(优选)经济数学基础概率统计习题一答案
经济概率统计作业参考答案(第一章)
第一章 随机事件及概率作业题1、同时抛掷两颗骰子,以),(y x 表示第一颗、第二颗骰子分别出现的点数,设事件A 表示“两颗骰子出现点数之和为奇数”,B 表示“两颗骰子出现点数之差为0”,C 表示“两颗骰子出现点数之积不超过16”,写出事件A ,BC ,A B -中所含的样本点。
解:=A {(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)}=BC {(1,1),(2,2),(3,3),(4,4)} =-A B {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}2、设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示下列有关随机事件:(1)A 、B 都发生而C 不发生;(2)B 发生;(3)A ,B ,C 至少一个发生;(4)A ,B ,C 恰有一个发生;(5)A ,B ,C 不多于两个发生。
解:(1)C AB (2)B (3)C B A(4)C B A C B A C B A ++ (5)ABC3、袋中有球12个,2白10黑,今从中取4个,试求(1)恰有一个白球的概率;(2)至少有一个白球的概率。
解:(1)331641231012=C C C (2)33194122102241231012=+C C C C C C4、从30件产品中(其中27件合格品,3件不合格品)任取3件产品,求下的概率:(1)正好1个不合格品;(2)至少一个不合格品;(3)最多一个不合格品。
解:(1)40601053)(33022713==C C C A P (2)8122271)(330327=-=C C B P (3)20301989)(33022713330327=+=C C C C C C P5、某种饮料每箱12听,不法商人在每箱中放入4听假冒货,今质检人员从一箱中抽取3听进行检验,问查出假冒货的概率。
国开经济数学基础-概率论与数理统计-数据处理练习与答案
国开经济数学基础-概率论与数理统计-数据处理练习与答案
一、单项选择题
试题 1
下列各组数中,( )能作为一组数据进行加权平均数的“权”.
正确答案是:
试题 2
设是一组数据, 是它们的权,则这组数据的加权平均数和方差分别是( ).
正确答案是:
试题 3
设是一组数据,则这组数据的标准差的计算公式是( ).
正确答案是:
二、是非题
试题 4
设是一组数据,如果一组数满足,则
可以成为数据的权.
正确答案是“错”。
试题 5
设一组试验数据为7.3, 7.8, 8.0, 7.6, 7.5, 则它们的中位数是8.0. 正确答案是“错”。
窗体底端。
概率教材习题解
概率统计第一章教材习题选解习题1-21.已知B A ⊂,()4.0=A P ,()6.0=B P .求:(1)()A P ,()B P ;(2)()AB P ;(3)()B A P +;(4)()B A P ;(5)()B A P ⋅,()A B P .解:(1)()()6.01=-=A P A P ,()()4.01=-=B P B P ;(2)()()4.0====⊂A P AB P B A ;(3)()()6.0====+⊂B P B A P B A ;(4)()()()()()()2.0=-=-=-=A P B P AB P B P A B P B A P ;(5)()()()()4.011=-=+-=+=⋅B P B A P B A P B A P ,()()()0=-=AB P A P A B P .2.设B A ,是两事件,且()6.0=A P ,()7.0=B P .问分别在什么条件下,()AB P 取得最大值和最小值?最大值和最小值各为多少?解:因为()()()()B A P B P A P AB P +-+=,所以要使()AB P 最大,只要()B A P +最小;要使()AB P 最小,只要()B A P +最大. 而()B A A +⊆,()B A B +⊆,则()()B A P A P +≤,()()B A P B P +≤.于是B A ⊃或A B ⊃.又因为()()A P B P <,则B A ⊃不合题意.故,当A B ⊃时,()()()()()()()()6.0==-+=+-+=A P B P B P A P B A P B P A P AB P 最大;当Ω=+B A 时,()B A P +最大,()()()()3.0=+-+=B A P B P A P AB P 最小.3.已知B A ,是二事件,且()5.0=A P , ()7.0=B P ,()8.0=+B A P .试求()A B P -与()B A P -. 解:因为()()()()4.0=+-+=B A P B P A P AB P ,所以()()()3.0=-=-AB P B P A B P , ()()()1.0=-=-AB P A P B A P .4.已知()()41==B P A P ,()21=C P ,()81=AB P ,()()0==CA P BC P .试求C B A ,,中有一个发生的概率. 解:()()()()()()()()ABC P AC P BC P AB P C P B P A P C B A P +---++=++因为()()()0==CA B P CA P ABC P ,而ABC AC ⊇,所以()()0=≥ABC P AC P ,即()0=AC P . 故,()()()()()()()()ABC P AC P BC P AB P C P B P A P C B A P +---++=++()()()()()87=-++=++AB P C P B P A P C B A P . 5.书架上有一部五卷册的文集,求各册自左至右或自右至左排成自然顺序的概率. 解:设A 表示“一部五卷册的文集,各册自左至右或自右至左排成自然顺序”,则()601!5!2==A P . 6.从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有一件次品的概率.解:设A 表示“任取3件产品,求其中恰有一件次品”,则()3929935024515==C C C A P . 7.n 个朋友随机地围绕圆桌就座,求其中两人一定坐在一起(即座位相邻)的概率.解:首先必须搞清楚,这是一个环状排列问题.这种排列是无首尾之分的,而我们所熟悉的是线状排列问题.环状排列一种,相当于线状排列n 种.设A 表示“n 个朋友随机地围绕圆桌就座,其中甲,乙两人一定坐在一起”,则按线状排列时,首先考虑将甲,乙两人排在一起,有!2种排法,然后把这两人视为一个元素,再与其它的()1-n 的元素作全排列,共有()!1!2-n 种,而对应的环状排列有()()1!1!2--n n 种,于是()()()12!1!1!2-=--=n n n n n A P . 8.某油漆公司发出17桶油漆,其中白油漆10桶,黑油漆4桶,红油漆3桶,在搬运过程中所有的标签脱落,交货人随机地将这些油漆发给顾客,问一个订货为4桶白油漆,3桶黑油漆和2桶红油漆的顾客,能按所订颜色如数得到订货的概率是多少?解:设A 表示“能按所订颜色如数得到订货”,则()24312529172334410==C C C C A P . 9.设有N 件产品,其中M 件次品,今从中任取n 件,(1)求其中恰有()()n M k k ,m in ≤件次品的概率;(2)求其中至少有两件次品的概率.解:(1)设A 为“从N 件产品中任取n 件,其中恰有()()n M k k ,m in ≤件次品”,则()n Nk n M N k M C C C A P --=. (2)设B 为“从N 件产品中任取n 件,其中至少有两件次品”,则考虑逆事件的概率有:()()B P B P -=1,其中:B 表示“从N 件产品中任取n 件,其中次品件数不多于两件”.于是,()()n N n M N M n M N M C C C C C B P B P 11011---+-=-=. 10.将一枚骰子重复地掷n 次,试求掷出的最大点数为5的概率.解:设k A “n 次投掷中恰有k 次掷出5点,且其他各次小于5点”,则所求概率为:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+++--0222112164616461646161n n n n n n n n n C C C A A A P ΛΛ. 点评:本题不管是直接计算还是从对立事件着手都是困难的,但利用减法公式是简洁的. 设A “最大点数为5”,B “最大点数不超过5”,C “最大点数不超过4”,则B C ⊂,且C B A -=,于是()()()()n nn n n n n C P B P C B P A P 6456465-=-=-=-=. 11.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率.解:设甲乙两船到达的时刻为y x ,,则(){}240;240,≤≤≤≤=Ωy x y x .(){}y x x y y x A +≥+≥=21,或.显然,()11521013=A P . 点评:若甲船先到,则乙船必须晚到一小时x y +≥1;若乙船先到,则甲船必须晚两小时到达y x +≥2.12.(91数1-3)随机地向半圆a x ax y (202-<<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,试求原点和该点的连线与x 轴的夹角小于4π的概率.解:.1212cos 20402πθπθπ+===⎰⎰a D rdr d a S S P 半圆 点评:此题求面积时可用定积分或二重积分.