最新一元一次方程单元培优测试卷

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.

(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;

(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;

(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.

【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,

∵∠AOC=30°,

∴∠BOC=2∠COM=150°,

∴∠COM=75°,

∴∠CON=15°,

∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,

解得:t=15°÷3°=5秒;

②是,理由如下:

∵∠CON=15°,∠AON=15°,

∴ON平分∠AOC

(2)解:15秒时OC平分∠MON,理由如下:

∵∠AON+∠BOM=90°,∠CON=∠COM,

∵∠MON=90°,

∴∠CON=∠COM=45°,

∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,

设∠AON为3t,∠AOC为30°+6t,

∵∠AOC﹣∠AON=45°,

可得:6t﹣3t=15°,

解得:t=5秒

(3)解:OC平分∠MOB

∵∠AON+∠BOM=90°,∠BOC=∠COM,

∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,

设∠AON为3t,∠AOC为30°+6t,

∴∠COM为(90°﹣3t),

∵∠BOM+∠AON=90°,

可得:180°﹣(30°+6t)= (90°﹣3t),

解得:t=23.3秒;

如图:

【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;

(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;

(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM

为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

2.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

(1)求饮用水和蔬菜各有多少件。

(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。

(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。该单位应选择哪种方案可使运费最少?最少运费是多少元?

【答案】(1)解:设蔬菜有x件,根据题意得

解得:

答:蔬菜有件、饮用水有件

(2)解:设安排甲种货车a辆,根据题意得

解得:

∵a为正整数

∴或或

∴有三种方案:①甲种货车2辆,乙种货车6辆;

②甲种货车3辆,乙种货车5辆;

③甲种货车4辆,乙种货车4辆

(3)解:方案①:(元)

方案②:(元)

方案③:(元)

∴选择方案①可使运费最少,最少运费是元

【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;

(3)分别求出三种方案的运费,即可求解.

3.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.

示例:如图1,即4+3=7,观察图2,求:

(1)用含x的式子分别表示m和n;

(2)当y=-7时,求n的值。

【答案】(1)解:根据约定的方法可得:

m=x+2x=3x;

n=2x+3;

(2)解:x+2x+2x+3=m+n=y

当y=-7时,5x+3=-7

解得x=-2.

∴n=2x+3=-4+3=-1

【解析】【分析】(1)根据约定:上方相邻两数之和等于这两数下方箭头共同指向的数,分别列式即可;

(2)根据约定可得m+n=y,代入上题的关系整理可得关于x的一元一次方程,解出x, 代入n的表达式求值即可.

4.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.

(1)若点P到点A.点B的距离相等,写出点P对应的数;

(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;

(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)

【答案】(1)解:∵A、B两点对应的数分别为−4和2,

∴AB=6,

∵点P到点A. 点B的距离相等,

∴P到点A. 点B的距离为3,

∴点P对应的数是−1

(2)解:存在;

设P表示的数为x,

①当P在AB左侧,PA+PB=10,

−4−x+2−x=10,

解得x=−6,

②当P在AB右侧时,

x−2+x−(−4)=10,

解得:x=4

(3)解:∵点B和点P的速度分别为1、1个长度单位/分,

∴无论运动多少秒,PB始终距离为2,

设运动t分钟后P点到点A. 点B的距离相等,

相关文档
最新文档