五年级第五届小机灵杯邀请赛试题答案

合集下载

小机灵杯1-9届真题

小机灵杯1-9届真题

第一届小机灵杯邀请赛 (2)第二届小机灵杯邀请赛 (4)第三届小机灵杯邀请赛 (6)第四届小机灵杯邀请赛 (7)第五届小机灵杯邀请赛复赛 (8)第六届小机灵杯邀请赛复赛 (10)第七届小机灵杯邀请赛复赛 (13)第八届小机灵杯邀请赛复赛 (15)第九届小机灵杯邀请赛复赛 (17)第一届小机灵杯邀请赛1、按规律填数:901 812 723 634 545 ( ) ( )2、在一个减法算式中,把被减数,减数,差这三个数相加,所得的和除以被减数(不等于0),商等于( ).3、右式中,不同的字母表示不同的数字,那么ABC表示的三位数是( ).4、如果2只白兔2天吃白菜2千克,照这样计算,那么8只白兔8天吃白菜( )千克.5、右面算式中的被除数是( )6、甲,乙两人今年的年龄和是33岁,4年后,甲比乙大3岁,问甲今年( )岁.7、把边长分别为10厘米,9厘米,8厘米和7厘米的4个正方形按照从大到小的顺序排成一行(如图)排成的图形的周长是( )厘米.8、有一堆围棋子,白子的个数是黑子个数的2倍,拿走96个白子后,黑子的个数是白子个数的2倍,原来黑子有( )个.9、有1张伍元币,4张贰元币,8张壹元币.要拿出8元钱可以有( )种不同的方法.10、亮亮和聪聪玩“石头、剪刀、布”的游戏,两人用同样多的石子做记录,输一次就给对方一颗石子,结果亮亮胜了3次,聪聪比原来多了9颗石子,他们共做了( )次游戏.11、任取自然数2,3,4,5,6,7中的三个数(不能重复)组成一个和,那么不相同的和共有( )个.12、新华小学的电表显示的用电量是61111,要使电表显示的用电量的五位数中有四个数码相同,学校至少再用( )度.13、黑、白两种颜色的珠子,一层黑,一层白,排成正三角形的形状(如图),当白珠子比黑珠子多10颗时,共用了( )颗白珠子.14、公园里有一排彩旗,按3面黄旗,2面红旗,4面绿旗的顺序排列,小明看到这排彩旗的尽头是一面绿旗,已知这排彩旗不超过200面,这排旗子最多有( )面.15、将写有数码的纸片倒过来看,0、1、8三个数字不变,6倒过来是9,9倒过来是6,而其余的数字倒过来则没有意义,某种游戏卡片是从001,002,003,004,……,998,999共有999张,那么,所有的卡片倒过来看,与原卡片数值保持不变的共有( )张.第二届小机灵杯邀请赛1.在右面竖式的各个方框中填上适当的数字,使竖式成立.2.推算是24,是28,那么是( )3.按下面的规律摆五角星,第82个五角星是( )色的.在这种颜色的五角星中,它是第( )个.★★★☆☆★☆★★★☆☆★☆★★4.学校有60人要参加“金孔雀”舞蹈比赛,比赛时要求每排人数即不能少于4人,也不能多于16人,问共有( )中排法.5.根据前面三个算式的启发,括号里面应当填上( )6.一个电影院的第一排有15个座位,以后每一排都比前一排多2个座位,最后一排有73个座位,这个电影院一共有( )个座位.7.下图中不含“★”的三角形比含“★”的三角形多( )个.8.把21分拆成两个自然数之和,且使这两个自然数的乘积最大,这个最大的乘积是().9.如图,在长方形ABCD 中,EFGH 是正方形.如果AF=11厘米,HC=14厘米,那么长方形ABCD 的周长是()厘米.10.将不大于12且互不相同八个自然数天使右图八个放个中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.在一道减法算式里,被减数、减数与差的和是360,而差比减数的4倍还多20.被减数是 (),减数是(),差是().12.有两个完全一样的长方形,拼成两种长方形,一种长方形的周长是100厘米,另一种长方形的周长是140厘米,原来长方形的长是()厘米,宽是()厘米.13.某商场里面花布的米数是白布的3倍,如果每天卖20米白布和45米花布.()天以后,白布全部卖完,而花布还剩下180米,原来有花布()米.14.1996年爸爸的年龄是姐姐和妹妹年龄和的4倍,2004年爸爸的年龄是姐姐和妹妹年龄和的2倍,爸爸是()年出生的.15.书架上、下两层摆放着若干本书.如果从上层拿10本放到下层,则下层的本数是上层的2倍,如果从下层拿到10本放到上层,则上层的本数是下层的3倍,上层原来有图书()本,下层原来有图书()本.第三届小机灵杯邀请赛1、用简便方法计算下面的题目:100+99989796959465432-+-+-+-+-+-2、不同的余数有多少个?24?①余数共有()个;②不同的余数共有()个.3、用40米的铁丝围成一个长和宽不相等的而且是整米的长方形,一共有( )种不同的围法.4、时钟现在是整点,再过112小时,钟面上恰好是1点整.请你判断,现在是()整.5、把一张正方形的纸对折,再对折,这样连续几次,写出对折了4次时长方形的块数是()块.6、在下面一列数中,第12个数是:()123654789121110131415 ,,,,,7、右图中有()几个长方形8、小华和小强的体重是84千克,小华和小玲的体重是80千克,小强和小玲的体重是82千克小华比小玲重()千克.9、如图,在长方形ABCD 中,EFGH 是正方形.如果16AF =厘米,21HC =厘米,那么长方形ABCD 的周长是()厘米.10、从小到大的连续10个自然数,如果最小的数与最大的数之和是99,那么最小的数是().11、有四种不同面值的硬币如下图所示,假若你恰好有着四种硬币各一枚.一共能组成()种不同的钱数.请你用加法算式一个一个的列举出来.12、如下图,李明从A 走到B 再到C 再到D,走了38米.玛丽从B 到C 再到D 再到A,走了31米.这个长方形池ABCD 的周长是()米.第四届小机灵杯邀请赛1、699999+69999+6999+699+69=().2、一列数15791317 ,,,,,,从第二项起,后项减去它的前一项的差都相等,从左向右数起, 第()个数是197.3、观察下面三角形中的各数的规律,并按照这个规律求m 的值.m =().4、在一条直线上有四个点,,,A B C D ,点B 不在,,A C 之间,点D 是AC 的中点,从B 到D 的距离是20cm ,从B 到C 的距离是12cm ,从A 到B 的距离是多少?5、将一张正方形纸片对折成长方形后,在此长方形纸上画两条直线,然后沿着两条直线各剪一刀,最多能将这张正方形纸分成()块.6、一个长方形的长是40cm ,宽是25cm ,如果将此长方形剪两刀,得到3个或4个长方形,那么被剪两道后得到的那些长方形的周长之和最多是()cm .7、2个男孩和2个女孩参加歌咏比赛,他们一个接一个地唱,假定两女孩不能连着唱,必须隔开,能排成()种不同的顺序.8、假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换()只兔子.9、哥哥给了弟弟84分之后,弟弟反而比哥哥多36分,哥哥原来比弟弟多()分.10、用一只茶杯将水倒入一只空水瓶里,如果2杯水倒入这个水瓶里,这个水瓶的和水的重量是540克,如果5杯水倒入这个水瓶里,这个水瓶的和水的重量是600克,空水瓶的重量是( ). 11、在某一个月中,有三个星期日的日期刚好是偶数号,那么这一个月的8号是星期().12、小平和小丽到新华书店去买书,她们选中了同一本书,可是她们带的钱不够,小平差15元,小丽差2元,只好先合买一本,还多1元.每本书()元.13、一本字典共有199也,在这本字典的页码上,数字1共出现了()次.14、口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出()个球才能保证摸出的球中每种颜色的球都有.15、10名乒乓球运动员分成三队,每队若干个队员进行单打比赛.规定同队的运动员彼此之间不用比赛,不同队的运动员两两比赛一场,那么比赛的总场数最少是( )场,最多是( )场.第五届小机灵杯邀请赛复赛1、199+298+397+496+595+20=().2、9937+4599+83=创( ).3、小明去同学家玩.走进了弄堂,但记不起门牌号码了.怎么办呢?他忽然想起,这个门牌号码挺有意思,曾经研究过一次.它是一个三位数,个位数字比百位数字大4,是位数字比个位也大 4.根据这点记忆,你能帮助小明找到同学家吗?如果想到了,就写在下面.门牌号码是().4、企鹅出版社出版了一套《天才智慧》丛书,出版社为这套丛书设计了一个漂亮的书盒,这套丛书连同书盒售价280元,书店允许顾客只买书而不买书盒.如果书价比书盒贵230元,那么书盒价为()元.5、波特有6只狗,如果他每次遛2只狗,那么狗的搭配情况总共有()种.6、请把图中①~⑨号小正方形的标号填入右图中九个小方格 中,使这九块小正方形刚好拼成中间的图形.7、一批图书,本数在50~60之间,平均分给9名同学,结果余下的书和每人分到的书的本数相同,那么这批图书共有多().8、园林工人在一条马路的一边栽树(包括端点),,每2棵树之间的距离是4米,一共栽树86棵,这条马路长()米.9、下图是用17根火柴棒摆成的,图中共有8个正方形.从图中至少拿掉()根火柴棒,才能将这8个正方形全部破坏(构不成正方形),请在图中表示出来.10、图10,线段10,8,3,a cm b cm c cm ===图形的周长是()cm .11、一位妇人,人到中年,很不愿提起自己的年龄,但她又不愿说谎.一天,有人问及她的年龄,她只好实话实说:“我4年后的年龄的6倍减去我3年前的年龄的6倍,就是我现在的年龄.”这位妇人今年( )岁.12、有5个袋子.A袋和B袋的重量之和是120千克,B袋和C袋的重量之和是135千克,C袋和D袋的重量之和是115千克,D袋和E袋重量之和是80千克,A袋、C袋、E袋子的重量之和是160千克.A袋的重量是( )千克,B袋的重量是( )千克,C袋的重量是( )千克,D袋的重量是( )千克,E袋的重量是( )千克.c g h k u,背面分别写着1,2,3,4,5,但是顺序不同.把13、有5张扑克牌,表面分别写着字母,,,,c k u,第二次出现了如下情况这些扑克牌随意散放,第一次出现了如下情况25k c g,那么字母u背面的数字是( ).2414、数一数下面图形共有( )个正方形.15、把27米长的一根绳子分成三段,使后一段比前一段多三米.那么这三段绳子分别长()米,( )米,( )米.