圆的对称性测试题1(含答案)
第07讲 圆与对称性(5种题型)(解析版)
第07讲圆与对称性(5种题型)1.在探索过程中认识圆,理解圆的本质属性;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;一.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.二.点与圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.三.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.四.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.五.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.一.圆的认识(共3小题)1.(2022秋•邗江区校级月考)已知⊙O的半径是3cm,则⊙O中最长的弦长是()A.3cm B.6cm C.1.5cm D.cm【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×3=6(cm).故选:B.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•江阴市校级月考)下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧【分析】利用圆的有关定义和性质分别判断后即可确定正确的选项.【解答】解:A、直径是圆中最长的弦,说法正确,不符合题意;B、半径相等的两个半圆是等弧,说法正确,不符合题意;C、面积相等的两个圆是等圆,说法正确,不符合题意;D、由于半圆小于优弧,所以半圆是圆中最长的弧说法错误,符合题意.故选:D.【点评】考查了圆的有关概念,解题的关键是了解圆的有关定义及性质,难度不大.3.(2022秋•启东市校级月考)画圆时圆规两脚间可叉开的距离是圆的()A.直径B.半径C.周长D.面积【分析】画圆时,圆规两脚分开的距离,即圆的半径,据此解答即可.【解答】解:画圆时圆规两脚间可叉开的距离是圆的半径.故选:B.【点评】本题主要考查了圆的认识,认识平面图形,解答本题关键是抓住圆规画圆的方法.二.点与圆的位置关系(共6小题)4.(2022秋•连云港期中)已知⊙O的半径为3,点P在⊙O外,则OP的长可以是()A.1B.2C.3D.4【分析】由⊙O的半径及点P在⊙O外,可得出OP的长大于3,再对照四个选项即可得出结论.【解答】解:∵⊙O的半径为3,点P在⊙O外,∴OP的长大于3.故选:D.【点评】本题考查了点与圆的位置关系,牢记“①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r”是解题的关键.5.(2021秋•无锡期末)已知⊙O的半径为4,OA=5,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为4,OA=5,∴OA>半径,∴点A在⊙O外.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.(2022秋•江阴市校级月考)已知⊙O的半径是4,OA=3,则点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=3知d<r,据此可得答案.【解答】解:∵⊙O的半径r=4,且点A到圆心O的距离d=3,∴d<r,∴点A在⊙O内,故选:A.【点评】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.7.(2022秋•如皋市期中)在数轴上,点A所表示的实数为4,点B所表示的实数为b,⊙A的半径为2,要使点B在⊙A内时,实数b的取值范围是()A.b>2B.b>6C.b<2或b>6D.2<b<6【分析】首先确定AB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为2,若点B在⊙A内,∴AB<2,∵点A所表示的实数为4,∴2<b<6,故选:D.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.(2022秋•梁溪区校级期中)已知⊙O的半径是4,点P到圆心O的距离d为方程x2﹣4x﹣5=0的一个根,则点P与⊙O的位置关系为()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【分析】求出方程的根,再根据点到圆心的距离与半径的大小关系判断位置关系即可.【解答】解:x2﹣4x﹣5=0的根为x1=5,x2=﹣1<0(舍去),于是点P到圆心O的距离d=5,而半径r=4,∴d>r,所以点P在⊙O的外部,故选:C.【点评】本题考查点与圆的位置关系,解一元二次方程,求出方程的根是解决问题的前提,掌握点到圆心的距离与半径的大小是判断点与圆位置关系的关键.9.(2022秋•东台市期中)如图,点A,B的坐标分别为A(3,0)、B(0,3),点C为坐标平面内的一点,且BC=2,点M为线段AC的中点,连接OM,则OM的最大值为()A.B.C.D.2【分析】作点A关于点O的对称点A'根据中位线的性质得到OM=A′C,求出A'C的最大值即可.【解答】解:如图,作点A关于点O的对称点A'(﹣3,0),则点O是AA'的中点,又∵点M是AC的中点,∴OM是△AA'C的中位线,∴OM=A′C,∴当A'C最大时,OM最大,∵点C为坐标平面内的一点,且BC=2,∴点C在以B为圆心,2为半径的⊙B上运动,∴当A'C经过圆心B时,A′C最大,即点C在图中C'位置.A'C'=AB+BC'=3+2.∴OM的最大值=+1.故选:A.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是解题的关键.三.垂径定理(共4小题)10.(2022秋•锡山区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,AB=16,则OC 的长为6.【分析】连接OA,利用垂径定理,勾股定理求解即可.【解答】解:如图,连接OA.∵OC⊥AB,∴AC=CB=AB=8,∵OA=10,∠ACO=90°,∴OC===6,故答案为:6.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.11.(2022秋•惠山区期中)如图,已知AB是⊙O的直径,弦CD⊥AB于H,若AB=10,CD=8,则图中阴影部分的面积为20.【分析】利用垂径定理,得出CH=DH=4,由OC=OD得出Rt△COH≌Rt△DOH,进而得出图中阴影部,即可得出答案.分的面积为S△ABD【解答】解:∵AB是⊙O的直径,弦CD⊥AB于H,CD=8,∴CH=DH=4,∵OC=OD,∴Rt△COH≌Rt△DOH(HL),=S△DOH,∴S△COH=AB•DH=×10×4=20.故图中阴影部分的面积为:S△ABD故答案为:20.是解题关键.【点评】此题主要考查了垂径定理,得出图中阴影部分的面积为:S△ABD12.(2022秋•高邮市期中)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是()A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16【分析】连接OM、ON、OA、OP,由垂径定理得OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,由勾股定理得OM=5,ON=12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=7,当AB、PQ位于O的两侧时,线段EF的长度最长=OM+ON=17,便可得出结论.【解答】解:连接OM、ON、OA、OP,如图所示:∵⊙O的直径为26,∴OA=OP=13,∵点M、N分别是弦AB、PQ的中点,AB=24,PQ=10,∴OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,∴OM==5,ON==12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=12﹣5=7,当AB、PQ位于O的两侧时,线段MN的长度最长=ON+OM=12+5=17,∴线段MN的长度的取值范围是7≤MN≤17,故选:A.【点评】本题考查了垂径定理、勾股定理以及线段的最值问题,熟练掌握垂径定理和勾股定理是解题的关键.13.(2022秋•大丰区月考)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.2【分析】连接OC,设⊙O的半径为R,则OE=8﹣R,根据垂径定理得出CE=DE=4,根据勾股定理得出OC2=CE2+OE2,代入后求出R即可.【解答】解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.【点评】本题考查了垂径定理和勾股定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.四.垂径定理的应用(共4小题)14.(2022秋•如皋市校级月考)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为4m.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.15.(2022秋•江宁区校级月考)如图是一个隧道的横截图,它的形状是以点O为圆心的一部分,如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,若CD=4m,EM=6m,则⊙O的半径为m.【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=4则有:CM=CD=2m,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是m.故答案为:.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.16.(2022•钟楼区校级模拟)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米【分析】连接OC,OC交AB于D,由垂径定理得AD=BD=AB=2(米),再由勾股定理得OD=(米),然后求出CD的长即可.【解答】解:连接OC,OC交AB于D,由题意得:OA=OC=3米,OC⊥AB,∴AD=BD=AB=2(米),∠ADO=90°,∴OD===(米),∴CD=OC﹣OD=(3﹣)米,即点C到弦AB所在直线的距离是(3﹣)米,故选:C.【点评】本题考查了垂径定理的应用和勾股定理的应用,熟练掌握垂径定理和勾股定理是解题的关键.17.(2022秋•泰州月考)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【分析】(1)连接OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连接OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连接OA,由题意得:AD=AB=30(米),OD=(r﹣18)米,在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34(米);(2)连接OA′,∵OE=OP﹣PE=30米,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16(米).∴A′B′=32(米).∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.五.圆心角、弧、弦的关系(共5小题)18.(2022秋•溧水区期中)如图,C是的中点,弦AB=8,CD⊥AB,且CD=2,则所在圆的半径为()A.4B.5C.6D.10【分析】由垂径定理,勾股定理,可以求解.【解答】解:设所在圆的圆心为点O,⊙O的半径为r,连接OD,OA,∵CD⊥AB,点C是中点,∴O,D,C三点共线,AD=BD=4,∵OA2=OD2+AD2,∴r2=(r﹣2)2+42,∴r=5,故选:B.【点评】本题考查勾股定理,垂径定理,关键是定出圆心,构造直角三角形,应用勾股定理列出关于半径的方程.19.(2022秋•淮阴区月考)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.【分析】根据圆心角、弧、弦之间的关系得出即可.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.【点评】本题考查了圆心角、弧、弦之间的关系,能根据定理求出=是解此题的关键.20.(2022秋•吴江区校级月考)如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【分析】过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,由于DE=FG=MN,所以弦的弦心距也相等,所以OB、OC是角平分线,可求出∠POQ,进而可求出∠BOC.【解答】解:如图,过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,∴∠APO=∠AQO=90°,∵∠A=50°,∴∠POQ=360°﹣90°﹣90°﹣50°=130°,∵DE=FG=MN,∴OP=OK=OQ,∴OB、OC平分∠ABC和∠ACB,∴∠BOC==115°.故选:C.【点评】本题主要考查垂径定理,解题关键是构造出辅助线——弦心距.21.(2022秋•玄武区期末)如图,在⊙O中,AB=AC.(1)若∠BOC=100°,则的度数为130°;(2)若AB=13,BC=10,求⊙O的半径.【分析】(1)根据圆周角、弧、弦间的关系可以得到AB=AC,结合等腰三角形的性质解答;(2)连接AO,延长AO交BC于D,则AD⊥BC,构造直角三角形,通过勾股定理求得该圆的半径即可.【解答】解:(1)∵在⊙O中,∠BOC=100°,∴∠BAC=50°,∵=,∴AB=AC,∴∠ABC=∠ACB=65°,∴=130°,故答案为:130;(2)连接AO,延长AO交BC于D,则AD⊥BC,BD=CD=BC=5,∴在直角△ABD中,由勾股定理,得AD===12;在直角△OBD中,由勾股定理,得OB2=(12﹣OB)2+52,解得OB=,即⊙O的半径是.【点评】考查了圆周角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.22.(2022秋•吴江区校级月考)已知⊙O的半径为2,弦,弦,则∠BOC的度数为150°或30°.【分析】分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,根据垂径定理可求出,,再根据勾股定理可求出,OQ=1,从而得出AP=OP,,即得出∠PAO=45°,∠QAO=30°,进而可求出∠BAC=75°,最后由圆周角定理即可求出∠BOC的大小;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,同理可求出∠BAC=15°,再由圆周角定理即可求出∠BOC的大小.【解答】解:分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,如图,∴.∵OA=2,∴,∴AP=OP,∴∠PAO=45°.∵,OA=2,∴,∴,∴∠QAO=30°,∴∠BAC=∠PAO+∠QAO=75°∴∠BOC=2∠BAC=150°;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,如图,由①同理可得:∠MAO=45°,∠NAO=30°,∴∠BAC=∠MAO﹣∠NAO=15°,∴∠BOC=2∠BAC=30°.综上可知∠BOC的度数为150°或30°.故答案为:150°或30°.【点评】本题考查垂径定理,圆周角定理,勾股定理,等腰直角三角形的判定和性质,含30°角的直角三角形的性质.正确的作出图形和辅助线并利用分类讨论的思想是解题关键.一.选择题(共10小题)1.(2022秋•邗江区期中)已知⊙O的半径为2,则⊙O中最长的弦长()A.2B.C.4D.【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×2=4.故选:C.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•无锡期末)已知⊙O的半径为5cm,当线段OA=5cm时,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵⊙O的半径为5cm,OA=5cm,∴点A在⊙O上.故选:B.【点评】本题考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.3.(2023•沛县模拟)如图.AB是⊙O的直径,∠D=40°,则∠BOC=()A.80°B.100°C.120°D.140°【分析】根据圆周角定理即可求出∠BOC.【解答】解:∵∠D=40°,∴∠BOC=2∠D=80°.故选:A.【点评】本题考查圆周角定理,邻补角定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2022秋•姑苏区校级期中)已知⊙O的半径为2,点P是⊙O内一点,且OP=,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4B.5C.6D.7【分析】设出OE=x,利用勾股定理表示出AC,BD,用对角线互相垂直的四边形的面积的计算方法建立面积和OE的函数关系式,即可得出结论.【解答】解:如图:连接OA、OD,作OE⊥AC于E,OF⊥BD于F,∵AC⊥BD,∴四边形OEPF为矩形,∵OA=OD=2,OP=,设OE为x(x>0),根据勾股定理得,OF=EP==,在Rt△AOE中,AE==∴AC=2AE=2,同理得,BD=2DF=2=2,又∵任意对角线互相垂直的四边形的面积等于对角线乘积的,∴S四边形ABCD=AC×BD=×2×2=2=2当x2=即:x=时,四边形ABCD的面积最大,等于2=5.故选:B.【点评】此题是一道综合性较强的题,融合了方程思想、数形结合思想.勾股定理,对角线互相垂直的四边形的面积的计算方法,表示出AC,BD是解本题的关键.5.(2023•盐都区一模)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为()A.1B.2C.3D.4【分析】由于OC⊥AB于点C,所以由垂径定理可得,在Rt△ABC中,由勾股定理即可得到答案.【解答】解:∵OC⊥AB,AB=8,∴,在Rt△ABC中,OA=5,AC=4,由勾股定理可得:.故选:C.【点评】本题考查了垂径定理,熟练运用垂径定理并结合勾股定理是解答本题的关键.6.(2022秋•亭湖区校级期末)如图是一个圆柱形的玻璃水杯,将其横放,截面是个半径为5cm的圆,杯内水面AB=8cm,则水深CD是()A.cm B.cm C.2cm D.3cm【分析】连接OA、OC,先由垂径定理可得AC长,再由勾股定理得OC长,从而求出CD长.【解答】解:如图,连接OA、OC,则OC⊥AB,∴AC=AB=4(cm),在Rt△OAC中,OC===3(cm),∴CD=5﹣3=2(cm).故选:C.【点评】本题考查了垂径定理的应用和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.7.(2022秋•海陵区校级期末)如图,AB为⊙O的直径,点D是的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F.若,AE=2,则⊙O的直径长为()A.B.8C.10D.【分析】连接OF,首先证明,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,,∵点D是弧AC的中点,∴,∴,∴,∴,设OA=OF=x,在Rt△OEF中,则有,解得x=4,∴AB=2x=8.故选:B.【点评】本题考查勾股定理,垂径定理,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2022秋•启东市校级月考)下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.直径是弦,半圆不是弧【分析】对于A,直径是通过圆心且两个端点都在圆上的线段,即可进行判断;对于B,能重合的弧叫等弧,即可进行判断;对于C和D,分别根据等圆,直径,半圆的知识,也可进行判断.【解答】解:A.直径是通过圆心且两个端点都在圆上的线段,故正确;B.能重合的弧叫等弧,长度相等,故正确;C.周长相等的圆其半径也相等,为等圆,故正确.D.直径是弦,半圆是弧,故错误.故选:D.【点评】本题考查圆的认识,解题的关键是掌握弦,弧等知识,灵活运用所学知识解决问题.9.(2022秋•邳州市期末)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.3B.4C.5D.6【分析】由勾股定理求出AC的长度,再由点C在⊙A内且点B在⊙A外求解.【解答】解:在Rt△ABC中,由勾股定理得AC==3,∵点C在⊙A内且点B在⊙A外,∴3<r<5,故选:B.【点评】本题考查点与圆的位置关系,解题关键是掌握勾股定理.10.(2022秋•邗江区校级期末)已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O 的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定【分析】根据题意:OP=4<r,进行判断即可.【解答】解:设圆的半径为r,由题意得:OP=4<r=5,∴点P与圆O的关系是:点P在圆内.故选:A.【点评】本题考查点与圆的位置关系.