概率论与数理统计课程教学大纲#
《概率论与数理统计》(46学时)课程教学大纲
![《概率论与数理统计》(46学时)课程教学大纲](https://img.taocdn.com/s3/m/1936c8bd6394dd88d0d233d4b14e852459fb396a.png)
《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
同时,也为一些后续课程的学习提供必要的基础。
三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。
概率论与数理统计(数学专业)大纲
![概率论与数理统计(数学专业)大纲](https://img.taocdn.com/s3/m/1898ae66af1ffc4ffe47acab.png)
《概率论与数理统计》课程教学大纲一、基本信息英文课名:Probability Theory and Mathematical Statistics A课程代码:课程类别:(理论课:核心必修)学时:96学分:6适用专业:数学与应用数学二、教学目标与要求:(课程任务和基本要求)教学目标:概率论与数理统计是数学与应用数学、信息与计算科学专业的一门专业必修课程,是大学数学课程的重要组成部分,它是在开设数学分析、高等代数等专业基础课之后的一门重要专业课,以微积分和代数理论为基础,学习概率统计的基本理论和方法,研究和揭示随机现象中统计规律,为后继课程的学习和实际应用打下必需的基础。
教学要求:通过本课程的学习,使学生掌握研究随机现象的基本思想与理论方法,初步具备分析解决具有随机因素的实际问题的能力,学会在随机性数据中找出统计规律,为从事中学教学、数学应用,或者继续学习和研究该方向的理论及应用打下基础。
三、教学内容及学时数分配:(一)教学内容第一章随机事件与概率内容:1、随机试验,样本空间,随机事件等基本概念2、古典概型3、概率的公理化定义及概率的性质4、条件概率、全概率公式和贝叶斯公式5、独立性6、贝努利概型第二章随机变量及其分布内容:1、随机变量及其分布2、数学期望的定义和性质3、方差的定义和性质4、随机变量函数的分布列5、常用分布第三章多维随机变量及其分布内容:1、多维随机变量及联合分布2、边际分布与随机变量的独立性3、多维随机变量函数的分布4、多维随机变量的数字特征5、条件分布与条件期望、回归与第二类回归第四章大数定律与中心极限定理内容:1、特征函数2、大数定律3、中心极限定理第五章统计量及其分布内容:1、总体与样本2、统计量及其分布3、三大抽样分布4、充分统计量第六章参数估计内容:1、点估计2、点估计的评价标准3、最小方差无偏估计4、区间估计第七章假设检验内容:1、假设检验的基本思想和概念2、正态总体参数假设检验3、其他分布参数的假设检验4、分布拟合检验第八章方差分析与回归分析内容:1、方差分析2、多重比较3、方差齐性检验4、一元线性回归5、一元非线性回归(二)学时分配四、相关说明(一)、考核方式及成绩评定办法:(考试/考查,成绩评定方式,有实验的要注明实验成绩占课程成绩比例及实验成绩评定方式):本课程属考试课程,考试方式:笔试,闭卷,成绩评定:平时成绩30%+期末考试70%。
新编概率论与数理统计教学大纲
![新编概率论与数理统计教学大纲](https://img.taocdn.com/s3/m/a158789fa48da0116c175f0e7cd184254b351bec.png)
新编概率论与数理统计教学大纲一、课程简介本课程是基于概率论和数理统计的理论基础,着重介绍各种概率分布、假设检验、置信区间、回归分析等常用方法。
通过本课程的学习,学生将能够掌握基本的概率与统计理论,以及应用它们解决实际问题的方法。
二、教学目标1.理解基本概率与统计理论,掌握基本概率、随机变量、概率分布等概念,熟悉重要的分布、参数估计方法和检验理论;2.学习利用统计方法分析数据,熟悉掌握描述性统计,推断统计以及回归分析;3.培养学生独立思考与创新能力,使学生能够自主地应用概率与统计方法解决实际问题。
三、教学内容与安排第一部分:概率与分布1. 概率基础(2学时)•概率与事件;•古典概型;•条件概率与独立性。
2. 随机变量及概率分布(6学时)•随机变量的概念;•离散型随机变量与连续型随机变量;•常见的分布(即均匀分布,二项分布,泊松分布,正态分布等);•两个重要分布:t分布和F分布。
第二部分:推断统计与假设检验3. 统计推断基础(2学时)•抽样基础;•总体参数的估计;•置信区间。