第六届小机灵杯邀请赛复赛A 卷1、()()1+4+7+10++4047101337-+++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=.3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,4,10,22,46,(),190,4、在图中,从甲点出发沿逆时针方向绕五边形走,到乙点拐第一个弯,拐第101个弯在点.5、一本故事书的页码共用了192个数字,这本书一共有页.6、5位选手进行象棋比赛,每两个人之间都要进行比赛一盘,规定选手胜一盘得2分,平均一盘各得一分,输一盘不得分.已知比赛后,其中4位选手总共得16分,则第5位选手得了分.7、某年的三月份正好有4个星期二和星期五,那么这年的3月1日是星期.8、有十个连续自然数,前五个数的和为60,后五个数的和是?9、有一桶水,一只小鸭可饮用25天,如果和一只小鸡同饮,那么可以饮用20天,如果给一只小鸡饮用,可以饮用天?10、一个正方形队列,如果减少一横行和一竖行,要减少21人,问原正方形队列有人?11、如图所示的病房区共有五间单人病房,住着,,,A B C D 四位病人,根据不同的病情要求让A 与D 交换病房,C 与B 交换病房,每一次交换只能将一位病人搬入另一间无人的病房,那么需要完成交换,至少要为病人搬次家?54321DC B A D走廊走廊12、解放军某部赶往受灾地区志愿抗洪,原计划每辆汽车乘30人,还多3人任意分乘到各辆车上,但是由于有另外的紧急任务调走了一辆车,这时只好改为每辆汽车乘34人,还多5人任意分乘到各辆车上.原来准备辆车,共派出人去抗洪.1、()()6+8+10+12++368101214+34 -++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是. 1,3,7,15,31,(),127,4、把1到500号卡片依次发给甲、乙、丙、丁四个小朋友,1234567891011121314151617那么,119号卡片发给5、一本故事书共有185页,那么编这一本书的页码一共要个数字.6、右图共有个长方形.7、某月内有三个星期六是偶数,这个月的18日是星期.8、用3,4,5,6四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的差是?9、市里举行足球比赛,有15个区各派出1个代表队,每个队都要与其他各队比赛一场,这些比赛分别在15个区的区体育场进行,平均每个体育场要举行场比赛?10、用5张长2分米、宽1分米的长方形不干胶,贴在一块长5分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、经纬小学有10名同学参加区数学比赛,平均分为90分,其中2名同学分别获得第一名和第二名,他们的得分都是整数,另外有五个人都得了92分,有3人都得了84分.获得第二名的同学得分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了21次,一共剪成 长方形, 正方形.1、()()7+9+11+13++379111315+35 -++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是. 2,3,5,9,17,33,(),129,4、在图中,从A 点出发沿顺时针方向绕五角星走,到B 点拐第一个弯,拐第95个弯在点.5、小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了页. 6、右图共有个长方形.7、希望小学的操场上有150名学生在跳绳和打球.其中女生54名,如果有63名学生在跳绳,有42名男生在打球,那么有名女生在跳绳.8、用2,3,4,5四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的和是?9、有15只甲A 足球队,进行双循环比赛(每两支队赛两场),共要举行场比赛?10、有很多张长2分米、宽1分米的长方形不干胶,和边长为1分米的正方形不干胶,用这些不干胶贴在一块长3分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、继红小学有10名学生参加小机灵杯数学比赛,平均分为90分,平均分和每个同学的得分都是正整数,前9名的分数各不相同,其中一名同学得满分,第十名同学得分的最低分是分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了36次,一共剪成长方形,正方形.第七届小机灵杯邀请赛复赛1、如果*a b a ba b =?-,例如4*3434313=?-=,那么13*8=2、用0~9十个数字填写下面的竖式,已经用了三个数字,剩下的七个数字,每个只能用一次,要使算式成立,减数是3、一个长方形队列,如果增加一横行和一竖行,就要增加13人,这个长方形的队列原来最少有人4、桌上有8张扑克牌,点数分别是2,3,5,6,7,8,9,10.甲、乙、丙三人各取两张牌,两张牌的点数分别是:甲是9,乙是15,丙是17,那么甲取出的两张点数是5、甲校原来比乙校多48人,为了方便就近入学甲校有若干人转入乙校,这是甲校反而比乙校少12人.甲校有人转入乙校6、将1,4,7,10,13,16,19,22,25这9个数分别填入下图中的9个圆圈中,使三条边上的四个数字和都想等,每条边上四个数字的和最大是7、如果三本书的价钱等于四本笔记本的价钱,而买四本书要比三本笔记本多花5角6分,那么买一本书和一本笔记本共需元8、下面两种那个途中,周长较大的是.(在横线上填写表示图名的字母)9、某三位数是7的倍数,且在400到500之间,它的百位数字与个位数字的和是9,那么这个三位数是10、下图中有10个编好号码的房间,你可以从小号码的房间周到相邻的大号码的房间,但是不能从大号码的房间走到小号码的房间,从1号房间走到10号房间共有种不同的走法11、有若干根长度相等的火柴棒,把这些火柴棒摆成如下面的图形,照这样摆下去,到第10行为止,一共用了根火柴棒12、在一块长5米,宽4米的长方形地上铺80块边长为5分米的小正方形地砖,现在把每相邻的两个小正方形的边界用细玻璃条隔开,并在长方形地的边界上用细金属条围上.如果嵌1米长的细玻璃条需3元,围1米长的细金属条需5元,那么共需元(接缝处长度忽略不计)第八届小机灵杯邀请赛复赛1、666666666666666+-锤=( )2、如果10987654320-+⨯÷+-+-⨯=,那么□=( ).3、观察表中各数的排列规律,A是( ).4、一个正方形,如果边长增加5厘米,这个正方形的周长增加( )厘米.5、两个正整数的和是18,其中一个数是另一个数的5倍.这两个数分别是( )和( ).6、如图,网格中的小正方形的面积都是1平方厘米,那么,阴影部分的面积是( )平方厘米.7、从1-10这10个正整数中,每次取出两个不同的数,使它们的和是4的倍数.共有( )种不同的取法.8、3只橘子的价格与4只苹果和1只梨的价格相同,4只梨的价格与6只橘子的价格相同.( )只苹果的价格与1只梨的价格相同.9、在6和26之间插入三个数,使它们每相邻的两个数的差相等,这些数的和是( ).10、64位同学都面向主席台,排成8行8列的方阵.小胖在方阵中,它的正左方有3位同学,正前方有2位同学.若整个方阵的同学向右转,则小胖的正左方有( )位同学,正前方有( )位同学.11、一个三位数除以37,商和余数相同,这个数最小是( ).12、在方框中添加适当的运算符号(不能添加括号),使算式成立.17□3□4□9□7□6□4=2013、用数字1,2,3,4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数多( ).14、学生问数学老师的年龄.老师说:“由三个相同数字组成的三位数除以这三个数字的和,所得的结果就是我的年龄”,老师的年龄是( )岁.15、在图中的每个方格中各放1枚围棋(黑子或白子),有( )种放法.16、1881515188151518……共210个数字,其中1有( )个,8有( )个,5有( )个;这些数字的和是( ).17、王强、李刚是哥哥,小丽、小红是妹妹,四人的年龄和为90,哥哥都比妹妹大4岁,小红比王强小5岁.小红( )岁.18、给定三种重量的砝码5g,13g,19g,(每种砝码的数量足够的多),将它们组合凑成100g,(每种砝码至少用一个)有( )中不同的方法.19、有两个正整数,把这两个正整数相乘,再加上这两个正整数的和,结果正好等于34,这两个正整数中较大的数是( ).20、写出所有数字的和为13,积为24,这样的四位数的偶数是( ).第九届小机灵杯邀请赛复赛下面每题6分1、计算2102092082072062052047654321+-+-+-++-+-+-+= .2、如右图所示,从上往下,每个方框中的数都等于它下方两个方框中所填的数的和.最上层方框中两个数的和是.3、如右图所示,,,,,,,,,,a b c d e f g h i j 表示10个各不相同的数.表中的数为所在行与列对应字母的差,例如“6b h -=”.图中“九宫格”中就个数的和是.4、小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一般,他俩今年的年龄总和是岁.5、如下图所示,从A 点走到B 点,沿线段走最短路线,共有种不同的走法.6、五位打工者一天的辛苦劳动后共获得330元工资.由于工种不同,获得最高工资者比其他四位分别多的12,14,21和28元,获得最低工资者的工资是元.7、右边图形的周长是厘米.8、在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是 .AB下面每题9分9、下边的乘法算式中,只知道一个数字“8”.请补全.那么这个算式的最小值是.⨯810、在1,2,3,4,5,6六个数中,选三个数,使它们的和能被3整除.那么,不同的选法共有种.11、有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60快.那么,这四袋糖的块数总和至少有块.12、3根火柴可以摆成一个小三角形.用很多根火柴摆成了如右图那样的一个大三角形.如果大三角形外沿的每条边都增加10根火柴,那么摆成这样形状的大三角形共需要根火柴. 下面每题12分13、一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题目的数量等于小胖和小亚答对题数量的总和,小丁丁大队了17道题,这次测验共有道题.+++=,小于2000的四位数中,数字和等于26的四位数共有14、1997的数字和是199726个.15、小刚在一个长方形中任取三条边相加,所得的和是78厘米,小亚在同一个长方形中任取三条边相加,所得的和是66厘米.这个长方形的周长是厘米.。

