广东省中考数学试卷分析报告
中考数学试卷质量分析报告三篇
中考数学试卷质量分析报告三篇为了让学生尽快进行自我调整,明确奋斗目标,进入最佳的学习状态。
因此,编辑老师为各位老师准备了这篇初三数学期中考试质量分析,希望可以帮助到您!一、试卷有如下特点:(1)单独考查基础的、重要的知识技能本卷考查基础知识和基本技能试题的比重都较大,注重考查通性通法,淡化考查特殊技巧,较为有效地确保了试卷的内容效度.如选择题,学生得分率高。
(2)重点考查核心内容初中数学的核心内容是学生今后进一步学习的基础,本次试卷在注意内容覆盖的基础上,突出了对“特殊的平行四边形”、“一元二次方程”、“图形的变换”等核心知识内容的考查.其中第6、9、10、17、20、22、24、25题失分率高。
(3)突出考查主要的数学思想和方法数学思想和方法是数学知识在更高层次上的抽象与概括,它不仅蕴涵在数学知识形成、发展和应用的过程中,而且也渗透在数学教与学的过程中.本次考试突出了对数形结合、分类讨论、函数与方程等数学思想和方法的考查.其中6、9、10、17、20、22、24、25题学生因为对知识不能灵活运用、计算能力不强,耗时多,失分率高。
(4)突出考查以生活、劳动和学习为背景的问题本次试卷注意体现数学的工具性的理念,强调考试问题的真实性、情景性和开放性,以达到加强考查数学应用意识的目的。
从试题的呈现方式来看,带有实际背景,需要数学建模才能解决的新问题题型正在成为中考追逐的热点。
如10、24题。
二、得失分统计与原因分析(1)选择题部分第3、4、6、9、10小题失分率高,其余题目正确率高。
错误原因:从学的角度分析,部分学生对基础知识掌握不牢、对规律不能灵活运用;从教的原因分析,教学过程中忽视了简单知识的生成,起点过高。
今后措施:在教学过程中回归书本,重视基本知识点的建构与运用。
(2)填空题部分第13、15、17、20、21、22题失分较高,其余题目正确率高。
错误原因:从学的角度分析,学生对题目意思理解不清,对所学知识含糊不清,在加上题目灵活性较大,造成本题失分率很高;从教的原因分析,在教学过程中缺少题目的变式训练,缺少数学思想方法的有效渗透。
2024年广东省广州市中考真题数学试卷含答案解析
2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。
2023年广东省初中学业水平考试数学质量分析
2023年广东省初中学业水平考试数学质量分析一、前言本报告对2023年广东省初中学业水平考试(以下简称“中考”)数学试卷的质量进行了全面、深入的分析。
分析旨在评估试卷的难度、区分度、信度以及效度,并为今后的数学教学提供有益的参考和建议。
二、试卷概况试卷结构2023年广东省中考数学试卷共有20道题目,包括选择题、填空题、解答题三个部分,满分150分。
其中:- 选择题:共10题,每题3分,总计30分。
- 填空题:共5题,每题3分,总计15分。
- 解答题:共5题,总计105分。
试题内容试卷内容涵盖了初中数学的全部知识点,包括:- 概念理解:考查学生对数学基本概念、公式的理解与应用。
- 计算能力:考查学生的数学运算、代数计算、几何计算等能力。
- 逻辑推理:考查学生的数学逻辑思维、证明与反驳能力。
- 应用题:考查学生运用数学知识解决实际问题的能力。
三、质量分析难度分析试卷整体难度适中,平均难度系数约为0.65。
其中,选择题难度较低,填空题和解答题难度逐渐提高。
区分度分析试卷的区分度较好,高分段学生和低分段学生的得分差距较大。
特别是在解答题部分,难度较高的题目能够有效区分学生的数学水平。
信度分析试卷信度较高,各题型之间的得分相关性较好,表明试卷具有良好的稳定性。
效度分析试卷效度较好,能够较好地反映学生的数学学习状况。
但部分题目在考查学生能力方面仍有待提高。
四、教学建议提高学生基本能力教师应注重学生数学基本概念、公式的理解和运用,加强计算能力和逻辑推理能力的训练。
注重应用题教学在教学中,教师应注重培养学生的实际问题解决能力,提高学生运用数学知识解决实际问题的能力。
因材施教针对不同学生的数学水平,教师应采取不同的教学策略,提高教学质量。
五、总结2023年广东省中考数学试卷总体质量较好,但在部分题目的考查学生能力方面仍有待提高。
希望通过本报告的分析,能为今后的数学教学提供有益的参考和建议。
深圳中考数学试卷分析
深圳中考数学试卷分析2020/4/1201O N E总体结构分析选择题36%填空题12%解答题52%试卷题型分布一、选择题(建议15min 内完成) 1-12题,每题3分,共36分二、填空题(建议10min 完成) 13-16题,每题3分,共12分三、解答题17题计算(5分) (必须做对) 18题计算(6分) (必须做对) 19题数据统计(7分) (必须做对) 20-23题综合应用(共4题,共34分)02O N E卷面结构分析04综合应用题03计算题02填空题01选择题CONTENTS目录题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值选择题1相反数倒数绝对值相反数相反数有理数(正数)绝对值相反数绝对值32三视图科学计数法同底数幂的运算图形对称性科学计数法正方体展开图三视图科学计数法轴对称33科学计数法轴对称和中心对称科学计数法科学计数法同底数幂的运算整式运算科学计数法三视图科学计数法34同底数幂的运算同底数幂的运算轴对称和中心对称三视图轴对称和中心对称轴对称图形轴对称、中心对称中心对称正方体展开图35中位数方差中位数数据的代表三视图科学计数法平行线的判定众数、极差中位数、众数36打折销售三角形内角和与外交定理分式值为零一次函数的解析式数据的代表(中位数、众数)平行线的性质与角度的计算解一元一次不等式组整式运算整式运算37相似三角形概率关于原点对称一元二次方程的判别式一元一次不等式概率计算一元一次方程的应用一次函数平移平行线的性质与角度的计算38概率方程的解、平方根、三角形全等的判定列分式方程全等三角形二次函数图像与系数的关系平行四边形、全等三角形的判定平方根、中位数、众数尺规作图(中垂线)相交线与平行线尺规作图、线段的垂直平分线39整式的运算圆直角三角形、四边形周长概率的统计圆周角定理分式方程应用题命题与定理二元一次方程组函数图像,符号判断310二次函数的性质、反比例函数的性质各象限点的坐标特点命题判断对错解直角三角形的实际问题一元一次方程的应用定义新运算(求导)数据分析(中位数)圆的切线性质命题311切线、垂径定理、二元一次方程组相似三角形一次函数与二次函数图像二次函数图象与系数的关系复杂作图正方形与扇形面积计算三角函数的应用(测高)二次函数图象定义新运算312等边三角形的性质、相似三角形等边三角形的性质、角交定理平行、全等、三角函数梯形、三角形全等、解直角三角形翻折变换(折叠问题)、全等三角形的判定与性质、正方形的性质、相似三角形的判定与四边形、全等三角形、相似三角形几何综合反比例函数四边形多结论题3题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值填空题13分解因式分解因式分解因式分解因式分解因式(提公因式法与公式法的综合应用)因式分解因式分解因式分解因式分解314垂径定理二次函数概率折叠之雷劈模型勾股定理、角平分线列表法与树状图法平均数概率计算概率计算概率315探究规律反比例函数利润率双曲线、相似三角形找规律尺规作图、角平分线与平行四边形定义新运算三角形面积、全等正方形折叠316一次函数、勾股定理、三角形的内心正方形找规律找规律反比例函数系数K 