4. 统计推断进阶(4学时)•单总体假设检验;•双总体假设检验;•方差分析。
第三部分:回归分析与贝叶斯统计5. 回归分析(6学时)•简单线性回归;•多元线性回归;•拟合优度检验;•变量选择原则。
6. 贝叶斯统计(2学时)•基本术语;•贝叶斯公式;•先验分布和后验分布。
第四部分:实践案例7. 实践案例分析(8学时)•实际案例分析;•利用概率与统计方法解决实际问题。
四、教学方法本课程采用讲授与实践相结合的方式,重点教师讲解与学生实践相结合的教学方法。
•讲授方法:通过讲授概率与统计理论,帮助学生掌握理论基础。
•实验方法:结合实际案例,引导学生利用概率与统计方法解决实际问题,帮助学生培养自主学习、独立思考的能力。
•讨论与研究方法:采用小组讨论和案例分析的方式,促进学生之间的交流与互动,培养学生的创新思维和问题解决能力。
五、教材与参考书目主要教材:•《概率论与数理统计》(第三版),吴连生、任红伟合著,高等教育出版社。
概率论与数理统计课程教学大纲
![概率论与数理统计课程教学大纲](https://img.taocdn.com/s3/m/89fe45102f3f5727a5e9856a561252d381eb2075.png)
《概率论与数理统计》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:概率论与数理统计是研究随机现象客观规律性的数学学科,在高等工科学校教学计划中是一门基础理论课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
(二)课程目标:课程目标1:知识目标通过本课程的学习,学生系统掌握随机变量及其分布、参数估计与假设检验等重要知识。
课程目标2:技能目标通过本课程的基本概念、基本理论和基本方法的讲授及学生的练习,培养学生的数学推理,数理逻辑,演绎归纳,数据分析,假设论证能力。
课程目标3:素质培养(1) 通过本课程的教学,培养和提高学生对所学知识进行整理、概括、消化吸收能力,以及围绕教学内容阅读参考资料,自我扩充知识领域的能力。
(2) 通过作业和课堂讨论,培养学生口头表达能力,做到思路清晰,层次分明。
(3)通过作业,培养学生独立思考,深入钻研问题的习惯以及一题多解,举一反三的能力,应用数学的意识以及运用数学知识分析问题的良好品质。
(4)具有自主学习和终身学习的意识,有不断学习和适应发展的能力。
(三)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章随机事件及其概率1.教学目标理解随机事件和样本空间的概念;熟练掌握事件之间的关系与基本运算。
理解事件频率的概念;了解随机现象的统计规律性。
知道概率的公理化定义;理解古典概率的概念;了解几何概率;掌握概率的基本性质;会应用这些性质进行概率计算。
理解条件概率的概念;掌握乘法定理、全概率公式和贝叶斯公式,并会应用这些公式进行概率计算。
理解事件独立性的概念;会应用事件的独立性进行概率计算。
2.教学重难点本节是基础知识,在高中阶段大部分已经学过,都是重点内容。
教学的重难点在于事件的三种关系:互斥,独立和包含,事件概率的两个公式:加法公式和乘法公式,以及全概率和贝叶斯公式的应用。
《概率论与数理统计》课程教学大纲
![《概率论与数理统计》课程教学大纲](https://img.taocdn.com/s3/m/7a29c40d2a160b4e767f5acfa1c7aa00b52a9de6.png)
《概率论与数理统计》课程教学大纲【课程编码】181****0008【课程类别】专业必修课【学时学分】54学时,3学分【适用专业】物流管理一、课程性质和目标课程性质:《概率论与数理统计》是为国际经济与贸易、市场营销、人力资源管理、财务管理、物流管理、电子商务等专业本科生开设的一门必修课。
本课程由概率论与数理统计两部分组成。
概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。
其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。
包括数理统计的基本概念、参数统计、假设检验等。
通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
课程目标:通过本课程的学习,要求学生能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(POiSSon)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布。