小机灵杯1-14届试题及详解

小机灵杯1-14届试题及详解

2003年2004年2005年2006年2007年2008年2009年2010年2,4593,2284,35,306,43157,328,169,6610,11 11,10 12,2660 13,60 14,792 15,116,49/4 17,G18,44 19,12 20,1536,72012年2013年第十一届小机灵杯五年级初赛试题1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.92、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。

那么,五(1)班的男生人数是女生人数的多少倍?3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、4、5、6、7七个数字。

如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。

乙跑完一圈需要几秒?5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?6、把正整数排成下列数阵:1 2 5 10 …4 3 6 11 …9 8 7 12 …16 15 14 13 ………………第21行第21列的数是多少?7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。

那么剩下的这张卡片是原来200张卡片里的第几张?8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。

可以肯定至少有多少人四项运动都会?9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?第十一届"小机灵"杯数学竞赛决赛五年级试题第一项,每题4分。

中环杯、小机灵杯试题精选(题目)

中环杯、小机灵杯试题精选(题目)

中环杯、小机灵杯试题精选【1】1.四个球,编号为1,2,3,4,将他们分放到编号为1,2,3,4的四只箱子里,每箱一个,则至少有一箱恰使球号与箱号相同的放法有几种?2. 用数码1,2,3,4.....9各恰好两次,构成不同的质数,使它们的和尽可能小,则该和最小是几?【2】一班,二班,三班各有二人作为数学竞赛优胜者, 6人站一排照相, 要求同班同学不站在一起, 有( ) 种不同的站法?【3】一版邮票有20行20列,共400张邮票,称由3张同一行或同一列相连的邮票组成的纸块为"三联".小亮想剪出尽可能多的三联,他最多能得到几块三联?【4】第一次在1,2两数之间写上3;第二次在1,3之间和3,2之间分别写上4,5;以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。

这样的过程共重复8次,那么所以数的和是多少?【5】一次测验共有5道试题,测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题。

如果做对3道或3道以上试题的同学为考试合格。

请问:这次考试的合格率最多达百分之几?最少达百分之几?【6】把156支铅笔分成n堆(n>等于2),要求每堆一样多且为偶数支。

有()种分法。

【7】七个相同的羽毛球,放在四个不同的盒子里, 每个盒子里至少放一个, 不同的放法有( ) 种.【8】由甲城开往乙城的汽车每隔1小时一班逢整点出发,由乙城开往甲城的汽车每隔1小时一班但逢半点(30分)出发。