的几何意义、相似三角形的判定与性质平行四边形与反比例函数相似三角形三角形(角平分线性质、相似三角形、解直角三角形)反比例综合3题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值解答题17负指数、三角函数、0次幂、绝对值负指数、三角函数、0次幂、绝对值负指数幂、三角函数、0次幂、绝对值无理数化简、三角函数、0次幂、负指数幂实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值实数计算实数的运算实数计算实数计算518解分式方程分式化简求值解不等式组分式化简求值解分式方程一元一次不等式组分式的简单求值分式的化简求值分式化简求值619频数分布直方图、扇形统计图频数分布直方图频数分布直方图、扇形统计图频数分布直方图条形统计图;用样本估计总体;扇形统计图数据统计数据统计数据统计数据统计720圆的性质、勾股定理、圆与三角形面积计算矩形折叠等腰梯形平行四边形的判定解直角三角形的应用-仰角俯角问题三角函数的应用一元二次方程的实际应用菱形的证明和计算三角函数的应用821矩形的性质、折叠、勾股定理、相似方案选择、最值问题圆、相似、勾股定理、垂径定理分式方程、不等式方案设计一元一次方程的应用一次方程与一次不等式的应用反比例函数与一次函数的综合分式与不等式应用题一元二次方程、一次函数应用题822二元一次方程、二次函数的最值问题、方案选择二次函数的几何运用抛物线的解析式、圆、相似、垂径定理、相交弦定理勾股定理、切线、一次函数表达式、线段差的最值问题切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质圆与相似三角形的综合圆的综合(勾股定理、圆周角定理、相似三角形)圆与三角函数、相似综合、截长补短一次函数、二次函数综合、线段、最值、动点面积比例问题9 23抛物线的解析式、对称轴和坐标轴上存在点使四边形的周长最小问题、相似三角形、二次函数图像上点坐标圆、一次函数直线、反比例函数、二次函数求最值、K的几何意义、平移一次函数交点、二次函数解析式、函数图像的平移、及产生的动点构成的直角三角形存在性问题二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积一次函数解析式、角平分线性质、等腰三角形与二次函数动点存在性问题二次函数的综合(二次函数解析式、面积问题、旋转)二次函数与面积、构造角度、折叠、三垂直相似圆、切线证明、相似三角形、三角函数、二次函数最值问题9方程(组):考察解法及在应用题中的作 用,二次方程还涉及根的判断不等式:主要考查解法及性质u 数与式(20分)-基础(必须掌握)抓定义和原理实数。
2024年广东省广州市中考数学试卷+答案解析
2024年广东省广州市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数,,0,10中,最小的数是()A. B. C.0 D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若,则下列运算正确的是()A. B. C. D.4.若,则()A. B. C. D.5.为了解公园用地面积单位:公顷的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20B.用地面积在这一组的公园个数最多C.用地面积在这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A. B.C. D.7.如图,在中,,,D为边BC的中点,点E,F分别在边AB,AC上,,则四边形AEDF的面积为()A.18B.C.9D.8.函数与的图象如图所示,当时,,均随着x的增大而减小.A.B.C.D.9.如图,中,弦AB的长为,点C在上,,所在的平面内有一点P,若,则点P与的位置关系是()A.点P在上B.点P在内C.点P在外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为的扇形,若扇形的半径l是5,则该圆锥的体积是()A.B.D.二、填空题:本题共6小题,每小题3分,共18分。
11.如图,直线l分别与直线a,b相交,,若,则的度数为______.12.如图,把,,三个电阻串联起来,线路AB上的电流为I,电压为U,则,当,,,时,U的值为______.13.如图,▱ABCD中,,点E在DA的延长线上,,若BA平分,则______.14.若,则______.15.定义新运算:例如:,若,则x的值为______.16.如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数的图象上,,将线段AB沿x轴正方向平移得线段点A平移后的对应点为,交函数的图象于点D,过点D作轴于点E,则下列结论:①;②的面积等于四边形的面积;③AE的最小值是;其中正确的结论有______填写所有正确结论的序号三、解答题:本题共9小题,共72分。
2024年中考数学试卷分析报告
2024年中考数学试卷分析报告1. 引言本报告对2024年中考的数学试卷进行了详细分析和评估。
数学试卷是中考中最重要的科目之一,试卷设计的质量直接关系到考生的成绩和学校的教学质量。
因此,通过对试卷的分析可以更好地了解试卷的难易程度、题型分布和命题思路,为今后的试卷设计提供参考。
2. 难易程度分析2.1 单项选择题 2024年数学试卷的单项选择题共有30道,分布在试卷的各个部分。
我们对这些题目进行了难易程度的评估,其中易题有15道,中等题有10道,难题有5道。
整体而言,单项选择题的难度适中,没有超出预期范围。
2.2 解答题解答题是数学试卷中的重中之重,也是考生们关注的焦点。
2024年的数学试卷共有5个解答题,分别涉及代数、几何、概率等不同知识点。
我们对这些题目进行了难易程度的评估,其中简单题有1道,中等题有3道,难题有1道。
总体而言,解答题的难度适中,符合考生的水平要求。
3. 题型分布分析2024年的数学试卷在题型分布上做到了合理的安排,各个知识点的考察比例较为均衡。
以下是具体的分析:3.1 选择题选择题在试卷中占据了较大的比例,涵盖了各个知识点。
其中,代数和几何的选择题比例较大,占总题数的30%和25%。
3.2 解答题解答题在试卷中的比例适中,共有5个题目,占总题数的20%。
这些题目涵盖了代数、几何、概率等不同知识点,能够全面考察学生的数学能力。
3.3 计算题计算题在试卷中占比较小的比例,共有2道,占总题数的8%。
这些题目主要考察学生的计算能力和应用能力,能够有效评估学生的数学水平。
4. 命题思路分析4.1 手算题与计算器题在2024年的数学试卷中,命题人员合理地安排了手算题和计算器题。
手算题主要涉及到基础运算和应用题,能够考察学生的计算能力和推理能力。
计算器题则更侧重于实际应用题,能够考察学生的综合运用能力。
4.2 应用题与概念题应用题和概念题在试卷中的比例也是相对均衡的。
应用题主要考察学生对知识的综合应用能力,而概念题则更注重学生对基本概念的理解和掌握程度。
2024年广东省深圳市中考真题数学试卷含答案解析
