可能是( )A.0B.±1C.±2D.0或±2解:∵abc≠0,且a+b+c=0,∴a、b与c中可能有1个字母小于0,也可能有2个字母小于0.当a、b与c中有1个字母小于0,如a<0,则b>0,c>0,∴+++=﹣1+1+1﹣1=0.当a、b与c中有2个字母小于0,如a<0,b<0,则c>0,∴+++=﹣1﹣1+1+1=0.综上:+++=0.故选:A.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上9.(2020秋•丹徒区月考)﹣5的相反数等于 5 .解:﹣5的相反数等于5.故答案为:5.10.(2022秋•安乡县期中)比较大小:﹣(﹣1) > ﹣|﹣1.35|.(填“<”、“>”或“=”)解:﹣(﹣)=1.6,而﹣|﹣1.35|=﹣1.35,由于1.6>﹣1.35,所以﹣(﹣1)>﹣|﹣1.35|.故答案为:>.11.(2020秋•西固区校级月考)把(﹣12)﹣(﹣13)+(﹣14)统一成加法的形式是 (﹣12)+(+13)+(﹣14) ,写成省略加号的形式是 ﹣12+13﹣14 .解:(﹣12)﹣(﹣13)+(﹣14)统一写成加法的形式是:(﹣12)+(+13)+(﹣14),写成省略加号的形式是:﹣12+13﹣14.故答案为:(﹣12)+(+13)+(﹣14),﹣12+13﹣14.12.(2021•江西模拟)= .解:﹣1﹣=﹣1+(﹣)=﹣+(﹣)=﹣.故答案为:﹣.13.(2020秋•成都期末)两个数a 与2在数轴上对应的点之间的距离为3,已知b 2=4,且a <b ,则a ﹣b 的值为 ﹣3 .解:因为两个数a 与2在数轴上对应的点之间的距离为3,所以a =﹣1,或a =5;因为b 2=4,所以b =﹣2,或b =2;因为a <b ,所以a =﹣1,b =2.所以a ﹣b =﹣1﹣2=﹣3.故答案为:﹣3.14.(2018秋•道里区校级期中)甲数相当于乙数的,甲数是30,则乙数是 36 .解:30÷=30×=36,故答案为:36.15.(2021秋•碑林区校级期末)若|x |=5,|y |=4,且xy <0,则x ﹣y 的值为 ﹣9或9 .解:∵|x |=5,|y |=4,∴x =±5,y =±4,∵xy <0,∴x =5,y =﹣4或x =﹣5,y =4,当x =5,y =﹣4时,x ﹣y =5﹣(﹣4)=5+4=9;当x =﹣5,y =4时,x ﹣y =﹣5﹣4=﹣9;综上,x ﹣y 的值为﹣9或9,故答案为:﹣9或9.16.(2020秋•武昌区期中)已知x ,y 互为相反数,a ,b 互为倒数,c 的绝对值为3,则x +y +ab +|c |的值是 4 .解:根据题意得:x +y =0,ab =1,c =3或﹣3,则原式=0+1+3=4.故答案为:4.17.(2020秋•门头沟区期末)如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是﹣4,2,那么金安桥站表示的数是 0 .解:∵图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是﹣4,2,∴每站的单位长度是2,∴金安桥站表示的数是0.故答案为:0.18.(2020春•香坊区校级月考)已知:如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为2秒和4秒时,点M和点P 的距离都是6个单位长度,则当点P运动到点A时,动点Q所表示的数为 22 .解:设点Q运动的速度为每秒a个单位长度,则点M运动的速度为每秒a个单位长度,由运动时间为2秒和4秒时,点M和点P的距离都是6个单位长度,可列方程,2×a+6+4×2=4×a+4×4﹣6,解得,a=6,a=2,即:点Q运动的速度为每秒6个单位长度,点M运动的速度为每秒2个单位长度,此时,AB=2×2+6+4×2=18,∴点Q所表示的数为﹣5+×6=22,故答案为:22.三.解答题(本大题共8小题,共64分).解答时应写出文字说明、证明过程或演算步骤. 19.(8分)(2015秋•句容市校级期末)计算:(1)()×45(2)(﹣8)÷(﹣23)×()+1.