从一个城市到另一个城市需要6小时,假定汽车行驶在同一高速公路上,那么一辆开往乙城的汽车最多能遇到()辆开往甲城的汽车。

【9】一群公猴、母猴和小猴共38只,每天共摘桃子266个。

已知每只公猴每天摘桃10个,每只母猴每天摘桃8个,每只小猴每天摘桃5个,并且公猴比母猴少4只,那么,这群猴子中小猴有多少只?这道题目除了设X做以外还有别的方法吗?【10】甲、乙两列车分别从A,B两站同时相向开出,已知甲车的速度与乙车速度的比为3:2,C站在A,B两站之间。

小学奥数 年龄问题(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  年龄问题(二) 精选练习例题 含答案解析(附知识点拨及考点)

1. 掌握用线段图法来分析题中的年龄关系.2. 利用已经学习的和差、和倍、差倍的方法求解年龄问题.知识点说明: 一、年龄问题变化关系的三个基本规律:1. 两人年龄的倍数关系是变化的量.2. 每个人的年龄随着时间的增加都增加相等的量;3. 两个人之间的年龄差不变二、年龄问题的解题要点是:1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2.关键:抓住“年龄差”不变.3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式.4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律:1.两人年龄的差是不变的量;2.两个人的年龄增加量是不变的;3.两人年龄的倍数关系是变化的量;年龄问题的解题正确率保证:验算!年龄问题的综合 【例 1】 小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一例题精讲知识精讲教学目标6-1-8.年龄问题(二)家全家年龄的和是44岁.今年三人各是多少岁?【考点】年龄问题【难度】3星【题型】解答【解析】一家人的年龄和今年与10年前比较增加了724428-=(岁),而如果按照三人计算10年后应增加-+÷= 10330⨯=(岁),只能是小芬少了2岁,即小芬8年前出生,今年是8岁,今年父亲是(7284)234(岁),今年母亲是34430-=(岁).【答案】小芬8岁,母亲30岁,父亲34岁【巩固】全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁.四年前他们全家的年龄和为58岁,而现在是73岁.问:现在各人的年龄是多少?【考点】年龄问题【难度】3星【题型】解答【解析】73581544⨯=岁,但实际上只增长了15岁,是因为-=≠⨯,我们知道四个人四年应该增长了4416在四年前,弟弟还没有出生,那么弟弟今年应该是几岁呢?我们可以这样想:父亲、母亲、姐姐三个人四年增长了4312+=岁,-=,3就是弟弟的年龄!那么很快能得到姐姐是325⨯=岁,15123父母今年的年龄和是733565--=(岁),根据和差问题,就可以得到父亲是:(6532=34+÷)(岁),母亲是6534=31-(岁).【答案】弟弟3岁,姐姐5岁,母亲31岁,父亲34岁【巩固】有一家三口,爸爸比妈妈大3岁,他们全家今年的年龄加起来正好是58岁,而5年前他们全家人年龄加起来刚好是45岁。

五年级数学培优:基本行程问题(含解析)

五年级数学培优:基本行程问题(含解析)