习题1-31.已知()3.0=A P ,()4.0=B P ,()5.0=B A P ,求条件概率()B A B P +. 解:()()()()()()()()()()()()B A P B P A P AB P B A P B P A P B B P AB P B A P B B AB P B A B P --+=-++=++=+1 因为()()()()5.0=-=-=AB P A P B A P B A P ,所以()()()B A P A P AB P -=. 故,()B A B P +()()()()()()()()()4111=--+-=--+=B A P B P A P B A P A P B A P B P A P AB P . 2.已知()5.0=A P ,()6.0=B P ,()8.0=A B P ,求()AB P 及()B A P ⋅.解:()()()4.0==A B P A P AB P ; ()()()()()()3.011=+--=+-=+=⋅AB P B P A P B A P B A P B A P . 3.某种动物由出生活到20岁的概率为8.0,活到25岁的概率为4.0,这种动物已经活到20岁,再活到25岁的概率是多少?解:设A “这种动物由出生活到20岁”,B “这种动物由出生活到25岁”,则A B ⊂, 故所求概率为:()()()()()218.04.0====A PB P A P AB P A B P .4.掷两颗骰子,已知两颗骰子的点数之和为7,求其中有一颗为1点的概率(分别用条件概率的定义计算和条件概率的含义(即用缩减后的样本空间)计算).解法(一):设A 表示“两颗骰子的点数之和为7”,B 表示“其中有一颗为1点”,则所求概率为:()()()31666222===A P AB P A B P . 解法(二):考虑缩减后的样本空间(即两颗骰子的点数之和为7):()()()()()(){}4,3,5,2,6,1,3,4,2,5,1,6=Ω,()(){}6,1,1,6=A ,故()31=A P . 点评:缩减后的样本空间只含有6个基本事件,而原样本空间含有36个基本事件.5.某人有一笔资金,他投入基金的概率为58.0,购买股票的概率为28.0,两项同时都投资的概率为19.0,(1)已知他已经投入基金,再购买股票的概率是多少?(2)已知他已购买股票,再投入基金的概率是多少?解:设A “投入基金”,B “购买股票”,则()58.0=A P ,()28.0=B P ,()19.0=AB P ,于是,已知他已经投入基金,再购买股票的概率是:()()()581958.019.0===A P AB P A B P . 已知他已购买股票,再投入基金的概率是:()()()281928.019.0===B P AB P B A P . 6.袋中有r 只红球,t 只白球,每次从袋中任取一只球,观察颜色后放回,并再放入a 只与取出的那只球同色的球,若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率(此题为波利亚模型,它是一个包含了许多重要的随机现象的模型,请读者思考一下,什么样的现象可以归结于这一模型).解:设()4,3,2,1=i A i 表示“第i 次取到红球”,则所求概率为:()4321A A A A P ⋅⋅⋅()()()()()()a t r a t r a t r t r a t a r rt 32+++++++++=. 7.已知10只产品中有2只次品,在其中取两次,每次任取一只,作不放回抽样.求下列事件的概率:(1)两只都是正品;(2)两只都是次品;(3)一只正品,一只次品. 解:设21,A A 分别表示“第1,2次取的是正品”,则(1)()()()45289710812121=⋅==A A P A P A A P . (2)()()()4519110212121=⋅==⋅A A P A P A A P . (3)()()()()()()()12112121212121A A P A P A A P A P A A P A A P A A A A P +=+=+45169810292108=⋅+⋅=. 8.已知()3.0=A P ,()5.0=B P ,()15.0=AB P ,验证()()B P A B P =,()()B P A B P =,()()A P B A P =,()()A P B A P =. 证明:()()()()B P A P AB P A B P ===5.0;()()()()()()()()A P AB P B P A P A B P A P A B P A B P --=--==11 ()B P ==-=5.07.015.05.0.同理可证其他. 9.第一个盒子中有5只红球,4只白球;第二个盒子中有4只红球,5只白球.先从第一个盒子中任取2只球放入第二个盒子中去,然后从第二个盒子中任取一球,求取到白球的概率.解:设1B “从第一只盒子中取得2 只红球”,2B “从第一只盒子中取得2 只白球”,3B “从第一只盒子中取得一只红球,一只白球”,A “从第二只盒子中取到一只白球”. 由全概率公式得:()()()9953116951176111518531=⨯+⨯+⨯==∑=i i i B A P B P A P . 10.某产品主要由三个厂家供货. 甲、乙、丙三个厂家的产品分别占总数的%15,%80,%5.其次品率分别为02.0,01.0,03.0. 试计算:(1)从这批产品中任取一件是合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪家生产的可能性大?解:设1B ,2B ,3B 分别表示“任取一件产品是甲,乙,丙厂生产的”,A 表示“从这批产品中任取一件是合格品”则()()()0125.003.005.001.08.002.015.031=⨯+⨯+⨯==∑=i i i B A P B P A P .11.将两信息分别编码为X 和Y 后传送出去,接收站接收时,X 被误收作Y 的概率为02.0,而Y 被误收作X 的概率为01.0.信息X 与信息Y 传送的频繁程度之比为1:2.若接收站收到的信息是X ,问原发信息也是X 的概率是多少?解:设A “发出信号X ”,B “收到信号X ”,则由Bayes 公式可知:()()()()()()()19719601.03198.03298.032=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P . 12.设有两箱同类零件,第一箱内装有50件,其中10件是一等品;第二箱内装有30件,其中18件是一等品,现从两箱中任选一箱,然后从该箱中依次随机地取出两个零件(取出的零件不放回),试求:(1)第一次取出的零件是一等品的概率;(2)在第一次取出的零件是一等品的条件下,第二次取出的零件仍是一等品的概率.解:设21,A A 分别表示“第一,二次取得一等品”,21,B B 分别表示“取到第一箱,第二箱中的零件”.(1)由全概率公式得:()()()4.02130182*********=⨯+⨯==∑=i i i B A P B P A P . (2)由全概率公式得:4856.0=.习题1-41.设()7.0=A P ,()8.0=B P ,()8.0=A B P .问事件A 与B 是否相互独立?解:因为()()()56.0==A B P A P AB P ,而()()56.0=B P A P ,即()()()B P A P AB P =,所以事件A 与B 是相互独立的.2.设C B A ,,是三个互相独立的随机事件,且()10<<C P ,问AC 与C 是否相互独立? 解:因为()()()()()()01>-==+⋅=+=⋅C P C P C C A P C A C P C AC P , ()()()[]()()()[]()C P C P A P C P AC P C P AC P C B A -=====-=11,,独立,所以当()0=A P 时,()()()()C P C P AC P C AC P ==⋅,故AC 与C 是相互独立的.否则,AC 与C 是不相互独立的. 点评:因为C AC ⊂,所以C AC ⊃,从而()()C P C AC P =⋅.3.已知()a A P =,()3.0=B P ,()7.0=+B A P .(1)若事件A 与B 互不相容,求a ;(2)若事件A 与B 相互独立,求a .解:(1)若事件A 与B 互不相容,则()()()()A B P B P A P B A P -+=+ ()()()()()()()()()AB P A P AB P B P B P A P A B P B P A P +-=+-+-=--+=11,因为A 与B 互不相容,所以()0=AB P ,从而()()3.0117.0=⇒-=-==+a a A P B A P .(2)若事件A 与B 相互独立,则()()()()A B P B P A P B A P -+=+ ()()()B P A P A P +-=1,从而()()()()a a B P A P A P B A P 3.0117.0+-=+-==+,故73=a . 4.设A 与B 相互独立,且()α=A P ,()β=B P ,求下列事件的概率:(1)()B A P +;(2)()B A P +;(3)()B A P +. 解:(1)()αββα-+=-+=+)()()()(B P A P B P A P B A P ;(2)()()()B A P B P A P B A P -+=+)(,当A 与B 相互独立时,A 与B 也是独立的,则 αββ+-=1;(3)()()()()()αβ-=-=-==+111B P A P AB P AB P B A P . 5.