理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。
了解大数定律和中心极限定量的内容及应用,熟悉数据处理、参数估计、假设检验的一些基本方法,能用所掌握的方法具体解决所遇到的经济与管理问题,为建设社会主义现代化国家贡献力量。
二、教学内容、要求和学时分配(一)概率论的基本概念学时(6学时)教学内容:1随机试验、随机事件与样本空间;2.事件的关系与运算、完全事件组;3.概率的概念、概率的基本性质、概率的基本公式;4.等可能概型(古典概型)、几何型概率;5.条件概率、全概率公式、贝叶斯公式;6.事件的独立性、独立重复试验。
概率论与数理统计教学大纲
![概率论与数理统计教学大纲](https://img.taocdn.com/s3/m/c491e138580216fc700afd17.png)
《概率论与数理统计》教学大纲适用专业:数学系专业课学时:64一.课程性质及教学目的:本课程是一门研究随机现象统计规律性的基础课,为重要的数学分支之一。
其应用已普及经济、科技、教育、管理和军事等方面。
现已成为高等工科院校教学计划中一门重要的公共基础课,更是数学系的一门必修课。
通过本课程的学习,使学生对概率统计的概念和方法有深入的理解,掌握概率统计常用方法的基本思想;使学生建立随机的思想,认识到随机现象存在的普遍性、应用的广泛性和学好的重要性。
通过概率论部分的学习,使学生掌握概率论的基础知识,初步了解概率论公理化体系,为统计方法的应用打下必要的基础。
通过数理统计部分的学习,使学生初步掌握统计方法在实际中的应用,并能用一些方法处理较简单的实际问题。
二.课程教学内容,重、难点安排,学时分配:本课程以介绍概率论和数理统计的基本知识和方法为主,同时注意直观背景和实际意义。
第一章:概率论的基本概念:(12学时)内容提要:1.随机试验与事件、样本空间。
2.频率和概率的定义及性质。
3.古典概型。
4.条件概率、乘法公式、全概率公式、贝叶斯公式。
5.随机事件的独立性及n重贝努里试验。
要求:1.了解随机试验的特征,掌握随机事件之间的关系及运算。
2.理解随机事件的频率及概率的含义和基本性质。
3.掌握古典概型的定义,会使用概率的加法公式及逆事件概率计算公式计算基本的等概问题。
4.理解条件概率的定义,掌握乘法公式、全概率公式和贝叶斯公式,会利用公式进行概率计算。
5.理解随机事件独立性的概念,并能利用事件独立性进行概率计算。
6.理解贝努里概型及n重贝努里试验的概念,并会计算与之相关事件的概率。
第二章:随机变量及其分布:(10学时)内容提要:1.随机变量及分布函数。
2.离散型随机变量及其分布律。
3.连续型随机变量及其概率密度。
4.随机变量函数的分布。
要求:1.了解随机变量的概念,会用随机变量表示随机事件。
2.理解分布函数的定义及性质,会利用分布函数表示事件的概率。
概率论与数理统计教学大纲
![概率论与数理统计教学大纲](https://img.taocdn.com/s3/m/76b0abf859f5f61fb7360b4c2e3f5727a5e924c8.png)
概率论与数理统计ProbabiIityandStatistics一、课程基本信息课程编号:110849适用专业:全校性公共课课程性质:学科基础必修/学科基础限选开课单位:数学与数据科学学院学时:40学分:2.5考核方式:闭卷考试,平时成绩占30%,期末考试成绩占70%先修课程:高等数学中文简介:概率论与数理统计是研究随机现象统计规律性的一门数学学科。
它是经济贸易与经济管理专业必修的基础课,是学习专业课、基础专业课以及研究生课程等后续课程的必要基础,也是参加社会生产、日常生活和工作的必要基础。
主要内容包括:随机事件及其概率、随机变量及其分布、随机变量的数字特征、数理统计的基础知识、参数估计、假设检验等。
二、教学目的与要求1、知识目标通过该课程的学习,使学生系统地获得概率统计等方面的基本知识、基本理论和常用的运算方法;为后续专业课程的学习奠定必要的数学基础。
2、能力目标在课程的教学过程中,要通过各个教学环节逐步培养学生在观察问题、分析问题、解决问题的能力方面能力,使学生形成良好的辩证唯物主义世界观。
3、素质目标培养学生灵活、抽象、猜想、活跃的数学思维,逐步形成数学意识,让数学这一工具进入到学生的生活实践中。