五年级数学培优:基本行程问题(含解析)知识概述一、相遇问题:1.相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和;② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间.2.相遇问题基本数量关系:相遇时间=路程和÷速度和二、追及问题:1.追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差;② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间.2.追及问题基本数量关系:追及时间=路程差÷速度差三、火车过桥问题:3.火车通过大桥是指从车头上桥到车尾离桥.即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和.四、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题.流水问题还有两个特殊的速度,即顺水速度=船速+水速逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度.水速是指水流的速度.顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度.历届杯赛考试中,行程问题是最大的难点之一,一般情况下每次比赛都会出现多次.行程问题首先考察学生对于题目的理解以及分析能力,其次考察学生转化题意变成数学语言的能力.并且行程问题的形式非常多样化,对于这类题目需要针对不同题型,具体问题具体分析.名师点题例1(第四届希望杯一试试题)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后________秒相遇.【解析】原速度和:1500÷10=150(米/分)相遇时间:1500÷【150×(1+20%)】×60=500(秒)例2(第五届小机灵杯邀请赛试题)在同一高速公路上,乙车在甲车前面若干千米同向行驶,如果甲车的速度是65千米/时,它5小时可追上乙车;如果甲车的速度是75千米/时,它3小时可追上乙车.乙车的速度是()千米/时.【解析】解:设乙车的速度是x千米/时,依题意得5(65-x)=3(75-x)2x=100x=50答:乙车的速度是50千米/时.例3一列火车通过小明身边用了10秒钟,通过一座长486米的铁桥用了37秒,问这列火车多长?【解析】通过小明身边,可以看成火车通过它自己的身长所用的时间;过桥的时候,可以看成火车通过自己车长和桥一并所用的时间.486÷(37-10)=18(米/秒)18×10=180(米)答:这列火车长180米.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【解析】顺水速:208÷8=26(千米/时)逆水速:208÷13=16(千米/时)静水速:(26+16)÷2=21(千米/时)水流速度:(26-16)÷2=5(千米/时)答:船在静水中的速度是21千米/时,水流速度是5千米/时.【巩固拓展】1.甲、乙两人分别从A、B 两地同时出发,相向而行.如果两人都按照原定速度行进,3小时可以相遇.现在甲比原计划每小时少走1千米,乙比原计划每小时少走0.5千米,结果两人用了4小时相遇. AB两地相距()千米.【解析】3×(1+0.5)÷(4-3)=4.5(千米/时)4.5×4=18(千米)答:AB两地相距18千米.2.早晨,小王骑车从甲地出发去乙地.中午12点,小李开车也从甲地出发前往乙地.下午1点30分时两人之间的距离是18千米,下午2点30分时两人之间的距离又是18千米.下午4点时小李到达乙地,晚上6点时小王到达乙地.小王是早晨()点出发的.【解析】速度差:(18+18)÷1=36(千米)小王速度:(36×1.5+36)÷(6-4)=45(千米/时)(18+36×1.5)÷45=1.6(小时)小王比小李提前出发1.6小时,所以小王是10点24分出发的.答:小王是早晨10点24分出发的.例43.一列火车通过一座长456米的巧需要80秒,用同样的速度通过一条长399米的隧道需要77秒.求这列火车的速度和长度.【解析】(456-399)÷(80-77)=19(米/秒)19×80-456=1064(米)答:火车的速度是每秒19米,火车的长度是1064米.4.甲、乙两港相距360千米,一轮船往返两港共需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【解析】逆流时间:(35+5)÷2=20(小时)顺流时间:(35-5)÷2=15(小时)顺水速度:360÷15=24(千米/时)逆水速度:360÷20=18(千米/时)水速:(24-18)÷2=3(千米/时)往返时间:360÷(12+3)+360÷(12-3)=64(小时)答:这机帆船往返两港要64小时.例1(第六届小机灵杯邀请赛试题)甲乙两人的步行速度之比是5:3,两人分别从A、B两地同时出发,如果相向而行,1小时后相遇;如果分别从A、B两地同向而行,甲需要()小时才能追上乙.【解析】设甲车的速度是5a,乙车的速度是3a,则AB距离是(5a+3a)×1=8a,追及时间是,8a÷(5a-3a)=4(小时)例2(第四届希望杯二试试题)甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米.甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇.A、B两地相距______米.【解析】甲乙相遇时,甲比乙行驶的时间少了30分钟,但行驶的路程多80×15×2=2400(千米).如果甲行驶的时间和乙一样多,则甲比乙多行驶:2400+80×30=4800(千米).乙行驶时间是:4800÷(80-60)=240(分钟)A、B两地距离是:80×(240-15-30)=15600(米)【巩固拓展】(第六届希望杯一试试题)北京、天津相距140千米,客车和货车同时从北京出发驶向天津.客车每小时行70干米,货车每小时行50千米,客车到达天津后停留15分钟,又以原速度返回北京.则两车首次相遇的地点距离北京______千米.(结果保留整数)【解析】首次相遇时,两车一共行驶了2×140=280千米,货车比客车多行驶了15分钟,货车行驶的时间是:(280+70×0.25)÷(50+70)货车行驶的路程是:(280+70×0.25)÷(50+70)×50≈124(千米)即两车首次相遇的地点距离北京124千米.(第九届中环杯初赛试题)A 、B 两地相距27 千米.甲、丙两人从A 地向B 地行走,乙从B 地向A 地行走.甲每小时行4 千米,乙每小时行3千米,丙每小时行2 千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得4x+3x+(4x-2x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.例3【巩固拓展】(第十届中环杯初赛试题)A、B两地相距1600米,甲、乙两人分别以每分钟140米和120米的速度同时从A地出发,前往B地.同时,丙以每分钟160米的速度从B地出发,前往A地.()分钟后,甲恰好位于乙丙两人的中间.【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得140x+160x+(140x-120x)=1600320x=1600x=5答:5分钟后,甲恰好位于乙丙两人的中间.(第六届中环杯复赛试题)一列客车以每小时90千米的速度从南往北行驶,车上一位乘客以每秒钟1米的速度向车尾行走.一列长156米的货车从北往南行驶,4秒钟后从乘客身边驶过.货车每小时行驶()千米.【解析】90千米/时=25米/秒156÷4-(25-1)=15(米/秒)15米/秒=54千米/时【巩固拓展】(第五届中环杯复赛试题)铁路与公路平行,公路上有一个人在行走,速度是每小时4千米.一列火车追上并超过这个人用了6秒;公路上还有一辆汽车行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度是每小时多少千米?火车的长度为多少米?例4【解析】火车追上并超过人的过程中,火车6秒行驶了“火车长+人6秒行驶的路程”,火车追上并超过汽车的过程中,火车48秒行驶了“火车长+汽车48秒行驶的路程”,所以火车42秒行驶的路程是:汽车48秒行驶的路程减去人6秒行驶的路程.火车速度:(67÷3600×48-4÷3600×6)÷(48-6)×3600=76(千米/时)火车长度:76×1000÷3600×6-4×1000÷3600×6=120(米)答:火车速度是每小时76千米,火车的长度为120米.(第六届中环杯复赛试题)一艘客船在两个码头之间航行,顺水5小时行完全程,逆水7小时行完全程.水速每小时5千米,两个码头之间的距离是()千米.【解析】解:设客船静水的速度是x千米/时,依题意得5(x+5)=7(x-5)2x=60x=30(30+5)×5=175(千米)答:两个码头之间的距离是175千米.【巩固拓展】(第八届希望杯一试试题)一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时.如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距______千米.(客轮掉头时间不计)【解析】解:客轮往返一趟时间是13÷4=3.25(小时)设客轮顺水行完AB全程需要x小时,依题意得(26+6)x=(26-6)(3.25-x)52x=65x=1.25例51.25×(26+6)=40(千米)答:A、B两港之间相距40千米.例1(第五届希望杯一试试题)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的______倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)【解析】早到的5分钟路程就是李经理家到相遇点路程的2倍,,所以相遇点到李经理家的路程开车只要2.5分,所以相遇时间为7点27分30秒开车2.5分的路程李经理走了27.5分,所以车速是步行速度的27.5÷2.5=11倍.例2(第九届中环杯初赛试题)甲、乙两人从A 、B 两地同时出发相向而行,甲每分钟行70 米,乙每分钟行50 米.出发一段时间后,两人在距中点100米处相遇.如果甲出发后在途中某地停留了一会儿,两人还将在距中点250米处相遇.那么甲在途中停留了_________分钟.【解析】第1次相遇:相遇时甲比乙多行了100×2=200(米)相遇时间:200÷(70-50)=10(分钟)A、B距离:(70+50)×10=1200(米)第2次相遇:相遇时乙比多甲行了250×2=500(米)乙和甲一共行了1200米,乙行的路程:(1200+500)÷2=850(米)甲行的路程:1200-850=350(米)850÷50-350÷70=12(分钟)答:甲在途中停留了12分钟.(第五届希望杯一试试题)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在______分钟或______分钟后,丙与乙的距离是丙与甲的距离的2倍.【解析】第一种情况:丙处于甲乙之间,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(203-4x-5x)=6x+5x-20329x=609x=2121分钟后,丙与乙的距离是丙与甲的距离的2倍.第二种情况:丙处于甲的左侧,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(4x+5x-203)=6x+5x-2037x=203x=2929分钟后,丙与乙的距离是丙与甲的距离的2倍.综上所述,在21分钟或29分钟后,丙与乙的距离是丙与甲的距离的2倍.例3一艘游艇装满油,能够航行180个小时,已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且途中没有油料补给,请问:这艘游艇最多能够开出多远?【解析】解:设这艘游艇能够开出最远的距离,顺水航行需要x小时,依题意得(24+4)x=(24-4)×(180-x)48x=3600x=75(24+4)×75=2100(千米)答:艘游艇最多能够开出2100千米.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.【解析】第一次:顺流140千米,逆流80千米,15小时;第二次:顺流60千米,逆流120千米,15小时;等量代换,可知顺流80千米时间=逆流40千米时间.即顺流速度是逆流速度的2倍.由第1次,顺流140千米,逆流80千米,15小时可知,若全顺流可行140+80×2=300(千米),由此顺流速度:300÷15=20(千米/时),逆流速度:20÷2=10(千米/时)水流的速度:(20-10)÷2=5(千米/时)【练习1】甲乙两地方相距14850米,自行车队8点整从甲地出发到乙地去,前一半时间的平均速度是每分钟250米,后一半时间的平均速度是每分钟200米.那么,自行车队到达乙地的时间是()点()分.【解析】解:14850÷(250+200)×2=66(分)到达时间是9点6分.【练习2】甲乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车停车3小时,结果甲车比乙车迟到1小时到达目的地.那么,两地的距离是()千米.【解析】解:设乙行完全程要x小时,甲行完全程要(x-3+1)小时,根据题意列方程,得:40(x-3+1)=35x5x=80x=16两地距离:35×16=560(千米)【练习3】一艘轮船从A地出发去B地为顺流,需10小时.从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有()千米.【解析】逆水速:(10×2)×10÷(15-10)=40(千米/时)40×15=600(千米)答:A、B两地间的航程有600千米.【练习4】沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船的速度为每小时15千米,那么乙船往返两城市需要___________小时.【解析】甲顺水时间:(35+5)÷2=20(小时)甲逆水时间:35-20=15(小时)水速:(600÷15-600÷20)÷2=5(千米/时)乙顺水速:15+5=20(千米/时),乙逆水速:15-5=10(千米/时)600÷20+600÷10=90(小时)答:乙船往返两城市需要90小时.【练习5】小明站在一条直行的铁道旁,从远处向小明驶来的火车拉响汽笛,过了一会儿,小明听见了汽笛声,再过27秒,火车行驶到他面前.已知火车的速度是34米/秒,音速是340米/秒,那么火车拉响汽笛时距离小明多少米远?【解析】行驶同样多的路程——火车拉响汽笛时和小明的距离,火车需要的时间比声音需要的时间多27秒.声音需要的时间:34×27÷(340-34)=3(秒)3×340=1020(米)(本题亦可用方程求解,设火车拉响汽笛到小明听到汽笛需要x秒.)答:火车拉响汽笛时距离小明1020米远.【练习6】某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河流中顺流航行12千米;逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的()倍.【解析】顺流航行21-12=9千米的时间和逆流航行7-4=3千米的时间相同,9÷3=3顺水船速是逆水船速的3倍.【练习7】A、B两地相距27千米.甲、丙两人从A地向B地行走,乙从B向A地行走.甲每小时行4千米,乙每小时行3.5千米,丙每小时行2.5千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设甲用x小时走到乙丙两人相距的中点,依题意得:4x+3.5x+(4x-2.5x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.【练习8】一架飞机所带的燃料最多可以用9小时,飞机顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,这架飞机最多飞出_________千米,就需往回飞?【解析】解:设这架飞机最多飞出的距离,顺风航行需要x小时,依题意得1500x=1200×(9-x)2700x=10800x=41500×4=6000(千米)答:这架飞机最多飞出6000千米,就需往回飞.。