2024年广东省深圳市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列用七巧板拼成的图案中,为中心对称图形的是()A .B .C .D .【答案】C【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:选项A 、B 、D 均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C .2.如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A .aB .bC .cD .d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .3.下列运算正确的是()A .()523m m -=-B .23m n m m n ⋅=C .33mn m n-=D .()2211m m -=-【答案】B【分析】本题考查了同底数幂的乘法,合并同类项,积的乘方,完全平方公式.根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A 、()6523m m m -=≠-,故该选项不符合题意;B 、23m n m m n ⋅=,故该选项符合题意;C 、33mn m n -≠,故该选项不符合题意;D 、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B .4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A .12B .112C .16D .145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A .40︒B .50︒C .60︒D .70︒【答案】B【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B .6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A .①②B .①③C .②③D .只有①【答案】B【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B .7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A .()7791x y x y +=⎧⎨-=⎩B .()7791x y x y +=⎧⎨+=⎩C .()7791x y x y-=⎧⎨-=⎩D .()7791x y x y+=⎧⎨+=⎩【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A .8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m【答案】A【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠=,,以及Rt tan AN ACN ACN CN ∠= ,,运用线段和差关系,即∵MEF EFB CDF ∠=∠=∠∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=∴四边形EFBM 是矩形同理得四边形CDBN 是矩形故选:A二、填空题9.已知一元二次方程230x x m -+=的一个根为1,则m =.【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是.(写出一个答案即可)∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,13.如图,在ABC 中,AB BC =,tan 12B ∠=,D 为BC 上一点,且满足5BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴cos DM CD =⋅∵DE AD ⊥,CM ∴MC DE ∥,∴CE DM ==三、解答题14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+ ⎪⎝⎭.15.先化简,再求值:221111a aa a-+⎛⎫-÷⎪,其中1a=+16.据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【详解】(1)解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A 48.34883.299B 48.42547.5354.04(2)小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若56AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【详解】(1)证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.观察图象知,函数为二次函数,20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE,请直接写出PE的值.第二种情况:作ABC ∠的平分线,取CH CB =线BA 上取AF AB =,连接DF 故A 为BF 的中点;第三种情况:作AD BC ∥,交BE 的延长线于点在DA 延长线上取点F ,使则A 为DF 的中点,同理可证明12AD BC =,从而②若按照图1作图,∠=∠,由题意可知,ACB ACP四边形ABCD是平行四边形,ACB PAC∴∠=∠,∴∠=∠,PAC PCA延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,故答案为:3414PE =或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的。
2020年广东省中考数学试卷分析4
2020年广东省中考数学试卷分析由于2020年中考有三大变化:取消中考考纲、考试时间减少、试卷结构调整,对考生来说,是一个不小的挑战。
1、考试时间由100分钟减为90分钟,去掉一个解答题,增加一个填空题,可以说是减轻了考生的负担,但在解题速度上对考生是一个考验。
2、解答题的分值占比,由原来的55%,下降为现在的51.7%。
3、计算量及计算难度,较往年有所增加。
本次考试试卷分值120分,考试时间为190分钟,共25题,题型分为选择题、填空题、解答题(一)(二)(三)。
全卷贯彻《义务教育数学课程标准(2011年版)》所阐述的命题指导思想,考查知识点覆盖面广,整体难度加大,较往年题“形”而言,改变较大,题“形”较新,对学生计算能力、解题能力和思维能力的考查较高。
全卷基础题和综合题的区分较往年更明显,体现了中考作为升学和选拔的双重功能。
一、2020广东中考数学试卷考点分析·二、2020广东中考数学试卷难度分析·2020年中考数学稳中有变。
"稳"在分值占比,今年试题的各模块知识占比变化不大,函数、图形的变化、统计与概率等与去年基本持平。
题目虽然顺序有所改变,但考查的知识点依然是教材的重要内容,例如相反数、中位数、切线证明、图形的面积计算等。
"变"在试题结构,今年中考试题结构有较大的改变,考试时间也有调整。
变化较大的是,取消了以往中考数学必考的一些知识点,比如科学记数法、三视图、中心对称与轴对称、分式化简求值,熟悉的尺规作图由解答题变成了填空题;第17题题型背景发生变化,文字内容增加,比较少见,更加注重实际生活的考查,用数学语言表达生活,其实这种模型在学勾股定理、圆、最短路径问题等章节时有接触过,题目设计很好,计算量不大,但是非常考查学生自身的解题能力和思维能力,是一道有区分度的好题;第21题,本题结合几何和代数知识点进行综合考查,重点考察同解方程的概念的深刻理解,与去年相比,探究性更强,计算量更大,这种问题是平时很少关注但是又不陌生的情景。
