初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题包括答案.docx
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。
2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。
两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。
两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。
3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。
4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。
7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。
2024年全国中学生数学奥林匹克竞赛(预赛)加试参考答案与评分标准(A卷)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
2024年广东省中学生数学奥林匹克竞赛答案及评分标准
2024年广东省中学生数学奥林匹克竞赛答案及评分标准一试一、填空题1.已知,,,m a b c 为正整数,且log 2log 3log 52024m m m a b c ++=,求m a b c +++的最小值是________.【答案】30662.已知0,0x y >>,2133log 3215x xy x y--+-=⋅x +=.【答案】11.3.若A 、B 为锐角且sin sin()sin B A B A ⋅+=,则tan A 的最大值为__________.【答案】434.数列{}n a 满足:对任意2n ≥,12024n n a a n -=-.如果该数列的每一项都是正数,则1a 的最小值为____________.【答案】240472023(40474092529)5.投篮测试规则如下:每人最多投三次,投中为止,且第i 次投中得分为()4i -分(1,2,3i =),若三次均未投中则得分为0分.假设甲同学的投篮的命中率为()01p p <<,若甲参加投篮测试的投篮次数的均值为1.56,则p =,甲投篮测试的得分的均值为.【答案】2.376.6.设,x y 均为非零实数,且满足sincos 1212tan 3cos sin 1212x y x y πππππ+=-.在ABC 中,若tan y C x =,则sin 32A B +的最大值为.【答案】327.已知虚数z 满足2z z+∈R ,则2|23|z z +-的最大值为_____________.【答案】.8.n 是正整数,31n -没有12以上的质因子,则所有满足条件的n 和是________.【答案】129.已知四面体PABC ,点1A 在PBC 内,满足111,,A BP A CP A BC 的面积之比为3:2:1,G 在线段1AA 上,直线PG 交平面ABC 于点M ,且1AG PGGA GM=,则四面体PABC 与1A AMB 的体积之比为_________.【答案】1210.如图,在一个1010⨯的方格表中填入0和1,使得任意一个33⨯的方格表中都恰有一个1,则满足要求的填法数共有________种【答案】261二、解答题【解析】(1)易知C 的顶点坐标为3(,0)2-,189242==,所以C 的焦点坐标为39(,0)22-+,即(3,0),C 的准线方程为39622x =--=-,所以6,3a c ==,22227b a c =-=,所以E 的方程为22:13627x y E +=;---------4分(2)设12F PF θ∠=,11PF a =,22PF a =,由正弦定理可得1222sin sin F F cR θθ==,即=sin 3sin c R θθ=,则()()2222221212121212121222442cos 222a a c a a a a c b a a a a a a a a θ+-+-⋅--⋅===⋅⋅⋅,即2122cos c 4151os b a a θθ⋅==++,---------8分1212227sin cos127sin 22sin 27tan 2cos 12cos 2PF F S a a θθθθθθθ====+ 又()()12121212121122922PF F IF F IF P IF P S S S S F F PF PF r a c r r =++=++=+= ,---------12分所以27tan 92r θ=,即3tan 2r θ=,所以29tan2si 9n 2cos2R r θθθ⋅==,又因为当P 在短轴的端点时,θ最大,此时,60θ=︒,---------16分所以0,3πθ⎛⎤∈ ⎥⎝⎦,即0,26θπ⎛⎤∈ ⎥⎝⎦,所以cos 2θ⎫∈⎪⎪⎣⎭,故29,622cos 29R r θ⎛⎤⋅=∈ ⎥⎝⎦.---------20分12.已知方程ln (1)0,()x x m m +-=∈R 有两个不同的零点,分别记为a ,b ,且a b <.