熟练掌握利用点到圆心的距离与半径的大小关系,来判断点与圆的位置关系是解题的关键.二.填空题(共8小题)11.(2022秋•兴化市期末)若⊙O的半径为5,OA=4,则点A与⊙O的位置关系是:点A在⊙O内.(填“内、上、外”)【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【解答】解:∵⊙O的半径为5,OA=4,∴d<r,∴点A与⊙O的位置关系是:点A在⊙O内,故答案为:内.【点评】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.12.(2022秋•兴化市校级期末)一个圆的半径是15cm,点P在圆上,那么P点到该圆圆心的距离为15 cm.【分析】圆上点到圆心的距离等于圆的半径,由此即可求解.【解答】解:根据题意,点P在圆上,圆的半径是15cm,∴P点到该圆圆心的距离为15cm,故答案为:15.【点评】本题主要考查的点与圆的位置关系,当点在圆外,点到圆心的距离大于半径;当点在圆上,点到圆心的距离等于半径;当点在圆内,点到圆心的距离小于半径,解题的关键是看点到圆心的距离与圆半径的关系.13.(2023•邳州市一模)如图,某同学准备用一根内半径为5cm的塑料管裁一个引水槽,使槽口宽度AB 为8cm,则槽的深度CD为2cm.【分析】根据垂径定理得到,再利用勾股定理即可求出答案.【解答】解:如图,由题意可知,OA=5cm,OC⊥AB,则cm,在Rt△ADO中,由勾股定理得,OD==3(cm),∴CD=OC﹣OD=5﹣3=2(cm).故答案为2.【点评】本题考查垂径定理,勾股定理,掌握垂径定理、勾股定理是正确解答的前提.14.(2023•鼓楼区模拟)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的半径为20.【分析】通过作弦心距,构造直角三角形,利用垂径定理和勾股定理进行计算即可.【解答】解:如图,连接OA,过点O作OD⊥AB,垂足为D,∵AB是弦,OD⊥AB,AC=11,BC=21,∴AD=BD=AB=16,∴CD=AD﹣AC=5,∴OD===12,∴OA===20.故答案为:20.【点评】本题考查垂径定理的应用,掌握垂径定理和勾股定理是解决问题的前提,构造直角三角形是正确解答的关键.15.(2022秋•连云港期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OE,CD的延长线交⊙O于点E.若∠C=25°,则∠CEO度数为50°.【分析】根据CD=OD求出∠DOC=∠C=25°,根据三角形的外角性质求出∠EDO=∠C+∠DOC=50°,根据等腰三角形的性质求出∠E=∠EDO=50°.【解答】解:连接OD.∵CD=OE,OE=OD,∴CD=OD,∵∠C=25°,∴∠DOC=∠C=25°,∴∠EDO=∠C+∠DOC=50°,∵OD=OE,∴∠E=∠EDO=50°.故答案为:50.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,圆心角、弧、弦之间的关系等知识点,能求出∠ODE的度数是解此题的关键.16.(2022秋•连云港期末)如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O于点D,则CD长的最大值为2.【分析】根据勾股定理求出CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【解答】解:∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=2,即CD的最大值为2,故答案为:2.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.17.(2022秋•秦淮区期末)如图,在以O为圆心半径不同的两个圆中,大圆和小圆的半径分别为6和4,大圆的弦AB交小圆于点C,D.若AC=3,则CD的长为.【分析】由垂径定理得到CH=DH,由勾股定理列出关于CH的方程,求出CH长,即可求出CD的长.【解答】解:作OH⊥AB于H,连接OC,OA,设CH=x,∴CH=DH,AH=x+3,∵OH2=OC2﹣CH2=OA2﹣AH2,∴42﹣x2=62﹣(x+3)2,∴x=,∴CD=2CH=.故答案为:.【点评】本题考查垂径定理,勾股定理,关键是掌握垂径定理,勾股定理.18.(2023•南京二模)如图,CD是⊙O的直径,弦AB⊥CD,垂足为E.若AB=4,CE=6,则⊙O的半径r为.【分析】如图,作辅助线;设⊙O的半径为r,运用勾股定理列出r2=22+(6﹣r)2,求出r即可解决问题.【解答】解:如图,连接OA.设⊙O的半径为r,则OE=6﹣r.∵弦AB⊥CD,∴AE=BE=2;由勾股定理得:r2=22+(6﹣r)2,解得:r=,故答案为:.【点评】主要考查了垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断、推理或解答.三.解答题(共8小题)。
【期末真题分类汇编】北师大版六年级上册数学第一节-圆(含答案)
【期末真题分类汇编】北师大版六年级上册第一节-圆(含答案)考点1:圆的周长与面积1、(圆的对称性)圆有()条对称轴,圆的()所在的直线就是圆的对称轴。
2、(圆的对称性)将两个大小不同的圆拼成一个组合图形,这个组合图形至少有()条对称轴,最多有()条对称轴。
3、(圆的对称性)将一张圆形纸片对折,量得折痕长10cm,这个圆形纸片的直径是()cm,半径是()cm。
4、(圆周率)圆的周长是它的半径的()倍。
5、(圆的半径)圆片在桌面上向前滚动时,圆心经过的路线是一条()线,人们在街头围观看演出时,会不自觉地站成圆形,这是因为同一个圆中的()都相等。
6、(圆的半径)体育课,同学们要围成一个圆圈做游戏,老师站在圆圈的中心点上,每个同学距离老师4 米,围成的圆圈的面积至少是()平方米。
7、(最大圆问题)用一张长10 厘米,宽8 厘米的长方形纸片剪出一个最大的圆,圆的周长是()厘米,剩下的纸片面积是()平方厘米。
8、(剪圆)用一块长12 米,宽8 米的长方形铁皮剪成指干个半径都是1.5 米的小圆(不能剪拼),这块铁皮最多能剪出()个。
9、(圆的切割与拼接)把一个半径10 厘米的圆平均分成32 份,拼成的图形近似于长方形(如下图),这个长方形的长是()厘米,宽是()厘米。
10、(圆的切割与拼接)把一张圆形纸片剪拼成一个近似的梯形(如右图),这个梯形的上、下底之和相当于圆的(),梯形的高相当于圆的(),由此得到梯形的面积=()。
11、(圆周率)圆周率π的值()3.14。
A.大于B.等于C.小于D.大于或等于12、(画圆)将圆规两脚的距离定为3 厘米,所画圆的周长是()厘米。
A.6B.9.42C.18.84D.28.2613、(倍数关系)一个圆的半径扩大到原来的3 倍,那么这个圆的面积扩大到原来的()。
A.3 倍B.6 倍C.9 倍D.9.42 倍14、(倍数关系)如图,大圆和小圆的面积比是()。
A.2:1B.3:1C.4:1D.9:115、(面积/周长的比较)周长都是40 厘米的圆形、正方形、长方形和平行四边形,其中面积最大的是()。
(好题)初中数学九年级数学下册第三单元《圆》检测题(含答案解析)(1)
一、选择题1.如图,点A 、B 、C 在⊙O 上,点D 是AB 延长线上一点,若∠CBD =65°,则∠AOC 的度数为( )A .115°B .125°C .130°D .135°2.如图平面直角坐标系中,点A ,B 均在函数y =k x(k >0,x >0)的图像上,⊙A 与x 轴相切,⊙B 与y 轴相切,若点B (1,8),⊙A 的半径是⊙B 半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,4)C .(3,4)D .(4,2) 3.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .64.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个5.如图,已知E 是ABC 的外心,P ,Q 分别是AB ,AC 的中点,连接EP ,EQ ,分别交BC 于点F ,D .若10BF =,6DF =,8CD =,则ABC 的面积为( )A .72B .96C .120D .1446.如图,在半径为1的⊙O 中,将劣弧AB 沿弦AB 翻折,使折叠后的AB 恰好与OB 、OA 相切,则劣弧AB 的长为( )A .12πB .13π C .14π D .16π 7.已知△ABC 是半径为2的圆内接三角形,若BC =23,则∠A 的度数( ) A .30° B .60° C .120° D .60°或120° 8.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .23B .4C .33D .23+2 9.“圆材埋壁”是我国古代数学名著《章算术》中的一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问:径几何?”转化为数学语言:如图,CD 为O的直径,弦AB CD ⊥,垂足为E ,1CE =寸,10AB =寸,直径CD 的长是( )A .13寸B .26寸C .28寸D .30寸 10.如图,AB 是O 的直径,,C D 是ACB 上的三等分点,且1sin 2ABC ∠=,则A D ∠+∠等于 ( )A .120°B .95°C .105°D .150°11.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒12.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒二、填空题13.如图,四边形OABC 是菱形,点B ,C 在以点O 为圆心的弧EF 上,且∠1=∠2,若菱形边OA=3,则扇形OEF 的面积为___________14.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.15.圆锥的表面展开图由一个扇形和一个圆组成,已知扇形的半径为9,圆心角为120°,则圆锥的底面圆的半径为__________.16.如图所示的是边长为4的正方形镖盘ABCD ,分别以正方形镖盘ABCD 的三边为直径在正方形内部作半圆,三个半圆交于点O ,乐乐随机地将一枚飞镖投掷到该镖盘上,飞镖落在阴影区域的概率为________.17.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:18.如图,正方形ABCD 的边长为8,M 是AB 的中点,一动点P 从点B C D --运动,连接PM ,以点P 为圆心,PM 的长为半径作P ,当P 与正方形ABCD 的边相切时,BP 的长为_________.19.如图,正方形ABCD 的边长为4,以点A 为圆心,AD 为半径,画圆弧DE 得到扇形ADE (阴影部分,点E 在对角线AC 上).若扇形ADE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是________.20.写出命题“圆内接四边形的对角互补”的逆命题:____________.三、解答题21.已知O 及O 外一点P ,在O 上找一点,M 使得PM OM ⊥,求作点M .要求:尺规作图,保留作图痕迹.22.如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,E 为BC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)若AC =BC ,判断四边形OCED 的形状,并说明理由.23.如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8cm OA =.动点P 从点A 出发,以1cm/s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O ,P ,Q 三点作圆,交OT 于点C ,连接PC ,QC .设运动时间为()t s ,其中08t <<.(1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)在点P ,Q 运动过程中(08t <<),四边形OPCQ 的面积是否变化.如果面积变化,请说出四边形OPCQ 面积变化的趋势;如果四边形OPCQ 面积不变化,请求出它的面积.24.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O 及⊙O 外一点P .求作:直线PA 和直线PB ,使PA 切⊙O 于点,A PB 切⊙O 于点B .作法:如图,①连接OP ,分别以点О和点P 为圆心,大于12OP 的同样长为半径作弧,两弧分别交于点,M N ;②连接MN ,交OP 于点Q ,再以点Q 为圆心,OQ 的长为半径作弧,交⊙O 于点A 和点B ;③作直线PA 和直线PB .所以直线PA 和PB 就是所求作的直线.根据小东设计的尺规作图过程, ()1使用直尺和圆规,补全图形;(保留作图痕迹)﹔()2完成证明过程.证明:25.如图,在平面直角坐标系xOy 中,方格纸的每个小方格都是边长为1个单位的正方形,Rt ABC △的顶点均在格点(小正方形的顶点)上.(1)将ABC 绕着点A 顺时针旋转90︒得到11AB C △,试在图上画出11AB C △; (2)并求出点C 到点1C 所经过的路径的长;(3)ABC 的外心坐标为__________;(4)ABC 的内切圆半径为_______________.(直接写出答案)26.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出∠ABC ,再求出它所对的弧对的圆心角,即可求∠AOC .【详解】解:∵∠CBD=65°,∴∠ABC=180°-65°=115°,优弧AC所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C.【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.2.D解析:D【分析】把B的坐标为(1,8)代入反比例函数解析式,根据⊙B与y轴相切,即可求得⊙B的半径,则⊙A的半径即可求得,即得到B的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x,∵B的坐标为(1,8),⊙B与y轴相切,∴⊙B的半径是1,则⊙A的半径是2,把y=2代入y=8x得:x=4,则A的坐标是(4,2).故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B的坐标利用反比例函数图象上点的坐标特征求出k值是解题的关键.3.B解析:B【分析】连接OA,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB是等边三角形,进一步得出结论.【详解】解:∵BD是圆O的直径,且BD=10∴OB=5连接OA,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.4.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B .【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.5.B解析:B【分析】连接AF ,AD ,AE ,BE ,CE ,根据三角形外心的定义,可得PE 垂直平分AB ,QE 垂直平分AC ,进而求得AF ,DF ,AD 的长度,可知△ADF 是直角三角形,即可求出△ABC 的面积.【详解】如图,连接AF ,AD ,AE ,BE ,CE ,∵点E 是△ABC 的外心,∴AE=BE=CE ,∴△ABE ,△ACE 是等腰三角形,∵点P 、Q 分别是AB 、AC 的中点,∴PE ⊥AB ,QE ⊥AC ,∴PE 垂直平分AB ,QE 垂直平分AC ,∴AF=BF=10, AD=CD=8,在△ADF 中,∵2222286=100=AD DF AF +=+,∴△ADF 是直角三角形,∠ADF=90°,∴S △ABC = ()()1122=1068896BF DF CD AD ⨯++⨯++=, 故选:B .【点睛】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△ADF 是直角三角形.6.A解析:A【分析】如图画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ,根据题意可得O 'B ⊥OB 、O 'A ⊥OA ,且OB=OA=O 'B=O 'A,得到四边形O 'BOA 是正方形,即∠O=90°,最后根据弧长公式计算即可.【详解】解:如图:画出折叠后AB 所在的⊙O ',连O 'B ,O 'A∵AB 恰好与OA 、OB 相切∴O 'B ⊥OB 、O 'A ⊥OA∵OB=OA=O 'B=O 'A,∴四边形O 'BOA 是正方形∴∠O=90°∴劣弧AB 的长为9011801802n r πππ︒⨯⨯==︒.故选择:A.【点睛】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.7.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22,BD BC∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.8.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA ,问题得解.【详解】解:∵PA ,PB 是⊙O 的两条切线,∠APB =60°,∴PA =PB ,∠APO =12∠APB =30°,PA ⊥AO , ∴△PAB 是等边三角形,∵PA ⊥AO ,∠APO ==30°,∴OP =2OA =2, ∴223PA PO AO =-=,∴△PAB 的周长为33.故选:C【点睛】 本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.9.B解析:B【分析】连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =x−1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD 的长.【详解】解:如图,连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =(x−1)寸,∵222OA OE AE =+,∵AB=10,且AB CD ⊥∴AE=12AB=5 则()22125x x =-+,解得:x =13.则CD =2×13=26(寸).故选:B .【点睛】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.10.A解析:A【分析】由圆心角、弦、弧的关系及圆周角定理可得∠ACB=90°,∠BOD=60°,∠A=60°,通过证明△OBD为等边三角形,即可求∠D=60°,进而可求解;【详解】∵ C、D是ACB上的三等分点,∴AC CD BD==,∵ AB是圆的直径,∴∠ACB=90°,∠BOD=60°,∠A=60°,∵OB=OD,∴△OBD为等边三角形,∴∠D=60°,∴∠A+∠D=120°,故选:A.【点睛】本题主要考查了圆心角、弦、弧的关系,等边三角形的判定与性质,圆周角定理等知识点的综合运用;11.B解析:B【分析】连接OC,易得四边形CDOE是矩形,△DOE≌△CEO,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE,由矩形CDOE易得到△DOE≌△CEO,∴图中阴影部分的面积=扇形OBC的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36, ∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.12.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD 是△ABC 的外接圆⊙O 的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD ∠=90°-50°=40°故选:B .【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题13.3π【分析】算出扇形OEF 的圆心角即可得到解答【详解】解:如图连结OB 由题意可知:OC=OB=BC ∴∠COB=60°∠COA=120°∵∠1=∠2∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA解析:3π【分析】算出扇形OEF 的圆心角,即可得到解答.【详解】解:如图,连结OB ,由题意可知:OC=OB=BC ,∴∠COB=60°,∠COA=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA=120°,∴扇形OEF 的面积=2212012033360360OA πππ⨯⨯⨯⨯==, 故答案为3π .【点睛】本题考查扇形与菱形的综合应用,熟练掌握菱形的性质及扇形面积的计算是解题关键. 14.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.15.3【分析】根据弧长公式求出扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长再利用圆周长的公式求解即可【详解】扇形的半径为9圆心角为120°扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆 解析:3【分析】根据弧长公式求出扇形的弧长,圆锥侧面展开扇形的弧长等于圆锥底面圆的周长,再利用圆周长的公式求解即可【详解】扇形的半径为9,圆心角为120°∴扇形的弧长12096180180n r l πππ⨯=== 圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆锥底面圆的半径为r26r ππ∴=3r ∴=故答案为:3.