已知事件A 与B 相互独立,且()91=⋅B A P ,()()B A P B A P =,求()A P ,()B P . 解:()()()()()()()()AB P B P AB P A P A B P B A P B A P B A P -=-⇔-=-⇔= ()()B P A P =⇔,从而有()()B P A P =. 当事件A 与B 相互独立时,事件A 与B 也独立,则()()()9191=⇔=⋅B P A P B A P ,于是()()31==B P A P ,()()32==B P A P .6.三个人独立地破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率为多少?解:设C B A ,,分别表示“甲,乙,丙能独立地译出此密码”,则()()()()()()4332541111⨯⨯-=-=⋅⋅-=++-=++C P B P A P C B A P C B A P C B A P 53=.7.对同一目标进行三次独立射击,第一次、第二次、第三次射击的命中率分别是7.0,5.0,4.0,求:(1)在这三次射击中,恰好有一次击中目标的概率;(2)在这三次射击中,至少有一次命中目标的概率.解:设C B A ,,分别表示“第一,二,三次射击时命中目标”.(1)()()()()()()()()()()C P B P A P C P B P A P C P B P A P C B A C B A C B A P ++=⋅⋅+⋅⋅+⋅⋅36.07.05.06.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯=.(2)()()()()()()C P B P A P C B A P C B A P C B A P -=⋅⋅-=++-=++11191.03.05.06.01=⨯⨯-=.8.一个元件(或系统)能正常工作的概率称为元件(或系统)的可靠性,设4个独立工作的元件4,3,2,1,求这一系统的可靠性.解:设i A 表示“第i 个元件可靠”)4,3,2,1(=i ,则所求概率为:()()()413214321A A A A A P A A A A P +=+ ()()()432141321432141321p p p p p p p p p A A A A P A A P A A A P -+=-+=.9.设第一只盒子中装有3只兰球,2只绿球,2只白球;第二个盒子中装有2只兰球,3只绿球,4只白球,独立地分别在两个盒子中各取一只球.(1)求至少有一只兰球的概率;(2)求有一只兰球,一只白球的概率;(3)已知至少有一只兰球,求有一只兰球一只白球的概率.解:设111,,C B A 分别表示“从第一只盒子中取出的球为兰,绿,白色的”,设222,,C B A 分别表示“从第二只盒子中取出的球为兰,绿,白色的”.(1)()()()()()959774111121212121=⨯-=-=⋅-=+-=+A P A P A A P A A P A A P ;(2)()()()()()()()212121212121A P C P C P A P A C P C A P A C C A P +=+=+631692729473=⨯+⨯=. (3)()()()()()21212121212121A A P A A A C C A P A A A C C A P +++=++,因为()()212121A A A C C A +⊂+,所以()()()()2121212121A C C A P A A A C C A P +=++.故,()()()()()()()3121212121212121212121=++=+++=++A A P A C C A P A A P A A A C C A P A A A C C A P .10.(先下手为强)甲、乙两人射击水平相当,于是约定比赛规则:双方对同一目标轮流射击,若一方失利,另一方可以继续射击,直到有人命中目标为止.命中一方为该轮的获胜者.你以为先射击者是否一定沾光?为什么?解:设i A 表示“第i 次射击时命中目标”()Λ,2,1=i ,B 表示“甲获胜”,假设由甲先发第一枪,又设甲,乙两人每次射击时的命中率为p ,未命中的概率为q ,则1=+q p .qq p +=-=1112,于是乙获胜的概率为:()()q qB P B P +=-=11.因为10<<q ,故()()B P B P >.即,先下手为强.第一章总习题1.填空题(1)假设B A ,是两个随机事件,且B A AB ⋅=,则()=+B A ,()=AB ;解:()()Ω=+⇔+=+++⇔B A B A B B A A .Φ=Φ⋅=⇔⋅⋅=⇔⋅=A AB B B A ABB B A AB .(2)假设B A ,是任意两个事件,则()()()()[]()=++++B A B A B A B A P .解:()()()()[]()()()()[]B A B A B A B A P B A B A B A B A P ++++=++++()()[]()0=Φ=++=P B B A B B A P .2.选择题(1)设8.0)(=A P ,7.0)(=B P ,()8.0=B A P ,则下列结论正确的是().(A )事件A 与事件B 相互独立;(B )事件A 与事件B 互逆; (C )A B ⊃;(D )())()(B P A P B A P +=+.解:因为()56.0)()(==B A P B P AB P ,而56.0)()(=B P A P ,即)()()(B P A P AB P =,所以事件A 与事件B 相互独立,选(A ).(2)设B A ,为两个互逆的事件,且0)(>A P ,0)(>B P ,则下列结论正确的是().(A )()0>A B P ;(B )())(A P B A P =;(C )()0=B A P ;(D ))()()(B P A P AB P =. 解:因为B A ,为两个互逆的事件,所以当事件B 发生时,事件A 是不会以生的,故()0=B A P .选(C ).(3)设1)(0<<A P ,1)(0<<B P ,()()1=+B A P B A P ,则下列结论正确的是().(A )事件A 与事件B 互不相容;(B )事件A 与事件B 互逆;(C )事件A 与事件B 不互相独立;(D )事件A 与事件B 互相独立.解:因为()()()()()()()()()()1111=-++⇔=⋅+⇔=+B P BA PB P AB P BP B A P B P AB P B A P B A P )()()(B P A P AB P =,所以事件A 与事件B 互相独立.选(D ).3.从五双不同的鞋子中任取四只,求取得的四只鞋子中至少有两只配成一双的概率.解:此题考虑逆事件求解比较方便,即取得的四只鞋子中不能配成一双.设A 表示“取得的四只鞋子中至少有两只配成一双”,则()4101212124511)(C C C C C A P A P -=-= 2113=. 4.(找次品问题)盒中有4只次品晶体管,6只正品晶体管,随机地抽取一只进行测试,直到4只次品晶体管都找到为止,求第4次品晶体管在第五次测试中被发现的概率.解:设i A 表示“第i 次找到次品晶体管”()5,4,3,2,1=i ,则所求概率为:1052617283941064=⎪⎭⎫⎝⎛⨯⨯⨯⨯=.5.(讨论奖金分配的公平性问题)在一次羽毛球比赛中,设立奖金1000元.比赛规定:谁先胜三盘,谁获得全部奖金.设甲、乙两人的球技相当,现已打了三盘,甲2胜1负.由于特殊原因必须中止比赛.问这1000元应如何分配才算公平?解:应以预期获胜的概率为权重来分配这笔奖金,于是求出甲、乙两人获胜的预期概率即可.比赛采取的应是五局三胜制,比赛已打三盘,甲胜两盘,甲若再胜一盘即可获胜. 甲获胜的预期概率为:()()()()43212121544544=⨯+=+=+A P A P A P A A A P . 于是,甲应分得1000元奖金中的750100043=⨯元,乙分得250元.6.4张卡片标着1到4,面朝下放在桌子上,一个自称有透视能力的人将用他超感觉的能力说出卡片上的号码.如果他是冒者而只能随机地猜一下,他至少猜中一个的概率p 是多少?解:由古典概型下概率的定义可知:85!41!40444342414=-=+++=C C C C C p . 7.甲从10,8,6,4,2中任取一个数,乙从9,7,5,3,1中任取一个数,求甲取得的数大于乙取得的数的概率.解:设i A 表示“甲取的数为()10,8,6,4,2=i i ”,k B 表示“乙取的数为()9,7,5,3,1=k k ”,则所求概率为:由于甲、乙取数是相互独立的,则由独立性的性质可知:()()()k i k i B P A P B A P =,且()51=i A P ,()51=k B P ,()9,7,5,3,1;10,8,6,4,2==k i . 以上概率为:5315251=⨯. 8.从数字9,,,3,2,1Λ中可重复地任取n 次,每次取一个数,求n 次所取数的乘积能被10整除的概率.解:n 次取得的数的乘积能被10整除,相当于取得的n 个数中至少有一个是偶数,另一个是5.设A 表示“所取的数是5”,B 表示“所取的数中至少有一个是偶数”,则所求概率为:nnn n 94581-+-=.9.向正方形区域(){}1,1,≤≤=Ωy x y x 中随机地投一个点,如果()y x ,是所投点M 的坐标,试求:(1)02=++y xt t 有两个实根的概率;(2)方程02=++y xt t 有两个正实根的概率.解:(1)设A 表示“02=++y xt t 有两个实根”,02=++y xt t 有两个实根的充要条件是 042≥-y x , 即(){}04,2≥-=y x y x A .