(1)求实数m 的取值范围;(2)若不等式1ln ln t a t b +<+恒成立,求正数t 的取值范围.【解析】(1)设()ln (1),()f x x x m m =+-∈R 的定义域为()0,∞+,1()1f x m x'=+-,当1m ≤时,因()0f x '>,故函数()f x 在()0,+∞上单调递增,不存在两个零点,不合题意;当1m >时,设1()()1g x f x m x '==+-,21()0g x x'=-<,故()g x 在()0,∞+上单调递减,即1()1f x m x'=+-在()0,∞+上单调递减,由()0f x '=,得11x m =-,当101x m <<-时,()0f x '>;当11x m <-时,()0f x '<;所以当11x m =-时,()f x 取得最大值.即111ln (1)ln(1)1111f m m m m m ⎛⎫=+-=--- ⎪---⎝⎭,--------4分若函数()f x 有两个不同的零点,则ln(1)10m --->即1ln(1)1ln m e -<-=,解得11m e<+,又1m >当x 趋近于0+时,(1)m x -趋近于0,ln x 趋近于负无穷,()f x 趋近于负无穷;当x 趋近于正无穷时,()f x 趋近于负无穷.所以若函数()f x 有两个不同的零点,则实数m 的取值范围111m e<<+.--------8分(2)因为()ln (1)()f x x x m m =+-∈R 有两个不同的零点a ,b ,由题知0a b <<,且ln 0ln 0a a amb b bm +-=⎧⎨+-=⎩,相减得到:ln ln 1a b m a b--=-由1ln ln t a t b +<+恒成立,所以1()t am a t mb b +<-+-恒成立,即1()(1)t a tb m +<+-恒成立,--------12分所以l 1)n (n l t a tb a b a b +<+--恒成立,即l 11n a a a tb bt b -++<恒成立.设k b a =,则(0,1)k ∈时,不等式)1(ln 1t k k t k +<-+恒成立,因为0t k +>,10k -<进而得(l 01)(n 1)k k t t k-+<+-在(0,1)k ∈时恒成立,设(1)(1(ln ))h kt k t k k -+=-+,(0,1)k ∈,注意到(1)0h =.则21()(1))((()1)t k k h k t t k k +--'=-++,即222222221(1)()()()()()(1)k k t h k k t k k t k t t k t k t k k k ++----'=-==+++,--------16分又因为(0,1)k ∈且0t >,则2(1)0()k k t k -<+,所以当1t ≥时,20k t -<,即()0h k '>,故()h k 在(0,1)k ∈单调递增,而1k =时(l 01)(n 1)k k t t k-+=+-,所以()0h k <恒成立,故1t ≥满足题意.当01t <<时,若2(,1)k t ∈,由()0h k '<,则()h k 在2(,1)k t ∈单调递减,所以当2(,1)k t ∈时()0h k >,与题设不符.综上所述,正数t 的取值范围1t ≥.--------20分加试13.设有限集,,A B C ⊆R ,,,A B C 为有限集,对任意x ∈R ,定义:,,(){(,,)|,,,}A B C N x a b c a A b B c C a b c x =∈∈∈++=.证明以下结论:(1)存在x ∈R ,使得,,||||||0()||A B C A B C N x A B C ⋅⋅<≤++(2)2222,,||||||()||A B C x A B CA B C N x A B C ∈++⋅⋅⎡⎤≥⎣⎦++∑其中:||A 表示集合A 中的元素个数,{|,,}A B C a b c a A b B c C ++=++∈∈∈.【解析】(1),,((,,,),,)()1||||1||a b c A B A B C x A B Cx A B C C a b c a b c A B CxN x A B C ∈⨯⨯++=∈++∈++∈⨯⨯===⋅⋅∑∑∑∑由平均值原理,存在x A B C ∈++,使得,,||||||0()||A B C A B C N x A B C ⋅⋅<≤++………………20分(2)由柯西不等式2,,,,2()|()1|A B C A B C x A B C X A B C N N C x x A B ∈++∈++⎡⎤≥⋅⎢⎥++⎣⎣⎦⎡⎤⎦∑∑…………………30分(,,)22(,,)1||11|1|a b c A B C a b c x x A B a b c A B C C A B C A B C ∈⨯⨯++=∈++∈⨯⨯⎛⎫⎪= ⎪++ ⎪⎝⎭⎛⎫= ⎪++⎝⎭∑∑∑222||||||||A B C A B C ⋅⋅=++………………………………40分14.如图,AB 为圆O的一条弦(,AB R 为圆O 的半径),C 为优弧 AB 的中点,M 为弦AB 的中点.点,,D E N 分别在 ,BCCA 和劣弧 AB 上,满足 BD CE =,且,,AD BE CN 三线共点于F .