【点睛】本题考查了圆锥侧面展开图与底面圆之间的关系,弧长的计算,解题关键是熟知圆锥侧面展开扇形的弧长等于圆锥底面圆的周长.16.【分析】先判断出两半圆交点为正方形的中心连接OAOD 则可得出所产生的四个小弓形的面积相等先得出2个小弓形的面积即可求阴影部分面积根据即可求得概率【详解】解:由题意易知两半圆的交点即为正方形的中心设此解析:12【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积,根据ABCD S S 阴影正方形即可求得概率.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O ,连接AO ,DO ,则图中的四个小弓形的面积相等,∵两个小弓形面积=14AOD AOD AOD ABCD S S S S --△半圆半圆正方形=,又∵正方形ABCD 的边长为4,∴各半圆的半径为2,∴两个小弓形面积=2112-44=2-424ππ⨯⨯⨯⨯, ∴=2S S ⨯阴影半圆-4个小弓形的面积=()22-22-4=8ππ⨯,∴飞镖落在阴影部分的概率为:81==162ABCD S S 阴影正方形, 故答案为:12. 【点睛】 本题考查扇形的面积、正方形的性质、几何概率,解题的关键是求出小弓形的面积. 17.【分析】根据点A 的取法罗列出部分点A 的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题 解析:2017201822π-【分析】根据点A 的取法,罗列出部分点A 的横坐标,由此可发现规律,即n A的横坐标为:1n -,再结合已知即可得到答案.【详解】观察,发现规律:1A 的横坐标为:1,2A3A的横坐标为:2,⋯,∴n A的横坐标为:1n - n B ∴的横坐标为:1n -404020192019201720182020451223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:1n -这一规律.18.3或或【分析】由线段中点的性质解得当与正方形的边相切时分别作出相应的图形分三种情况讨论:①当与正方形的边相切切点为点时设在中利用勾股定理解得的值即可解出的长;②当与正方形的边相切切点为点时可证明四边 解析:3或【分析】由线段中点的性质解得4BM =,当P 与正方形ABCD 的边相切时,分别作出相应的图形,分三种情况讨论:①当P 与正方形ABCD 的边CD 相切,切点为点C 时, 设PC PM x ==,在Rt PBM △中,利用勾股定理解得x 的值,即可解出BP 的长;②当P 与正方形ABCD 的边AD 相切,切点为点K 时,可证明四边形PKDC 是矩形,由矩形对边相等的性质结合圆的半径相等,解得2PM PK DC BM ===,再在Rt PBM △中,利用勾股定理解题;③当P 与正方形ABCD 的边AB 相切,切点为点M 时,在Rt PMB 中,利用勾股定理解题即可.【详解】解:M 是AB 的中点, 118422BM AB ∴==⨯= 分三种情况讨论:①如图,当P 与正方形ABCD 的边CD 相切,切点为点C 时,设PC PM x ==,在Rt PBM △中,222PM BM BP =+2224(8)x x ∴=+-22246416x x x ∴=+-+5x ∴=5,3PC BP BC PC ∴==-=;②如图,当P 与正方形ABCD 的边AD 相切,切点为点K 时,连接PK ,则PK AD ⊥,四边形PKDC 是矩形,2PM PK DC BM ∴===48BM PM ∴==,在Rt PBM △中,228443PB =-=③如图,当P与正方形ABCD的边AB相切,切点为点M时,,8,4PM AB PM BC BM⊥===在Rt PMB中,228445BP=+=,综上所述,当P与正方形ABCD的边相切时,BP的长为:3或435故答案为:3或4345【点睛】本题考查切线的性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.19.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可【详解】解:设圆锥的底面圆的半径为r根据题意可得:AD=AE=4∠DAE=45°∵底面圆的周长等于弧长即解得:∴该圆锥的底面圆的半径是解析:1 2【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【详解】解:设圆锥的底面圆的半径为r,根据题意可得:AD=AE=4,∠DAE=45°,∵底面圆的周长等于弧长,即454 2180rππ︒⨯⨯=︒解得:12r=,∴该圆锥的底面圆的半径是12,故答案为12.【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥的底面周长与展开后所得扇形的弧长相等.20.对角互补的四边形是圆内接四边形;【分析】根据逆命题的概念解答即可【详解】圆内接四边形的对角互补的逆命题是:对角互补的四边形是圆内接四边形故答案为:对角互补的四边形是圆内接四边形【点睛】本题主要考查了解析:对角互补的四边形是圆内接四边形;【分析】根据逆命题的概念解答即可.【详解】“圆内接四边形的对角互补”的逆命题是:对角互补的四边形是圆内接四边形,故答案为:对角互补的四边形是圆内接四边形.【点睛】本题主要考查了命题与定理,正确把握相关性质是解题的关键.三、解答题21.如图所示,M点有两个,分别为M1,M2【分析】根据圆周角定理:直径所对的圆周角是直角,以OP为直径作圆,根据尺规作图画出OP的垂直平分线,A点即为OP中点,画出圆即可得出OP⊥OM【详解】如图所示,连接OP,分别以O、P为半径,大于12OP为半径作圆弧,连接两个交点,与OP交于A点,A点即为OP的中点,以A点为圆心,OA为半径作圆,与O的交点即为M点【点睛】本题考察尺规作图,熟练掌握圆周角定理:直径所对的圆周角是直角,以及垂直平分线的作法是解题的关键22.(1)见解析;(2)正方形,理由见解析【分析】(1)连接OD、CD,结合AC为直径可得到∠CDB=90°,E为中点,可得到ED=CE,再利用角的和差可求得∠ODE=90°,可得DE为切线;(2)由条件可得∠ODA=∠A=45°,可求得∠COD=∠ODE=∠ACB=90°,且OC=OD,可知四边形ODEC为正方形.【详解】(1)证明:如图,连接OD、CD,∵OC=OD,∴∠OCD=∠ODC,∵AC为⊙O的直径,∴∠CDB=90°,∵E为BC的中点,∴DE=CE,∴∠ECD=∠EDC,∴∠OCD+∠ECD=∠ODC+∠EDC=90°,∴∠ODE=∠ACB=90°,即OD⊥DE,又∵D在圆O上,∴DE与圆O相切;(2)若AC=BC,四边形ODEC为正方形,理由:∵AC=BC,∠ACB=90°,∴∠A=45°,∵OA =OD ,∴∠ODA =∠A =45°,∴∠COD =∠A +∠ODA =90°,∵四边形ODEC 中,∠COD =∠ODE =∠ACB =90°,且OC =OD ,∴四边形ODEC 为正方形.【点睛】本题考查了切线的判定、正方形的判定、圆的性质、三角形的外角、直角三角形的性质等知识,解答本题的关键是熟练运用以上知识证明OD ⊥DE 以及∠COD =∠ODE =∠ACB =90°,OC =OD .23.(1)8cm ;(2)存在,t=4;(3)不变化,16cm 2.【分析】(1)由题意得出OP=8-t ,OQ=t ,则可得出答案;(2)如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .设线段BD 的长为x ,则BD=OD=x ,OB=2BD=2x ,PD=8-t-x ,得出PD BD OP OQ =,则 88t x x t t--=-,解出288t t x -=.由二次函数的性质可得出答案; (3)证明△PCQ 是等腰直角三角形.则21122122224PCQ S PC QC PQ PQ PQ ∆=⋅=⨯⋅=.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.由四边形OPCQ 的面积S=S △POQ +S △PCQ 可得出答案.【详解】解:(1)由题意可得,OP=8-t ,OQ=t ,∴OP+OQ=8-t+t=8(cm ).(2)当t=4时,线段OB 的长度最大.如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .∵OT 平分∠MON ,∴∠BOD=∠OBD=45°,∴BD=OD ,2BD .设线段BD 的长为x ,则BD=OD=x ,22x ,PD=8-t-x ,∵BD ∥OQ ,∴PD BD OP OQ =, ∴88t x x t t--=-, ∴288t t x -=.∴2284)88t t OB t -==--+. ∵二次项系数小于0.∴当t=4时,线段OB 的长度最大,最大为cm .(3)∵∠POQ=90°,∴PQ 是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ 是等腰直角三角形.∴2111224PCQ S PC QC PQ PQ PQ ∆=⋅==. 在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.∴四边形OPCQ 的面积21124POQ PCQ S S S OP OQ PQ ∆∆=+=⋅+ 2211(8)(8)24t t t t ⎡⎤=-+-+⎣⎦ 221141641622t t t t =-++-=. ∴四边形OPCQ 的面积不变化,为16cm 2.【点睛】本题是圆的综合题,考查了圆周角定理,等腰直角三角形的性质,平行线分线段成比例定理,三角形的面积,二次函数的性质等知识,熟练掌握圆的性质定理是解题的关键. 24.(1)见解析;(2)见解析.【分析】(1)按照尺规作图中的线段的垂直平分线步骤进行即可;(2)根据切线的判定证明即可.【详解】(1)补图如下:;(2)如图,连接PA,PB,OA,OB,∵PO是⊙Q的直径,∴∠OAP=90°,∴OA⊥AP,∴PA是⊙O的切线;同理可证,PB是⊙O的切线.【点睛】本题考查了圆外一点作定圆的切线,熟练作线段PO的垂直平分线,熟记切线的判定是解题的关键.25.(1)见解析;(2)52π;(3)()34,2-;(4)1【分析】(1)根据网格结构找出点B、C绕着点A顺时针旋转90°得到B1、C1的位置,然后顺次连接即可;(2)利用勾股定理列式求出AC,然后根据弧长公式列式计算即可得解;(3)根据直角三角形的外心是斜边的中点,并由图象可得点A的坐标是(-6,0),C的坐标是(-2,3),利用中点坐标公式即可求解;(4)利用等面积法即可列出关于内切圆半径的等式,计算后即可得出结果.【详解】解:(1)如图所示,△AB1C1即为所求作的图形;(2)∵AB=4,BC=3,∴AC22345=+=,∴点C 到点1C 所经过的路径的长为:90551802l ππ⨯==; (3)∵直角三角形的外心是斜边的中点,且点A 的坐标是(-6,0),C 的坐标是(-2,3), ∴12×(-6-2)=-4,12×(0+3)=32, ∴△ABC 的外心坐标为()34,2-; 故答案为:()34,2-;(4)设Rt △ABC 的内切圆半径为r ,∵S △ABC =12×3×4=6, ∴12×3r+12×4r+12×5r=6, 解得r=1,∴△ABC 的内切圆半径为1.故答案为:1.【点睛】此题考查了旋转变换、弧长的计算、三角形的外接圆与内切圆等知识,掌握旋转变换的性质、弧长的计算、三角形外接圆与内切圆的相关知识是解题的关键.26.(1)作图见解析;(2)见解析.【分析】(1)先作AC 的中垂线,找到AC 的中点O ,然后以AC 为直径作圆,与AB 的交点即为所求;(2)由题意可知DE 为Rt BEC △斜边BC 上的中线,从而得到CD=DE ,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒ OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键.。
3.2 圆的对称性(练习)(解析版)
第三章圆第二节圆的对称性精选练习一、单选题1.(2021·全国九年级课时练习)下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据圆心角,弦,弧之间的关系判断,注意条件.【详解】A中,等弦所对应的弧可以相等也可以互补构成新圆;B中,等弧所对应的弦相等,故选BC中,圆心角相等所对应的弦可能互补;D中,弦相等,圆心角可能互补;故选B【点睛】本题考查了圆心角,弧,弦之间的观,此类试题属于难度较大的试题,其中,弦和圆心角等一些基本知识容易混淆,从而很难把握.2.(2021·全国九年级课时练习)下列说法中,不正确的是()A.圆是轴对称图形B.圆的任意一条直径所在的直线都是圆的对称轴C.圆的任意一条直径都是圆的对称轴D.经过圆心的任意直线都是圆的对称轴【答案】C【分析】根据轴对称图形的概念并结合圆的特点判断各选项,然后求解即可.【详解】A 、圆是轴对称图形,正确;B 、圆的任意一条直径所在得直线都是圆的对称轴,正确;C 、圆的任一直径所在的直线都是圆的对称轴,错误;D 、经过圆心的任意直线都是圆的对称轴,正确,故选:C .【点睛】本题主要是考查圆的特征、轴对称图形的特征,注意,语言要严密,不能说成圆的直径就是圆的对称轴,因为对称轴是一条直线,直径是线段.3.(2021·全国九年级课时练习)下列说法:①直径是弦;②长度相等的两条弧是等弧;③圆是中心对称图形;④任何一条直径都是圆的对称轴,其中说法正确的有( )个A .1个B .2个C .3个D .4个【答案】B【分析】根据圆的性质依次判断即可得到答案.【详解】①直径是圆中最长的弦,故正确;②在同圆或等圆中,能够完全重合的两条弧是等弧,故②错误;③圆是中心对称图形,故正确;④任何一条直径所在的直线都是圆的对称轴,故④错误,正确的有2个,故选:B.【点睛】此题考查圆的性质,正确掌握弦、等弧的定义,圆的对称性是解题的关键.4.(2020·杭州市建兰中学九年级月考)如图,AB 是圆O 的直径,点C 是半圆O 上不同于,A B 的一点,点D 为弧AC 的中点,连结,,OD BD AC ,设,CAB BDO b a Ð=Ð=,则( ).A .a b=B .290a b °+=C .290a b °+=D .45a b °+=【答案】C利用等腰三角形边角关系表示出∠AOD ,再根据同圆中平分弧平分弦垂直弦求出关系即可.【详解】解析 如图,设AC 与DO 交点为E ,连接BC ,OD OB = ,OBD BDO a \Ð=Ð=,2DOA OBD BDO a \Ð=Ð+Ð=,又D Q 为 AC 中点,AB 为O e 直径,,OD AC BC AC \^^,90AED ACB °\Ð=Ð=,90EAO EOA °\Ð+Ð=,即:290a b °+=.故选C .【点睛】此题考查了垂径定理中同圆中平分弧平分弦垂直弦,等边对等角等有关知识点,难度一般.5.(2020·西安益新中学九年级期末)如图,AB 是O e 的直径,弧BC 、弧CD 与弧DE 相等,36COD Ð=°,则AOE Ð的度数是( )A .30°B .36°C .54°D .72°【答案】D【分析】由弧BC 、弧CD 与弧DE 相等,得36COB COD EOD Ð=Ð=Ð=°,即可求AOE Ð.解:∵弧BC 、弧CD 与弧DE 相等,∴36COB COD EOD Ð=Ð=Ð=°,18036372AOE Ð=°-°´=°,故选:D .【点睛】本题考查了圆心角和弧的关系,解题关键是熟知在同圆和等圆中,相等的弧所对的圆心角相等.6.(2021·全国九年级课时练习)如图,已知:AB 是O e 的直径,C 、D 是 BE上的三等分点,60AOE Ð=o ,则COE Ð是( )A .40oB .60oC .80oD .120o【答案】C【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴»BE的度数是120°,∵C 、D 是»BE上的三等分点,∴弧CD 与弧ED 的度数都是40度,∴∠COE=80°,故选C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.7.(2021·全国九年级课时练习)如图,⊙O 中,弦AB ⊥CD ,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,A F 交CD 于M ,过F 作FH ⊥AC ,垂足为G ,以下结论:① CFDF =;②HC =BF :③MF =FC :④ DF AH BF AF +=+,其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,CF BF∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴+=180°,AH CF∴+=180°,CH AF∴+=+=+=+,故④正确,AH CF AH DF CH AF AF BF故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.8.(2019·武汉市梅苑学校九年级月考)如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ^,OCD Ð的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动【答案】B【分析】连OP ,由CP 平分∠OCD ,得到∠1=∠2,而∠1=∠3,可得2=3,ÐÐ所以有//OP CD ,则OP ⊥AB ,即可得到OP 平分半圆APB .从而可得答案.【详解】解:连OP ,如图,∵CP 平分∠OCD ,∴∠1=∠2,OC=OP ,\ ∠1=∠3,∴∠2=∠3,∴//OP CD ,又∵弦CD ⊥AB ,∴OP ⊥AB ,∴OP 平分半圆APB ,即点P 是半圆的中点.故选:B .【点睛】本题考查了角平分线的定义,平行线的判定,等腰三角形的性质,圆的对称性,掌握以上知识是解题的关键.二、填空题9.(2021·全国九年级课时练习)半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO 交弦AB于D,若△OBD是直角三角形,则弦BC的长为______________.【答案】【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴=^如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴△ABC是等边三角形∴∠DBO=30°∵ OB=5∴BD==∴ BC=AB=.综上所述:若△OBD是直角三角形,则弦BC的长为.故答案为:.【点睛】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.10.(2021·全国九年级课时练习)如图,AB是⊙O的直径,AD DE=,AB=5,BD=4,则cos∠ECB=__.【答案】3 5【分析】连接AD,BE,根据直径所对的圆周角是直角,构建两个直角三角形,再利用等弧所对的圆周角相等得:∠ABD=∠CBE,根据等角的余角相等得:∠ECB=∠DAB,最后利用等角的三角函数得出结论.【详解】解:连接AD, BE,AD DE=,∴EBC DBAÐ=Ð,∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠ECB+∠EBC=90°,∠DBA+∠DAB=90°,∴∠ECB =∠DAB .AB =5,BD =4 ,3AD \==, ∴3cos cos 5ECB DAB Ð=Ð=.【点睛】本题考查了圆周角定理,解直角三角形,余角的性质,以及勾股定理等知识.掌握圆周角的两个定理:①在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.这两个性质在圆的证明题中经常运用,要熟练掌握.11.(2021·全国九年级课时练习)如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =32°,则∠OAC =_______度.【答案】58【分析】根据∠D 的度数,可以得到∠ABC 的度数,然后根据BC 是直径,从而可以得到∠BAC 的度数,然后可以得到∠OCA 的度数,再根据OA=OC ,从而可以得到∠OAC 的度数.【详解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC 是直径∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案为58.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.12.(2021·上海九年级专题练习)一根横截面为圆形的下水管的直径为1米,管内污水的水面宽为0.8米,那么管内污水深度为__________米.【答案】0.8或0.2.【分析】构造垂径定理,分两种情形求得弦心距,从而得到水深.【详解】如图所示,作AB 的垂直平分线,垂足为E ,根据题意,得 AO=0.5,AE=0.4,根据勾股定理,得,∴水深ED=OD-OE=0.5-03=0.2(米)或水深ED=OD+OE=0.5+03=0.8(米),∴水深为0.2米或0.8米.故答案为:0.2米或0.8.【点睛】本题考查了垂径定理,勾股定理,解答时,构造垂径定理,活用分类思想是解题的关键.三、解答题13.(2021·全国九年级课时练习)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:AB CD=.【答案】证明见解析【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论.【详解】证明:连接AC、OA、OB、OC、OD,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC12=∠BOC,∠PCA12=∠AOD,∴∠BOC=∠AOD,∴AD BC=n n,∴AD BD BC BD-=-,即AB CD=.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.(2021·全国九年级课时练习)如图,在⊙O中,弦AD与BC交于点E,且AD=BC,连接AB、CD.求证:(1)AB=CD;(2)AE =CE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)欲证明AB=CD ,只需证得 AB = CD ;(2)连接AC ,由 AB = CD得出∠ACB=∠CAD ,再由等角对等边即可证的AE =CE.【详解】证明:(1)∵AD =BC∴ AD = BC∴ AD -AC = BC - AC 即 AB = CD∴AB =CD(2)连接AC∵ AB = CD∴∠ACB =∠DAC∴AE =CE【点睛】本题考查了圆周角、弧、弦间的关系,注意(2)中辅助线的作法是求解(2)的关键.15.(2020·江苏苏州市·苏州草桥中学九年级期中)如图,在O e 中, AC CB=,CD OA ^于点D ,CE OB ^于点E .(1)求证:CD CE =;(2)若120AOB Ð=°,2OA =,求四边形DOEC 的面积.【答案】(1)证明见解析;(2【分析】(1)如图,连接OC ,先证明,AOC BOC Ð=Ð再证明:,CDO CEO V V ≌从而可得结论;(2)由120AOB Ð=°,2OA =,求解60AOC Ð=°,再利用三角函数求解,OD CD , 利用,CDO CEO V V ≌从而可得四边形的面积.【详解】(1)证明:如图,连接OC ,AC BC= , ,AOC BOC \Ð=Ð,,CD OA CE OB ^^90CDO CEO \Ð=Ð=°,,OC OC =(),CDO CEO AAS \V V ≌.CD CE \=(2)120,AOB Ð=60AOC BOC \Ð=Ð=°,2OA OC == ,1cos 6021,sin 6022OD OC CD OC \=°=´==°==g g ,CDO CEO V V ≌12212CDO CDOE S S \==´´=V 四边形【点睛】本题考查的是三角形全等的判定与性质,圆的基本性质,两条弧,两个圆心角,两条弦之间的关系定理,解直角三角形的应用,四边形的面积,掌握以上知识是解题的关键.。