第十四届“小机灵杯”数学竞赛初赛试题(五年级组)最新版

第十四届“小机灵杯”数学竞赛初赛试题(五年级组)最新版


【第 12 题】 有 45 个工人,若每人每小时能生产甲零件 30 个,或乙零件 25 个,或丙零件 20 个。现在用甲零件 3 个,乙 零件 5 个, 丙零件 4 个装配某种机器, 那么安排生产甲、 乙、 丙零件人数分别是 ________ 人,________ 人, ________ 人时,才能使每小时生产的零件刚好配套。
1 ,小玲第 9
________ 天读完这本书。
【分析与解】分数应用题。
1 第 6 天读了这本书的 ; 9 1 1 第 1 ~ 5 天读了这本书的 2 ; 9 18
第 1 ~ 6 天读了这本书的
1 1 1 ; 18 9 6
小玲第 8 天读完这本书。
【分析与解】比例应用题
设安排生产甲、乙、丙零件人数分别是 x 人, y 人, z 人时,才能使每小时生产的零件刚好配套; 则 30 x : 25 y : 20 z 3 : 5 : 4 ;则 x : y : z
第十四届“小机灵杯”数学竞赛初赛(五年级组)
答案仅供参考,一些以官方公布为准
(第 1 题~第 5 题,每题 6 分) 【第 1 题】 已知 128 x 75 x 57 x 6.5 ,那么 x ________ 。 【分析与解】解方程;除法性质。
128 x 75 x 57 x 6.5 128 75 57 6.5 x x x 128 75 57 6.5 x 260 6.5 x x 260 6.5 x 40
4.8 x 6.6 y 167.4 ; 由题意,得 6.2 x y 167.4
x6 解得 ; y 21
2 7 6 块,巧克力蛋糕买了 27 21 块。 27 27

数学竞赛小机灵杯五年级决赛解析

数学竞赛小机灵杯五年级决赛解析

第十二届“小机灵杯”智力冲浪展示活动决赛试卷(五年级组)2014年1月19日8:30~9:50时间:80分钟总分:120分一、判断题(每题1分)【第1题】小数点在十进制中用来隔开整数部分和小数部分。

中国魏晋时代的数学家刘徽第一个将“小数”这一概念用文字表达出来。

……………………………………………………………………………………………()【分析与解】中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。

第一个将这一概念用文字表达出来的是魏晋时代的刘徽。

他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。

填“√”。

【第2题】做小数加减法时要把小数点对齐。

在小数乘法法则中,两个因数中一共有几位小数,就要从积的左边向右数几位点上小数点。

…………………………………………………………………………………………()【分析与解】在小数乘法法则中,两个因数中一共有几位小数,就要从积的右边向左数几位点上小数点。

故填“×”。

第十二届“小机灵杯”智力冲浪展示活动决赛试卷五年级组中国古代数学最重要的典籍应当是《九章算术》,魏晋数学家刘徽用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。

……………………………………………………………………………( )【分析与解】所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。

“圜,一中同长也”。

意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。

早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。

认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。

我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。

第五届小学“希望杯”全国数学邀请赛五年级试题及答案

第五届小学“希望杯”全国数学邀请赛五年级试题及答案
15.甲、乙、丙三人打牌。第一局,甲输给了乙和丙,使得乙、丙手中的点数都翻了一番。第二局,甲 和乙赢了,从而甲、乙手中的点数翻了一番。最后一局,甲、丙获胜,两人手中的点数翻了一番。 这样,甲、乙、再三人每人都是二赢一输,并且每人手中的点数完全相等,可是甲发现自己输了 100 点。 请问:开始时,甲手上有多少点?(每局三人的点数总和保持不变)
2.(7.88+6.77+5.66)×(9.31+10.98+10)-(7.88+6.77+5.66+10)×(9.31+10.98)=______。
3.对于非零自然数 a,b,c,规定符号 的含义: (a,b,c)=
,那么
=______。
4.如下左图所示的 4 根火柴棒形成象形汉字“口”,平移火柴棒后,左图能变成的象形汉字是右图中的 ______。(填序号)
13.一个容器内注满了水。将大、中、小三个铁球这样操作:
第一次,沉入小球;
第二次,取出小球,沉入中球;
第三次,取出中球,沉入大球。
已知第一次溢出的水量是第二次的 3 倍,第三次溢出的水量是第一次的 2 倍。求小、中、大三球的体 积比。
14.2006 年夏天.我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了 一个蓄水池,每小时有 40 立方米泉水注人池中。第一周开动 5 台抽水机 2.5 小时就把一池水抽完, 接着第二周开动 8 台抽水机 1.5 小时就把一池水抽完。后来由于旱情严重,开动 13 台抽水机同时供 水,请问几小时可以把这池水抽完?
5.小芳在看一本图画书,她说:
由她所说.可知这本书共有______页。 6.某商场每月计划销售 900 台电脑,在 5 月 1 日至 7 日黄金周期同,商场开展促销活动。但 5 月的销

行程问题(小机灵)

行程问题(小机灵)
1 圈; 2
1 )=48m+24 2
因为速度相同,所以相同时内路程相同,起点相同,所以 30n=48m+24; 即 5n=8m+4,有不定方城知识,解出有 n=4,m=2, 所以小甲虫跑了 2 圈后,大小甲虫相距最远。 【练习 3】 【解析】
A
O B
C
当乙和丙相遇时,乙已经走了 30+15=45 千米。由于甲乙两人的速度比是 8:9,因此这时 甲已经走了 45×8÷9=40 千米。 当甲和丙相遇时,甲已经走了 30+20×2-6=64(千米) ,因此两次相遇之间的时间是全部 时间的(64-40)÷64=
【例题突破】
【例 1】 A 、 B 两地相距 2400 米,甲从 A 地、乙从 B 地同时出发,在 A 、 B 两地间往返 锻炼。甲每分钟跑 300 米,乙每分钟跑 240 米。在 30 分钟后停止运动,甲、乙两人第几 次相遇时距 A 地最近?最近距离是多少? 【例 2】甲乙二人从 A 、 B 两地同时出发相向而行,甲每分钟行 80 米,乙每分钟行 60 米. 出发一段时间后,二人在距离中点 120 米处相遇.如果甲出发后在途中某地停留了一会儿, 二人还将在距中点 120 米处相遇.问:甲在途中停留了多少分钟? 【例 3】一条小河流过 A 、 B 、 C 三镇, A 、 B 两镇之间有汽船来往,汽船在静水中的速
【例题突破】
【例 1】 【解析】
B 乙
10
20 3
30
40 5
50
1 2 4 A 甲 10 20 30 40 50
利用折线图来讲解甲走一个全程需要 2400÷300=8 (分钟) , 乙走一个全程需要 2400÷240 =10(分钟) ,通过画图如上知道第二次相遇离 A 点最近,此时甲乙共走了 3 个全程,乙走 的路程为:2400×3÷(300+240)×240=3200(米) ,由图可知乙走了一个全程多距 A 的距离,所以距离 A 地为:3200-2400=800(米) 。 【例 2】 【 解 析 】 第 一 次 , 甲 比 乙 多 走 的 路 程 S差 120 2 240 米 , 根 据 公 式