4、课程思政目标概率论与数理统计作为大学重要的公共基础课,应当承担起为学生树立正确的人生观、世界观和价值观的重任,引导学生在学习概率论与数理统计课程内容的基础上树立正确的三观,具有强烈的爱国主义热情,通过四年的大学学习,把学生培养成既具有远大理想又具有高度社会责任感的新时代大学生,真正成为对祖国对社会有用的人才,为祖国的繁荣昌盛做出自己应有的贡献。
具体的目标主要包括:(1)通过对数学抽象概念产生的数学文化背景介绍,培养学生的爱国情怀、文化自信和民族自豪感,学习古人坚韧不拔的毅力和拼搏精神;(2)让学生了解身边的数学,认识数学的理性价值、应用价值和审美价值,激发学生的兴趣,增强学生对未知世界的好奇心,培养勇于探索的创新意识。
《概率论与数理统计》课程教学大纲
![《概率论与数理统计》课程教学大纲](https://img.taocdn.com/s3/m/b56a71723868011ca300a6c30c2259010202f3ca.png)
概率论与数理统计课程教学大纲Probability Theory and Mathematical Statistics学时数:56其中:实验学时:0课外学时:0学分数:3.5适用专业:非数学类各专业一、课程的性质、目的和任务概率论与数理统计是非数学类各本科专业的一门公共基础课,它是研究随机现象统计规律性的学科,它是各类统计课程、统计方法的理论基础,它在各个领域都有广泛地应用。
通过本课程的教学使学生掌握概率论与数理统计的基本概念、基本理论和方法,以及简单的应用;培养学生学运用这些理论和方法去分析解决实际问题的能力,为学习后续课程提供必要的概率论和数理统计的基础知识。
二、课程教学的基本要求(一)随机事件及其概率1. 理解随机事件和样本空间的概念;2. 掌握事件之间的关系与基本运算;3. 了解概率的统计定义及概率的公理化定义;4. 理解概率的古典定义;5. 掌握概率的基本性质并能应用这些性质进行概率计算;6. 理解条件概率的概念,掌握概率的乘法公式、全概率公式和贝叶斯公式,并能应用这些公式进行概率计算;7. 理解并能判断事件的相互独立性。
(二)随机变量及其分布1. 理解随机变量的概念,掌握离散型随机变量和连续型随机变量的描述方法;2. 掌握离散型随机变量的概率分布的概念和性质,掌握二点分布、二项分布及泊松分布;3. 掌握连续型随机变量的分布函数、分布密度(概率密度)的概念和性质,掌握均匀分布、指数分布及正态分布;4. 会利用概率分布律、概率密度以及分布函数计算有关事件的概率;5. 会求简单的随机变量函数的概率分布。
(三)随机向量及其分布1. 理解多维随机向量的概念;2. 掌握二维随机向量的分布联合分布的概念及性质;3. 掌握二维离散随机向量的联合分布律及边缘分布;4. 掌握二维连续随机向量的分布函数、分布密度及其性质,知道二维均匀分布和二维正态分布;5. 掌握二维连续性随机向量的边缘分布与联合分布的关系;6. 理解条件分布和随机变量独立性的概念,会求条件概率和条件密度,并会应用随机变量的独立性进行概率计算;7. 了解求二维随机向量的函数分布的一般方法。
概率论与数理统计教学大纲
![概率论与数理统计教学大纲](https://img.taocdn.com/s3/m/cc6ad0e75122aaea998fcc22bcd126fff6055d44.png)
《概率论与数理统计》教学大纲(执笔人:吴翊杨文强审阅学院:理学院)课程编号:0701104英文名称:Probability Theory and Mathematical Statistics预修课程:高等数学、线性代数学时安排:学时54,其中讲授50学时,实践研讨2学时,考试2学时。
学分:3一、课程概述(一)课程性质地位概率论与数理统计广泛应用于社会、经济、科学等领域,为定量分析随机现象及随机数据提供了一套完整的数学方法。
概率论与数理统计包含“概率论”和“数理统计”两方面的内容,其中概率论以现代数学框架为基础研究随机现象的规律性,而数理统计则是以概率论为主要数学工具,研究怎样用有效的方法去收集和使用受随机性影响的数据,并对所研究的问题作出统计推断和预测,并为决策和行动提供依据和建议。
《概率论与数理统计》是理、工科本科生的一门必修数学基础课,为学习后续专业课程以及进一步获得数学知识奠定必要的数学基础。
该课程初步培养学生用概率统计方法分析与解决实际问题的能力,也为学生在今后的学习和工作中打下基础。