2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)
2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)一.选择题(共10小题,满分50分)1.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.相等的弦所对的圆心角相等D.相等的圆心角所对的弧相等2.下列命题是真命题的是()A.相等的弦所对的弧相等B.圆心角相等,其所对的弦相等C.在同圆或等圆中,圆心角不等,所对的弦不相等D.弦相等,它所对的圆心角相等3.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°4.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA6.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于()A.100°B.110°C.120°D.135°7.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连接AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50°B.65°C.100°D.130°8.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°9.如图,四边形ABCD内接于半圆O,AB为直径,AB=4,AD=DC=1,则弦BC的长为()A.3.5B.2C.D.10.如图D、A、C、B为⊙O上的点,DC=AB,则AD与BC的大小关系是()A.AD>BC B.AD=BC C.AD<BC D.不能确定二.填空题(共5小题,满分30分)11.如图所示,四边形AB∥CD,AD=DC=DB=p,BC=q,则AC=(用p、q表示).12.弦AB分圆为1:3两部分,则劣弧所对圆心角为.13.一条弦把圆分成1:3两部分,则弦所对的圆心角为度.14.如图,在⊙O中,,∠A=40°,则∠B=度.15.在半径为9cm的圆中,60°的圆心角所对的弦长为cm.三.解答题(共5小题,满分40分)16.已知锐角∠POQ,如图,在射线OP上取一点A,以点O为圆心,OA长为半径作,交射线OQ于点B,连接AB,分别以点A,B为圆心,AB长为半径作弧,交于点E,F,连接OE,EF.(1)证明:∠EAO=∠BAO;(2)若OE=EF.求∠POQ的度数.17.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.18.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.19.如图所示,⊙O的直径AB和弦CD相交于点E,且点B是劣弧DF的中点.(1)求证:△EBD≌△EBF;(2)已知AE=1,EB=5,∠DEB=30°,求CD的长.20.如图,已知AB、CD为⊙O的两条弦,,求证:AB=CD.参考答案一.选择题(共10小题,满分50分)1.解:A、正确.本选项符合题意.B、错误.应该是平分弦(此弦非直径)的直径垂直弦并平分弦所对的弧,本选项不符合题意.C、错误,必须在同圆或等圆中,本选项不符合题意.D、错误.必须在同圆或等圆中,本选项不符合题意.故选:A.2.解:A、B、D结论若成立,都必须以“在同圆或等圆中”为前提条件,所以A、B、D 错误;故选:C.3.解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.4.解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.5.解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴=,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B.6.解:连接OC、OD,∵BC=CD=DA,∴∠COB=∠COD=∠DOA,∵∠COB+∠COD+∠DOA=180°,∴∠COB=∠COD=∠DOA=60°,∴∠BCD=×2(180°﹣60°)=120°.故选:C.7.解:由题意可得:AB=AC,∵∠ABC=65°,∴∠ACB=65°,∴∠A=50°,∴∠BOC=100°,故选:C.8.解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.9.解:如图,连AC、BD,过D作DE⊥AC于E.∴∠ADB=∠ACB=90°,∠ABD=∠CAD.∵BD==.∵AD=DC=1,∴∠DAC=∠DCA,∵∠DCA=∠ABD,cos∠CAD=cos∠ABD==.∴AE=AD•cos∠CAD=,∴AC=2AE=,∴BC==.故选:A.10.解:∵DC=AB,∴=,∴=,∴AD=BD.故选:B.二.填空题(共5小题,满分30分)11.解:延长CD交半径为p的⊙D于E点,连接AE.显然A、B、C在⊙D上.∵AB∥CD∴=,∴BC=AE=q.在△ACE中,∠CAE=90°,CE=2p,AE=q,故AC==.故答案为:.12.解:设弦AB分圆的两部分别为x,3x,∴x+3x=360°,解得:x=90,则劣弧所对圆心角为90°.故答案为:90°13.解:∵一条弦把圆分成1:3两部分,∴整个圆分为四等分,则劣弧的度数为360°÷4=90°,∴弦所对的圆心角为90°.14.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.15.解:由题意知,设圆心为O,60°的圆心角的两边与圆的交点分别为A,B,则△AOB 是等边三角形,∴AO=AB=OB=9cm.三.解答题(共5小题,满分40分)16.(1)证明:连接AE、OE、OF,如图所示,由题意得:OB=OE=OA,AE=AB,∴∠EAO=∠AEO,∠BAO=∠ABO,,∴∠AOE=∠AOB,∴∠EAO=∠BAO;(2)解:∵OE=OF,OE=EF,∴OE=OF=EF,∴∠EOF=60°,∵AE=BF=AB,∴,∴∠AOE=∠BOF=∠AOB,∴∠POQ=∠EOF=20°.17.(1)证明:∵AB=CD,∴=,∵M是的中点,∴=,∴=,∴BM=DM.(2)解:如图,连接OM.∵DM=BM=4,OE⊥BM,∴EM=BE=2,∵OE=1,∠OEM=90°,∴OM===,∴⊙O的半径为.18.证明:连接OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.19.解:(1)连接OD、OF,∵B是劣弧DF的中点.∴,∴,∴BD=BF,∠DBE=∠EBF,在△EBD和△EBF中,∵,∴△EBD≌△EBF(SAS);(2)∵AE=1,EB=5,∴AB=6,∵AB是⊙O的直径,∴OD=OA=3,OE=3﹣1=2,过O作OG⊥CD于G,则CD=2DG,∵∠DEB=30°,∠EGO=90°,∴OG=OE=1,由勾股定理得:DG===2,∴CD=2DG=4.20.解:∵,∴,即:,∴AB=CD.。
六年级上册圆单元测试卷【含答案】
六年级上册圆单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个图形是圆?A. 正方形B. 长方形C. 三角形D. 所有点到圆心距离相等的图形2. 圆的周长公式是?A. C = πdB. C = 2πrC. C = πr^2D. C = 2r3. 圆的面积公式是?A. A = πdB. A = 2πrC. A = πr^2D. A = 2r4. 半径为5厘米的圆,其直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米5. 下列哪个图形不是圆的对称轴?A. 水平线B. 垂直线C. 斜线D. 圆的直径二、判断题(每题1分,共5分)1. 圆的周长与直径成正比。
()2. 圆的面积与半径成正比。
()3. 圆的直径是圆周上任意两点间的距离。
()4. 圆的半径是圆心到圆周上任意一点的距离。
()5. 所有点到圆心距离相等的图形一定是圆。
()三、填空题(每题1分,共5分)1. 圆的周长公式是 C = _______。
2. 圆的面积公式是 A = _______。
3. 半径为 r 的圆,其直径是 _______。
4. 直径为 d 的圆,其周长是 _______。
5. 面积为 A 的圆,其半径是 _______。
四、简答题(每题2分,共10分)1. 请简要说明圆的周长公式。
2. 请简要说明圆的面积公式。
3. 请简要说明圆的直径与半径的关系。
4. 请简要说明圆的对称性质。
5. 请简要说明圆的周长与面积的关系。
五、应用题(每题2分,共10分)1. 已知一个圆的直径为10厘米,求其周长。
2. 已知一个圆的半径为5厘米,求其面积。
3. 已知一个圆的周长为31.4厘米,求其半径。
4. 已知一个圆的面积为78.5平方厘米,求其半径。
5. 已知一个圆的直径增加了2厘米,求其周长增加的长度。
六、分析题(每题5分,共10分)1. 分析圆的周长与半径的关系,并给出证明。
2. 分析圆的面积与半径的关系,并给出证明。
北师大版(2012)九年级下册数学随堂小练:3.2圆的对称性(有答案)
数学随堂小练北师大版(2012)九年级下册:3.2圆的对称性一、单选题1.如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合( )A.60°B.90°C.120°D.180°2.下列说法正确的是()A.每一条直径都是圆的对称轴B.圆的对称轴是唯一的C.圆的对称轴一定经过圆心D.圆的对称轴与对称中心重合3.下列说法正确的是( )A.直径是圆的对称轴B.经过圆心的直线是圆的对称轴C.与圆相交的直线是圆的对称轴D.与半径垂直的直线是圆的对称轴4.下列说法中,错误的是()A.半圆是弧B.半径相等的圆是等圆C.过圆心的线段是直径D.直径是弦5.下列说法:①圆心相同的圆是同圆;②圆心不同,半径相等的圆是等圆;③长度相等的弧是等弧;④在同圆或等圆中,长度相等的弧是等弧;⑤大于半圆的弧叫做优弧;⑥小于半圆的弧叫做劣弧.其中正确的有( )A.1个B.2个C.3个D.4个6.已知,如图,AOB COD ∠=∠,下列结论不一定成立的是( )A.AB CD =B. AB CD =C.AOB COD ≅△△D.,AOB COD △△都是等边三角形7.如图,A B C D ,,,是O 上的点,则图中与A ∠相等的角是( )A.B ∠B.C ∠C.DEB ∠D.D ∠8.如图,,AB CD 是O 的直径,AE BD =,若32AOE ∠=︒,则COE ∠的度数是()A.32︒B.60︒C.68︒D.64︒9.如图所示,在O 中,AB CD =,则在①AB CD =;②AB CD =;③AOC BOD ∠=∠;④AB CD =中,正确的个数是( )A.1B.2C.3D.4 二、填空题 10.如图,AB CD EF ,,都是O 的直径,且123∠=∠=∠,则O 的弦AC BE DF ,,的大小关系是 .11.如图,在O 中,30AB AC A =∠=︒,,则B ∠= .12.如图,AB 是半圆O 的直径,E 是半圆上一点,且OE AB ⊥,点C 为BE 的中点,则A ∠= °.13.如图,AB 是O 的直径,BC CD DE ==,32COD ∠=︒,则AEO ∠的度数为 .三、解答题14.如图,,,A B C 为O 上的三等分点.(1)求BOC ∠的度数;(2)若3AB =,求O 的半径长及ABC S △.参考答案1.答案:C由题意可知ABC △为正三角形,O 为圆心,连接圆心和三角形的三个顶点,即可得到120AOB BOC AOC ∠=∠=∠=°,所以旋转120°后,能使旋转后的图形与原图形重合.故选C.2.答案:C对称轴是直线,不是线段,故A 不正确;圆的对称轴有无数条,故B 不正确;不能说点和线重合,故D 不正确.只有C 正确,故选C.3.答案:B利用直径所在的直线是圆的对称轴对各选项进行判断,故选B.4.答案:C过圆心的弦为直径.所以C 选项的说法错误;选项A 、B 、D 说法都正确.故选C.5.答案:D能够重合的两个圆叫做等圆.与此意思相同的是“圆心不同,半径相等的圆是等圆”,故①错误,②正确;等弧不仅考虑长度要相等,还要考虑是否能够互相重合,即必须是“在同圆或等圆中,能够互相重合的弧叫做等弧”,与此意思相同的是“在同圆或等圆中,长度相等的弧是等弧”故③错误,④正确;⑤⑥是优弧、劣弧的定义,正确.所以正确的共有4个.6.答案:DAOB COD ∠=∠,AB CD ∴=,AB CD =.OA OB OC OD ===,OB COD ∴≅△△,∴选项A 、B 、C 成立;只有当60AOB COD ∠=∠=︒时,,AOB COD △△才是等边三角形,所以选项D 不一定成立故选D7.答案:DD ∠与A ∠都是BC 所对的圆周角,D A ∴∠=∠.8.答案:DAE BD =,32BOD AOE ∴∠=∠=︒,BOD AOC ∠=∠,32AOC ∴∠=︒,COE AOE AOC ∴∠=∠+∠323264=︒+︒=︒ .9.答案:D 在O 中,AB CD AB CD AB BC CD BC =∴=-=-,,,AC BD AC BD AOC BOD ∴=∴=∠=∠,,,∴①②③④都正确10.答案:AC BE DF == 123123AOC BOE DOF ∠=∠∠=∠∠=∠∠=∠=∠,,,且, AOC BOE DOF AC BE DF ∴∠=∠=∠∴==.11.答案:75在O 中,AB AC =,AB AC ∴=,ABC ∴△是等腰三角形,B C ∴∠=∠12.答案:22.5如图,连接OC . ,90.OE AB EOB ⊥∴∠=°∵点C 为BE 的中点,45BOC ∴∠=°.114522.522A BOC ∴∠=∠=⨯=°° .13.答案:48°BC CD DE ==,32COD ∠=︒,32BOC EOD COD ∴∠=∠=∠=︒,18084AOE EOD COD BOC ∠=︒-∠-∠-∠=︒. 又OA OE =,AEO OAE ∴∠=∠,118(08)4482AEO ∴∠=⨯︒-︒=︒14.答案:(1),,A B C 为O 上的三等分点AB BC AC ∴== BOC ∴∠的度数为:13601203⨯︒=︒. (2)过点O 作OD AB ⊥于点D,,A B C 为O 上的三等分点3AB AC BC ∴===即ABC △是等边三角形,且30BAO OBA ∠=∠=︒则32AD =,3cos302AO =÷︒=故DO =132ABC S DO AB =⨯⨯⨯=△。
九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案
随堂测试2.2圆的对称性1.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C 为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米2.有下列说法:①直径是圆中最长的弦;②等弧所对的弦相等;③圆中90°的角所对的弦是直径;④相等的圆心角对的弧相等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB的延长线上一点,BP=2cm,则OP等于()A.cm B.3cm C.cm D.cm4.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.25.如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A.50m B.40m C.30m D.25m6.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm7.如图是某个球放进盒子内的截面图,球的一部分露出盒子外,已知⊙O交矩形ABCD的边AD于点E,F,已知AB=EF=2,则球的半径长为()A.B.C.D.8.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示.若水面宽AB=24cm,则水的最大深度为()A.4cm B.5cm C.8cm D.10cm9.一条排水管的截面如图所示,已知排水管的半径OA=2m,水面宽AB=2.4m,某天下雨后,水管水面上升了0.4m,则此时排水管水面宽CD等于m.10.如图,已知AB、CD是⊙O中的两条直径,且∠AOC=50°,过点A作AE∥CD交⊙O 于点E,则的度数为.11.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=度.12.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.13.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.15.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF ⊥AD.(1)证明:点E是OB的中点;(2)若AE=8,求CD的长.16.如图,MN是⊙O的直径,MN=2,点A是半圆上一个三等分点,点B为的中点,点P是直径MN上的一个动点,求P A+PB的最小值.17.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.18.如图,点A、B、C在⊙O上,=.(1)若D、E分别是半径OA、OB的中点,如图1,求证:CD=CE.(2)如图2,⊙O的半径为4,∠AOB=90°,点P是线段OA上的一个动点(与点A、O 不重合),将射线CP绕点C逆时针旋转90°,与OB相交于点Q,连接PQ,求出PQ的最小值.19.如图1,点P表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O为圆心,5m为半径的圆.若⊙O被水面截得的弦AB长为8m,求水车工作时,盛水筒在水面以下的最大深度.20.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?参考答案1.B.2.B.3.D.4.C.5.D.6.B.7.C.8.C.9.3.2.10.80°.11.60.12.200.13.6.14..15.(1)证明:连接AC,如图,∵直径AB垂直于弦CD于点E,∴=,∴AC=AD,∵过圆心O的线段CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,OE=OC,∴OE=OB,∴点E为OB的中点;(2)解:∵△ACD是等边三角形,AB⊥CD,∴∠CAE=30°,∴CE=,∵直径AB垂直于弦CD于点E,∴CD=2CE=.16.解:作B点关于MN的对称点B′,连接OB、OB′、AB′,AB′交MN于P′,如图,∵点A是半圆上一个三等分点,点B为的中点,∴∠AON=60°,∠BON=30°,∵B点和B′关于MN的对称,∴∠B′ON=30°,∴∠AOB′=90°,∴△OAB′为等腰直角三角形,∴AB′=OA=,∵P A+PB=P A+PB′≥AB′(点A、P、B′共线时取等号),∴P A+PB的最小值=AB′,即P A+PB的最小值为.17.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.18.解:(1)连接CO.∵═,∴∠AOC=∠BOC,∵D、E分别是半径OA、OB的中点,∴,,∴OD=OE,在△ODC和△OEC中,∵OD=OE,∠AOC=∠BOC,OC=OC,∴△ODC≌△OEC(SAS)∴CD=CE;(2)当CP⊥OA时,∵∠AOB=90°,∠PCQ=90°,∴∠CQO=90°,即CQ⊥OB.∵∠AOC=∠BOC,∴CP=CQ,当CP与OA不垂直时,如图,过点C作CM⊥OA,CN⊥OB,M、N为垂足.∵∠AOC=∠BOC,∴CM=CN,又∵∠AOB=90°,∴∠MCN=90°,∴四边形CMON是正方形,∵∠PCQ=90°,∴∠PCM=∠QCN,∴△PCM≌△QCN(AAS)∴CP=CQ,∴,∴当CP取得最小值即CM的长时,PQ有最小值,∴,PQ的最小值为4.19.解:过O点作半径OD⊥AB于E,∴,在Rt△AEO中,,∴ED=OD﹣OE=5﹣3=2.答:水车工作时,盛水桶在水面以下的最大深度为2m.20.解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=2.96(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥。