五年级小机灵杯培训题

五年级小机灵杯培训题

6.18×76.54+0.618×234.5+0.0618=( )甲、乙两车同时从A 点向相反方向开出,甲车每小时比乙车快9千米,3小时后两车相距360千米,乙车每小时行( )千米。

从0、3、5、7四个数字中任选三个,排成能同时被2、3、5整除的三位数,这样的三位数共有( )个。

把4个棱长是5厘米的正方形拼成一个表面积最小的长方体,这个长方体的表面积是( )平方厘米。

小明爬山。

上山的速度是每小时4千米,到达山顶后立即下山,下山的速度是每小时6千米,小明上山、下山的平均速度是每小时( )千米。

一个小数,如果把小数点向右移动一位后,得到的数比原来大22.5,原来这个小数是( )。

有一个底面是正方形的长方体,高是10厘米,侧面展开后正好是一个正方形,这个长方体的体积是( )立方厘米。

一本书编上页码,如第8页需1个数码,第109页需3个数码等等,这样共用了7825个数码,那么这本书共有( )页。

有两本不同的数学书,三本不同的语文书,把这些书排成一排,且两本数学书不能相邻,共有( )种不同的排法。

有一架飞机,最多能在空中连续飞行4小时,飞出时的速度是每小时750千米,返回时每小时850千米,这架飞机最多飞出( )千米就应返回。

甲汽车从A 地开往B 地,乙汽车从B 地开往A 地,两辆汽车同时开出,相向而行,第一次相遇时离A 地50千米,相遇后,两车以原速继续前进,达到目的地后立即返回,第二次相遇时离A 地65千米,那么,AB 两地相距( )千米。

下面是按一定规律排列的数,括号中的数是( )。

1、3、7、15、31、( )、127、…四个房间,每个房间不少于2人,任何三个房间里的人数不少于8人,这四个房间至少有( )人。

六位数x x x 666能被11整除,x 是0到9中的数,这个六位数是( )。

一个长方体的长宽高之比为3:2:1,若长方体的棱长之和等于某正方体的棱长总和,则长方体表面积与该正方体的表面积比为( ),长方体体积与该正方体的体积之比为( )。

第十届小机灵杯初赛(五年级)—含答案

第十届小机灵杯初赛(五年级)—含答案

第十届“小机灵杯”小学数学竞赛五年级组初赛试题第一项,下列题目每题8分。

1.计算:0.1-(0.1+0.3)+(0.1+0.3+0.5)-(0.1+0.3+0.5+0.7)+…-(0.1+0.3+…+9.5)+(0.1+0.3+0.5+…+9.7)=()122.52.10211-2011的差各个数位上的数字之和是()。

18963.在7002,70002,700002,……,这样的最高位的数字是7,最低位数字为2,中间数字全为0的整数中,能被81整除的最小数是()。

7000024.粮店第一天运进50袋大米和30袋面粉,共重12400千克;第二天运进70袋大米和60袋面粉,共重18800千克。

每袋大米重()千克;每袋面粉重()千克。

200,80第二项,下列题目每题10分。

5.下图中有两只母鸡正在盘算着,要使每行、每列、每斜行中的鸡蛋不超过2个。

它们最多能在这蛋格子里下()个蛋,蛋格子里已经下了2个蛋。

106.如下图,四个圆形跑道,每个跑道的长都是1千米;A ,B ,C ,D 四名运动员同时从交点O 出发,分别沿着四个跑道跑步,他们的速度分别为每小时2千米;每小时3千米;每小时4千米;每小时5千米,那么从出发到四人相遇,四人共跑了()圈。

147.由两个2和三个4组成的不同五位数的平均数是()。

35555.28.甲、乙两人同时从A 、B 两地出发,甲每分钟行80米,乙每分钟行60米,两人在途中的C 点相遇。

如果甲晚出发7分钟,两人将在途中的D 点相遇,且A 、B 的中点距C ,D 距离相等。

A 、B 两地相距()米。

1680第三项,下列题目每题12分。

9.将一个9cm ×9cm ×9cm 的正方体切为1cm ×1cm ×1cm 的小正方体。

用这些小正方体重新粘合成一个内部为空洞但表面无空洞的大正方体,这个空心正方体要尽可能大。

那么剩下的来没有用到的小正方体有()个。

第六届小机灵杯邀请赛(复赛ABC和决赛)试题-五年级

第六届小机灵杯邀请赛(复赛ABC和决赛)试题-五年级

第六届“聪明小机灵”小学数学邀请赛(复赛)试题五年级(A 卷)1、 4.83×0.59+0.41×1.59-0.324×5.9=().2、 将1~8分别填入八个○内,使得等式成立:==9。

3、 如下图所示,用150块黑、白两种颜色的立方体相间拼成一个长方体,那么露在表面的黑色立方体共有( )块。

4、 123454321×(1+2+3+4+5+4+3+2+1)是()的平方。

5、 把正整数排成下列数阵,数111的正下方的整数是()。

12 5 10 … 43 6 11 … 9 8 7 12 … 16 15 14 13 ……………6、 1除以44的商,从小数点右边开始的第1位到第100位的各个数位的数字相加的和是( )。

7、 某旅游团租一辆车外出,租车费由乘车人平均负担,结果乘车人数与每人应付车费的元数恰好相等。

后来减少了6人,这样每人应付车费比原来增加了12元。

这辆车的租车费是( )元。

8、 甲、乙两人的步行速度之比是5:3,两人分别从A 、B 两地同时出发,如果相向而行,1小时后相遇;如果分别从A 、B 两地同时同向而行,甲需要( )小时才能追上乙。

9、 机器猫玩电子游戏,必须打过10关。

在过第6、7、8、9关时分别得了90、84、81、93分,它过前9关所得的平均分数高于过前5关所得的平均分数。

如果机器猫想要在过10关后所得的平均分数超过88分,那么,它在过第10关时至少要得( )分。

(得分均为整数分)。

10、右图中,三角形ABC面积为48平方厘米,AD=2.5DB,CF=FD,阴影部分的面积总和比空白部分的面积总和少()平方厘米。

11、一个长方体的前面和右面的面积之和是88平方厘米,它的长、宽、高都是偶数(长>宽>高),且长是高的3.5倍。

这个长方体的体积是()立方厘米。

12、小明步行,小英骑车,小英骑车的速度是小明步行速度的3倍。

他们同时、同地沿100路公交车路线同向而行,每隔12分钟有一辆100路公共汽车超过小明,每隔24分钟有一辆100公共汽车超过小英。

小机灵杯数学竞赛

小机灵杯数学竞赛

第十三届“小机灵杯”数学竞赛初赛试题(五年级组)时间:60分钟总分:120分一、判断题(正确的打“√”,错误的打“×”。

每题1分)1.“几何学”起源于割地法或测地学。

()【答案】√几何学:简称几何,是研究空间区域关系的数学分支。

“几何学”这个词,是来自阿拉伯文,原来的意义是“测量土地技术”。

名称来源:几何这个词最早来自于阿拉伯语,指土地的测量,即测地术。

后来拉丁语化为“geometria”。

中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。

当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO 的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。