2021年广东省中考数学试卷分析及2022年中考备考策略
2021年的广东省中考数学试卷分析及2022年中考该科备考策略一、全卷概况此试卷4页,共25小题,试卷满分120分,考试时间90分,。
试卷分五大板块:选择题、填空题、解答题(一)、解答题(二)、解答题(三)。
第一板块为选择题,共10小题,每小题3分,共30 分,占整张卷子分值的25%;第二板块为填空题,共7小题,每小题4分,共28分,占整张卷子分值的23.3%;第三板块为解答题(一),共3小题,每小题6分,共18分,占整张卷子分值的15%;第四板块为解答题(二),共3小题,每小题8分,共24分,占整张卷子的20%;第五板块为解答题(三),共2小题,每小题10分,共20分,占整张卷子的17%。
1.各版块权重分值分析第一板块选择题包括知识板块情况如下:“数与式”有5题15分;“方程与不等式”0题0分;“函数”有2题6分;“图形的性质”有2题6分;“统计与概率”1题3分。
第二板块填空题包括知识板块情况如下:“数与式”有1题4分;“方程与不等式”2题8分;“函数”有1题4分;“图形的性质”有3题12分;“统计与概率”0题0分。
第三板块解答题(一)包括知识板块情况如下:“数与式”有0题0分;“方程与不等式”1题6分;“函数”有0题0分;“图形的性质”有1题6分;“统计与概率”1题6分。
第四板块解答题(二)包括知识板块情况如下:“数与式”有0题0分;“方程与不等式”0题0分;“函数”有2题16分;“图形的性质”有1题8分;“统计与概率”0题0分。
第五板块解答题(三)包括知识板块情况如下:“数与式”有0题0分;“方程与不等式”0题0分;“函数”有0.5题5分;“图形的性质”有1.5题15分;“统计与概率”0题0分。
2.各版块的所属知识点分析通过数据统计结果可得:2021年的广东省中考数学试卷整体稳中求变,结构与往年基本保持一致,题目数量、考点设置、分值安排基本没有变化,难度较去年有所上升。
第一板块选择题:以考试基础知识为主,其中“数与式”为考试重点,“方程与不等式”在选择题中没出现,另外选择题第9、10题都是考察二次函数的问题,学生们可以多注意该知识点。
2024年广东省中考数学试卷(含答案)
2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算-5+3的结果是()A.2B.-2C.8D.-8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2.下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3.2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A.43.8410⨯B.53.8410⨯ C.63.8410⨯ D.538.410⨯【答案】B 【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =,∴384000用科学记数法表示为53.8410⨯,故选:B .4.如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为()A.120︒B.90︒C.60︒D.30︒【答案】C 【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5.下列计算正确的是()A.2510a a a ⋅= B.824a a a÷= C.257a a a-+= D.()5210a a =【答案】D 【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6.长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()A.14B.13C.12D.34【答案】A 【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7.完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.20【答案】B 【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴正方形的边长为5=,故选:B .8.若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则()A.321y y y >>B.213y y y >>C.132y y y >> D.312y y y >>【答案】A 【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时,y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9.方程233x x=-的解为()A.3x = B.9x =- C.9x = D.3x =-【答案】C 【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10.已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是()A. B. C. D.【答案】B 【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11.数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12.关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x ≤【解析】【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13.若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14.计算:333a a a -=--_______.【答案】1【解析】【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15.如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BFCF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCDBF h S S BC h ⋅=⋅菱形 ,即18224BFBC=,∴23BF BC =,∴2BFCF=,∴12212ABF CDF BF hS BFS CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+111233⨯+-=11233=+-2=.17.如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线的性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18.