故()24134242102=+=⎰dx x A P .⎝⎛x(2)设B 表示“方程02=++y xt t 有两个正实根”,则方程02=++y xt t 有两个正实根的条件是:042≥-y x ,0>-x ,0>y ,即(){}0,0,04,2><≥-=y x y x y x B .故()48144012==⎰-dx x B P . 10.将四个球任意地放到四个盒子中去,每个盒子中容纳球的个数不限,如果已知前两个球放在不同的盒子中,试求有一个盒子中恰好放有三个球的概率.解:设A 表示“前两个球放在不同的盒子中”,B 表示“有一个盒子中恰好有两个球”,则所求概率为:()()()8114141224121224===C C C C C C C A P AB P A B P .11.设M 件产品中有m 件不合格品,从中任取两件.(1)在所取的两件产品中有一件是不合格品的条件下,求另一件也是不合格品的概率;(2)在所取产品中有一件是合格品的条件下,求另一件也是合格品的概率.解:设i A 表示“取出的两件产品中有i 件合格品”,则()22Mi mi m M i C C C A P --=()2,1,0=i . (1)()()()()()()12112222010010100100---=-=+=++=+--m M m C CC C C A A P A P A A P A A A P A A A P MmM M mm M . 或()()()()()()()()()10010010100100A P A P A P A A P A P A A P A A A P A A A P +=+=++=+121211220220---=+=---m M m C C C C C C C C C Mmm M M m m M M mm M . (2)()()()()()()()()1221121211211-+=+=++=+m M mA P A P A P A P A P A A A P A A A P .12.口袋中有20个球,其中两个是红球,现从袋中取球三次,每次取一个,取后不放回,求第三次才取到红球的概率.解:设i A 表示“第i 次取得红球()3,2,1=i ”,则所求概率为:()()()()089.011812119117120118213121321=⨯⨯=⋅=⋅⋅C C C C C C A A A P A A P A P A A A P .13.12个乒乓球全是新的,每次比赛时取出3个用完后放回去.(1)求第三次比赛时取到的三个球都是新球的概率;(2)问在第三次取到的三个球都是新球的条件下,第二次取到几个新球的概率最大?解:设事件i i i C B A ,,分别表示第一、二、三次比赛时取到i 个新球()3,2,1,0=i .(1)由全概率公式,()()()∑==333i i i B C P B P C P .其中:()()3,2,1,0312339==-i C C C B P i i i ,()()3,2,1,0312393==-i C C B C P i i . 故()()()146.03312393123393033≈⋅==∑∑=--=i ii i i i i C C C C C B C P B P C P .(2)容易求得,()70568430=C B P ,()7056151231=C B P ,()7056378032=C B P ,()7056168033=C B P . 故在第三次取到的三个球都是新球的条件下,第二次取到两个新球的概率最大.14.(有关经济的忠告)美国总统常常从经济顾问委员会寻求各种建议.假设有三种不同经济理论的顾问C B A ,,,总统正在考虑采取一项关于工资和价格控制的新政策,并关注这项政策对失业率的影响,每位顾问就这种影响给总统一个个人预测,预测是以失业率将减少、保持不变或上升的概率来给出的,见下表.用字母C B A ,,分别表示顾问C B A ,,的经济理论是正确的事件,根据以往总统与这些顾问一起工作的经验,总统已经形成了关于每位顾问正确的经济理论可能的一个估计,分别为:()61=A P ,()31=B P ,()21=C P .假设总统采取了所提出的新政策,一年后,失业率上升了,总统应如何调整他对其经济顾问的理论的正确的估计?解:设I 表示“失业率上升”,则()()()()()()()C I P C P B I P B P P A I P A P I P ++=3.02.0212.0318.061=⨯+⨯+⨯=.由Bayes 公式得:()()()()943.08.061=⨯==I P A I P A P I A P , ()()()()923.02.031=⨯==I P B I P B P I B P ,()()()()933.02.021=⨯==I P C I P C P I C P .总统调整他对其经济顾问的理论的正确的估计为:()94=I A P ,()92=I B P ,()93=I C P . 15.设一枚深水炸弹击沉一艘潜水艇的概率为31,击伤的概率为21,击不中的概率为61,并设击伤两次会导致潜水艇下沉,求施放4枚深水炸弹能击沉潜水艇的概率.(提示:先求出击不沉的概率.)解:设A 表示“施放4枚深水炸弹击沉潜水艇”,则()()43344613121616111-=⎥⎥⎦⎤⎢⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=-=C A P A P .16.设有五个独立工作的元件,5,4,3,2,1(称为桥式系统),试求出该系统的可靠性. 解:设i A 表示“第i 个元件可靠()5,4,3,2,1=i ”,则所求概率为:()()()54325432154321543225224p p p p A A A A A P A A A A A P A A A A P +-+=-+-.17.(下赌注问题)17世纪未,法国的De Mere 爵士与人打赌,在“一颗骰子连续掷四次至少出现一次六点”的情况下他赢了钱,可是在“两颗骰子连续掷二十四次至少出现一次双六点”的情况下却输了钱,从概率论的角度解释这是为什么?5解:应分别求出“一颗骰子连续掷四次至少出现一次六点”和“两颗骰子连续掷二十四次至少出现一次双六点”的概率,比较这两个概率的大小即可作出解释.设A “一颗骰子连续掷四次至少出现一次六点”,B “两颗骰子连续掷二十四次至少出现一次双六点”;再设i A “第i 次抛掷时出现六点()4,3,2,1=i ”,k B “第k 次抛掷时出现双六点”,则()()()()518.0651144321≈⎪⎭⎫ ⎝⎛-=-=A P A P A P A P . 此概率大于5.0,故赢钱的可能性大.()()()491.0363511242421≈⎪⎭⎫ ⎝⎛-=-=B P B P B P Λ.此概率小于5.0,故赢钱的可能性小.请注意,在“两颗骰子连续掷二十四次至少出现一次双六点”的情形中,当抛掷次数25>n 时,这时的概率大于5.0,且抛掷次数超过25次越多越有利,这是因为136351lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→n n . 18.要验收一批100件的乐器,验收方案如下:自该乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件被认为音色不纯,则这批乐器就被拒绝接收.设一件音色不纯的乐器经测试查出其为音色不纯的概率为95.0,而一件音色纯的乐器经测试被误认为不纯的概率为01.0,如果已知这100件乐器中恰好有4件音色不纯的,试问这批乐器被接收的概率是多少?解:设i H 表示“随机取出的三件乐器中有i 件音色不纯()3,2,1,0=i ”,A 表示“这批乐器被接收”,则()31003960C C H P =,()3100296131C C C H P =,()3100196242C C C H P =,()3100343C C H P =,()()3099.0=H A P ,()()05.099.021⨯=H A P ,()()2205.099.0⨯=H A P ,()()3305.0=H A P . 于是,由全概率公式得:()()()6829.030==∑=i i i H A P H P A P .。
概率统计练习题答案
概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。
所以,答案为0.6。
2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。
已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。
所以,答案为0.62。
3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。
所以,答案为0.4。
4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。
已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。
经济数学基础 概率统计 习题一答案ppt课件
则有利于事件A的样本点数为C15C13 .
而试验的样本点总数为
C
2 8
由古典概率公式有
P( A)
C51C31 C82
15 28
9.计算上题中取到的两个球中有黑球的概率。
解 设事件B表示“取到的两个球中有黑球”
则有利于事件B的样本点数为C52
P(B)
1
P(B)
1
C
2 5
C
2 8
9 14
8
ห้องสมุดไป่ตู้
10.抛掷一枚硬币,连续3次,求既有正面又有 反面出现的概率。
一 定 是 对 立 事 件 , 它 们只 是 不 可 能 同 时 发 生 ,但 不
一 定 同 时 不 发 生.