延长CN 至G ,使GN FN =.求证:FMB GMB ∠=∠.【解析一】如图,延长CM 交圆O 于T ,以T 为圆心,TA 为半径作圆,与CN 延长线交于'G ∵C 为优弧AB 中点,∴B 在圆T 上,且CA 与CB 是圆T 的切线∵ 118022AB ED AFB ACB CAB ATB+∠==∠+∠=-∠ ∴F 在圆T 上……………………10分∵CT 是圆O 的直径,所以90TNF ∠=∴N 为'FG 的中点,G 与'G 重叠∴AFBG 四点共圆……………………20分(实际上点出圆心T 的目的是为了证明AFBG 的共圆,证明共圆之后这个圆心就再也不会出现,只要能够证明AFBG 共圆无论是否点出圆心都可以获得20分)∵CA 与CB 是圆T 的切线∴,CAF CGA CBF CGB∽∽∴AF BG AG BF ⋅=⋅………………30分由托勒密定理知,12AG BF AB FG BM FG ⋅=⋅=⋅,且FBM AGF ∠=∠∴BFM GFA ∽∴BMF FAG ∠=∠同理BMG FAG∠=∠∴BM 平分FMG ∠………………40分证毕(最后导出等角后面的证明调和四边形,都是相对平凡的步骤了,各占10分)【解析二】解析二使用了调和点列的一些性质,答案中会备注使用调和点列的地方,请审卷老师注意评分如图,连接,NB NA ,CN 交AB 于Q ∵C 是优弧AB 的中点∴ANC BNC ∠=∠∵ BDEC =∴ 222BN EC BN BD DN BFN NAF++∠====∠∴ABNF FN ∽∴2NF NA NB =⋅……………………10分又NC 平分ANB ∠,∴QNB ANC ∽∴NA NB NQ NC⋅=⋅∴2NF NQ NC =⋅……………………20分(每一个相似占10分)∵N 为FG 中点∴NF NQ NC NF =,∴NF NQ NF NQ NC NF NC NF -+=-+,即FQ GQFC GC=∴CFQG 成调和点列(调和点列的性质)……………………30分(注:有的学生可能会写成(,;,)1C Q F G =-也代表调和点列,可以给分)∵M 是AB 中点,∴CM AB⊥∴MQ 与MC 分别是FMG ∠的内角平分线和外角平分线(调和点列的性质)………40分证毕。
初中数学奥林匹克竞赛题word版含答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
(完整版)初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
数学竞赛资料-数学奥林匹克初中训练题(含答案)
数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分) 1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =(). (A)3/4 (B)5/6 (C)7/12(D)13/18 2.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ). (A)-3 (B)-5 (C)-7 (D)-9 3.方程|xy |+|x +y |=1的整数解的组数为(). (A)2 (B)4 (C)6(D)8 **、b 是方程x2+(m -5)x+7=0的两个根.则(a2+ma+7)(b2+mb+7)=( ). (A)365 (B)245 (C)210(D)175 5.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( ) (A)2332+π (B) 33265-π (C) 365-π(D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为(). (A)5 (B)6 (C)7 (D)8 二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是的值是. 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有组中这样的关联数有个.4.已知△ABC 的三边长分别为的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,每块碎片都是凸多边形,每块碎片都是凸多边形,将其重新粘合成原将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数. 说明:若凸多边形的周界上有n 个点,就将其看成n 边形,例如,图中的多边形ABCDE 要看成五边形.数学奥林匹克初中训练题1参考答案参考答案第一试第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz .根据有理数x 、y 、z 的对称性,可考虑方程组可考虑方程组 x +y +z =3,2xy =2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.**.注意到f(1)=2a+1,f(3)=12a+1,f(f(1))=a(2a+1)2+a(2a+1)+1.由f(f(1))=f(3),得(2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5. **.