中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m (2)66.7m 【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到273m 10AQ =,接着解直角三角形得到83m 5BC =,进而求出43m 5AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴273sin m 10AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴83m tan 5CE BC CBE ==∠,∴83m 5AD =;∵180309060PAD =︒-︒-︒=︒∠,∴43cos m 5AP AD PAD =⋅=∠,∴3536.1m 10PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CEBE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19.端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A6879B7787C8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B景区去游玩(2)王先生会选择A景区去游玩(3)最合适的景区是B景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数的计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.【小问1详解】⨯+⨯+⨯+⨯=分,解:A景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C景区得分为830%815%640%615% 6.9<<,∵6.97.157.4∴王先生会选择B景区去游玩;【小问2详解】解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20.广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21.综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(2)31253cm 24【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180nππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DFA DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O D O FDFDB DE BE ==,11O DDB DE O F=.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,21648256 3.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23.【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC 交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x =验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE =,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m ,∴将k y m =代入y ax =中得:k m ax =得,∴k x am =,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DH HEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴3tan 303AP OP PD =︒⨯=⨯==,2AC BD AP ===,∴AB AD ===,OD BP PD =+=,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。
2024年广东中考数学分析范文
数学是一门非常重要的学科,也是广东中考的一项重要科目。
数学分析是数学中的一个重要分支,是用数学方法研究函数和序列的性质、变化以及发展规律的一门学科。
下面是对2024年广东中考数学分析题的分析。
2024年广东中考数学分析部分由三个大题构成,分别是解答题、选择题和填空题。
首先是解答题。
解答题是考查学生对数学知识点的理解与运用能力的题目。
难度有一定的挑战性,需要学生灵活运用所学知识。
例如,2024年广东中考数学分析题中的一道解答题是关于函数的单调性和最值的问题。
这道题通过给出一个函数的定义域和函数值的范围,要求学生判断函数的单调性,并找出函数的最小值和最大值。
这道题不仅考查了学生对函数单调性和最值的掌握程度,还要求学生运用函数的定义和运算性质去解答问题。
接下来是选择题。
选择题是一种较为简单但需要迅速准确判断的题目。
广东中考数学分析中的选择题主要考查学生对基本概念和方法的理解和运用能力。
例如,一道选择题是给出一个函数的图像和函数的定义域,要求学生判断该函数的单调性。
这道题通过给出函数的图像,引导学生观察函数变化的趋势,然后再根据定义域和函数值之间的关系,判断函数的单调性。
这道题考察了学生对函数图像的理解和观察能力,以及对函数的定义域和值域的掌握能力。
最后是填空题。
填空题是一种针对具体问题的题目,需要学生根据所给信息和条件,填写出相应的答案。
填空题考查学生对数学知识的灵活运用能力和解题思路的构建能力。
例如,一道填空题是给出一个方程组和一个关于函数的不等式,要求学生求解该方程组,同时满足不等式条件。
这道题要求学生灵活运用线性方程组的求解方法,并将解代入不等式中验证答案。
这道题考察了学生对方程组解法和不等式条件的理解能力。
综上所述,2024年广东中考数学分析部分的题目分为解答题、选择题和填空题三种题型。
这些题目不仅考查了学生的基本概念和方法的掌握能力,还要求学生能够运用所学知识解决实际问题。
通过解答这些题目,学生可以提高自己的数学思维和分析能力,为将来的学习和工作打下坚实的数学基础。
2021年广东省中考数学试卷分析
2021年广东省中考数学试卷分析发布时间:2022-01-13T05:49:16.164Z 来源:《中小学教育》2021年11月31期作者:陈海祥[导读] 2021年的广东省中考数学考试全卷满分120分,考试时间为90分钟陈海祥广东省博罗县园洲中学 516123一、试卷整体评析2021年的广东省中考数学考试全卷满分120分,考试时间为90分钟,共25题。
题型分为10道选择题(每小题3分,共30分),7道填空题(每小题4分,共28分),3道解答题(一)(每小题6分,共18分),3道解答题(二)(每小题8分,共24分),2道解答题(三)(每小题10分,共20分)。
试卷总体保持稳定,稳中有变,变中有新。
中等难度题目增加,计算量加大,注重初高中衔接,对学生的动手作图能力和综合能力要求增大,知识面覆盖广,试题难易区分度明显,试卷难度总体有所提升。
试卷突出特点是在考查知识与技能、过程与方法的同时,重视对学生的数学素养的考查,注重了考查学生对数学思想方法的领悟和数学思维能力的达成水平,考试内容上更体现了基础性、开放性、新颖性、应用性、探究性和综合性。