(二)课程基本理念《概率论与数理统计》课程以教育部新制定的“工科类本科数学基础课程教学基本要求” 为基本指导原则,厚实基础,淡化技巧,注重概率统计思想的阐述,适当拓展现代数学内容,运用现代化教学手段,优化教学策略,加强应用能力与统计建模能力的培养,充分体现数学素质在培养高素质军事人才的作用。
(三)课程设计思路1、《概率论与数理统计》课程教学时数为54学时,一个学期进行。
教学内容包括:概率论的基本概念,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,数理统计的基本概念与抽样分布,参数估计,假设检验和回归分析。
2、《概率论与数理统计》课程的教学采用以课堂讲授为主、以练习课和学员自己上机实验为辅相结合的方式进行。
3、《概率论与数理统计》课程的考核方式为考试,组织方式为闭卷笔试,成绩评定为百分制。
概率论与数理统计教学大纲
![概率论与数理统计教学大纲](https://img.taocdn.com/s3/m/5664a57f2379168884868762caaedd3382c4b575.png)
《概率论与数理统计A》课程教学大纲(理论)一、课程的地位与作用概率论与数理统计是研究随机现象客观规律性的数学学科,是高等院校工科本科各业一门重要基础理论课。
通过本课程的教学使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
二、课程对应的毕业要求对应的毕业要求:1、3、6、71.数学知识:具有扎实的数学基础,接受严格的逻辑思维训练,能够将数学和统计学知识运用于经济、金融学和信息技术,并能解决社会经济、信息领域中的复杂问题;3. 问题分析/计算能力:具有一定的实验设计能力,能熟练使用至少两种统计软件包,有较强的统计计算能力,有一定的经济学、金融学和信息技术基础,具有管理信息资料并进行综合分析能力;6.工程与社会:灵活运用所学知识解决实际问题,进行过有关概率统计及其相关学科的训练。
具有采集数据、设计调查问卷和处理调查数据的基本能力。
7.环境和可持续发展:能够理解和评价国民经济和信息技术中的大量数据对环境、社会可持续发展的意义和影响。
三、课程教学目标该课程的教学目标在于通过金融数学的学习,让学生了解并掌握运用数学、经济、金融等方面的相关基础知识,造就应用数学与金融学交叉科学领域方面的复合型人才。
四、课程教学内容提要与基本要求五、说明本课程需要有坚实的高等数学和线性代数基础,课程概念多,课程的难点是连续型一维和二维随机变量函数的分布以及边缘分布。
本课程在几乎所有的专业都有应用,很多后续课程需要使用本课程的概念和理论。
六、学生成绩考核与评定方式本课程的总成绩由平时考核成绩和期末考试成绩组成。
平时成绩占30%(包括作业完成情况、课堂提问、习题课、考勤情况等)。
期末考试的考核方式为闭卷考试,成绩占70%。
七、建议教材与参考书1.建议教材:《概率论与数理统计》孙妍等编,机械工业出版社,2024。
2.参考书:(1)盛骤等编,《概率论与数理统计》(第五版),高等教育出版社,2020。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》课程教案大纲<2002年制定 2004年修订)课程编号:英文名:Probability Theory and Mathematical Statistics课程类别:学科基础课前置课:高等数学后置课:计量经济学、抽样调查、实验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论学分:5学分课时:85课时修读对象:统计学专业学生主讲教师:杨益民等选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年<第三版)课程概述:本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。
因为其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。
本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生测试的重要专业基础课。
本课程由概率论与数理统计两部分组成。
概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。
其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对实验结果进行统计推断。