因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解. **.由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175. **.记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 . **.将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6. 二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, **.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x =a 2-b 2=(a +b )(a -b )≤100,因a +b 、a -b 同奇偶,故a +b ≥(a -b )+2.(1)若a -b =1,则a +b 为奇数,且3≤a +b ≤99.于是,a +b 可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a -b =2,则a +b 为偶数,且4≤a +b ≤50.于是,a +b 可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值. 其他情况下所得的x 值均属于以上情形.若a -b =奇数,则a +b =奇数.而x =a 2-b 2≥a +b ≥3,归入(1).若a -b =偶数,则a +b =偶数.而x =(a -b )(a +b )为4的倍数,且a -b ≥2,a +b ≥4,故x ≥8,归入(2). 因此,这种x 共有49+24=73个. **.注意到AB 2=(2a )2+482,BC 2=(a +7)2+242,AC 2=(a -7)2+242.如图,以AB 为斜边,向△ABC 一侧作直角△ABD ,使BD =2a ,AD =48,∠ADB =90°=90°. . 在BD 上取点E ,使BE =a +7,ED =a -7,又取AD 的中点F ,作矩形EDFC 1.因BC 21=BE 2+EC 21=(a +7)2+242=BC 2,AC 21=C 1F 2+AF 2=(a -7)2+242=AC 2,故点C 与点C 1重合.而S △ABD =48a ,S △CBD =24a ,S △ACD =24(a -7),则S △ABC =S △ABD -S △CBD -S △ACD =168. 第二试第二试一、将原方程变形得(12x +5)2(12x -2)(12x +12)=660.令12x +5=t ,则t 2(t -7)(t +7)=660,即t 4-49t 2=660.解得t 2=60或t 2=-11(舍去). 由此得t =±=±2 15,2 15,即有12x +5=±+5=±2215.因此,原方程的根为x 1,2=1215 25- .二、如图,易知A 、B 、C 、D 四点共圆,B 、C 、N 、M 四点共圆,因此,∠ACD =∠ABD =∠MCN .故AC 平分∠DCM .同理,BD 平分∠CDM .如图,设PH ⊥MC 于点H ,PG ⊥MD 于点G ,PT ⊥CD 于点T ;过点P 作XY ∥MC ,交MD 于点X ,交AC 于点Y ;过点Y 作YZ ∥CD ,交MD 于点Z ,交PT 于点R ;再作YH 1⊥MC 于点H 1,YT 1⊥CD 于点T 1由平行线及角平分线的性质得PH =YH 1=YT 1=RT 为证PT =PG +PH ,只须证PR =PG 由平行线的比例性质得EP /EF =EY /EC =EZ /ED .因此,ZP ∥DF .由于△XYZ 与△MCD 的对应边分别平行,且DF 平分∠MDC ,故ZP 是∠XZY 的平分线.从而,PR =PG .因此,所证结论成立.三、设全部碎片中,共有三角形a 3个,四边形a 4个,……,k 边形a k 个(a 3,a 4,…,a k 为非负整数).记这些多边形的内角和为S 角,于是,S 角=a 3×π+a 4×2π+…+a k (k -2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×10×22π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S 角=20π+16π+2π=38π. 于是,a 3+2a 4+…+(k -2)a k =38.①记这些多边形的边数和为S 边.由于每个n 边形有n 条边,则S 边=3a 3+4a 4+…+ka k .另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S 边=2×=2×45+20=110. 45+20=110. 于是,3a 3+4a 4+…+ka k =110.② ②-①得2(a 3+a 4+…+a k )=72.故a 3+a 4+…+a k =36.③ ①-③得a 4+2a 5+3a 6+…+(k -3)a k =2.因所有a i ∈N ,故a 6=a 7=…=a k =0,a 4+2a 5=2.所以,或者a 4=2,a 5=0;或者a 4=0,a 5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。