命题实现了由“知识立意”向“能力立意”的过渡,体现了中考作为升学和选拔的双重功能,对初中数学教与学有较强的导向性。
二、2021年广东省中考数学知识板块分布三、近三年广东省中考数学知识模块分值对比四、近三年广东省中考数学知识考点对比年份2019年2020年2021年题目第1题绝对值相反数实数比较大小第2题科学记数法中位数科学记数法第3题三视图关于x轴、y轴对称的点的坐标概率计算第4题整式运算多边形内角与外角幂的运算性质第5题对称图形(轴对称、中心对称)二次根式有意义的条件绝对值与二次根式的非负性第6题中位数三角形中位线定理正方形展开图第7题实数(绝对值、数轴)二次函数图象与几何变换圆的简单计算第8题二次根式解一元一次不等式组实数的小数部分和整数部分第9题一元二次方程翻折变换(折叠问题)二次函数最值的求解第 10 题几何多结论问题:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质二次函数图象与系数的关系二次函数综合题第 11 题实数的运算因式分解-提公因式法二元一次方程组的解法第 12 题平行线的性质同类项二次函数图象平移变换第 13 题多边形非负数的性质:算术平方根三角形与扇形结合求阴影部分面积第 14 题整式(整体代入法求值)代数式求值已知根写一元二次方程第15题解三角形作图—基本作图可化为一元二次方程的分式方程的解法(完全平方公式的变形运算及因式分解)第16题找规律:利用轴对称设计图案圆锥的计算平行四边形的性质、相似三角形与解直角三角形的综合应用第17题解不等式组点与圆的位置关系辅助圆解动态线段最值问题第18 题分式化简求值整式的混合运算—化简求值一元一次不等式组的解法第19 题尺规作图:作相等的角;相似三角形用样本估计总体数据的统计分析(众数、中位数、平均数、样本估计总体)第 20题统计概率:频数(率)分布表;扇形统计图;列表法与树状图法全等三角形的判定与性质垂直平分线的作图与性质三角函数的简单计算第21题二元一次方程组的应用;一元一次不等式的应用根与系数的关系一次函数与反比例函数综合第22题勾股定理;切线的性质;扇形面积的计算切线的判定与性质分式方程的实际应用及二次函数的应用(最大利润问题)第23题反比例函数与一次函数的交点问题分式方程的应用正方形与相似三角形综合题第24题圆的综合题:证线段相等;证切线;求线段长度反比例函数综合题圆的综合题:证线段垂直;证切线;求三角形面积第25题二次函数综合题;存在性问题二次函数综合题二次函数综合题与平行四边形存在性问题五、对比2019年,2020年,2021年广东中考数学试题考查的知识点分析今年考题特点。
2023广东中考试卷评析
2023广东中考试卷评析引言概述:2023年广东中考试卷是广东省教育考试院根据教育改革的要求制定的一套考试试卷。
本文将对该试卷进行评析,分析试卷内容的准确性和符合性,并总结出试卷的特点和亮点。
正文内容:1. 试卷的题型设置1.1 选择题的设置1.1.1 单项选择题1.1.2 完形填空题1.1.3 阅读理解题1.2 填空题的设置1.2.1 语法填空题1.2.2 完形填空题1.2.3 阅读理解填空题1.3 题目的难度和区分度1.3.1 难度适中的题目设置1.3.2 区分度较高的题目设置1.3.3 题目类型的多样性2. 试卷的知识点覆盖2.1 语文知识点的覆盖2.1.1 词语理解和运用2.1.2 阅读理解和写作能力2.1.3 古诗文和现代文阅读2.2 数学知识点的覆盖2.2.1 四则运算和代数运算2.2.2 几何图形和空间几何2.2.3 数据分析和统计2.3 英语知识点的覆盖2.3.1 词汇量和语法知识2.3.2 阅读理解和听力能力2.3.3 写作和口语表达能力3. 试卷的命题思路3.1 知识与能力的结合3.1.1 考查学生对知识点的掌握程度3.1.2 考查学生的应用能力和创新思维3.1.3 考查学生的解决问题的能力3.2 综合能力的考察3.2.1 考查学生的综合分析和判断能力3.2.2 考查学生的逻辑思维和推理能力3.2.3 考查学生的综合运用能力3.3 素质教育的体现3.3.1 考查学生的文化素养和人文关怀3.3.2 考查学生的社会责任感和团队合作能力3.3.3 考查学生的创新意识和实践能力总结:综上所述,2023年广东中考试卷在题型设置、知识点覆盖和命题思路等方面都表现出了一定的特点和亮点。
试卷的题型设置合理,题目的难度和区分度适中,能够全面考察学生的知识和能力。
试卷对语文、数学和英语等学科的知识点进行了全面覆盖,能够检验学生的综合能力。
同时,试卷的命题思路注重知识与能力的结合,考察学生的综合能力和素质教育。
广州中考真题数学试卷分析
广州中考真题数学试卷分析中考是每一个初中生都要经历的一次重要考试,数学试卷是其中的一项主要内容。
本文将对广州中考的数学试卷进行分析,探讨试卷结构、考点分布以及解题技巧等方面的内容,旨在帮助考生更好地备考。
一、试卷结构分析广州中考数学试卷通常由选择题和解答题两部分组成。
选择题占据了试卷的大部分,考察基础知识的掌握程度。
选择题种类多样,包括单选题和多选题等。
其中,单选题主要考察基本概念、运算能力和问题解决能力;多选题要求考生辨别信息,运用数学方法解决实际问题。
解答题是试卷的较难部分,主要考察对知识点的理解和应用能力。
解答题的题目种类与选择题相似,但要求考生用文字、符号或图表等形式给出解答过程和结果,注重思维能力、创新能力和推理能力。
二、考点分布分析广州中考数学试卷的考点分布广泛,主要包括数与代数、几何与测量、函数与图像、统计与概率等方面。
1. 数与代数:包括整数、分数、小数、有理数、实数、代数式、方程和不等式等。
这些知识点的理解和掌握对于解决实际问题至关重要。
2. 几何与测量:主要涉及图形的性质、计算、相似、合同、判定等。
几何与测量是对生活中形状、大小和量度等方面的认识和应用,考察学生对几何概念的掌握和几何问题的解决能力。
3. 函数与图像:包括函数的定义、性质和运算以及函数图像的绘制和分析等。
函数与图像在数学中起着重要的作用,通过对函数的研究,可以更好地理解数学问题。
4. 统计与概率:主要涉及数据的收集、整理、分析和表示等统计方法,以及概率的计算和应用等。
统计与概率是对数据进行分析和预测的重要手段,也是日常生活中经常使用的数学方法。
三、解题技巧总结1. 熟练掌握基础知识:广州中考数学试卷考察的是学生对基本概念和运算方法的掌握程度,因此要通过大量的练习,熟悉并掌握基础知识。
2. 理解题意,注重分析:在解答题目时,要仔细阅读题目并理解其意思,注意提取有效信息,并进行合理的分析和推理。
3. 建立数学模型:对于较复杂的问题,可以尝试建立数学模型,将实际问题转化为数学问题,从而更好地解决问题。
广东省2019年中考数学试卷分析报告
广东省2019年初中学业水平考试数学试卷分析纵观整份试卷,首先题型、题量、考试时间与近几年保持一致。
本次考试试卷分值120分,考试时间为100分钟,共25题,题型分为选择题、填空题、解答题(一)(二)(三)。
全卷的考查知识点覆盖面广,整体难易程度适中,侧重基础知识、基本技能与灵活运用,卷面比较传统,但也有一定的创新。
学生能解决大部分的题目,部分题目对于学生计算能力和思维能力的考查较高,如10,16,22,23,24,25。
全卷基础题和综合题的区分比较明显,很好地体现了中考作为升学和选拔的双重功能。
考查数与式的题目:每年相对固定,所占分值稳定在30分左右,属于基础知识,复习这一板块的时候需要重点掌握基础知识。
方程与不等式这一板块,大部分是小题,但每年会有一个解答题来考查方程与不等式,出现在18-20题范围内,2019年的分值比重有所增加。