(完整版)圆的对称性习题(有答案)
2 圆的对称性一、选择题(共10小题)1.(2012•江宁区二模)形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为()A.(﹣1,)B.(0,)C.(,0)D.(1,)2.已知⊙O中,弦AB长为,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是()A.1B.2C.3D.43.下列说法:①若∠1与∠2是同位角,则∠1=∠2②等腰三角形的高,中线,角平分线互相重合③对角线互相垂直且相等的四边形是正方形④等腰梯形是轴对称图形,但不是中心对称图形⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧,其中正确的个数是()A.0B.1C.2D.34.(2013•邵东县模拟)⊙O的半径为R,若∠AOB=α,则弦AB的长为()A.B.2RsinαC.D.R sinα5.已知矩形ABCD的边AB=3,AD=4,如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是()A.3<r<5 B.3<r≤4 C.4<r≤5 D.无法确定6.已知圆的半径为5cm,圆心到弦的距离为4cm,那么这条弦长是()A.3cm B.6cm C.8cm D.10cm7.半径为5的⊙O,圆心在原点O,点P(﹣3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定8.一个点到圆周的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm9.(2010•昌平区一模)如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A.B.C.D.10.(2013•合肥模拟)如图,是半径为1的圆弧,△AOC为等边三角形,D 是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s ≤B.<s ≤C.≤s ≤D.<s <二、填空题(共10小题)(除非特别说明,请填准确值)11.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?12.一条弦AB分圆的直径为3cm和7cm两部分,弦和直径相交成60°角,则AB=_________cm.13.若⊙O的半径为13cm,圆心O到弦AB的距离为5cm,则弦AB的长为_________cm.14.已知点P是半径为5的⊙O内一定点,且PO=4,则过点P的所有弦中,弦长可取到的整数值共有的条数是_________.15.若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A_________.16.在下图所列的图形中选出轴对称图形:_________.17.作圆,使这些圆都经过线段AB的两个端点A和B,这些圆的圆心所组成的图形是_________.18.以已知点O为圆心,可以画_________个圆.19.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=_________.20.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=_________度.三、解答题(共10小题)(选答题,不自动判卷)21.已知:AB交⊙O于C、D,且AC=BD.请证明:OA=OB.22.如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.23.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.24.已知⊙O的半径为12cm,弦AB=16cm.(1)求圆心O到弦AB的距离;(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?25.如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是的中点,求证:∠OAE=∠EAD.(写出两种以上的证明方法)26.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,(1)求CD的长;(2)若直线CD绕点E顺时针旋转15°,交⊙O于C、D,直接写出弦CD的长.27.已知:如图,在⊙O中,∠A=∠C,求证:AB=CD(利用三角函数证明).28.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,求弦AB的长.29.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.30.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.参考答案与试题解析一、选择题(共10小题)1.(2012•江宁区二模)形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为()A.(﹣1,)B.(0,)C.(,0)D.(1,)考点:圆心角、弧、弦的关系;坐标与图形性质;解直角三角形.分析:连接OQ、OP,求出∠POQ的度数,得出等边三角形POQ,得出PQ=OQ=OP=2,∠OPQ=∠OQP=60°,求出∠AOQ度数,根据三角形的内角和定理求出∠QAO,求出AQ、OA,即可得出答案.解答:解:连接OQ、PO,则∠POQ=120°﹣60°=60,∵PO=OQ,∴△POQ是等边三角形,∴PQ=OP=OQ=×4cm=2cm,∠OPQ=∠OQP=60°,∵∠AOQ=90°﹣60°=30°,∴∠QAO=180°﹣60°﹣30°=90°,∴AQ=OQ=2cm,∵在Rt△AOQ中,由勾股定理得:OA==,∴A的坐标是(0,),故选B.点评:本题考查了圆心角、弧、弦之间的关系,三角形的内角和定理,勾股定理,等边三角形的性质和判定等知识点,解此题的关键是构造三角形后求出OA的长,主要考查学生分析问题和解决问题的能力.2.已知⊙O中,弦AB长为,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是()A.1B.2C.3D.4考点:垂径定理;勾股定理.分析:连接OA,根据垂径定理求出AD,设⊙O的半径是R,则OA=R,OD=R﹣1,在Rt△OAD中,由勾股定理得出方程R2=(R﹣1)2+()2,求出R即可.解答:解:连接OA,∵OC是半径,OC⊥AB,∴AD=BD=AB=,设⊙O的半径是R,则OA=R,OD=R﹣1,在Rt△OAD中,由勾股定理得:OA2=OD2+AD2,即R2=(R﹣1)2+()2,R=2,故选B.点评:本题考查了垂径定理和勾股定理,关键是构造直角三角形,用了方程思想.3.下列说法:①若∠1与∠2是同位角,则∠1=∠2②等腰三角形的高,中线,角平分线互相重合③对角线互相垂直且相等的四边形是正方形④等腰梯形是轴对称图形,但不是中心对称图形⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧,其中正确的个数是()A.0B.1C.2D.3考点:垂径定理;同位角、内错角、同旁内角;等腰三角形的性质;正方形的判定;等腰梯形的性质.分析:根据只有在平行线中,同位角才相等,等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,对角线互相平分、垂直、相等的四边形才是正方形,等腰梯形是轴对称图形,但不是中心对称图形,即可判断①②③④;画出反例图形即可判断⑤.解答:解:∵只有在平行线中,同位角才相等,∴①错误;∵等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,∴②错误;∵对角线互相平分、垂直、相等的四边形才是正方形,∴③错误;∵等腰梯形是轴对称图形,但不是中心对称图形,∴④正确;如图AB是⊙O直径,CD是⊙O弦,AB平分CD,但AB和CD不垂直,∴⑤错误;故选B.点评:本题考查了等腰三角形性质,平行线的性质,同位角,等腰梯形性质,正方形的判定等知识点的应用,主要考查学生的辨析能力.4.(2013•邵东县模拟)⊙O的半径为R,若∠AOB=α,则弦AB的长为()A.B.2RsinαC.D.R sinα考点:垂径定理;解直角三角形.分析:过O作OC⊥AB于C,由垂径定理得出AB=2AC,根据等腰三角形性质求出∠AOC=∠BOC=∠AOB=,根据sin∠AOC=求出AC=Rsin,即可求出AB.解答:解:过O作OC⊥AB于C,则由垂径定理得:AB=2AC=2BC,∵OA=OB,∴∠AOC=∠BOC=∠AOB=,在△AOC中,sin∠AOC=,∴AC=Rsin,∴AB=2AC=2Rsin,故选A.点评:本题考查了垂径定理,等腰三角形性质,解直角三角形等知识点,关键是求出AC的长和得出AB=2AC.5.已知矩形ABCD的边AB=3,AD=4,如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是()A.3<r<5 B.3<r≤4 C.4<r≤5 D.无法确定考点:点与圆的位置关系.分析:四边形ABCD是矩形,则△ABC是直角三角形.根据勾股定理得到:AC=5,B,C,D三点中在圆内和在圆外都至少有一个点,由题意可知一定是B在圆内,则半径r>3,一定是点C在圆外,则半径r<5,所以3<r<5.解答:解:∵AB=3,AD=4,∴AC=5,∴点C一定在圆外,点B一定在圆内,∴⊙A的半径r的取值范围是:3<r<5.故选A.点评:本题主要考查了勾股定理,以及点和圆的位置关系,可以通过点到圆心的距离与圆的半径比较大小,判定点和圆的位置关系.6.已知圆的半径为5cm,圆心到弦的距离为4cm,那么这条弦长是()A.3cm B.6cm C.8cm D.10cm考点:垂径定理;勾股定理.专题:计算题.分析:连接OA,根据垂径定理求出AC=BC,根据勾股定理求出AC即可.解答:解:连接OA,∵OC⊥AB,OC过圆心O,∴AC=BC,由勾股定理得:AC===3(cm),∴AB=2AC=6(cm).故选B.点评:本题主要考查对勾股定理,垂径定理等知识点的理解和掌握,能求出AC=BC和AC的长是解此题的关键.7.半径为5的⊙O,圆心在原点O,点P(﹣3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定考点:点与圆的位置关系;勾股定理.专题:计算题.分析:连接OP,根据勾股定理求出OP,把OP和圆的半径比较即可.解答:解:连接OP.∵P(﹣3,4),由勾股定理得:OP==5,∵圆的半径5,∴P在圆O上.故选B.点评:本题主要考查对勾股定理,直线与圆的位置关系等知识点的理解和掌握,能求出OP长和能根据直线与圆的位置关系性质进行判断是解此题的关键.8.一个点到圆周的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm考点:点与圆的位置关系.分析:点P应分为位于圆的内部位于外部两种情况讨论.当点P在圆内时,点到圆的最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解.解答:解:当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是13cm,因而半径是6.5cm;当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是5cm,因而半径是2.5cm.故选A.点评:本题考查了点与圆的位置关系,注意分两种情况进行讨论是解决本题的关键.9.(2010•昌平区一模)如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象;垂径定理.专题:压轴题;动点型.分析:连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.解答:解:连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A.点评:解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.10.(2013•合肥模拟)如图,是半径为1的圆弧,△AOC为等边三角形,D 是上的一动点,则四边形AODC的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<考点:等边三角形的性质;垂径定理.专题:压轴题;动点型.分析:根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.解答:解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC 时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选B.点评:此题首先要能够正确分析出要求的四边形的最小面积和最大面积,然后根据等边三角形的性质以及三角形的面积公式进行计算.二、填空题(共10小题)(除非特别说明,请填准确值)11.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?考点:圆的认识.分析:根据圆的定义:到定点的距离等于定长的点的集合可以得到答案.解答:解:可让牛牛站在原地旋转,壮壮拉直牛牛的手臂,绕牛牛走一圈,用脚在沙滩上画出一条曲线,就是一个圆.点评:本题考查了圆的认识,了解圆的定义是解决本题的关键.12.一条弦AB分圆的直径为3cm和7cm两部分,弦和直径相交成60°角,则AB=2cm.考点:垂径定理.分析:根据题意画出图形,作弦的弦心距,根据题意可知,半径OA=5cm,ND=3cm,ON=2cm,利用勾股定理易求得NM=1cm,OM=cm,进一步可求出AM,进而求出AB.解答:解:根据题意画出图形,如图示,作OM⊥AB于M,连接OA,∴AM=BM,CD=10cm,ND=3cm,∴ON=2cm,∵∠ONM=60°,OM⊥AB,∴MN=1cm,∴OM=,在Rt△OMA中,AM===,∴AB=2AM=2.点评:本题主要考查了垂径定理,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,设法确定其中两边,进而利用勾股定理确定第三边.13.若⊙O的半径为13cm,圆心O到弦AB的距离为5cm,则弦AB的长为24cm.考点:垂径定理;勾股定理.专题:计算题.分析:在△OBD中,利用勾股定理即可求得BD的长,然后根据垂径定理可得:AB=2BD,即可求解.解答:解:连接OB,∵在Rt△ODB中,OD=4cm,OB=5cm.由勾股定理得:BD2=OB2﹣OD2=132﹣52=144,∴BD=12,又OD⊥AB,∴AB=2BD=2×12=24cm.故答案是24.点评:本题主要考查垂径定理,圆中有关半径、弦长以及弦心距的计算一般是利用垂径定理转化成解直角三角形.14.已知点P是半径为5的⊙O内一定点,且PO=4,则过点P的所有弦中,弦长可取到的整数值共有的条数是8条.考点:垂径定理;勾股定理.专题:推理填空题.分析:求出最长弦(直径)和最短弦(垂直于OP的弦),再求出之间的数,得出符合条件的弦,相加即可求出答案.解答:解:过P点最长的弦是直径,等于10,最短的弦是垂直于PO的弦,根据勾股定理和垂径定理求出是6,10和6之间有7,8,9,每个都有两条弦,关于OP对称,共6条,1+1+6=8,故答案为:8条.点评:本题考查了勾股定理和垂径定理的应用,此题是一道比较容易出错的题目,考虑一定要全面,争取做到不重不漏.15.若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A内部.考点:点与圆的位置关系;坐标与图形性质.分析:首先根据两点的坐标求得两点之间的距离,然后利用两点之间的距离和圆A的半径求得点与圆的位置关系.解答:解:∵A的坐标为(3,4),点P的坐标是(5,8),∴AP==2∵⊙A的半径为5,∴5>2∴点P在⊙A的内部故答案为:内部.点评:本题考查了点与圆的位置关系,解题得到关键是根据两点的坐标求得两点之间的距离.16.在下图所列的图形中选出轴对称图形:②③④⑥.考点:圆的认识;轴对称图形.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形进行判断.解答:解:①⑤都不是轴对称图形,②③④⑥是轴对称图形,故答案为:②③④⑥.点评:本题主要考查轴对称的知识点,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.17.作圆,使这些圆都经过线段AB的两个端点A和B,这些圆的圆心所组成的图形是线段AB的垂直平分线.考点:圆的认识;线段垂直平分线的性质.分析:利用圆的性质可以得到圆上的所有点到圆心的距离相等,从而得到所有圆心到A、B两点的距离相等,从而得到结论.解答:解:∵圆上的所有点到圆心的距离相等,∴无论圆心O在哪里,总有OA=OB,即:所有圆心到A、B两点的距离相等,∵到A、B两点的距离相等的点在线段AB的垂直平分线上,故答案为:线段AB的垂直平分线.点评:本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.18.以已知点O为圆心,可以画无数个圆.考点:圆的认识.分析:圆心固定,半径不确定,可以画出无数个圆,由此选择答案解决问题.解答:解:以一点为圆心,以任意长为半径可以画无数个同心圆,故答案为:无数.点评:此题考查:圆心确定圆的位置,半径确定圆的大小这一知识.19.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=48°.考点:圆的认识;平行线的性质.分析:根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.解答:解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,∴∠A=(180°﹣84°)=48°,又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.点评:本题考查了有关圆的知识:圆的半径都相等.也考查了等腰三角形的性质和平行线的性质.20.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=25度.考点:圆的认识;三角形内角和定理;三角形的外角性质.分析:解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.解答:解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.点评:此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.三、解答题(共10小题)(选答题,不自动判卷)21.已知:AB交⊙O于C、D,且AC=BD.请证明:OA=OB.考点:垂径定理;线段垂直平分线的性质.专题:证明题.分析:过O作OE⊥AB于E,根据垂径定理求出CE=DE,求出AE=BE,根据线段的垂直平分线定理求出即可.解答:证明:过O作OE⊥AB于E,∵OE过圆心O,∴CE=DE,∵AC=BD,∴AE=BE,∵OE⊥AB,∴OA=OB.点评:本题考查了线段的垂直平分线定理和垂径定理的应用,主要培养学生运用定理进行推理的能力,题目比较典型,难度适中.22.如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.考点:垂径定理.专题:证明题.分析:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,再由平行线分线段成比例定理即可求解.解答:证明:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,则CG=DG,∵CE⊥CD,DF⊥CD,OG⊥CD,∴CE∥OG∥DF,∵CG=DG,∴OE=OF,∵OA=OB,∴AE=BF.点评:本题综合考查了垂径定理和平行线分线段成比例定理,解答此题的关键是作出辅助线,构造出平行线,再利用平行线的性质解答.23.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.考点:圆心角、弧、弦的关系;平行线的判定与性质;三角形内角和定理;含30度角的直角三角形.专题:证明题.分析:连接OE,推出DE⊥OC,求出∠EDO=90°,根据OD=OC=OE,求出∠DEO=30°,求出∠EOC,根据OC⊥AB,求出∠AOC=90°,求出∠AOE=30°,即可求出答案.解答:证明:连接OE,∵AB⊥OC,DE∥AB,∴DE⊥OC,∴∠EDO=90°,∵D为OC中点,∴OD=OC=OE,∴∠DEO=30°,∴∠EOC=90°﹣30°=60°,∵OC⊥AB,∴∠AOC=90°,∴∠AOE=90°﹣60°=30°,即∠AOE=30°,∠COE=60°,∴=2(圆心角的度数等于它所对的弧的度数).点评:本题考查了三角形的内角和定理,平行线的性质和判定,圆心角、弧、弦之间的关系,和30度角的直角三角形,主要考查学生运用定理进行推理的能力,题目比较好,综合性比较强.24.已知⊙O的半径为12cm,弦AB=16cm.(1)求圆心O到弦AB的距离;(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?