2024年广东省中学生数学奥林匹克竞赛一试+加试试题答案及评分标准
2024年广东省中学生数学奥林匹克竞赛答案及评分标准一试一、填空题1已知m ,a ,b ,c 为正整数,且a log m 2+b log m 3+c log m 5=2024,求m +a +b +c 的最小值是.【答案】 30662已知x >0,y >0,-log 3y +3x=y -2x =15⋅32x -1y,则y +x =【答案】 11 .3若A 、 B 为锐角且sin B ⋅sin A +B =sin A ,则tan A 的最大值为.【答案】434数列a n 满足:对任意n ≥2,a n =2024a n -1-n . 如果该数列的每一项都是正数,则a 1的最小值为【答案】40472023240474092529 5投篮测试规则如下:每人最多投三次,投中为止,且第i 次投中得分为4-i 分(i =1,2,3),若三次均未投中则得分为0分. 假设甲同学的投篮的命中率为p 0<p <1 ,若甲参加投篮测试的投篮次数的均值为 1.56,则p = ,甲投篮测试的得分的均值为. 【答案】 2.376 .6设x ,y 均为非零实数,且满足x sin π12+y cos π12x cos π12-y sin π12=tanπ3 . 在△ABC 中,若tan C =y x,则sin3A +3sin2B 的最大值为.【答案】327已知虚数z 满足z +2z∈R ,则z 2+2z -3 的最大值为【答案】1033 .8n 是正整数, 3n -1没有12以上的质因子,则所有满足条件的n 和是【答案】 129已知四面体PABC ,点A 1在△PBC 内,满足△A 1BP ,△A 1CP ,△A 1BC 的面积之比为3:2:1,G 在线段AA 1上,直线PG 交平面ABC 于点M ,且AG GA 1=PGGM ,则四面体PABC 与A 1AMB的体积之比为.【答案】 1210如图,在一个10×10的方格表中填入0和1,使得任意一个3×3的方格表中都恰有一个1 ,则满足要求的填法数共有种【答案】 261二、解答题1已知抛物线C :y 2=18x +27的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 2重合, C 的准线经过E 的左顶点.(1)求E 的方程;(2)已知点F 1为E 的左焦点, P 为E 上的一点(异于左、右顶点), △PF 1F 2外接圆的半径为R ,内切圆的半径为r ,求R ⋅r 的取值范围.【解析】(1) 易知 C 的顶点坐标为 -32,0 ,p 2=184=92,所以 C 的焦点坐标为 -32+92,0 ,即 3,0 ,C 的准线方程为 x =-32-92=-6,所以 a =6,c =3,b 2=a 2-c 2=27 ,所以 E 的方程为 E :x 236+y 227=1;4 分(2)设 ∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得 2R =F 1F 2sin θ=2csin θ,即R =c sin θ=3sin θ,则 cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=54cos θ+1, -8 分S △PF 1F 2=12a 1a 2sin θ=27sin θcos θ+1=27sin θ2cos θ2cos 2θ2=27tanθ2又 S △PF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =9r , -12 分所以 27tanθ2=9r ,即 r =3tan θ2,所以 R ⋅r =9tan θ2sin θ=92cos 2θ2,又因为当 P 在短轴的端点时, θ 最大,此时, θ=60° , -16 分所以 θ∈0,π3 ,即 θ2∈0,π6 ,所以 cos θ2∈32,1 ,故 R ⋅r =92cos 2θ2∈92,6. -20 分2已知方程ln x +x 1-m =0,m ∈R 有两个不同的零点,分别记为a ,b ,且a <b .(1)求实数m 的取值范围;(2)若不等式t +1<ln a +t ln b 恒成立,求正数t 的取值范围.【解析】(1)设 f x =ln x +x 1-m ,m ∈R 的定义域为 0,+∞ ,f x =1x+1-m ,当 m ≤1 时,因 f x >0,故函数 f x 在 0,+∞ 上单调递增,不存在两个零点,不合题意;当 m >1 时,设 g x =f x =1x +1-m ,g x =-1x2<0 ,故 g x 在 0,+∞ 上单调递减,即 f x =1x+1-m 在 0,+∞ 上单调递减,由 f x =0,得 x =1m -1,当 0<x <1m -1时, f x >0;当1m -1<x 时, f x <0;所以当 x =1m -1 时, f x 取得最大值.