解:(1)原式=10﹣15+27=22;(2)原式=﹣8÷4×+1=﹣3+1=﹣2.20.(8分)(2022秋•滕州市校级期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)= 3 ,(﹣5,25)= 2 ;(2)若(x,16)=2,则x= ±4 ;(3)若(4,a)=2,(b,8)=3,求(b,a)的值.解:(1)∵23=8,(﹣5)2=25,∴(2,8)=3,(﹣5,25)=2,故答案为:3,2;(2)∵(±4)2=16,∴(±4,16)=2,故答案为:±4;(3)∵42=16,23=8,∴(4,16)=2,(2,8)=3,∴a=16,b=2,又∵24=16,∴(b,a)=(2,16)=4.21.(6分)(2017秋•子长市期中)世界最高峰珠穆朗玛峰的海拔高度是8 844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?解:吐鲁番盆地的海拔高度是:﹣416+262=﹣154米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高:8844.43﹣(﹣154)=8998.43(米),答:珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高9888.43米.22.(8分)(2021秋•江夏区期末)如图,在数轴上有A,B两点,其中点A在点B的左侧,已知点B对应的数为4,点A对应的数为a.(1)若a=×72,则线段AB的长为 9 (直接写出结果).(2)若点C在射线AB上(不与A,B重合),且2AC﹣3BC=6,求点C对应的数(结果用含a的式子表示).(3)若点M在线段AB之间,点N在点A的左侧(M、N均不与A、B重合),且AM﹣BM=2.当=3,BN=6BM时.求a的值.解:(1)∵a=×72=72=﹣5,∴AB=4﹣(﹣5)=4+5=9,故答案为:9.(2)设点C对应的数字为x,①点C在A,B之间时,∵2AC﹣3BC=6,∴2(x﹣a)﹣3(4﹣x)=6.化简得:5x=18+2a.∴x=.②点C在B点的右侧时,∵2AC﹣3BC=6,∴2(x﹣a)﹣3(x﹣4)=6.化简得:﹣x=﹣6+2a.∴x=6﹣2a.综上,点C对应的数为或6﹣2a.(3)设点M对应的数字为m,点N对应的数字为n,由题意得:AM=m﹣a,AN=a﹣n,BM=4﹣m,BN=4﹣n,∵AM﹣BM=2,∴(m﹣a)﹣(4﹣m)=2.∴2m﹣a=6①.∵当=3时,BN=6BM,∴,4﹣n=6(4﹣m).∴m+3n=4a②,6m﹣n=20③,③×3+②得:19m=60+4a④,将④代入①得:2×﹣a=6.∴a=.23.(8分)(2021秋•昭阳区期中)一个外卖小哥骑摩托车从沃尔玛出发,在东西向的大道上送外卖.如果规定向东行驶为正,向西行驶为负,一天中外卖小哥的七次行驶记录如下(单位:km):﹣7,+8,﹣4,+6,+5,﹣2,﹣9(1)填空:第 5 次送外卖时距沃尔玛最远.(2)求七次外卖送完时小哥在沃尔玛的什么方向?距沃尔玛多远?(3)若每千米耗油0.2升,问这七次送外卖共耗油多少升?解:(1)﹣7+8=1,1﹣4=﹣3,﹣3+6=3,3+5=8,8﹣2=6,6﹣9=﹣3,故第5次送外卖时距沃尔玛最远,故答案案为:5;(2)﹣7+8﹣4+6+5﹣2﹣9=﹣3(km ),答:七次外卖送完时小哥在沃尔玛的正西方向,距沃尔玛3km ;(3)(|﹣7|+|+8|+|﹣4|+|+6|+|+5|+|﹣2|+|﹣9|)×0.2=(7+8+4+6+5+2+9)×0.2=41×0.2=8.2(升),答:这七次送外卖共耗油8.2升.24.(8分)(2021秋•李沧区期中)把下列各数分别在数轴上表示出来,并用“<”连接起来:﹣,2,0,﹣3,|﹣0.5|,﹣(﹣4) ﹣3 < ﹣ < 0 < |﹣0.5| < 2 < ﹣(﹣4) .解:|﹣0.5|=0.5,﹣(﹣4)=4.各点在数轴上的位置如图所示:根据数轴上左边的数小于右边的数可知:﹣3<﹣<0<|﹣0.5|<2<﹣(﹣4).