考点:垂径定理;勾股定理.专题:计算题.分析:(1)连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,求出BC,再根据勾股定理求出OC即可;(2)弦AB的中点形成一个以O为圆心,以4cm为半径的圆周.解答:(1)解:连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,∵OC⊥AB,OC过圆心O,∴AC=BC=AB=8cm,在Rt△OCB中,由勾股定理得:OC===4(cm),答:圆心O到弦AB的距离是4cm.(2)解:如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点到圆心O的距离都是4cm,∴如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成一个以O为圆心,以4cm为半径的圆周.点评:本题考查了勾股定理和垂径定理的应用,主要培养学生运用定理进行推理和计算的能力,题型较好,难度适中.25.如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是的中点,求证:∠OAE=∠EAD.(写出两种以上的证明方法)考点:圆心角、弧、弦的关系;三角形内角和定理.专题:证明题.分析:方法一:连接OB,利用同弧所对的圆周角是它所对圆心角的一半,三角形内角和定理,同弧所对的圆周角相等即可证明此题.方法二:连接OE,利用垂径定理可得OE⊥BC,再利用AD⊥BC,可得OE∥AD,然后即可证明.解答:证明:(1)连接OB,则∠AOB=2∠ACB,∠OAB=∠OBA,∵AD⊥BC,∴∠OAB=(180°﹣∠AOB),=90°﹣∠AOB=90°﹣∠ACB=∠DAC,∵E是弧BC的中点,∴∠EAB=∠EAC,∴∠EAO=∠EAB﹣∠OAB=∠EAC﹣∠DAC=∠EAD.(2)连接OE,∵E是的中点,∴弧BE=弧EC,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OE=OA,∴∠OAE=∠OEA,∴∠OAE=∠EAD.点评:此题主要考查学生对三角形内角和定理和圆心角、弧、弦的关系等知识点的理解和掌握,此题难度不大,关键是作好辅助线,方法一:连接OB,方法二:连接OE,属于中档题.26.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,(1)求CD的长;(2)若直线CD绕点E顺时针旋转15°,交⊙O于C、D,直接写出弦CD的长.考点:垂径定理;勾股定理.分析:(1)作OH⊥CD于H,连接OD,求出AB=6cm,半径OD=3cm,在Rt△OHE中,OE=2cm,∠OEH=60°,由勾股定理求出OH=cm,在Rt△OHD中,由勾股定理得求出HD=cm,由垂径定理得出DC=2DH,代入即可;(2)求出OE,∠OEH=45°,根据勾股定理求出OH,在Rt△OHD中,由勾股定理得求出HD,由垂径定理得出DC=2DH,代入即可.解答:解:(1)作OH⊥CD于H,连接OD,∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=6cm,半径OD=3cm,∵在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=60°,∴OH=cm,在Rt△OHD中,由勾股定理得:HD=cm,∵OH⊥CD,∴由垂径定理得:DC=2DH=2cm;(2)作OH⊥CD于H,连接OD,∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=cm6,半径OD=3cm,∵若直线CD绕点E顺时针旋转15°,∴∠OEH=60°﹣15°=45°,在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=45°,∴OH=cm,在Rt△OHD中,由勾股定理得:HD==(cm),∵OH⊥CD,∴由垂径定理得:DC=2DH=2cm;即CD=2cm.点评:本题考查了垂径定理,勾股定理,含30度角的直角三角形性质,等腰直角三角形性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.27.已知:如图,在⊙O中,∠A=∠C,求证:AB=CD(利用三角函数证明).考点:垂径定理;解直角三角形.专题:证明题.分析:作OE⊥AB于E,OF⊥CD于F,设⊙O半径为R,根据sinA=,、inC=和∠A=∠C求出OE=OF,由勾股定理求出AE=CF,由垂径定理得出DC=2DF,AB=2AE,即可求出答案.解答:证明:作OE⊥AB于E,OF⊥CD于F设⊙O半径为R,sinA=,sinC=,∴OE=RsinA,OF=RsinC,∵∠A=∠C,∴sinA=sinC,∴OE=OF,由勾股定理得:CF2=OC2﹣OF2,AE2=OA2﹣OE2,∴AE=CF,由垂径定理得:DC=2DF,AB=2AE,∴AB=CD.点评:本题考查了勾股定理,垂径定理,解直角三角形等知识点,主要培养学生运用定理进行推理的能力.28.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,求弦AB的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:连接OA,根据等腰三角形性质求出∠D=∠OAD=30°,求出∠AOH=60°,根据垂径定理求出AB=2AH=2BH,求出∠HAO=30°,推出AO=2OH=C0,求出OH=CH=1cm,AO=2cm,在Rt△AHO 中,由勾股定理求出AH即可.解答:解:连接OA,∵OA=OD,∴∠D=∠OAD=30°,∴∠AOH=30°+30°=60°,∵AB⊥DH,∴∠AHO=90°,AB=2AH=2BH,∴∠HAO=30°,∴AO=2OH=C0,∴OH=CH=1cm,∴AO=2cm,在Rt△AHO中,由勾股定理得:AH==cm,∴AB=2cm.点评:本题考查了三角形的内角和定理,含30度角的直角三角形的性质,勾股定理,垂径定理,等腰三角形的性质等知识点的应用,主要考查学生综合运用性质进行计算和推理的能力,题目具有一定的代表性,是一道比较好的题目.29.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB 的长.考点:垂径定理;等腰三角形的性质;勾股定理.专题:计算题.分析:①连接AD、OB,根据三线合一得出AO过D,在Rt△OBD中,根据勾股定理求出BD,在Rt△ADB 中,根据勾股定理求出AB即可.②求出BD、AD,根据勾股定理求出AB即可.解答:解:①如图,连接AD,连接OB,∵△ABC是等腰三角形,∴根据等腰三角形的性质(三线合一定理)得出,AO⊥BC,AO平分BC,∵OD⊥BC,∴根据垂直定理得:OD平分BC,即A、O、D三点共线,∴AO过D,∵等腰△ABC内接于半径为6cm的⊙O,∴OA=6cm,BD=DC,AD⊥BC,在Rt△OBD中,由勾股定理得:BD===4(cm),在Rt△ADB中,由勾股定理得:AB===4(cm),②如图:同法求出BD=4cm,AD=6cm﹣2cm=4cm,由勾股定理得:AB===4(cm),答:AB的长是4cm或4cm.点评:本题考查了垂径定理,等腰三角形性质,勾股定理等知识点的应用,关键是正确作辅助线后求出BD的长,题目具有一定的代表性,难度也适中,是一道比较好的题目.注意:分类讨论.30.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.专题:计算题.分析:延长AO交BC于D,过O作OE⊥BC于E,根据垂径定理求出BC=2BE,根据等边三角形的性质和判定求出AD=BD=AB=12,求出OD的长,根据含30度角的直角三角形性质求出DE即可解答:解:延长AO交BC于D,过O作OE⊥BC于E,∵OE过圆心O,OE⊥BC,∴BC=2CE=2BE(垂径定理),∵∠A=∠B=60°,∴DA=DB,∴△DAB是等边三角形(有一个角等于60°的等腰三角形是等边三角形),∴AD=BD=AB=12,∠ADB=60°,∴OD=AD﹣OA=12﹣7=5,∵∠OED=90°,∠ODE=60°,∴∠DOE=30°,∴DE=OD=(在直角三角形中,如果有一个角是30°,那么它所对的直角边等于斜边的一半),∴BE=12﹣=,∴BC=2BE=19(根据垂径定理已推出,在第三行).点评:本题考查了垂径定理,等边三角形的性质和判定,含30度角的直角三角形的性质等知识点的理解和掌握,关键是正确作辅助线后求出BE的长,题目比较典型,难度适中.。
圆的对称性(含答案)
1题《圆的对称性》练习题二1.如图,⊙O 中,AB=CD ,由图中可得哪些结论? 。
2.半径为2cm 的圆中,长为2 3 cm 的所对的圆心角度数为 ,弦心距长为 。
3.下列说法中正确的是:A 、相等的圆心角所对的弧相等B 、相等的弦所对的圆心角相等C 、在同圆或等圆中,相等的圆心角所对的弦相等D 、相等的弦所对的弧相等4.如图,⑴⊙O 的半径为4cm ,正方形ABCD 的四个顶点都在⊙O 上,则AB 长为 。
⑵⊙O 的半径为5cm ,正六边形ABCDEF 的六个顶点都在⊙O 上,则正六边形ABCDEF 的周长为 。
5.如图,点A 、B 、C 为⊙O 上的三点,CD ⊥AO ,CE ⊥BO ,且CD=CE试判断与的大小关系,并说明理由。
6.如图,⊙O 中,弦AB 、CD 交于点P ,M 、N分别是AB 、CD 的中点,连接MN ,若求证:MP=NP7.如图,⊙O 中,AB=CD ,点M 、N 分别为AB 、CD 的中点 求证:∠AMN=∠DNM8.如图,==,OB 、OC 分别交AC 、BD 于点M 、N 求证:∠OMN=∠ONM9.如图,已知AB 为⊙O 的弦,从圆上任意一点作弦C D ⊥AB ,作∠OCD 的角平分线交⊙O 于点P ,连接PA 、PB 。
求证:AP=PB4题(1) 4题(2) 5题 8题6题 7题AB 、CD 4.如图,已知点O 为∠EPF 的角平分线上一点,以O 为圆心的圆与角两边分别交于A 、B 、C 、D 四点。
求证:AB=CD6.如图,已知⊙O 的弦AB 、CD 交于点P ,PO 为∠APC 的角平分线,点M 、N分别是 的中点。
求证:MN ⊥PO答案:1略 2.10.5cm 3.10cm 4.过点O 分别作AB 、CD 的垂线段 5.连接OP6.分别连接OM 、ON7. 分别连接OM 、ON8. 分别连接OD 、OE。
北师大版九年级下册数学[圆的对称性—知识点整理及重点题型梳理](提高)
北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习圆的对称性—知识讲解(提高)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【总结升华】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【总结升华】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【总结升华】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【总结升华】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形. 类型三、圆心角、弧、弦之间的关系及应用5.已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .【思路点拨】本题主要是考查弧、弦、圆心角之间的关系,要证AD =BC ,只需证AD BC =或证∠AOD=∠BOC 即可.【答案与解析】证法一:如图①,∵ AB =CD ,∴ A B C D =.∴ A B B DC D B D -=-,即AD BC =, ∴ AD =BC .证法二:如图②,连OA 、OB 、OC 、OD ,∵ AB =CD ,∴ ∠AOB =∠COD .∴ ∠AOB -∠DOB =∠COD -∠DOB ,即∠AOD =∠BOC ,∴ AD =BC .【总结升华】在同圆或等圆中,证两弦相等时常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,必须借助已知的等弦进行推理.举一反三:【变式】如图所示,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB . 求证:AC BD =.【答案】证法一:如上图所示,连OC、OD,则OC=OD,∵OA=OB,且12OM OA=,12ON OB=,∴OM=ON,而CM⊥AB,DN⊥AB,∴Rt△COM≌Rt△DON,∴∠COM=∠DON,∴A C B D=.证法二:如下图,连AC、BD、OC、OD.∵M是AO的中点,且CM⊥AB,∴AC=OC,同理BD=OD,又OC=OD.∴AC=BD,∴A C B D=.。
北京课改版九年级数学上册 《圆的对称性》 同步练习(含答案)
北京课改版九年级上册圆的对称性同步练习一.选择题(共10小题,3*10=30)1.如图,直径AB 平分弦CD ,交CD 于点E ,则下列结论错误的是( ) A.AC ︵=AD ︵ B.BC ︵=BD ︵C .AB ⊥CD D .OE =BE2.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC =AB B .∠C =12∠BODC .∠C =∠BD .∠A =∠BOD3.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为() A .2 B .4C .6D .84.下列命题中正确的是( )A .弦的垂线平分弦所对的弧B .平分弦的直线垂直于这条弦C .过弦的中点的直线必经过圆心D .弦所对的两条弧的中点连线垂直平分这条弦且过圆心5.如图,AB 是半圆O 的直径,半径OM 垂直于弦AC ,垂足为E ,MN ⊥AB 于N ,下列结论:①AM ︵=CM ︵;②∠OMN =∠OAE ;③BC ︵=MC ︵;④MN =12AC.其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④6. 如图,AB 是⊙O 的直径,点M 在弦CD 上,CM =DM ,下列结论不成立的是( )A .AB ⊥CD B .CB =DBC .∠ACD =∠ADC D .OM =MD7. 如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为( )A .10 cmB .16 cmC .24 cmD .26 cm8. 已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,则AB =8 cm ,则AC 的长为( )A .2 5 cmB .4 5 cmC .2 5 cm 或4 5 cmD.2 3 cm或4 3 cm9. 如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD =8 cm,AE=2 cm,则OF的长度是( )A.3 cm B. 6 cmC.2.5 cm D. 5 cm10.在半径为5 cm的⊙O中,弦AB的长为6 cm,当弦AB的两个端点A,B在⊙O上滑动时,AB的中点在滑动过程中所经过的路线为()A.圆B.直线C.正方形D.多边形二.填空题(共8小题,3*8=24)11.世界上因为有了圆的图案,万物显得更富有生机,以下图形(如图)都有圆,它们看上去是多么美丽和谐,这正是因为圆具有轴对称性.图中的三个图形是轴对称图形的有____________;(分别用三个图的序号填空)12.如图,AB,AC分别是⊙O的弦,D,E分别是AB,AC的中点,∠DOE=120°,则∠DAC的度数为_______.13.如图,已知AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,且AE=3 cm,BF=5 cm,若⊙O的半径为5 cm,求CD的长.14.如图,若⊙O 的半径为13 cm ,点P 是弦AB 上的一个动点,且到圆心的最短距离为5 cm ,则弦AB 的长为_______cm.15.如图,⊙O 的直径AB 平分CAD ︵,AB 交CD 于E ,AE 与BE 的长度之比为5∶1,CD =16 cm ,则⊙O 的半径为_______cm.16.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G ,B ,F ,E ,GB =8 cm ,AG =1 cm ,DE =2 cm ,则EF =________.17.如图所示,以O 为圆心的同心圆,大圆的弦AB 交小圆于C ,D ,如果AB =3cm ,CD =2cm ,那么AC =__ __cm.18. 如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为_______.三.解答题(共7小题,46分)19. (6分) 如图,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,求DM 的长.20. (6分) 如图,AB 为⊙O 的直径,从圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O于P ,求证:AP ︵=BP ︵.21. (6分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,求该铅球的直径.22.(6分) “圆材埋壁”是我国古代著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 题目用现在的数学语言表达是:如图所示,CD是⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD 的长.23. (6分) 已知以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到AB的距离为6,求AC的长.24. (8分) 已知⊙O的弦CD与直径AB垂直于点F,点E在CD上,且AE=CE.(1)求证:CA2=CE·CD;(2)已知CA=5,EA=3,求sin∠EAF25. (8分) 已知圆的半径为5 cm,两弦AB∥CD,AB=8 cm,CD=6 cm,则两弦AB,CD 的距离是多少?参考答案1-5DBDDB 6-10DCCDA11. ①②③12. 60°13. 6 cm14. 2415. 245516. 6cm17. 0.518. 419. 解:连结AO ,∵OM ⊥AB ,∴AM =12AB =4. 在Rt △AOM 中,AO =5,AM =4,∴由勾股定理得OM =3,则DM =5+3=8.20. 解:连结OP ,∵OC =OP ,∴∠OCP =∠P ,又∠DCP =∠OCP ,∴∠DCP =∠P ,∴CD ∥OP ,∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵21. 解:如图所示,依题意,得AB =10 cm ,CD =2 cm.连结OA ,作OC ⊥AB 于点D ,交圆O 于点C ,∴AD =12AB =12×10=5(cm). 设铅球的半径为k cm ,则OD =(k -2)cm ,在Rt △AOD 中,AD 2+OD 2=OA 2,∴52+(k -2)2=k 2,解得k =7.25,∴2k =14.5.22. 解:连结OA.∵CD ⊥AB 于E ,CD 为直径,∴AE =12AB =12×10=5(寸). 在Rt △AEO 中,设AO =x ,则OE =(x -1)寸.由勾股定理得x 2=52+(x -1)2,解得x =13,∴OA =13寸,∴CD =2OA =26寸,∴直径CD 的长为26寸.23. 解:(1)作OH ⊥CD 于点H ,在小圆中,CH =DH ;在大圆中,AH =BH ,∴AH -CH =BH -DH ,即AC =BD(2)在Rt △OCH 中,CH =OC 2-OH 2=82-62=27,在Rt △OAH 中,AH =OA 2-OH 2=102-62=8,∴AC =8-2724. 解:(1)∵CD ⊥AB ,∴AC ︵=AD ︵,∴∠D =∠C ,又∵AE =EC ,∴∠CAE =∠C ,∴∠CAE =∠D ,∠C 是公共角,∴△CEA ∽△CAD ,∴CA CD =CE CA,即CA 2=CE·CD (2)∵CA 2=CE·CD ,AC =5,EC =EA =3,∴52=CD×3,∴CD =253, 又∵CF =FD ,∴CF =12CD =12×253=256,∴EF =CF -CE =76, 在Rt △AFE 中,sin ∠EAF =EF AE =763=71825. 解:如图:分2种情况。
九年级数学苏科版上册课时练第2单元《 2.2 圆的对称性》(1) 练习试题试卷 含答案