而函数这一部分则相对稳定,一般在选择题和23题考查,复习这一部分内容时,要掌握好各个函数间的关联性及其交点问题。
几何这一板块,三角形一直是考查的重点,基础题和解答题都会有涉及,分值约占全卷23.3%,今年运用三角形的知识来解题的比重相当大。
这几年不再会单纯地考查特殊四边形,而是与图形的翻折、转换与函数等联系起来。
图形的认识与变换在2019年的比重相对比较稳定,求角度及线段长度问题分值占比较大。
圆的知识板块经常稳定在10%左右,压轴题会出一个关于圆的解答题,要求思维清晰、方法多样,并注重几何体系的知识网络。
一、2019广东中考数学试卷考点分析·试卷基础知识考点分布广,综合题包含的知识点多。
二、2019广东中考数学试卷考查模块知识分析·2019广东中考数学试卷各部分的分布基本符合最新考纲的大致要求,命题合理、谨慎,考查得当。
·三、2019广东中考数学试卷难度分析·易、中、难的比例基本符合往年4:5:1的命题标准。
·四、基础题分析··五、难题分析·六、从命题看趋势·1.考查稳重求变,命题有创新,题目位置可能有调整,基础题和难题保持较大的区分度。
2022年广东中考数学试卷23题分析与反思
2022年广东中考数学试卷23题分析与反思分析:本题难度不大,但有一定灵活性。
由“根据人们出行时间可以确定他们各自的路程”知道“ a、 b 两地相距45千米”,而要
求甲乙两人中任意一个人选择合适交通工具的方法是:先确定另外一个人选什么样的交通工具,再与该交通工具对应的另外一个城市的所需费用是多少(设为 x),然后列式求解即可得到答案。
我想出现这
种情况主要原因还是考生审题不够仔细,对平均数与总费用之间的关系没有深刻理解造成的。
正确做法应当是根据题目条件“各组中相同的人数越多,则每个人花费的钱数就越少”来确定答案,比如4人或6人,而只是粗略计算出人数相同,那么结果肯定是错误的;同样,假如考生认真读懂题干,把此题改为“至少要使第一组平均费用最小”,那么无论问几人都能轻松找到答案,但事实却恰恰相反。
反思:第1问平均数在这里起到了承上启下的作用。
当你已经看明白题意并会解决问题时,应首先从较简单的问题入手,按照前面步骤完成基础部分的试题,然后再回过头来分析困难一些的问题,更容易突破瓶颈取得进步。
当然,除了完整做好基础部分试题之外,还要养成复习归纳的习惯,尤其是对于已经完成的基础部分试题,应注重将它们及时回顾并总结方法规律,避免遗忘丢分,提高自己的综合运用水平。
- 1 -。
2024广东中考数学分析范文
2024广东中考数学分析范文数学分析是中学数学的重要内容,也是学生备战中考的重点之一、下面是一篇关于2024年广东中考数学分析的范文,供参考。
2024年广东中考数学分析题考查了一些基础知识和解题策略,要求学生熟练运用已掌握的知识和方法进行解题。
此次考试题型多样,包括选择题、填空题和解答题,考查了多个知识点,如函数、方程、平面几何等。
在选择题方面,考查了函数的零点及其个数、函数的图像、函数的性质等。
这些题目主要是考查学生对函数的定义和基本性质的理解和应用能力。
学生在解答这类题目时,应注意细节,尤其是要注意图像的对称性、单调性和整体性质。
在填空题方面,考查了方程的解和解的个数、函数的表示和计算等。
这些题目主要是考查学生对方程的理解和解题方法的掌握。
学生在解答这类题目时,应注意方程解的范围、解的个数及其求解过程。
在解答题方面,考查了平面几何的证明、函数应用题等。
这些题目主要是考查学生的证明能力和实际问题解决能力。
学生在解答这类题目时,应注意结论的证明过程、图像的理解和应用能力。
此次数学分析题难度适中,整体试卷的时间安排合理,给学生留有一定的答题时间。
尤其是在解答题部分,几个问题的难度有所递进,为学生提供了展示自己数学水平的机会。
在备考中,考生应重点掌握与数学分析相关的基本知识,如函数、方程、变量之间的关系等。
要灵活运用所学的知识和方法,将其应用于实际问题中,培养解题的思维能力和问题解决能力。
同时,还要注重题目的分析和细节的把握,避免因大意而出错。
总结而言,2024年广东中考数学分析题考查了学生对数学基本知识和解题方法的掌握程度,要求学生能够熟练运用所学的知识和方法进行解题。
此次试题的难度适中,整体试卷的设计合理,给学生留有一定的答题时间。
通过认真备考和答题,相信广大考生都能取得优异的成绩。
(以上为一篇2024广东中考数学分析范文,共计240字。
中考数学试卷分析报告
中考数学试卷分析报告引言本文是对某市某年级数学中考试卷的分析报告。
通过对试卷的整体结构、试题的命题特点和学生普遍表现进行分析,旨在提供给教师和学生一些有价值的参考和建议。
试卷整体结构分析该试卷总分100分,包括选择题、填空题、计算题和解答题。
试卷整体难度适中,体现了对学生不同能力层次的考查。
具体结构如下:1.选择题(共30题,每题2分):这一部分主要考查学生对基础知识的掌握和简单运用能力。
题目涵盖了数学各个单元的知识点,考察了学生的记忆能力和运算技巧。
2.填空题(共10题,每题3分):填空题主要考查学生对概念和定理的理解,以及运算和推理能力。
试题设置合理,难度适中,对学生的逻辑思维能力和解题能力进行了有效的考查。
3.计算题(共5题,每题10分):计算题要求学生进行较复杂的计算和推理,解决实际问题。
题目设计灵活多样,既有直接计算的题目,也有需要转化和推导的题目。
这些题目对学生的运算能力和问题解决能力提出了一定的挑战。
4.解答题(共5题,每题15分):解答题主要考查学生的综合运用能力,要求学生进行归纳总结、分析判断和解决问题。
试题涵盖了各个数学单元的知识点,对学生的综合运用能力进行了全面的考察。
试题命题特点分析该试卷的命题特点如下:1.知识点全面:试题涵盖了数学各个单元的知识点,充分考察了学生的基础知识掌握情况。
2.难度适中:试题难度分布较为合理,既有基础题目,也有较难的综合题目。
能够有效评估学生的不同能力水平。
3.灵活性强:试题形式多样,既有选择题、填空题,也有计算题和解答题。
这样的设计能够激发学生的学习兴趣,提高解题的积极性。
4.知识应用性强:试题注重考查学生对数学知识的应用能力,尤其是解答题部分。
学生需运用所学知识解决实际问题,培养了学生的数学思维和实际应用能力。
学生表现分析根据试卷的批改情况,对学生在不同题型上的表现进行了分析。
1.选择题:学生在选择题上表现较好,大部分学生能够根据题意和选项进行准确选择。
2023年广东省中考数学试卷题型分析
中档
5
1,4,15,19,20
21.74 %
较难
1
23
4.35 %
难
1
22
4.35 %
⭐知识点分析 共计:23个知识点
知识点
分值
占比
正数和负数
3.00
2.50%
轴对称图形
3.00
2.50%
科学记数法—表示较大的数
3.00
2.50%
平行线的性质
3.00
2.50%
分式的加减法
3.00
2.50%
2023年广东省中考数学试卷题型分析
试卷总分值 120
⭐试卷难度系数 0.58 中档
⭐试卷总体分析
题类
题量(道)
客观题
10
主观题
13
题型
题量
选择题(10)
10
填空题(5)
5
解答题(8)
8
⭐试题难度分析
试题难易度程度
题量
题号
题量占比
易
9
2,3,5,7,8,11,12,16,21
39.13 %
较易
7
6,9,10,13,14,17,18
相似三角形的判定与性质
3.00
2.50%
实数的运算
10.00
8.33%
分式方程的应用
7.00
5.83%
解直角三角形的应用