包括数理统计的基本概念、参数统计、假设检验、非参数检验、方差分析和回归分析等。
教案目的:通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量<如0-1分布、二项分布、泊松<Poisson)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布、顺序统计量的分布。
理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。
了解大数定律和中心极限定量的内容及应用,熟悉数据处理、数据分析、数据推断的各种基本方法,能用所掌握的方法具体解决所遇到的各种社会经济问题,为学生进一步学习统计专业课打下坚实的基础。
教案方法:本课程具有很强的应用性,在教案过程中要注意理论联系实际,从实际问题出发,通过抽象、概括,引出新的概念。
因为本课程是研究随机现象的科学,学生之前从未接触过,学习起来会感到难度较大,授课时应突出重点,讲清难点。
要使学生明白,本课程主要研究哪些方面的问题,从何角度、用何原理和方法进行研究的,是怎样研究的,得到哪些结论,如何用这些方法和结论处理今后遇到的社会经济问题。
在教育中要坚持以人为本,全面体现学生的主体地位,教师应充分发挥引导作用,注意随时根据学生的理解状况调整教案进度。
授课要体现两方面的作用:一是为学生自学准备必要的理论知识和方法,二是激发学生学习兴趣,引导学生自学。
在教案中要体现计算机辅助教案的作用,采用多媒体技术,提高课堂教案的信息量。
通过课堂计算机演示实验,帮助学生加深对概念的理解。
每次课后必须布置较大数量的思考题和作业,并加强课外辅导和答疑。
各章教案要求及教案要点第一章概率论的基本概念课时分配:13课时教案要求:1、了解样本空间<基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、减法公式、全概率公式,以及贝叶斯公式。
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复实验的概念,掌握计算有关事件概率的方法。
教案内容:1、随机实验、随机事件与样本空间。
2、事件的关系与运算、完全事件组。
3、概率的概念、概率的基本性质、概率的基本公式。
4、等可能概型 <古典概型)、几何型概率。
5、条件概率、全概率公式、贝叶斯公式。
6、事件的独立性、独立重复实验。
思考题:事件A表示三个人对某问题的回答中至少有一人说“否”,B表示三个人对某问题的回答都说“是”。
试问:事件A B、AB各表示什么涵义?社会经济现象是否只分成确定性现象和随机现象?“某天的天气状况”是否属于这两类现象?试举出至少三种不属于这两类现象的社会经济现象。
3、随机事件与集合的对应关系是怎样的?4、对立事件和不相容事件有何区别?5、全概率公式和贝叶斯公式有何区别,各自能解决什么问题?6、“小概率事件”是否不会发生?7、“概率为零的事件”是否必然是不可能事件?第二章随机变量及其分布课时分配:10课时教案要求:1、理解随机变量及其概率分布的概念;理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松<Poisson)分布及其应用。
3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,>、指数分布及其应用。
5、根据自变量的概率分布求其简单函数的概率分布。
教案内容:1、随机变量及其分布函数的概念及其性质。
2、离散型随机变量及其分布律。
3、连续型随机变量及其概率密度。
4、常见随机变量的概率分布。
5、随机变量的函数分布。
思考题:1、引入随机变量的意义何在?如何用微积分的工具来研究随机实验?2、分布函数有哪些性质?3、离散型随机变量的分布律有哪些性质?若有一组数,它们是不是某个离散型随机变量的概率分布?4、二项分布何时取得极大值?其极大值是什么?5、什么类型的实际问题可以用二项分布来研究?如何解决二项分布的计算问题?6、什么类型的实际问题可以用泊松<Poisson)分布来研究?7、指数分布的密度函数在不同的教材上有不同的定义,它们的区别何在?8、连续型随机变量的概率密度有哪些性质?9、正态分布N(μ,>与标准正态分布的分布函数之间有何联系?如何利用标准正态分布来计算正态分布N(μ,>落在某个区间的概率?10、什么是正态分布的“3σ法则”?如何利用“3σ法则”来研究实际问题?11、若随机变量X的密度函数不单调,如何求密度函数?第三章多维随机变量及其概率分布课时分配:12课时教案要求:1、理解二维随机变量的概念、理解二维随机变量的联合分布的概念、性质及两种基本形式:离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度。