A、B对立(必互斥)
A、B互斥(不对立)
A
B
A
B
在本书第6页例2之中A与D是对立事件,C与D 是互不相容事件.
5
6.三个事件A、B、C的积是不可能事件,即ABC ,
问这三个事件是否一定互不相容?画图说明。
样
本
空间中样本点总
数N
C5 10
显然,总值要超过一角,至少要取一枚5分硬币.
C22 C83 C12 C33 C15 C12 C23 C52
P(A) 取2枚5分 其它任意取
取1枚5分 取3枚2分 取1枚1分
C5 10
取1枚5分 取2枚2分 取2枚1分
12
14. 袋中有红、白、黑色球各一个,有放回取三次,每次
解 由于AB A A B, A B A A B, AB与A B互不相容,且A AB ( A B). 因此有A C F , C与F互不相容, D A F, A C.
7
概率统计第一章概率论的基础知识习题与答案
概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。
A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。
P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。
答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。
答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。
答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。
答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。
答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。
答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。
则分配方法有______种。
答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。
答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。
经济概率统计作业参考答案(第一章)
第一章 随机事件及概率作业题1、同时抛掷两颗骰子,以),(y x 表示第一颗、第二颗骰子分别出现的点数,设事件A 表示“两颗骰子出现点数之和为奇数”,B 表示“两颗骰子出现点数之差为0”,C 表示“两颗骰子出现点数之积不超过16”,写出事件A ,BC ,A B -中所含的样本点。
解:=A {(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)}=BC {(1,1),(2,2),(3,3),(4,4)} =-A B {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}2、设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示下列有关随机事件:(1)A 、B 都发生而C 不发生;(2)B 发生;(3)A ,B ,C 至少一个发生;(4)A ,B ,C 恰有一个发生;(5)A ,B ,C 不多于两个发生。
解:(1)C AB (2)B (3)C B A(4)C B A C B A C B A ++ (5)ABC3、袋中有球12个,2白10黑,今从中取4个,试求(1)恰有一个白球的概率;(2)至少有一个白球的概率。
解:(1)331641231012=C C C (2)33194122102241231012=+C C C C C C4、从30件产品中(其中27件合格品,3件不合格品)任取3件产品,求下的概率:(1)正好1个不合格品;(2)至少一个不合格品;(3)最多一个不合格品。
解:(1)40601053)(33022713==C C C A P (2)8122271)(330327=-=C C B P (3)20301989)(33022713330327=+=C C C C C C P5、某种饮料每箱12听,不法商人在每箱中放入4听假冒货,今质检人员从一箱中抽取3听进行检验,问查出假冒货的概率。
概率统计习题集(含答案)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
概率统计练习册答案
第一章参考答案:(一)一、选择:1.D 2. A 3.B 4.D二、填空:1. 出现点数恰好是5; 2. 0.3; 3. 0.6; 4. 1,0.75; 5. (1) ABC (2)ABC (3) AB AC BC ⋃⋃ (4) A B C ⋃⋃(5) ABC ABC ABC ⋃⋃ (6) A B C ⋃⋃ 三、计算(1),0.6A B ⊂ (2),0.3A B ⋃=Ω(3)()=0.4P AB ,()=0.9P A B ⋃,()=0.3P B A -,()=0.1P AB(二)一、填空:1.a a b + 2. 32,553. 112604. 8155. 16 二、计算: 1. (1).4190(2). 13 (3). 13152.11ln 242+ 3. 39181616;;(见教材第12页) 4. 1111()k N N N--- 5. (1). 6121110987112⨯⨯⨯⨯⨯- (2). 24661112C ⨯(3). 61112- (4). 661112(三)一、填空:1. 0 2.0.9 3. 234. (1)(1)()(1)a a b b a b a b -+-++-二、计算: 1.142. (1). 0.85 (2). 0.9413. 0.37(或55149) 4. (1). 0.192 (或23120) (2). 0.391(或923) 5. (1). 2990 (2). 2061(四)一、选择:1.D 2. B 3.C 4.B 二、计算: 1.(1) 23(2) 11 2.143. (1). 40.9 (2). 410.1- (3)430.90.40.9+⨯三.证明。
(略)第二章参考答案:(一)一. 填空1. 31; 2. 0.95; 3. mn m m n p p C --)1(; 4. {}.,1,0,!Λ===-k k e k X P k λλ 二.1.(1){};4,3,2,1,0,6206164===-k C C C k X P kk (2) {}.6,5,43,2,1,0,8.0)2.0(66,===-k C k X P kk k 2. {};,2,1,55.045.01Λ=⨯==-k k X P k{}.311121==∑∞=k k X P 3.4. (1) ;0729.09.0)1.0(3225≈C (2);99954.09.01.0535≈-=∑k k k k C(3) 0.409515. (1) ;3131-e (2) .2ln 21max =t(二)一. 填空(1). 1, 0, )()(12x F x F -; ( 2). 43, 0, 1; (3). 13k ≤≤ 二. 选择 1. C; 2. B 3. C; 三. 1.2.;1=A ;2ln 1; ⎪⎩⎪⎨⎧<≤=.,0,1,1)(其他e x x x f3. =1k ;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=.2,1,21,122,10,2,0,0)(22X x x x x x x x F(三)一.1.(1)1,12()30,x f x ⎧-<<⎪=⎨⎪⎩其他 (2)⎩⎨⎧>=-其他,00,5)(5x e x f x(3)正态分布;2,2(4) 0.2 (5) 3 二 1. A 2. C 3.A 三 1.(1)1155; (2) 8=3ξ (3) 452. (1)13 (2)65813.(1) 2(1)10.6826Φ-=; (2) 331(22(1))=1-0.3174=0.9680--Φ第三章参考答案(一) 二维离散型随机变量一. 填空(1). 0.1;0.2;0.3; 0.3;0.9 (2).1{}(1)m P X m p p -==- ,1{}(1)n P Y n p p -==-;1(1)m p p --(3). {}(1),0,0,1,2,...k kn kn P Y k X n C p p k n n -===-≤≤= ;{}(1)0,0,1,2,...!kkn knne P X n Y k C p p k n n n λλ--===-≤≤=,, (4). 1,42F ⎛⎫- ⎪⎝⎭=41二. 1.2. (1)(2) 在Z=0的条件下X的边缘分布律为:(二) 二维连续型随机变量一. 填空(1.)421;(2). )(/),(xfyxfX(3).2(1)8(),yYf y y--=-∞<<∞(4)221,1()0,x yf xπ⎧+≤⎪=⎨⎪⎩其他;11()0,Xxf x-≤≤=⎪⎩其他;12二. 解答题1.(1)k=81;(2){}3,1<<YXP=83;(3){}5.1<XP=3227;(4){}4≤+YXP=322. )(xfX=.,1,0,2其他<<⎩⎨⎧xx;)(yfY=.,2,0,21其他<<⎪⎩⎪⎨⎧-yy3. )(x y f XY =+∞<<-∞+∞<<-∞--y x e y x ,,12)(π.;4. (1)当|y|<1时, )|(y x f Y X =⎪⎩⎪⎨⎧<<-取其他值x x y y ,0,1,11当0<x<1时, )|(x y f X Y =⎪⎩⎪⎨⎧<取其他值y x y x,0,,21(2)27(三) 相互独立的随机变量一. 填空题1.0=ρ2.⎩⎨⎧>>=+-其他,00,0,),()(y x e y x f y x3. 194. a = 0.4, b = 0.1;5. 21,99αβ==二.选择题1.D. 三.解答题 1..2. 121,02,0(,)40,y e x y f x y -⎧<<>⎪=⎨⎪⎩其他(2)1e -第四章 随机变量函数的分布 (一)一维随机变量函数的分布一. 1 . ⎩⎨⎧<<=.,0),()(),()]([)('其他βαg y g y h y h f y f X Y 2. ),(22σμa b a N +二. A 三. 1.(1) (2).2. ⎪⎩⎪⎨⎧<≥=.1,01,1)(2y y y y f Y3.(1);,221)(82+∞<<-∞=-y ey f y Y π(2)⎪⎩⎪⎨⎧≤>-=--.1,01,)1(21)(41y y e y y f y Y π (3)1)2(2-φ(二) 两个随机变量的函数的分布一. 1. 1/9.2. ()2)(11)(z F z F --= .3.Λ,1,0,)(!)(21)(21=+==+-k k e k Z P k λλλλ4. ),(21p n n b + 二. (1) A. (2) C. (3) B. (4) B. 三.1.(1)(2) (3)2.(1) {}Y X P 2>247=(2) )(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z第五章参考答案:(一)数学期望一、填空题 (1). 1 (2).23 (3). 2 (4). 0 (5). 43 (6). 2 14二、选择题1. D2.D3.A三、解答题 (1). 16-(2). 12- 14- (3). 111P{},~(4,)322X Y B Y >=2, E()=5 (4). 34,83,103(二)方差一.填空题1. 512.163. n=6, p=0.44. 7.695. 536 536二.选择题 1. D 2. A 3. A 三.解答题 (1). 1 (3).D (X+Y )=2(三)一. 填空题1. 122. 13. 614.-10,5. 0 二. 选择题1. D2.B3. C4.C5. D 三. 解答题1. (1)1 (2)32. 不相关 3、 0 ; 4、21 第六章参考答案(一)一、填空题 1.912. 28}|{|εεμn X P ≤≥- ,n 211- 3. 975.0≥ 二、选择题 1.C三、解答题 。
概率统计习题1答案