即 f 1m -1=ln 1m -1+1m -11-m =-ln m -1 -1,-⋯⋯-4 分若函数 f x 有两个不同的零点,则 -ln m -1 -1>0即 ln m -1 <-1=ln1e ,解得 m <1+1e,又 m >1当 x 趋近于 0+ 时, 1-m x 趋近于 0, ln x 趋近于负无穷, f x 趋近于负无穷;当 x 趋近于正无穷时, f x 趋近于负无穷.所以若函数 f x 有两个不同的零点,则实数 m 的取值范围 1<m <1+1e.---8 分(2)因为 f x =ln x +x 1-m m ∈R 有两个不同的零点 a ,b ,由题知 0<a <b ,且 ln a +a -am =0ln b +b -bm =0 ,相减得到:m -1=ln a -ln b a -b由 t +1<ln a +t ln b 恒成立,所以 t +1<am -a +t mb -b 恒成立,即 t +1<a +tb m -1 恒成立,---12 分所以 t +1<a +tb ln a -ln b a -b 恒成立,即 t +1<ab+t a b-1ln a b 恒成立.设 k =ab ,则 k ∈0,1 时,不等式 t +1<t +k ln k k -1恒成立,因为 t +k >0,k -1<0 进而得 ln k -t +1 k -1t +k<0 在 k ∈0,1 时恒成立,设 h k =ln k -t +1 k -1t +k, k ∈0,1 ,注意到 h 1 =0 .则 h k =1k -t +1 t +k -k -1 t +k2 ,即 hk =1k -t +1 2t +k2=t 2+k 2-t 2k -kk t +k 2=k -1 k -t 2 k t +k 2, -16 分又因为 k ∈0,1 且 t >0,则k -1k t +k 2<0 ,所以当 t ≥1 时, k -t 2<0,即 h k >0,故 h k 在 k ∈0,1 单调递增,而 k =1 时 ln k -t +1k -1t +k=0,所以 h k <0 恒成立,故 t ≥1 满足题意.当 0<t <1 时,若 k ∈t 2,1 ,由 h k <0,则 h k 在 k ∈t 2,1 单调递减,所以当 k ∈t 2,1 时 h k >0,与题设不符.综上所述,正数 t 的取值范围 t ≥1. ---20 分加试1设有限集A ,B ,C ⊆R ,A ,B ,C 为有限集,对任意x ∈R ,定义:N A ,B ,C x =a ,b ,c ∣a ∈A ,b ∈B ,c ∈C ,a +b +c =x ∣ . 证明以下结论:(1)存在x ∈R ,使得0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C(2)x ∈A +B +CN A ,B ,C x 2≥A2⋅B 2⋅C 2A +B +C 其中:A 表示集合A 中的元素个数, A +B +C ={a +b +c ∣a ∈A ,b ∈B ,c ∈C } .【解析】(1)x ∈A +B +CN A ,B ,C x =x ∈A +B +C a ,b ,c ∈A ×B ×C ,a +b +c =x1=a ,b ,c ∈A ×B ×C1=A ⋅B ⋅C由平均值原理,存在 x ∈A +B +C ,使得 0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C. .20 分(2)由柯西不等式x ∈A +B +CN A ,B ,C x 2≥X ∈A +B +C N A ,B ,C x 2⋅1A +B +C .. .30 分=1A +B +C x ∈A +B +C a ,b ,c ∈A ×B ×C a +b +c =x12=1A +B +Ca ,b ,c ∈A ×B ×C12=A2⋅B 2⋅C 2A +B +C. .40 分2如图, AB 为圆O 的一条弦(AB <3R ,R 为圆O 的半径), C 为优弧AB的中点, M 为弦AB 的中点. 点D ,E ,N 分别在BC ,CA和劣弧AB上,满足BD=CE,且AD ,BE ,CN 三线共点于F . 延长CN 至G ,使GN =FN . 求证:∠FMB =∠GMB .【解析一】如图,延长 CM 交圆 O 于 T ,以 T 为圆心, TA 为半径作圆,与 CN 延长线交于 G ∵C 为优弧 AB 中点, ∴B 在圆 T 上,且 CA 与 CB 是圆 T 的切线∵∠AFB =AB+ED2=∠ACB +∠CAB =180°-12∠ATB∴F 在圆 T 上. .10 分∵CT 是圆 O 的直径,所以 ∠TNF =90°∴N 为 FG 的中点, G 与 G 重叠∴AFBG 四点共圆. . .20 分(实际上点出圆心 T 的目的是为了证明 AFBG 的共圆,证明共圆之后这个圆心就再也不会 出现, 只要能够证明 AFBG 共圆无论是否点出圆心都可以获得 20 分)∵CA 与 CB 是圆 T 的切线∴△CAF ∽△CGA ,△CBF ∽△CGB∴AF ⋅BG =AG ⋅BF . .30 分由托勒密定理知, AG ⋅BF =12AB ⋅FG =BM ⋅FG ,且 ∠FBM =∠AGF ∴△BFM ∽△GFA ∴∠BMF =∠FAG同理 ∠BMG =∠FAG ∴BM 平分 ∠FMG .40 分证毕(最后导出等角后面的证明调和四边形, 都是相对平凡的步骤了, 各占 10 分)【解析二】解析二使用了调和点列的一些性质, 答案中会备注使用调和点列的地方, 