会利用二维概率分布求有关事件的概率。
2、理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。
3、掌握二维均匀分布,了解二维正态分布的联合概率密度,理解其中参数的概率意义。
4、会求两个随机变量的简单函数<和、顺序统计量)的分布。
教案内容:1、二维随机变量及其概率分布。
2、二维离散型随机变量的概率分布、边缘分布和条件分布。
3、二维连续型随机变量的概率密度、边缘密度和条件密度,常用二维随机变量的概率分布。
4、随机变量的独立性和相关性。
5、两个随机变量函数的分布。
思考题:1、二维随机变量概率分布和相应的两个一维随机变量的概率分布间有何联系?2、如何用一张概率分布表同时表示二维随机变量的联合分布律、边缘分布律?能否同时表示两个条件分布律?二维均匀分布的联合概率密度与一维均匀分布的概率密度有何共性?如何由此推出三维及n 维随机变量的联合概率密度?4、二维正态分布的联合概率密度和相应的两个一维正态分布的概率密度间有何联系?5、二维正态分布的联合概率密度各参数的涵义是什么?何时相应的两个一维正态分布是相互独立的?6、如何确定条件密度表达式的函数定义域?7、设某离散型随机变量与某连续型随机变量是相互独立的,如何求它们的和分布?8、哪些独立随机变量具有可加性?9、随机变量的独立性与事件的独立性有何区别?第四章随机变量的数字特征课时分配:12课时教案要求:1、理解随机变量数字特征<数学期望、方差、标准差、矩、协方差、相关系数)的概念,并会运用数字特征基本性质计算具体分布的数字特征,掌握常用分布<如0-1分布、二项分布、泊松<Poisson)分布、均匀分布、正态分布、指数分布等)的数字特征。
2、会根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其函数的数学期望。
3、了解切比雪夫不等式及其应用。
教案内容:1、随机变量的数学期望<均值)、随机变量函数的数学期望。
2、方差、标准差及其性质,切比雪夫<Chebyshev)不等式。
3、协方差、相关系数及其性质。
4、矩、协方差矩阵。
思考题:1、数学期望和方差的统计意义是什么?2、如何求一维与二维随机变量函数的期望?3、写出0-1分布、二项分布、泊松<Poisson)分布、均匀分布、正态分布、指数分布的数学期望和方差。
4、数学期望和方差有哪些重要性质?其中哪些性质需要“相互独立”这一前提条件?5、切比雪夫不等式的表达式是什么?它的证明过程中关键步骤是什么?它在处理实际问题中有何作用?6、方差与协方差的实用计算公式是什么?7、不相关与相互独立之间的关系是怎样的?若随机变量X与Y不相关,它们是否必然相互独立?若随机变量X与Y是正态分布,结论怎样?8、若随机变量X与Y的相关系数r=0,是否说明X与Y之间没有关系?举例说明之。
9、事件A与B的相关系数是如何定义的?写出其定义式。
10、n维正态分布有哪些重要性质?第五章大数定律和中心极限定理课时分配:4课时教案要求:1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律<独立同分布随机变量的大数定律)。
2、了解棣莫弗-拉普拉斯定理<二项分布以正态分布为极限分布)和列维-林德伯格定理<独立同分布的中心极限定理)。
教案内容:1、几乎处处收敛、依概率收敛、依分布收敛。
2、切比雪夫大数定律、伯努利大数定律、辛钦<Khinchine)大数定律。
3、棣莫弗-拉普拉斯<De Moivre-Laplace)定理、列维-林德伯格<Levy-Lindberg)定理。
思考题:1、几乎处处收敛、依概率收敛、依分布收敛之间的关系是怎样的?2、切比雪夫大数定律、伯努利大数定律、辛钦<Khinchine)大数定律成立的条件是什么,它们之间的差别是什么?3、哪个大数定律可以用来说明频率的稳定性?试说明之。
4、棣莫弗-拉普拉斯定理和列维-林德伯格定理之间的关系是怎样的?5、如何用列维-林德伯格定理来近似求独立同分布随机变量的和分布?第六章样本及抽样分布课时分配:6课时教案要求:1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。