1答案一、填空题1.答案:0.86;2.答案:8821010(8)=0.80.20.302P C =; 3.答案:0.6;4.答案:1e -;5.答案:0.8;6.答案:78; 7.答案:(3,4)F ; 8.答案:2ˆμ二、选择题9.D ; 10. C ; 11. C ; 12. C ; 13. B 三、计算题14.答案:设i A 分别表示“乘汽车、火车、轮船、飞机”(i =1,2,3,4),B 表示“迟到”则由题意知:11()10p A =,23()10p A =,31()5p A =,42()5p A = 11(|)12p B A =,21(|)4p B A =,31(|)3p B A =,4(|)0p B A =(1)由全概率公式得41()()(|)i i i p B p A p B A ==∑113111************=⨯+⨯+⨯+⨯320==0.15 (2)由贝叶斯公式得33341()(|)(|)()(|)i ii p A p B A p A B p A p B A ==∑ 1153320⨯=40.449=≈ 15.答案:(1)边沿概率密度为()(,)X p x p x y dy +∞-∞=⎰=01,020,xydy x ⎧≤≤⎪⎨⎪⎩其他=18,020,x x ⎧≤≤⎪⎨⎪⎩其他()(,)Y p y p x y dx +∞-∞=⎰=1208,00,⎧⎪≤≤⎨⎪⎩⎰其他xydx y,00,y y ⎧≤≤⎪⎨⎪⎩其他(2)由于在(,),()()X Y p x y p x p y 和所有连续点处,都有(,)()(),X Y p x y p x p y =⋅ Y X ,∴相互独立。
(3)11(,)34F =1134(,)-∞-∞⎰⎰p x y dxdy =1134008⎰⎰xydxdy =17216.答案:X ,Y 的边沿分布(1)()00.440.6 2.4E X =⨯+⨯=2()00.4160.69.6E X =⨯+⨯= ()22(X)(X )(X) 3.84D E E =-=()30.1500.5+20.350.25E Y =-⨯+⨯⨯=(2) ()(,)4(3)0.08420.2ijijijE XY x y p x y ==⨯-⨯+⨯⨯∑∑=0.64所以(,)()()()=-Cov X Y E XY E X E Y 0.64 2.40.250.04=-⨯= 四、解答题17.答案:(1) 110()()(1)E X xp x dx x dx θθ+∞+-∞==+⎰⎰ 2111022x θθθθθ+++==++ 令1()2X E X θθ+==+,得θ的矩估计量为12ˆ1X X θ-=- (2)01i x <<时,似然函数为1()(1)ni i L x θθθ==+∏1(1)nn i i x θθ=⎛⎫=+ ⎪⎝⎭∏取对数得1ln ()ln(1)ln nii L n xθθθ==++∑令1ln ()ln 01ni i d L nx d θθθ==+=+∑ 解得θ的最大似然估计量为1ˆ1ln nii nXθ==--∑18.答案:因为2σ未知,所以设X T =~(1)t n -由22(1)(1)1X P t n t n ααα⎧⎫⎪⎪--<<-=-⎨⎬⎪⎪⎩⎭得μ的置信度为1α-的置信区间为22(1),(1)X n X n αα⎛⎫-- ⎪⎝⎭ 由已知,得12,0.05n α==,0.0252(1)(11) 2.201t n t α-==,1000.25x =,23s =计算得μ的置信度为95%的置信区间为1000.25 2.201,1000.25 2.201⎛⎫+ ⎪ ⎪⎝⎭=(999.1495,1001.3505)。
最新经济数学基础 概率统计 习题一答案学习资料
A与 B互逆B , A,即 AB ;
B与D互斥; AD ,CD .
3. 事件Ai表示某个生产单i车位间第完成生产任务 i 1,2,3,B表示至少有两个车 成间 生完 产任务 C表 ,示 最多只有两个车间 生完 产成 任.说 务明事B件 及BC的 含义,并且 Ai(用 i 1,2,3)表示出.来 解: B表示最多有一个车 成间 生完 产任务,即至
把 事A件 B,ABC,AC B,CAB 用 一 些 互 不 相容事件的和 . 表示出来
解: ABAAB
AB
A B C A A B A B C A C BBA B C
C
C A B C A B A B C BA C
5. 两个事件互不相个容事与件两对立的区,别何
举例说. 明 解:两个对立事件一定相互容不,它们不可能同
取1球,求 下 列 事 件 的:概 率 A:三 次 都 是 红B球:三 、次 都 是 白C球:三 、次 都 是 黑 球 D:无 红 球E、:无 白 球F、:无 黑 球G、:三 次 颜 色 全 相 同 H:三次颜色全不相I:同 颜、 色不全相 . 同
解:样本空间中样本点N总 3数 3
P( A P)( B P)( C 3 13)2 1、 7P( D P)( EP)( F3 23 3)28、 7
C 2 2C 8 3C 1 2C 3 3C 1 5C 1 2C 2 3C 5 2
取 2 枚 5 分 其 它取 任 1 枚 5 分 意 取 3 枚 2 取 分 取 1 枚 1 分取 1 枚 5 分 取 2 枚 2 分 取 2 枚 1 分
P( A) 5
C 10
14. 袋中有红、白、黑 各色 一球 个 ,有放回取三 ,每次次
经济数学基础——概率统计课后习题答案
目录习题一(1)习题二(16)习题三(44)习题四(73)习题五(97)习题六(113)习题七(133)1 / 81习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解(1)Ω={正面,反面} △ {正,反}(2)Ω={(正、正),(正、反),(反、正),(反、反)} (3)Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0≤x ≤m }2.掷一颗骰子的实验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解{}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B.说明事件A 、C 、D 、F的关系.解由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解记事件A 表示“取到的两个球颜色不同”.则有利于事件A 的样本点数目#A =1315C C .而组成实验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证∵B ⊃A∴P (B -A )=P (B ) -P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b≠0,P (B )=ln a ,求a 的取值范围.解因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证∵P (A |B )+P (A |B )=1且P (A |B )+P (A |B )=1∴P (A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒0.7=0.4+0.6P (B ) ⇒P (B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解因P (A ),P (B )均大于0,又因A 与B 独立,因此P (AB )=P (A )P (B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P + =0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58×0.42=0.2436P (A m )=0.58m -1×0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4.P (A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024 P (A 3)=P (ABC )=P (A )P (B )P (C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1)P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2)P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3)P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P=0.45×0.004+ 0.35×0.002+ 0.2×0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+ 25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表示一箱中有i 件次品,i =0, 1, 2.B 表示“抽取的10件中无次品”,先计算P (B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1).如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p .应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=ln k n k nq p k n k n n !)(!!e ! ∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解X 可以取1, 2,…可列个值. 且事件{X =n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y . 解(1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2)Y 可以取0, 1, 2, 3各值.{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n ,n =2, 4, 6, …,求p 的值.解1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn ,n =1,2,…, 100, 求c 的值. 解∑=+⋯++==10015050)10021(1n cc cn =解得c =1/5050 .10. 如果p n =cn _2,n =1,2,…, 问它是否能成为一个离散型概率分布,为什么?解,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=,则有∑∞=1n n p =1,且p n >0.所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解设P {X =2}=a ,P {X =1}=a -d ,P {X =3}=a +d . 由概率函数的和为1,可知a =31,但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1,3,5,…,j =2,4,6,…,且A 1, B 2, A 3,B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P=(0.6×0.5)1-k ·0.4=0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, …(2){}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n ,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n ,2,13.042.01=⨯=-n n14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么? 解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得a =0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x x cx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解π|arcsin d 1111211c x c x xc ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解{}t x X P x F t xd e 21)(||-∞-⎰=≤=当t ≤ 0时, x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(2121 25. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e1e d e e 12 A A x 2πe arctan ==∞∞- 因此A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax其他)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a ,b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b ,ab +b ],ax y h b y a y h x y 1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y ⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时, π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z >即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1)3.122014220934492431=⨯+⨯+⨯+⨯=EX(2)3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解160137543251==++++=∑=c c c c c c n c n 13760=C 137300551==∑⋅==C n c n EX n 图2-141. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b 而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46其他 其他在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x xDX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X ,求EY 和DY .解EY =σ1( EX -μ ) =0 DY = 2σDX =151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次实验的成功率为0.8,重复实验4次,失败次数记为X ,求X 的概率分布 . 解X 可以取值0, 1,2, 3, 4.相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯--( m=0,1,2,3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p =65,其X 的最可能值为[ np + p ]=0 {}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9. {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===32 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解3(3)0.9987P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={}71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值: (1);9.0=≤}{a X P ;(2){};9.0 =≤a X P(3){};97725.0=≤a X P (4){};1.0 =≤a X P 解(1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2(4){}1.01)(2 =-Φ=≤a a X P ,得Φ(a )=0.55, 查表得a =0.1368. 随机变量X 服从正态分布)2,5(2N ,求概率{}85<<X P ,{}0≤X P ,{}25 <-X P .解{}⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=2552588X 5ΦΦ<<P (1.5)(0)0.4332ΦΦ=-=P {}()()00620521520...X =-=-=≤ΦΦ{}1)1(212525 -Φ=⎭⎬⎫⎩⎨⎧≤-=-X P X P <=0.682669.随机变量X 服从正态分布),(2σμN ,若{}975.09=<X P ,{}062.02=<X P ,计算μ和σ的值,求{}6>X P .。
国开经济数学基础-概率论与数理统计-随机事件与概率练习题及答案
国开经济数学基础-概率论与数理统计-随机事件与概率练习题及答案一、选择题试题1已知事件A1,A2,…,A n,下列关于事件A1,A2,…,A n的各条件中不是全概率公式所要求的条件为( )正确答案是:事件A1,A2,…,A n互不相容, 事件A k满足P(A k)>0(k=1,2,…,n), 事件A k(k=1,2,…,n)满足A1+A2+…+A n=U试题2抽查10件产品,设A={至少2件次品},则=( )正确答案是:{至多1件次品}试题3据统计,某地区一年中下雨(记作事件A)的概率是,刮风(三级以上的风)(记作事件B)的概率是,既刮风又下雨的概率是.则下列各式正确的是( )正确答案是:试题4掷两颗均匀的骰子,出现“点数和为3”的概率是( )正确答案是:+试题5设A,B为两个任意事件,则P(A+B)=( )Your answer is incorrect.正确答案是:P(A)+P(B)-P(AB)试题6设A,B为两个随机事件,那么三个概率值P(A+B),P(AB),P(A)+P(B)由小到大的顺序是( )正确答案是:P(AB)≤P(A+B)≤P(A)+P(B)二、是非判断题试题7事件A与Φ互不相容. ( )正确答案是“对”。
试题8从图书馆的书架上随机取下一本书,记A={数学书},B={中文版书}. 则事件A 表示外文版数学书. ( )正确答案是“对”。
试题9如果事件A+B=U,则A,B互为对立事件. ( )正确答案是“错”。
试题10已知P(A)=0.5,P(B)=0.4,则P(AB)=0.5×0.4. ( )正确答案是“错”。
试题11设事件组A1,A2,…,A n满足:(1) A1,A2,…,A n互不相容;(2) A1+A2+…+A n=U(完全性),则对任一事件B都有( ) 正确答案是“错”。
试题12随机事件A、B满足运算律( )正确答案是“错”。
概率统计课后习题答案
概率统计课后习题答案概率统计是一门研究随机现象的数学分支,它在各个领域都有广泛的应用。
课后习题是巩固和检验学生对课堂知识掌握程度的重要手段。
以下是一些概率统计课后习题的答案示例:习题1:抛一枚均匀的硬币,求正面朝上的概率。
答案:抛一枚均匀硬币,有两种可能的结果:正面朝上和反面朝上。
由于硬币是均匀的,这两种结果发生的概率是相等的。
因此,正面朝上的概率 P(正面) = 1/2。
习题2:一个袋子里有3个红球和2个蓝球,随机抽取一个球,求抽到红球的概率。
答案:袋子里总共有5个球,其中3个是红球。
抽到红球的概率是红球数量除以总球数。
所以,P(红球) = 3/5。
习题3:连续抛两次骰子,求至少出现一次6点的概率。
答案:首先,计算不出现6点的概率。
每次抛骰子,不出现6点的概率是5/6。
连续两次都不出现6点的概率是 (5/6) * (5/6) = 25/36。
因此,至少出现一次6点的概率是 1 - 25/36 = 11/36。
习题4:一个班级有30名学生,其中15名男生和15名女生。
随机选择3名学生,求至少有1名男生的概率。
答案:首先,计算没有男生的概率。
从15名女生中选择3名,组合数为C(15,3)。
班级中所有可能的3人组合数为 C(30,3)。
没有男生的概率是 C(15,3) / C(30,3)。
至少有1名男生的概率是 1 - C(15,3) /C(30,3)。
习题5:一个工厂生产的产品中有2%是次品。
一批产品中有100件,求至少有5件次品的概率。
答案:这是一个二项分布问题,其中n=100,p=0.02。
使用二项分布公式计算至少有5件次品的概率,即P(X ≥ 5) = 1 - P(X < 5)。
这需要计算从0到4件次品的概率之和,然后从1中减去这个值。
结束语:概率统计的习题答案需要根据具体的题目条件来计算。
上述答案仅供参考,实际解题时需要根据题目给出的详细条件进行计算。
希望这些示例能够帮助你更好地理解和掌握概率统计的知识。
概率统计-习题答案
习题 一 1.略.见教材习题参考答案.2[解](1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5)ABC =A B C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC3.略.见教材习题参考答案4.[解]P (AB )=1P (AB )=1[P (A )P (A B )]=1[0.70.3]=0.65[解](1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.[解] P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.[解]p =5332131313131352C C C C /C8.[解](1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同)(2)设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59.略.见教材习题参考答案.10.[解](1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m 次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从NM 件次品中取n m 件的排列数为Pn mN M--种,故P (A )=C P P P m m n mn M N MnN--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有NM 种取法,共有(N M )nm种取法,故()C ()/m m n mn n P A M N M N -=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1m n mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12.[解]设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.[解] 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=14.[解]设A i ={第i 批种子中的一粒发芽},(i =1,2)(1)1212()()()0.70.80.56P A A P A P A ==⨯=(2)12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.[解](1)223151115()()22232p C ==(2) 1342111C ()()22245/325p ==16.[解] 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.[解]4111152222410C C C C C 131C 21p =-= 18.[解] 设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.[解] 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20[解] 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.题21图 题22图[解]设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x y |>30.如图阴影部分所示.22301604P ==22.[解] 设两数为x ,y ,则0<x ,y <1.(1) x +y <65.11441725510.68125p =-== (2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23.[解]()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+- 24.[解] 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球},由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C CC C C C C C C C =•+•+•+•0.089= 25.