请审卷 老师注意评分如图,连接 NB ,NA ,CN 交 AB 于 Q ∵C 是优弧 AB 的中点∴∠ANC =∠BNC ∵BD=EC∴∠BFN =BN+EC2=BN +BD2=DN2=∠NAF∴△BNF ∞△FNA∴NF 2=NA ⋅NB .10 分又 NC 平分 ∠ANB ,∴△QNB ∽△ANC ∴NA ⋅NB =NQ ⋅NC∴NF2=NQ⋅NC . . .20 分(每一个相似占 10 分)∵N 为 FG 中点∴NF NC =NQNF, ∴NF-NQNC-NF=NF+NQNC+NF,即FQFC=GQGC∴CFQG 成调和点列 (调和点列的性质) . .30 分(注: 有的学生可能会写成 C,Q;F,G=-1 也代表调和点列,可以给分)∵M 是 AB 中点, ∴CM⊥AB∴MQ 与 MC 分别是 ∠FMG 的内角平分线和外角平分线 (调和点列的性质) . .40 分 证毕。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是()A.有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。
b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。
两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。
两个多项式x3+x2式x2x,与。
,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。
C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。
个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。
,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。
同理应排除C.事实上方程两边同时加上一D.D 个常数,新方程与原方程同解,对,这里所加常数为1,因此选9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多B.多了C.少了D.多少都可能答案:C解析:设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。
13/ 2初中数学奥林匹克竞赛题及答案那如果船本身在静水中的速度是固定的,10.轮船往返于一条河的两码头之间,( ) 么,当这条河的水流速度增大时,船往返一次所用的时间将.增多A .减少B .增多、减少都有可能C.不变DA 答案:分)1分,共10二、填空题(每题。
198919892=______1.198919902- 2答案:2-1989198919891989) =(19891990+19891989)×(19891990-=(19891990+19891989)×1=39783979。
)(a-b)计算。
2-b2=(a+b解析:利用公式a-8+…+4999-5000=______。
3-4+5-6+72.1-2+答案:5000 -4+5-6+7-8+…+49991-2+3-5000) --6)+(7-8)+…+(4999-=(12)+(3-4)+(5 2500。
=-解析:本题运用了运算当中的结合律。
2-b的值是______.当a=-0.2,b=0.04时,代数式 a30答案:=解析:原式。
把已知条件代入代数式计算即可。
0.2)2-0.04=0=(-时,秤得盐60的盐水有千克,放在秤上蒸发,当盐水变为含盐40%4.含盐30% 水的重是______克。
答案:45000(克)30%(千克),千克中含盐解析:食盐30%的盐水6060×x克,设蒸发变成含盐为40%的水重30%=(0.001x)×40% 即0.001x千克,此时,60×解得:x=45000(克)。
通过它列出本题中盐的含量是一个不变量,遇到这一类问题,我们要找不变量,等式进行计算。
三、解答题1甲每年储蓄全年收入的乙每月比甲多开支100元,1.甲乙两人每年收入相等,,5三年后负债600元,求每人每年收入多少?答案::x=5000解得,13/ 3初中数学奥林匹克竞赛题及答案答:每人每年收入5000元。
所以S的末四位数字的和为1+9+9+5=24。
千米12小时的速度下坡,行程小时的速度上坡,以6千米/4.一个人以3千米/ 20分钟,试求上坡与下坡的路程。
3共用了小时 y千米.依题意则:答案:设上坡路程为x千米,下坡路程为③,由②有2x+y=20 。
,将之代入③得2x+12-x=20y=12-x 由①有 )。
)千米,于是y=4(千米所以x=8( 千米。
8答:上坡路程为千米,下坡路程为4 .求和:5。
答案:第n项为所以13/ 4初中数学奥林匹克竞赛题及答案。
6.证明:质数p除以30所得的余数一定不是合数。
设p=30q+r,0≤r<30,证明:因为p为质数,故r≠0,即0<r<30。
假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5。
再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾。