故答案为:﹣3,﹣,0,|﹣0.5|,2,﹣(﹣4).25.(8分)(2022秋•京山市期中)已知买入股票与卖出股票均需支付成交金额的0.5%的交易手续费,李先生上周在股市以收盘价每股20元买进某公司的股票1000股,如表为在本周交易日内,该股票每股的涨跌情况:时间星期一星期二星期三星期四星期五每股涨跌/元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据为每天收盘价格相比前一天收盘价格的变化.(1)直接判断本周内价格最高的是星期 四 .(2)求本周三收盘时,该股票每股多少钱?(3)若李先生在本周五以收盘价将全部股票卖出,李先生周五当天需要支付多少元的交易手续费?解:(1)结合表格中数据可得:周一价格为20+2=22(元),周二价格为22+3=25(元),周三价格为25﹣2.5=22.5(元),周四价格为22.5+3=25.5(元),周五价格为25.5﹣2=23.5(元),价格最高的是星期四;故答案为:四;(2)20+2+3﹣2.5=22.5(元/股);∴本周三收盘时,该股票每股22.5元;(3)22.5+3﹣2=23.5(元),23.5×1000×0.5%=117.5元,∴周五当天需要支付117.5元的交易手续费.26.(10分)(2021秋•慈溪市期中)如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a,c满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t 的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1,故答案为:﹣2,1,7;(2)∵(7+2)÷2=4.5,∴对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4,故答案为:4;(3)∵点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,∴t秒钟过后,点A表示的数为﹣2﹣t,点B表示的数为1+2t,点C表示的数为7+4t,∴AB=1+2t﹣(﹣2﹣t)=1+2t+2+t=3t+3,AC=7+4t﹣(﹣2﹣t)=7+4t+2+t=5t+9,BC =7+4t﹣(1+2t)=7+4t﹣1﹣2t=2t+6,故答案为:3t+3,5t+9,2t+6;(4)不变,理由如下:由(3)知:AB=3t+3,BC=2t+6,∴3BC﹣2AB=3(2t+6)﹣2(3t+3)=6t+18﹣6t﹣6=12,∴3BC﹣2AB的值不随着时间t的变化而改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学月考模拟试卷
班级:姓名:学号评价一、选择题
1、下列各数:-6,3.5,1
4
,0,10,其中非负数的个数是()
A、2
B、3
C、4
D、5
2、下列说法中,不正确的是()
A、-2.5既是负数、分数,也是有理数
B、0既不是负数,也不是正数,0是整数
C、-200既是负数,又是整数,但不是有理数
D、0是非负数
3、某月的月历,竖着取连续的三个数字,它们的和可能是()
A、18
B、33
C、38
D、75
4、下列说法正确的是()
A、比负数大的是正数
B、若a>b,则a是正数,b是负数
C、数轴上的点离原点越远数就越大
D、a>0,则a是正数,若a<0,则a是负数
5、绝对值不大于3.1的整数有()
A、4个
B、5个
C、6个
D、7个
6、下列说法正确的是()
A、正数与负数互为相反数
B、符号不同的两个数互为相反数
C、数轴上原点两旁的两个点所表示的数互为相反数
D、任何一个有理数都有它的相反数
7、若|m|=|n|,则m与n()
A、相等
B、互为相反数
C、都是0
D、相等或互为相反数
8、|a|=7,|b|=10,则|a+b|的值为()
A、3
B、17
C、3或17
D、-17或-3
9、式子2+(-4)+4+(-6)+6+(-8)+…+18+(-20)的结果为()