课时练2.2圆的对称性一、选择题1.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD长是()A.2B.3C.4D.52.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.83.如图,弦CD垂直于⊙O直径AB,垂足为H,且CD=,BD=,则AB长为()A.2B.3C.4D.54.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm5.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BDB.AD⊥OCC.△CEF≌△BEDD.AF=FD6.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4C.2D.4.87.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸8.如图所示,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为().A.1cmB.2cmC.3cmD.4cm9.如图,在半径为13cm圆形铁片上切下一块高为8cm弓形铁片,则弓形弦AB长为().A.10cmB.16cmC.24cmD.26cm10.杭州市钱江新城,最有名的标志性建筑就是“日月同辉”,其中“日”指的是“杭州国际会议中心”,如图所示为它的主视图.已知这个球体的高度是85m,球的半径是50m,则杭州国际会议中心的占地面积是().A.1275πm2B.2550πm2C.3825πm2D.5100πm2二、填空题11.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.12.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是.13.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为cm.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧ABC上,AB=8,BC=3,则DP=.15.如图所示为由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.16.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为米.三、解答题17.如图,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)求证:点E是OB的中点;(2)若AB=8,求CD的长.18.如图,在等腰直角三角形ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B,C 两点,若BC=8,AO=1,求⊙O的半径.19.如图所示,残缺的圆形轮片上,弦AB的垂直平分线CD交圆形轮片于点C,垂足为点D,解答下列问题:(1)用尺规作图找出圆形轮片的圆心O的位置并将圆形轮片所在的圆补全;(要求:保留作图痕迹,不写作法)(2)若弦AB=8,CD=3,求圆形轮片所在圆的半径R.20.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.参考答案1.A.2.D.3.B4.B5.C.6. C.7.C.8.C.9.C.10.A.11.23.12.(2,0).13.40.14.5.5;15.50.16.8.17.解:(1)证明:连接AC.∵OB⊥CD,∴CE=ED,即OB是CD的垂直平分线.∴AC=AD.同理AC=CD.∴△ACD是等边三角形.∴∠ACD=60°,∠DCF=30°.在Rt△COE中,OE=12OC=12OB.∴点E是OB的中点.(2)∵AB=8,∴OC=12AB=4.又∵BE=OE,∴OE=2.∴CE=OC 2-OE 2=16-4=2 3.∴CD=2CE=4 3.18.解如答图所示,连结BO,CO,延长AO 交BC 于点D.∵△ABC 是等腰直角三角形,∠BAC=90°,∴AB=AC.∵点O 是圆心,∴OB=OC.∴直线OA 是线段BC 的垂直平分线.∴AD⊥BC,且D 是BC 的中点.在Rt△ABC 中,AD=BD=21BC,∵BC=8,∴BD=AD=4.∵AO=1,∴OD=AD-AO=3.∵AD⊥BC,∴∠BDO=90°.∴OB=22BD OD +=2243+=5.19.解:(1)图略.(2)连结OA.∵CD 是弦AB 的垂直平分线,AB=8,∴AD=12AB=4.在Rt△ADO 中,AO=R,AD=4,DO=R-3,根据勾股定理,得R 2=16+(R-3)2,解得R=256.20.(1)证明:∵AB 为⊙O 的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC 中,AC 2+BC 2=AB 2,∴(x﹣2)2+x 2=42,解得:x 1=1+,x 2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。
【中考冲刺】初三数学培优专题 18 圆的对称性(含答案)(难)
圆的对称性阅读与思考圆是一个对称图形.首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性.由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用.熟悉以下基本图形和以上基本结论.我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印.例题与求解【例1】在半径为1的⊙O 中,弦AB ,ACBAC 度数为_______. (黑龙江省中考试题)解题思路:作出辅助线,解直角三角形,注AB 与AC 有不同位置关系.由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决.【例2】如图,在三个等圆上各自有一条劣弧AB ,D C ,EF .如果AB +D C =EF ,那么AB +CD 与EF 的大小关系是()A .AB +CD =EF B .AB +CD >EFC .AB +CD <EFD .AB +CD 与EF 的大小关系不能确定(江苏省竞赛试题)解题思路:将弧与弦的关系及三角形的性质结合起来思考.ABCD【例3】⑴ 如图1,已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成, ⊙O 过A ,D ,E 三点,求⊙O 的半径.⑵ 如图2,若多边形ABDEC 是由等腰△ABC 和矩形BDEC 组成,AB =AC =BD =2,⊙O 过A ,D ,E 三点,问⊙O 的半径是否改变?(《时代学习报》数学文化节试题)解题思路:对于⑴,给出不同解法;对于⑵,⊙的半径不改变,解法类似⑴.等边三角形、正方形、圆是平面几何图形中最完美的图形,本例表明这三个完美的图形能合成一个从形式到结果依然完美的图形.三个完美图形的不同组合可生成新的问题,同学们可参照刻意练习.【例4】如图,已知圆内接△ABC 中,AB >AC ,D 为BAC 的中点,DE ⊥AB 于E .求证:BD 2-AD 2=AB AC .(天津市竞赛试题) 解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明.圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形问题提供了新的途径和方法,善于促成同圆或等圆中的弦、弦心距、弧、圆周角、圆心角之间相等或不等关系的互相转化,是解圆相关问题的重要技巧.ABCD E图1图2【例5】在△ABC 中,M 是AB 上一点,且AM 2+BM 2+CM 2=2AM +2BM +2CM -3.若P 是线段AC 上的一个动点,⊙O 是过P ,M ,C 三点的圆,过P 作PD ∥AB 交⊙O 于点D .⑴ 求证:M 是AB 的中点;⑵ 求PD 的长. (江苏省竞赛试题)解题思路:对于⑴,运用配方法求出AM ,BM ,CM 的长,由线段长确定直线位置关系;对于⑵,促成圆周角与弧、弦之间的转化.【例6】已知AD 是⊙O 的直径,AB ,AC 是弦,且AB =AC .⑴ 如图1,求证:直径AD 平分∠BAC ;⑵ 如图2,若弦BC 经过半径OA 的中点E ,F 是CD 的中点,G 是FB 的中点,⊙O 的半径为1,求弦FG 的长;⑶ 如图3,在⑵中若弦BC 经过半径OA 的中点E ,P 为劣弧上一动点,连结P A ,PB ,PD ,PF ,求证:PA PFPB PD++的定值.(武汉市调考试题)解题思路:对于⑶,先证明∠BP A =∠DPF =300,∠BPD =600,这是解题的基础,由此可导出下列解题突破口的不同思路:①由∠BP A ==∠DPF =300,构建直角三角形;②构造P A +PF ,PB +PD 相关线段;③取BD 的中点M ,连结PM ,联想常规命题;等等.本例实质是借用了下列问题:⑴如图1,P A +PBPH ; ⑵如图2,P A +PB =PH ;⑶进一步,如图3,若∠APB =α,PH 平分∠APB ,则P A +PB =2PHc o s2α为定值.图1A 600300300PHB PABH600 图2 PABH 图3C图1图2图3能力训练A 级1.圆的半径为5cm ,其内接梯形的两底分别为6cm 和8cm ,则梯形的面积为_______cm 2.2.如图,残破的轮片上,弓形的弦AB 长是40cm ,高CD 是5cm ,原轮片的直径是________cm .第3题图第2题图C ABCDDO BA3.如图,已知CD 为半圆的直径,AB ⊥CD 于B .设∠AOB =α,则BA BD ta n 2=_________. (黑龙江省中考试题)4.如图,在Rt △ABC 中,∠C =900,AC =2,BC =1,若BC =1,若以C 为圆心,CB 的长为半径的圆交AB 于P ,则AP =___________. (江苏省宿迁市中考试题)5.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA —AB —BO 的路径运动一周. 设OP 长为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间的关系是( )(太原市中考试题)6.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,那么AC 的长为( )A .0. 5c mB .1c mC .1. 5c mD .2c m7.如图,AB 为⊙O 的直径,CD 是弦.若AB =10cm ,CD =8cm ,那么A ,B 两点到直线CD 的距离之和为( )A .12cmB .10cmC .8cmD .6cmt sOAt sO BtsO CsO DA OCD AE CD FBABC DF EP (第6题图)APB C(第4题图)(第7题图)(第8题图)8.如图,半径为2的⊙O中,弦AB与弦CD垂直相交于点P,连结OP.若OP=1,求AB2+CD2的值.(黑龙江省竞赛试题)9.如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM于N,其延长线交⊙O于点C,弦CD交AM于点E.⑴如果CD⊥AB,求证:EN=NM;⑵如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED;⑶如果弦CD,AB的延长线交于点F,且CD=AB,那么⑵的结论是否仍成立?若成立,请证明;若不成立,请说明理由.(重庆市中考试题)10.如图,⊙O的内接四边形ABMC中,AB>AC,M是BC的中点,MH⊥AB于点H.求证:BH=1 2(AB-AC).(河南省竞赛试题)11.⑴如图1,圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G.求证:阴影部分四边形OFCG的面积是△ABC面积的13.⑵如图2,若∠DOE保持0120角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的13.AB CDOEFM(第9题图)AHB MC(第10题图)图2图1D12.如图,正方形ABCD 的顶点A ,D 和正方形JKLM 的顶点K ,L 在一个以5为半径的⊙O 上,点J ,M 在线段BC 上.若正方形ABCD 的边长为6,求正方形JKLM 的边长.(上海市竞赛试题)B 级1.如图,AB 是⊙O 的直径,CD 是弦,过A ,B 两点作CD 的垂线,垂足分别为E ,F .若AB =10,AE =3,BF =5,则EC =__________.2.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC =5,则折痕在△ABC 内的部分DE 长为________. (宁波市中考试题)3.如图,已知⊙O 的半径为R ,C ,D 是直径AB 同侧圆周上的两点,AC 的度数为960,BD 的度数为360.动点P 在AB 上,则CP +PD 的最小值为__________.(陕西省竞赛试题)O A E CD FBABCDE A ′ABCDPO (第1题图)(第2题图)(第3题图)A D CB NOJ MK L(第12题图)4.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径是( ) ABC .54D5.如图,AB 是半圆O 的直径,C 是半圆圆周上一点,M 是AC 的中点,MN ⊥AB 于N ,则有()A .MN =12AC B .MN=2AC C .MN =35AC D .MN=3AC (武汉市选拔赛试题)第4题图第5题图A C O6.已知,AB 为⊙O 的直径,D 为AC 的中点,DE ⊥AB 于点E ,且DE =3.求AC 的长度.7.如图,已知四边形ABCD 内接于直径为3的⊙O ;对角线AC 是直径,对角线AC 和BD 的交点为P ,AB =BD ,且PC =0. 6,求四边形ABCD 的周长.(全国初中数学联赛试题)AD O BE GFN ACBDO P(第7题图)(第6题图)C8.如图,已知点A ,B ,C ,D 顺次在⊙O 上,AB BD =,BM ⊥AC 于M .求证:AM =DC +CM .(江苏省竞赛试题)9.如图,在直角坐体系中,点B ,C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,CD AO =,如果AB =10,AO >BO ,且AO ,BO 是x 的二次方程0482=++kx x 的两个根.⑴ 求点D 的坐标;⑵ 若点P 在直径AC 上,且AP =14AC ,判断点(-2,10)是否在过D ,P 两点的直线上,并说明理由. (河南省中考试题)10.⑴如图1,已知P A ,PB 为⊙O 的弦,C 是劣弧AB 的中点,直线CD ⊥P A 于点E ,求证:AE =PE +PB . ⑵如图2,已知P A ,PB 为⊙O 的弦,C 是优弧AB 的中点,直线CD ⊥P A 于点E ,问:AE ,PE 与PB 之间存在怎样的等量关系?写出并证明你的结论.x(第9题图)ABC D O M (第8题图)A图1CPBDEO A图2C PB D EO11.如图,已知弦CD 垂直于⊙O 的直径AB 于L ,弦AE 平分半径OC 于H .求证:弦DE 平分弦BC 于M . (全俄奥林匹克竞赛试题)12.如图,在△ABC 中,D 为AC 边上一点,且AD =DC +CB ,过D 作AC 的垂线交△ABC 的外接圆于M ,过M 作AB 的垂线MN ,交圆于N .求证:MN 为△ABC 外接圆的直径.专题18 圆的对称性例1 15°或75° 提示:分AB 、AC 在圆心O 同侧、异侧两种情况讨论. 例2 B例3 (1)解法一:如图,将正方形BDEC 上的等边△ABC 向下平移,使其底边与DE 重合,得等边△ODE .∵A 、B 、C 的对应点是O 、D 、E ,∴OD =AB ,OE =AC ,AO =BD .∵等边△ABC 和正方形BDEC 的边长都是2,∴AB =BD =AC =2,∴OD =OA =OE =2.∵A 、D 、E 三点确定一圆,O 到A 、D 、E 三点的距离相等.∴O 点为圆心,OA 为半径,∴该圆的半径为2.解法二:如图,将△ABC 平移到△ODE 位置,并作AF ⊥BC ,垂足为F ,延长交DE 于H .∵△ABC 为等边三角形,∴AF 垂直平分BC ,∵四边形BDEC 为正方形,∴AH 垂直平分正方形边DE .又∵DE 是圆的弦,∴AH 必过圆心,记圆心为O 点,并设⊙O 的半径为r .在Rt △ABF 中,∵∠BAF =30°,∴AF =AB ·cos 30°=2×32=3,∴OH =AF +FH -OA =3+2-r .在Rt △ODH 中,OH 2+DH 2=OD 2,∴(32r +-)2+12=r 2,解得r =2.(2)⊙O 的半径不变,因为AB =AC =BD =2,此题求法和(1)一样,⊙O 的半径为2.例4 提示:BD 2-AD 2=(BE 2+ED 2)-(AE 2+ED 2)=(BE +AE )(BE -AE )=AB (BE -AE ),只需要证明AC =AC O LE BDMH(第11题图)AC M N OD B(第12题图)BE -AE 即可.在BA 上截取BF =AC .连DF 可证明△DBF ≌△DCA ,则DF =AD ,AE =EF . 例5 (1)由条件,得(AM -1)2+(BM -1)2+(CM -1)2=0,∴AM =BM =CM =1.因此,M 是AB 中点,且∠ACB =90°. (2)由(1)知,∠A =∠PCM ,又PD ∥AB ,∴∠A =∠CPD ,∠PCM =∠CPD ,因此,,CD PM CPM DCP ==,于是有DP =CM =1.例6 (1)连结BD 、CD ,∵AD 是直径,所以∠ABD =∠ACD =90°,又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠DAC ,∴AD 平分∠BAC .(2)连结OB 、OC ,则OA ⊥BC ,又AE =OE ,得AB =BO =OA =OC ,△AOB ,△AOC 都为等边三角形,连结OG ,则∠GOF =90°,FG =2.(3)取BD 的中点M ,过M 作MS ⊥PA 于S ,MT ⊥PF 于T ,连AM ,FM .∠BPM =∠DPM =30°,∠APM =∠FPM =60°,则MS =MT ,MA =MF ,Rt △ASM ≌Rt △FTM ,Rt △PMS ≌Rt △PMF .∴PS =12PM .∴PA +PF =2PS =2PT =PM .同理可证:PB +PD =3PM .∴13333PA PF PM PB PD PM +===+为定值.A 级 1.49或7 2. 85 3.1 4.335.C 6.D 7.D 8.过O 点作OE ⊥AB 于E ,OF ⊥CD 于F ,连结OD ,OA ,则AE =BE ,CF =DF ,∵OE 2=AO 2-AE 2=(4214AB -),OF 2=OD 2-FD 2=414-CD 2,∴OE 2+OF 2=(4214AB -)+(4214CD -)=PF 2+OF 2=OP 2=12,即4214AB -+4214CD -=1,故AB 2+CD 2=28.得x 1=-3(舍去),x 2=75,∴正方形JKLM 的边长为145.B 级1. 26-3 提示:作OM ⊥CD 于M ,则EC =12(EF -CD). 2. 103 3. 3R 提示:设D'是D 点关于直径AB 对称的点,连结CD'交AB 于P ,则P 点使CP +PD 最小,∠COD'=120°,CP +PD =CP +PD'=CD'=3R. 4. D 提示:如图:,得⎩⎪⎨⎪⎧a 2+12=r 2(2-a)2+(12)2=r 2 ,解得a =1316,r =51716 5. A 提示:连结OM ,则OM ⊥AC.6. 解法一:连结OD 交AC 于点F ,∵D 为的中点,∴AC ⊥OD ,AF =CF. 又DE ⊥AB ,∴∠DEO =∠AFO. ∴△ODE ≌△OAF. ∴AF =DE. ∵DE =3∴AC =6. 解法二:延长DE 交⊙O 于点G ,易证=2=+=,则DG =AC =2DE =6.7. 连结BO 并延长交AD 于H ,因AB =BD ,故BH ⊥AD ,又∠ADC =90°,则BH ∥CD ,从而△OPB∽△CPD ,得CD BO =CP PO ,即CD 1.5=0.61.5-0.6,解得CD =1. 于是AD =AC 2-CD 2=22,又OH =12CD =12,则AB =AH 2+BH 2=2+4=6,BC =AC 2-AB 2=9-6= 3. ∴四边形ABCD 的周长为1+22+3+ 6.8. 提示:延长DC 至N ,使CN =CM ,连结BN ,则∠BCN =∠BAD =∠BDA =∠BCA ,可证得△BCN ≌△BCM ,Rt △BAM ≌Rt △BDN.9. ⑴AO =8,BO =6,AB =BC =10,AD =CO =16,DB =AD -AB =6,过D 作DE ⊥BC 于E ,由Rt △DEB ∽Rt △AOB ,得DE =245,BE =185,EO =6+185=485. ∴D(-485,245). ⑵A(0,-8),C(-16,0),P(-4,-6),经过D ,P 两点的直线为y =-2714x -967,点(2,-10)不在直线DP 上.10. ⑴在AE上截取AF=BP,连结AC,BC,FC,PC,可证明△CAF≌△CBP,CF=CP. 又CD⊥PA,则PE=FE,故AE=PB+PE. ⑵AE=PE-PB,在PE上截取PF=PB,连结AC,BC,FC,PC,可证明△CPF≌△CPB,CF=CB=CA. 又CD⊥AP,则FE=AE,故AE=PE-PB.11. 连结BD,∠CBA=∠DBA,CB=BD,由∠AOC=∠CBD,∠A=∠BDE,得△AOH∽△DBM,∴OHOA=BMBD=12,即BM=12BC.12. 延长AC至点E,使CE=BC,连结MA,MB,ME,BE. ∵AD=DC+BC=DC+CE=DE,又MD ⊥AE,∴MA=ME,∠MAE=∠MEA. ∵∠MAE=∠MBC,,又由CE=BC得∠CEB=∠CBE,∴∠MEB=∠MBE,得MA=ME=MB,即M为优弧的中点,而MN⊥AB,∴MN是⊙O的直径.。
2022春九年级数学下册第27章圆27.1圆的认识2圆的对称性第2课时垂直于弦的直径性质习题课件华东
A.AD=BD B.AF=BF C.OF=CF D.AC=︵BC ︵
【点拨】∵DC是⊙O的直径,弦AB⊥CD,∴点D是 优弧ADB的中点,点C是劣弧ACB的中点,且AF= BF,故选项A,B,D一定正确;无法证明OF=CF, 故选C. 【答案】C
2.【2020·滨州】在⊙O中,直径AB=15,弦DE⊥AB于
HS版九年级下
第27章 圆
27.1.2 圆的对称性 第2课时 垂直于弦的直径性质
提示:点击 进入习题
1C 2C 3B 4C
答案显示
5 见习题 6C 7B 8 26
提示:点击 进入习题
9 见习题
10 见习题
11 见习题
12 见习题
答案显示
13 见习题
1.如图,DC是⊙O的直径,弦AB⊥CD于点F,连结BC、
设半径OA=OE=r寸, ∵ED=1寸,∴OD=(r-1)寸. 在Rt△OAD中,根据勾股定理可得(r-1)2+52=r2, 解得r=13.∴木材的直径为26寸.