所以,r一定不是合数。
解:设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q)。
可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q。
(1)若m=1时,有,与已知不符,舍去.q=1解得p=1,时,有(2)若m=2因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.13/ 5初中数学奥林匹克竞赛题及答案时,有若m=3(3)解之得。
+q=8故p奥数题二一、选择题1.数1是 ( )A.最小整数B.最小正数C.最小自然数D.最小有理数答案:C解析:整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D。
1是最小自然数,正确,故选C。
2.a为有理数,则一定成立的关系式是 ( )A.7a>aB.7+a>aC.7+a>7D.|a|≥7答案:B解析:若a=0,7×0=0排除A;7+0=7排除C;|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B。
3.3.1416×7.5944+3.1416×(-5.5944)的值是 ( )A.6.1632B.6.2832C.6.5132D.5.3692答案:B解析:3.1416×7.5944+3.1416×(-5.5944)=3.1416(7.5944-5.5944)=2×3.1416=6.2832,选B。
4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A.225B.0.1513/ 6初中数学奥林匹克竞赛题及答案0.0001 .C1 .DB答案:,,绝对值最大的数是-15与-15中最大的数是-0.01,解析:-4,-1-2.5,-0.01 B。
(-0.01)×(-15)=0.15,选二、填空题 -1)=______。
(-1)+(-1)-(-1)×(-1)÷(1.计算: -1)=(-2)-(-1) =-1 。
(-1)+(-1)-(-1)×(-1)÷(答案:(-1991)-|3-|-31||=______。
2.求值: (-1991)-|3-|-31||=-1991-28=-2019。
答案:n的末四位数字由千位、百位、十位、个位、依次排列-19913.n为正整数,1990 ______。
则n的最小值等于组成的四位数是80094答案:nn1990的末四位数字.即为0000,即解析:1990的末四位数字应为1991+8009 。
n的最小值为4末位至少要4个0,所以。
(-1.7)2的最大整数是______4.不超过2答案:。
的最大整数为22.89解析:(-1.7)2=2.89,不超过。
则这个质数是______5.一个质数是两位数,它的个位数字与十位数字的差是7,29答案:是质数。
,其中只有29的两位数有18,29解析:个位数比十位数大7 三、解答题2322000+7x的值。
-5x1.已知3x-x=1,求6x+答案:原式221-2x+2000=2003。
+3=2x(3x×-x)+3(3x-x)-2x+2000 =2x×1元,现在他们采用件,每件可获利42.某商店出售的一种商品,每天卖出100元,每天1提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价件。
试问将每件商品提价多少元,才能获得最大利润?最大利润是10就少卖出多少元?元,x)元,则每件商品获利(4+4×100元,若每件提价x原来每天可获利答案:件。
但每天卖出为(100-10x)元,如果设每天获利为yx)(100-10x) +=(4则y2100x-40x-10x+=4002400 90++9)+=-10(x-6x2。
=-10(x-3)+490 元。
元,每天获利最大为490y时,最大=490元,即每件提价3所以当x=3+,∠1平分∠平分∠CEBCD,DECDA,⊥所示,已知-.如图3196CBAB。
ABDA2=90∠°。
求证:⊥13/ 7初中数学奥林匹克竞赛题及答案°,1+∠2=90平分∠BCD,DE平分∠ADC及∠证明:∵CE°,ADC+∠BCD=180∴∠BC∥。
∴AD BC,又∵AB⊥⊥AD。
∴AB|=4的整数解。
2x|+|y4.求方程|xy|-|-2)=2,-2)+(|y|,即=4|x|(|y||答案:|x||y|-2x|+|y|。
|y|-2)=2所以(|x|+1)(都是整数,所以x,y|+因为|x1>0,且35000%的五年期国库券共7.11%的三年期和年利率为7.86王平买了年利率5.五年后与把本息再连续存两个一年期的定期储蓄,元,若三年期国库券到期后,问王平买三年期与五年期国库券各多少?元,五年期国库券的本息总和为47761)%(一年期定期储蓄年利率为5.22元,则元和y答案:设设王平买三年期和五年期国库券分别为x,y=35000-x因为2 5)=47761,+(35000-x)(1+0.0786×0.0522)所以x(1+0.0711×3)(1+,1.3433x+48755-1.393x=47761所以,0.0497x=994所以)。