[解]设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试与格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试与格的学生中不努力学习的学生仅占2.702%(2)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不与格的学生中努力学习的学生占30.77%.26.[解] 设A ={原发信息是A },则={原发信息是B },C ={收到信息是A },则={收到信息是B },由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.[解]设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.[解] 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.[解] 设A ={该客户是“谨慎的”},B ={该客户是“一般的”}, C ={该客户是“冒失的”},D ={该客户在一年内出了事故},则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.[解]设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.[解]设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.[证](|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =,()[1()][()()]()P AB P B P A P AB P B -=-因此()()()P AB P A P B = 故A 与B 相互独立. 33.[解] 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.[解]设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+ (0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.[解](1)3101100C (0.35)(0.65)0.5138kkkk p -===∑ (2) 10102104C (0.25)(0.75)0.2241kk k k p -===∑36.[解] 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37.[解] (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥38.[解] 设这三段长分别为x ,y ,a x y .则基本事件集为由0<x <a ,0<y <a ,0<a xy <a 所构成的图形,有利事件集为由()()x y a x yx a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39.[证]11P 1,1,2,,P k n k n p k n n--===40[解] 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3. 在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====. 41.[证]()[()]()P A P A B C P ABAC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.[解] 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或 12143323C C C 9()416P A == 43.[解]掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C = 故2211()[1C ]22n n n P A =- 44.[解]设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5 (2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.[解] 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.,乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有 >正正(甲乙)=(甲正≤乙正)=(n +1甲反≤n乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反)因此P (甲正>乙正)=1246.[证]由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有()()P AC P BC ≥同理由(|)(|),P A C P B C ≥得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.[解] 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k k i k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n1是1,2,…,n 中的任n 1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n kn nn n n n n--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.[证]在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞ 49.[解]设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n ==++,1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212r rrm m m n m n m n m n m n+==++++ 50.[解]以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n r 次,设n 次取自B 1盒(已空),n r 次取自B 2盒,第2n r +1次拿起B 1,发现已空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 : 样本空间中样本点总数N 126
恰 有4人 生 日 相 同 的 概 率 为:
C112 C46
112
p 任 选1个 月 、 任 选4位 同 学 、 其 余2位 同 学 生 日 在 其 余11个 月
解 由于AB A A B, A B A A B, AB与A B互不相容,且A AB ( A B). 因此有A C F , C与F互不相容, D A F, A C.
8.袋内装有5个白球,3个黑球,从中一次任取两个,
求取到的两个球颜色不同的概率。
解 记事件A表示“取到的两个球颜色不同”.
样
本
空间中样本点总
数N
C5 10
显然,总值要超过一角,至少要取一枚5分硬币.
C22 C83 C12 C33 C15 C12 C23 C52
P(A) 取2枚5分 其它任意取
取1枚5分 取3枚2分 取1枚1分
C5 10
取1枚5分 取2枚2分 取2枚1分
14. 袋中有红、白、黑色球各一个,有放回取三次,每次
样本空
间中
样本
点总
数N
C2 10
A包含的样本点数m C13C17 C23 恰有一把能开锁 两把均能开锁
C C C P(A)
1 1
37 2
2 3
C10
12. 一副扑克牌有52张,不放回抽样,每次抽1张,
连续抽取4张,求下列事件的概率:
(1) 4张花色各异;(2) 4张中只有两种花色.
解 : 设A : 4张花色各异;B : 4张中只有两种花色
一 定 是 对 立 事 件 , 它 们只 是 不 可 能 同 时 发 生 ,但 不
一 定 同 时 不 发 生.
A、B对立(必互斥)
A、B互斥(不对立)
A
B
A
B
在本书第6页例2之中A与D是对立事件,C与D 是互不相容事件.
6.三个事件A、B、C的积是不可能事件,即ABC ,
问这三个事件是否一定互不相容?画图说明。
(优选)经济数学基础概率统 计习题一答案
2. 掷一颗色子的试验,观察其出现的点数,事件 A “偶数点”,B “奇数点”,C “点数小于5”, D “小于5的偶数点”,讨论上述各事件间的关系.
解 : {1,2,3,4,5,6}, A {2,4,6}, B {1,3,5}, C {1,2,3,4}, D {2,4}.
样
本空间
中样
本点
总
数N
C4 52
(1) A包含的样本点数
C C C C C C C C mA
1111 13 13 13 13
P(A)
C (2) B包含的样本点数
1111 13 13 13 13
4 52
mB C42 (C123C123 C113C133 C133C113)
选 某 两 种 花 色1、2 花 色1 花 色2
取1球 , 求 下 列 事 件 的 概 率: A : 三次都是红球、B : 三次都是白球、C : 三次都是黑球、 D : 无红球、E : 无白球、F : 无黑球、G : 三次颜色全相同、 H : 三次颜色全不相同、I : 颜色不全相同.
解 : 样本空间中样本点总数N 33
P(A)
P(B)
P(C)
1 33
则有利于事件A的样本点数为C15C13 .
而试验的样本点总数为
C
2 8
由古典概率公式有
P( A)
C51C31 C82
15 28
9.计算上题中取到的两个球中有黑球的概率。
解 设事件B表示“取到的两个球中有黑球”
则有利于事件B的样本点数为C52
P(B)
1
P(B)
1
C
2 5
C
2 8
9 14
10.抛掷一枚硬币,连续3次,求既有正面又有 反面出现的概率。
有两个车间没完成生产任务.
B A1 A2 A2 A3 A1 A3
A1 A2 A3 A1A2 A3 A1 A2A3 A1 A2 A3 B C表示三个车间都完成生产任务 B C A1A2A3
4. 如图1 2,事件A、B、C都相容,即ABC ,
把事件A B, A B C, AC B,C AB用一些互不 相容事件的和表示出来.
A与B互逆,即B A, A B;
B与D互斥; A D,C D.
3. 事件Ai表示某个生产单位第i车间完成生产任务, i 1,2,3,B表示至少有两个车间完成生产任务,C表示 最多只有两个车间完成生产任务.说明事件B及B C的 含义,并且用Ai (i 1,2,3)表示出来. 解 : B表示最多有一个车间完成生产任务,即至少
解 : A B A AB
AB
A B C A AB ABC AC B B ABC
C
C AB CAB ACB BCA
5. 两个事件互不相容与两个事件对立的区别何在,
举例说明. 解: 两个对立事件一定互不相容,它们不可能同时
发 生 , 也 不 可 能 同 时 不发 生 ; 两 个 互 不 相 容 事件 不
解 设事件A表示“三次中既有正面又有反面出现”,
则A表示三次均为正面或三次均为反面出现, A只有两种等可能结果.
而抛掷三次硬币共有23 8种不同的等可能结果,
P(A) 1 P(A) 1 2 3
84
11. 在10把钥匙中有3把能打开一个门锁,今任取 两把,求能打开门锁的概率.
解 : 设A : 能打开门锁
花 色1 花 色2
花 色1 花 色2
C C C CC C C C P(B)
( 2
22
4
13 13
1 3
13 13 4
52
) 3 1
13 13
13. 口袋内有2个五分、3个二分、5个一分共10枚 硬 币, 从 中 任 取5枚, 求 总 值 超 过 一 角 的 概 率.
解 : 设A : 总值超过一角
1 27
、
P(D)
P(E)
P(F)
23 33
8、 27
P(G) P(A B C) P(A) P(B) P(C) 3 1、 33 9
P(H) 3! 2、 P(I) 1 P(G) 1 1 8
33 9
99
15. 一间宿舍内有6位同学,求他们中恰有4人生日 在同一个月的概率.
解 不一定。
A、B、C三 个 事 件 互 不 相 容 是 指 它 们 中 任 何 两 个 事 件 均互 不 相 容 ,
即 两 两 互 不 相 容 。如 图 :
事件ABC , 但是A与B相容。
A C
B
7.事件A与B相容,即C AB ,D A B, F A B, 说明事件A、C、D、F的关系。