A、18
B、-18
C、-22
D、无法计算
10、下列说法正确的是()
A、任何数除以0都是0
B、0的倒数是0
C、不存在倒数大于它本身的数
D、倒数是它本身的数是±1
11、下列各组数中:①-52与(-5)2 ;②(-3)2与-32;③―(―0.3)5与0.35;
④0100与0200;⑤(-1)3与(-1)2,相等的共有()
A、1对
B、2对
C、3对
D、4对
12、一个数的相反数大于它本身,则这个数是()
A、负数
B、正数
C、0
D、负数和0
二、填空
13、一个数的绝对值是它本身,则这个数是___________,一个数的相反数是它本身,则这个数是___________,一个数的平方是它本身,则这个数是_________,一个数的立方是它本身,则这个数是_________,一个数的平方是它本身,则这个数是________,倒数等于它本身的数是___________
14、填数:1234
,,,,_________ 3153563
--
15、一个数的相反数比它本身大,则这个数是_________
16、多伦多与北京的时差是-12时,若北京是10月7日15:00,那么多伦多时间是____________
17、规定a b
*=5a+2b-1,则(-4)*6的值是__________
18、若|a|=3,|b|=2,且ab<0,则a-b=_________
19、(1)0―(―3)=_______ (2)―1―4=________ (3)-23-32=_______
20、最小的正整数是________,最大的负整数是________,绝对值最小的数是_______
21、将401000写成科学记数法是_________,若920300=9.203×10n,则n=_______
22、已知(a+3)2+|b-2|=0,则a b=___________
三、计算题
23、计算题
(1)
5
(0.25)(2)()(0.8)
12
-⨯-⨯-⨯+(2)
157
()(36)
2612
+-⨯-
(3)
119
( 2.25)( 5.1)(4)()
4810
-+-++-+-(4)
1511
4
4624
---+
(5)
11
0.1253 5.60.25
48
+-+-(6)2323
3(3)(2)2
---+--
四、解答题
24、求-12
3
的绝对值的相反数与2
1
3
的差。
25、分别写一个含有三个加数且满足条件的等式。
(1)至少有一个加数是正整数,和是-50。
(2)一个加数是正数,一个加数是负数,另一个既不是正数也不是负数,和是-15。
26、观察下列有理数:1,1111 ,,, 24816
…,
(1)按此规律写出第8个数;
(2)照此规律,第1000个数是多少?第n个数是多少?
27、10袋大米,以每袋60kg为标准,超过记为正,不足记为负,记录如下:
-5,+1.5,+0.5,0,-1.5,+2.8,+1.2,-2,-0.5,+1
10袋大米共超过(不足)多少千克?总重量是多少?平均每袋是多少千克?
28、小虫从点O出发,在一条直线上来回爬行,向右为正,向左为负,小虫爬过的各段路程依次为(单位:cm):
+5,-3,+12,-13,-5,+10,-8
(1)小虫最后是否回到了出发点O?
(2)小虫距离出发点O最远是多远?
(3)小虫在爬行过程中,共爬行多少厘米?
初一数学月考模拟试卷 参考答案
一、选择题:CCBDDDDCBDBA
二、填空题:13、非负数、 0、 0,1, 0、1± 、 0,1、 1± 14、
99
5 15、负数 16、10月7日3:00 17、-9 18、5± 19、3、-5、-17 20、1、-1、0 21、4.015
10⨯、5 22、9 三、计算题:
23、(1) 6
1-
(2) 27- (3) -1281
(4) 3
8
(5) 8.6 (6) 14
24、-4 25、 略 26、1281 、 99921 、 12
1
-n
27、不足2千克, 598 、 59.8
28、(1)没有回到原点 , (2)最远14厘米, (3)共行56厘米。