7.00
5.83%
作图—复杂作图
9.00
7.50%
正方形的性质
9.00
7.50%
方差
9.00
7.50%
圆的综合题
12.00
10.00%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一级考点二级考点三级考点分值比例数与式有理数倒数 3 2.50%
科学记数法—表示较大的数 3 2.50%
代数式代数式求值 4 3.33%
整式整式的混合运算9 7.50% 二次根式二次根式有意义的条件 4 3.33% 方程与不等式分式方程分式方程的应用7 5.83% 不等式与不等式组解一元一次不等式组 6 5.00% 函数反比例函数待定系数法求反比例函数解析式 4 3.33% 二次函数抛物线与x轴的交点 6 5.00%
二次函数综合题9 7.50% 图形的性质三角形全等三角形的判定与性质 6 5.00%
四边形多边形内角与外角 3 2.50%
直角梯形7 5.83%
圆切线的性质 4 3.33%
圆与圆的位置关系 6 5.00% 图形的变化图形的相似相似图形 3 2.50%
相似多边形的性质 4 3.33%
相似三角形的判定与性质9 7.50% 锐角三角函数特殊角的三角函数值 6 5.00%
解直角三角形的应用7 5.83% 统计与概率数据收集与处理频数(率)分布直方图7 5.83%
概率概率公式 3 2.50%
一级考点二级考点三级考点分值比例数与式有理数绝对值 3 2.50%
科学记数法—表示较大的数 3 2.50% 无理数与实数非负数的性质:算术平方根 4 3.33%
实数的运算 6 5.00% 代数式规律型:数字的变化类7 5.83%
整式整式的混合运算—化简求值 6 5.00% 因式分解因式分解-提公因式法 4 3.33% 方程与不等式二元一次方程组解二元一次方程组 6 5.00% 一元二次方程一元二次方程的应用7 5.83% 不等式与不等式组解一元一次不等式 4 3.33% 函数反比例函数反比例函数综合题7 5.83% 二次函数二次函数综合题9 7.50% 图形的性质三角形三角形三边关系 3 2.50% 四边形平行四边形的判定 6 5.00%
圆圆周角定理 4 3.33%
扇形面积的计算 4 3.33% 尺规作图作图—基本作图 6 5.00% 图形的变化图形的对称翻折变换(折叠问题)9 7.50% 锐角三角函数解直角三角形的应用-仰角俯角问题7 5.83%
投影与视图简单组合体的三视图 3 2.50% 统计与概率数据分析众数 3 2.50%
概率列表法与树状图法9 7.50%
一级考点二级考点三级考点分值比例数与式有理数相反数 3 2.50%
科学记数法—表示较大的数 3 2.50% 无理数与实数非负数的性质:算术平方根 4 3.33%
因式分解因式分解-运用公式法 4 3.33%
分式分式的化简求值 5 4.17%
负整数指数幂 3 2.50% 方程与不等式二元一次方程组解二元一次方程组 5 4.17% 一元二次方程一元二次方程的应用8 6.67% 不等式与不等式组不等式的性质 3 2.50%
在数轴上表示不等式的解集 3 2.50% 函数反比例函数反比例函数的图象 3 2.50%
二次函数二次函数综合题9 7.50% 图形的性质相交线与平行线平行线的性质 3 2.50%
四边形多边形内角与外角 4 3.33%
圆切线的判定9 7.50%
扇形面积的计算 4 3.33%
尺规作图作图—复杂作图 5 4.17% 图形的变化图形的对称轴对称图形 3 2.50%
图形的剪拼 4 3.33% 图形的相似相似三角形的判定8 6.67%
相似形综合题9 7.50% 锐角三角函数锐角三角函数的定义 4 3.33%
投影与视图简单几何体的三视图 3 2.50% 统计与概率数据收集与处理条形统计图8 6.67%
数据分析中位数 3 2.50%
一级考点二级考点三级考点分值比例数与式有理数有理数大小比较 3 2.50%
科学记数法—表示较大的数 4 3.33% 无理数与实数实数的运算 6 5.00% 代数式合并同类项 3 2.50%
整式整式的除法 4 3.33% 因式分解提公因式法与公式法的综合运用 3 2.50%
分式分式的化简求值 6 5.00% 方程与不等式一元二次方程根的判别式 3 2.50% 分式方程分式方程的应用7 5.83% 不等式与不等式组解一元一次不等式组 4 3.33% 函数反比例函数反比例函数与一次函数的交点问题9 7.50% 二次函数二次函数的性质 3 2.50% 图形的性质三角形等腰三角形的性质 3 2.50%
三角形中位线定理 4 3.33% 四边形多边形内角与外角 3 2.50%
平行四边形的性质 3 2.50%
圆垂径定理 4 3.33%
切线的判定9 7.50% 尺规作图作图—基本作图 6 5.00% 图形的变化图形的旋转旋转的性质 4 3.33%
中心对称图形 3 2.50% 图形的相似相似形综合题9 7.50%
锐角三角函数解直角三角形的应用-仰角俯角问题7 5.83% 统计与概率数据收集与处理条形统计图7 5.83%
概率概率公式 3 2.50%
一级考点二级考点三级考点分值比例数与式有理数绝对值 3 2.50%
科学记数法—表示较大的数 3 2.50% 无理数与实数实数大小比较 3 2.50% 代数式规律型:数字的变化类 4 3.33%
整式幂的乘方与积的乘方 3 2.50%
分式分式的化简求值 6 5.00% 方程与不等式一元二次方程解一元二次方程-因式分解法 6 5.00%
根的判别式 3 2.50% 分式方程解分式方程 4 3.33% 不等式与不等式组一元一次不等式的应用7 5.83% 函数函数基础知识动点问题的函数图象 3 2.50% 反比例函数反比例函数与一次函数的交点问题9 7.50% 图形的性质相交线与平行线平行线的性质 3 2.50% 三角形三角形的面积 4 3.33%
四边形多边形内角与外角 4 3.33%
菱形的性质 4 3.33%
圆扇形面积的计算 3 2.50%
圆的综合题9 7.50% 尺规作图作图—复杂作图 6 5.00% 图形的变化图形的对称翻折变换(折叠问题)7 5.83% 图形的旋转中心对称图形 3 2.50%
图形的相似相似三角形的性质 4 3.33%
相似形综合题9 7.50% 统计与概率数据分析中位数 3 2.50%
概率列表法与树状图法7 5.83%
一级考点二级考点三级考点分值比例数与式有理数相反数 3 2.50%
有理数大小比较 3 2.50%
科学记数法—表示较大的数 3 2.50% 无理数与实数算术平方根 4 3.33%
实数的运算 6 5.00% 因式分解因式分解-运用公式法 4 3.33%
分式分式的化简求值 6 5.00% 方程与不等式一元一次方程等式的性质 3 2.50% 分式方程分式方程的应用7 5.83% 不等式与不等式组解一元一次不等式组 4 3.33% 函数平面直角坐标系点的坐标 3 2.50% 函数基础知识动点问题的函数图象 3 2.50%
反比例函数反比例函数与一次函数的交点问题9 7.50% 图形的性质三角形勾股定理7 5.83%
三角形中位线定理 6 5.00% 四边形矩形的性质 4 3.33%
正方形的性质 3 2.50%
四边形综合题9 7.50%
圆圆周角定理 4 3.33%
圆锥的计算 4 3.33% 图形的变化图形的旋转中心对称图形 3 2.50% 图形的相似相似形综合题9 7.50%
锐角三角函数锐角三角函数的定义 3 2.50% 统计与概率数据收集与处理条形统计图7 5.83% 数据分析中位数 3 2.50%。