2.远在公元前春秋战国时代的“九九歌”就是我们现在使用的乘法口诀。

()【答案】√九九歌(乘法口诀):九九歌是汉族民间谚语,在汉族传统文化中,九为极数,乃最大、最多、最长久的概念。

九个九即八十一更是“最大不过”之数。

古代汉族人民认为过了冬至日的九九八十一日,春天肯定经已到来。

远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。

在当时的许多著作中,都有关于九九歌的记载。

最初的九九歌是从“九九八十一”到“二二如四”止,共36句。

因为是从“九九八十一”开始,所以取名九九歌。

大约在公元五至十世纪间,九九歌才扩充到“一一如一”。

大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”到“九九八十一”止。

九九歌就是我们现在使用的乘法口诀。

现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

3.数论最初是从研究整数开始的,所以叫作整数论。

()【答案】√数论:是纯粹数学的分支之一,主要研究整数的性质。

整数可以是方程式的解(丢番图方程)。

中环杯小机灵杯试题精选答案

中环杯小机灵杯试题精选答案

中环杯、小机灵杯试题精选(答案)中坏杯、小机灵杯试题精选(答案)[1]第一题:先考虑没有球号和箱号相同的情况。

若1号放在2号,接下来考虑2号箱,我们发现,不管它放几号球,最终的排法都是唯一的,所以有3种排法,而1号可以放在3个箱子里,所以共有9种方法,那么,题目要我们求的就应该是4*3*2*1-9=15种这道题建议列表格分析,将1号球放在2号箱的情况全都列出来,很简单,不复杂的。

第二题:1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,首先确定,4,6, 8三个数两次都出现在十位上,否则不可能是质数, 2 , 5应该至少有一次出现在十位上,否则也不可能是质数,所以我们先预估最小的和应该是(4+6+8)*10*2+(2+5)*10+2+5+(1+3+7+9)*2=477 ,构造下:2 , 83 , 5,47 , 61 , 67,41 , 53 , 29 , 89 ,其符合条件,所以最小是477【2】这道题需要用到容斥原理,至少有一个班的同学站在一起的情况二一班(或二、三班)两人站在一起的情况*3-两个班人站在一起的情况乜+三个班人站在一起的情况,所以本题中至少有一个班同学站在一起的情况=5 s *2*3-4 s *2*2*3+3〜*2*2*2=480本题方法数为6—480=240(种)本题是容斥原理和加乘原理的综合运用,有相当的难度.如果是四年级。

可以这样解:把六个学生分别记为Aa,Bb,Cc排队时候,第一个位置有6种可能,第二个位置有4种,从第三个位置开始出现不同情况,为方便解答”假设前两个位置排的是AB 若第三个位置排的是a,则接下来b只能排在cC之间,所以只有2种可能性若第三个位置排的是C或c,则接下来由加乘原理有2*2种可能性综上,共有6*4*(2+2*2*2)=240种方法[3]先计算出最多剪出133连,再找出具体方法。

我画了一张图,其中最短的线段是1,阴影最初的和是3 ,第一次的和是6,第二次的和是15,第三次的和是42,每次操作以后,和都变为前一个和的3倍少3,第四次的和为42*3-3=123第五次的和为123*3-3=366第六次的和为366*3-3=1095第七次的和为1095*3-3=3282第八次的和为3282*3-3=9843做这类题要注意发现规律,不要死算。

1-9届5年级小机灵杯试题

1-9届5年级小机灵杯试题

第一届 (2)第二届 (4)第三届 (9)第四届 (13)第五届 (17)第六届“聪明小机灵”小学数学邀请赛(决赛)试题 (21)第七届“聪明小机灵”小学数学邀请赛(决赛)试题没有确定是否是 (24)第七届小机灵杯复赛 (27)第八届小机灵杯五年级决赛试题(含答案) (29)第九届小机灵杯五年级复赛试题 (31)第一届第二届第三届第四届第五届第六届“聪明小机灵”小学数学邀请赛(决赛)试题1、计算:0.02+0.04+0.06+……+20.04+20.06+20.08=()。

2、已知N=95+195+1995+…+19999999995,那么,N的各位数字的和是()。

3、有9个数,每次任意抽去一个数,计算剩下8个数的平均数,得到如下9个不同的平均数:101、102、103、104、105、106、107、108、109,这9个数的平均数是()。

4、前2008个既能被2整除又能被3整除的正整数的和,除以9的余数是()。

5、一本字典共有2008页,在这本字典的页码上,数字8共出现了()次。

边长15分米的正方形分成两个高相等(AF=FD)的直角梯形与一个直角三角形,已知两个梯形面积的差是18平方分米,图中线段CG的长是()分米。

7、文具店存有一批练习本,原定每本定价是20分。

现在决定把全部练习本按同一价格降价处理,但每本价格不能低于11分(降价后的价钱是整分数)。

如果把这批练习本全部卖出后可收得39.10元。

这批练习本一共有()本,每本价钱比原定降价了()元。

8、一个棱长都是正整数的长方体表面积是210平方厘米,已知它的六个面中有两个面积大于1平方厘米的正方形,则它的体积最大是()立方厘米。

9、一次测验共有5道题,做对一题得1分,已知26人的平均分不少于4.8分,其中最低分得3分,并且至少有3人得4分,那么得5分的共有()人。

10、M÷N÷P=6,M÷N-P=30,M-N=105,M=()。

【精品】五年级下册数学试题-竞赛专题:第9讲-复杂行程问题(含答案)人教版

【精品】五年级下册数学试题-竞赛专题:第9讲-复杂行程问题(含答案)人教版

如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行。

他们在离A点100米的C点第一次相遇。

亮亮到达B点后返回A点,明明到达A点后返回B点,两人在离B点80米的D点第二次相遇。

整个过程中,两人各自的速度都保持不变。

求A、B间的距离。

知识概述特殊行程类型1.多次相遇问题2.猎狗追兔问题3.发车间隔问题4.其他问题例1特殊行程问题行程问题思维灵活性大,辐射面广,但根本在于路程、速度和时间三个基本量之间的关系,掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

名师点题【解析】第一次相遇,两人共走了1个全程,其中亮亮走了100米;从开始到第二次相遇,两人共走了3个全程,则亮亮走了100×3=300(米),亮亮共走的路程是一个全程多80米,所以A、B间的距离是:300-80=220(米)亮亮骑着自行车,以每分钟400米的速度,从46路汽车的始发站,沿46路车的线路前进,当他骑出1400米时,一辆46路车从始发站开出,已知这辆车每分钟行600米,每4分钟到达一站并停车1分钟,那么汽车开出()分钟后能追上亮亮。

【解析】以5分钟为1个周期:在这段时间内,亮亮骑了400×5=2000(米),46路车行驶了600×4=2400(米),两者的距离减少了2400-2000=400(米)。

两个周期后,两者的距离是1400-400×2=600(米),600÷(600-400)=3(分钟),所以,在第三个周期内,汽车追上了亮亮,共用时5×2+3=13(分钟)。

注:因为1400÷400=3……200,所以这里可能犯的错误是认为汽车要在第四个周期才追上亮亮。

但是,注意到1个周期内两者的距离是先拉近后拉大,两者的距离最多能够减少(600-400)×4=800(米),所以实际上汽车在第三个周期内就能追上亮亮了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档