【答案】26
9 . 如 图 , AB 是 ⊙ O 的 直 径 , CD 是 ⊙ O 的 一 条 弦 , CD⊥AB于点E,则下列结论:①∠COE=∠DOE; ︵︵ ②CE=DE;③BC=BD;④OE=BE.其中一定正确的 有( )
*8.【2020•宁夏】我国古代数学经典著作《九章算术》中 记载了一个“圆材埋壁”的问题:“今有圆材埋在壁 中,不知大小.以锯锯之,深一寸,锯道长一尺.问 径几何?”意思是:今有一圆柱形
木材,锯口深ED=1寸,锯道长AB=1尺 (1尺=10寸).这根圆柱形木材的直径是________寸. 【点拨】由题意可知 OE⊥AB. ∵OE 为⊙O 的半径, ∴AD=BD=12AB=12尺=5 寸.
圆的对称性压轴题六种模型全攻略(解析版)
圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .【答案】 7554【分析】根据垂径定理构造直角三角形即可得到OA 的长度;根据题意做出示意图再利用勾股定理列出方程即可.【详解】解:连接AB ,过点O 作OC ⊥AB ,垂足为C ,如图,∵OA =OB ,AB =90cm ,∴AC =BC =12AB =45cm ,∵点A ,点B 离地高度均为15cm ,∴OC =OA -15,∴在Rt △AOC 中,OC 2+AC 2=OA 2,∴OA -15 2+452=OA 2,∴OA =75cm ,故答案为75;过点B 作BE ⊥OA ,BF 垂直于地面,垂足分别是E 、F ,如图,∵BE =AF ,设BF =AE =x ,OA =OB =75cm ,∴OE =OA -AE =75-x ,∴在Rt △BOE 中,BE 2=OB 2-OE 2,在Rt △BEA 中,BE 2=AB 2-AE 2,∴752-75-x 2=902-x 2,∴x =54cm .∴则点B 离地面的高度应小于54cm .故答案为:54.【点睛】本题考查了垂径定理,勾股定理,解一元一次方程等相关知识点,熟记垂径定理是解题的关键.三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.【答案】80°【分析】根据圆的性质进行计算即可得.【详解】解:在⊙O 中,AB 是⊙O 的直径,∴∠AOB =180°,又∵BC=CD,∴∠BOC =∠COD =50°,∴∠AOD =180°-50°-50°=80°.【点睛】本题考查了圆的性质,解题的关键是掌握同弧所对的圆心角相等.12(2023·江苏·九年级假期作业)如图,OA =OB ,AB 交⊙O 于点C ,D ,OE 是半径,且OE ⊥AB 于点F .(1)求证:AC =BD .(2)若CD =8,EF =2,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)由垂径定理得到CF =DF ,由等腰三角形的性质得到AF =BF ,从而证明AC =BD ;(2)设⊙O 的半径是r ,由勾股定理,垂径定理列出关于r 的方程,即可求出⊙O 的半径.【详解】(1)证明:∵OE ⊥AB ,∴CF =DF ,∵OA =OB ,∴AF =BF ,∴AF -CF =BF -DF ,∴AC =BD ;(2)解:连接OC ,设⊙O 的半径是r ,∵CO 2=CF 2+OF 2,CF =12CD =4∴r 2=42+(r -2)2,∴r =5,∴⊙O 的半径是5.【点睛】本题考查垂径定理,勾股定理,等腰三角形的性质,关键是由勾股定理,垂径定理列出关于半径的方程.13(2023春·全国·九年级专题练习)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,AE =2,CD =8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.【答案】(1)⊙O的半径长为5(2)OF的长为5【分析】(1)连接OD,设⊙O的半径长为r,OE=OA-AE=r-2,得到r-22+42=r2,求解即可.(2)勾股定理求得BC,垂径定理求得BF,勾股定理求出OF即可.【详解】(1)连接OD,如图,设⊙O的半径长为r,∵AB⊥CD,AE=2,CD=8,∴∠OED=90°,CE=DE=12CD=4,OE=OA-AE=r-2,在Rt△ODE中,∴r-22+42=r2,解得r=5,故⊙O的半径长为5.(2)在Rt△BCE中,∵CE=4,BE=AB-AE=10-2=8,∴BC=42+82=45,∵OF⊥BC,∴∠OFB=90°,CF=FB=12CB=25在Rt△BOF中,OF=52-252=5,故OF的长为5.【点睛】本题考查了勾股定理,垂径定理,熟练掌握两个定理是解题的关键.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.【答案】(1)支撑杆CD的高度为9cm.(2)手机的宽度为8cm.【分析】(1)如图,连结OA,由题意可得:⊙O的直径为10,AB=6, 由OD⊥AB, 先求解OD, 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明AE =CD =BF =AB , 设AD =BD =x ,则AE =CD =BF =AB =2x ,则OD =2x -5, 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:⊙O 的直径为10,AB =6,∴OA =5,∵CD ⊥AB , 即OD ⊥AB , ∴AD =BD =3, ∴OD =52-32=4, ∴CD =OC +OD =9.所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:AB =AE ,∠E =∠EAB =∠ABF =90°, ∴四边形AEFB 为正方形,∵CD ⊥EF ,∴AE =CD =BF =AB ,∵CD ⊥AB , ∴设AD =BD =x ,则AE =CD =BF =AB =2x ,∵OA =OC =5, ∴OD =2x -5,由勾股定理可得:52=x 2+2x -5 2, 解得x 1=0,x 2=4,经检验x =0不符合题意,舍去,取x =4, AB =8(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.【答案】(1)见解析(2)见解析(3)13【分析】(1)连接DE ,利用圆内接四边形的性质,等腰三角形的两个底角相等的性质证明即可.(2)连接OA =OB ,证△OAM ≌△OBN ,得OM =ON ,得OP -OM =OQ -ON ,可证明PM =NQ .(3)连接OB ,证∠OAM =∠OBN ,OB =OE ,结合已知,得∠CNO =60°,等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,设GN =m ,可得ON =2m ,OG =3m ,GC =3m ,OE =OQ =2m+32,EG =3m -112,Rt △OGE 中勾股得2m +32 2=3m -112 2+3m 2,计算即可.【详解】(1)如图,连接DE ,∵四边形ADEB 是⊙O 的内接四边形,∴∠CDE =∠B ,∠CED =∠A ;∵AC =BC ,∴∠B =∠A ;∴∠CDE =∠CED ;∴CD =CE .(2)连接OA ,OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵PQ ∥AB ,∴∠CAB =∠CMN ,∠CBA =∠CNM ,∴∠CMN =∠CNM ,∴CM =CN ,∴CA -CM =CB -CN ,∴MA =NB ,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OAM =∠OBN ,∴MA =NB∠OAM=∠OBN OA =OB,∴△OAM ≌△OBN ,∴OM =ON ,∵OP =OQ ,∴OP -OM =OQ -ON ,∴PM =NQ .(3)连接OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵OA =OB ,∴∠OAB =∠OBA ,∴∠CAO =∠CBO ,∵∠EON +∠CAO =120°,21∴∠EON +∠CBO =120°,∵OB =OE ,∴∠OEB =∠CBO ,∴∠EON +∠OEN =120°,∴∠CNO =60°,∵CM =CN ,∴等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,则BE =2EG ,∵CE =CD =112,NQ =32,设GN =m ,则ON =2m ,OG =3m ,∴CN =4m ,∴GC =CN -GN =3m ,OE =OQ =2m +32,EG =3m -112,Rt △OGE 中,根据勾股定理,得2m +32 2=3m -1122+3m 2,解得m 1=4,m 2=78, ∵3m -112>0,∴m =4,∴BE =2EG =23m -112=13.【点睛】本题考查了圆的性质,垂径定理,等边三角形的判定和性质,等腰三角形的性质,圆的内接四边形的性质,勾股定理,一元二次方程的解法,熟练掌握圆的性质,勾股定理,一元二次方程的解法是解题的关键.。
北大师版九年级数学下册--第三单元 3.2《圆的对称性(2)》同步练习(含答案)
圆的对称性(2)附答案一.选择题(共10小题)1.(2011•黄石)有如下图形:①函数y=x﹣1的图象;②函数的图象;③一段圆弧;④平行四边形.其中一定是轴对称图形的有()A.1个B.2个C.3个D.4个2.(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10 B.8 C.5 D.33.(2013•内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cmC.cm D.4cm 4.(2013•牡丹江)在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或25.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A. 4 B.5 C.6 D 86.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.7.(2012•淄博)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.8.(2012•泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.= C.∠ACD=∠ADC D.OM=MD9.(2013•台湾)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()A.56 B.58C.60 D.6210.(2013•乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.12.(2013•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为_________m.13.(2013•来宾)如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是_.14.(2013•广州)如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_________.15.(2012•珠海)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=.16.(2012•嘉兴)如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为____.17.(2011•永州)如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=_________度.18.(2013•扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=_________.19.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=_.20.(2013•吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是_________cm(写出一个符合条件的数值即可)三.解答题(共4小题)21.(2013•大庆)如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.22.(2012•南通)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.23.(2011•资阳)如图,A、B、C、D、E、F是⊙O的六等分点.(1)连接AB、AD、AF,求证:AB+AF=AD;(2)若P是圆周上异于已知六等分点的动点,连接PB、PD、PF,写出这三条线段长度的数量关系(不必说明理由).24.(2012•雅安)已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.(1)求证:CA2=CE•CD;(2)已知CA=5,EA=3,求sin∠EAF.25.半径为5cm的⊙O中,两条平行弦的长度分别为6cm和8cm.则这两条弦的距离为多少?26.在半径为5cm的⊙O中,弦AB的长等于6cm,若弦AB的两个端点A、B在⊙O 上滑动(滑动过程中AB的长度不变),请说明弦AB的中点C在滑运过程中所经过的路线是什么图形.27.如图,点A 是半圆上的三等分点,B 是»BN的中点,P 是直径MN 上一动点.⊙O 的半径为1,问P 在直线MN 上什么位置时,AP+BP 的值最小?并求出AP+BP 的最小值.NMBPAO参考答案一.选择题(共10小题)1. C .2. C .3. A .4. D .5. C .6. C .7. D .8. D9. A .10. C . 二.填空题(共10小题)11. 48.12. 0.2.13. 8.14.(3,2).15..16. 24.17. 30.18..19. 4 20. 6.三.解答题(共4小题) 21.解:(1)过点C 作CM ⊥x 轴于点M ,则MA=MB ,连结AC ,如图∵点C 的坐标为(2,),∴OM=2,CM=,在Rt △ACM 中,CA=2,∴AM==1,∴OA=OM ﹣AM=1,OB=OM+BM=3,∴A 点坐标为(1,0),B 点坐标为(3,0);(2)将A (1,0),B (3,0)代入y=x 2+bx+c 得,解得.所以二次函数的解析式为y=x 2﹣4x+3.22.解:过点O 作弦AB 的垂线,垂足为E ,延长OE 交CD 于点F ,连接OA ,OC ,∵AB ∥CD ,∴OF ⊥CD ,∵AB=30cm ,CD=16cm ,∴AE=AB=×30=15cm ,CF=CD=×16=8cm ,在Rt △AOE 中,OE===8cm ,在Rt △OCF 中,OF===15cm ,∴EF=OF ﹣OE=15﹣8=7cm .答:AB 和CD 的距离为7cm .23.解:(1)连接OB 、OF .∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点,∴AD 是⊙O 的直径,且∠AOB=∠AOF=60°,∴△AOB 、△AOF 是等边三角形.∴AB=AF=AO=OD ,∴AB+AF=AD . (2)当P 在上时,PB+PF=PD ;当P 在上时,PB+PD=PF ;当P 在上时,PD+PF=PB .24.(1)证明:在△CEA 和△CAD 中, ∵弦CD ⊥直径AB ,∴=,∴∠D=∠C ,又∵AE=EC ,∴∠CAE=∠C ,∴∠CAE=∠D ,∵∠C 是公共角,∴△CEA ∽△CAD ,∴,即CA 2=CE •CD ; (2)解:∵CA 2=CE •CD ,AC=5,EC=3,∴52=CD •3,解得:CD=,又∵CF=FD ,∴CF=CD=×=,∴EF=CF ﹣CE=﹣3=,在Rt △AFE 中,sin ∠EAF=.25.可求出长为6cm 的弦的弦心距为4cm,长为8cm 的弦的弦心距为3cm. 若点O 在两平行弦之间,则它们的距离为4+3=7cm, 若点O 在两平行弦的外部,则它们的距离为4- 3=1cm, 即这两条弦之间的距离为7cm 或1cm.26.可求得OC=4cm,故点C 在以O 为圆心,4cm 长为半径的圆上,即点C 经过的路线是O 为圆心,4cm 长为半径的圆.27.作点B 关于直线MN 的对称点B ′,则B ′必在⊙O 上,且¼»'BN NB . 由已知得∠AON=60°,故∠B ′ON=∠BON= 12∠AON=30°,∠AOB ′=90° 连接AB ′交MN 于点P ′,则P ′即为所求的点.此时AP ′+BP ′=AP ′+P ′B ′=2,即AP+BP 的最小值为2.。
部编数学九年级上册24.4垂直于弦的直径垂径定理(基础篇)(人教版)含答案
专题24.4 圆的对称性-垂径定理(基础篇)(专项练习)一、单选题1.AB为⊙O的直径,弦CD⊥AB于点E,已知CD=16,OE=6,则⊙O的直径为( )A.8B.10C.16D.202.如图,⊙O的直径AB垂直于弦CD,垂足为点E,连接AC,∠CAB=22.5°,AB=12,则CD的长为( )A.B.6C.D.3.如图以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.2B.4C.6D.84.如图,CD是⊙O的直径,弦AB⊥CD于点E,则下列结论不一定成立的是()A .AE =BEB .OE =DEC .»»AC BC =D .»»AD BD=5.如图,点A ,B ,C ,D 在圆上,弦AB 和CD 交于点E ,则下列说法正确的是( )A .若CD 平分AB ,则CD AB ^B .若CD AB ^,则CD 平分ABC .若CD 垂直平分AB ,则圆心在CD 上D .若圆心在CD 上,则CD 垂直平分AB 6.如图,CD 是O e 的直径,弦AB CD ^于点E ,连接BC 、BD ,下列结论中不一定正确的是( )A .AE BE =B .»»AD BD =C .OE DE =D .»»AC BC=7.下列命题中假命题是( )A .平分弦的半径垂直于弦B .垂直平分弦的直线必经过圆心C .垂直于弦的直径平分这条弦所对的弧D .平分弧的直径垂直平分这条弧所对的弦8.如图,在⊙O 中,半径OC ⊥AB 于点E ,AE =2,则下列结论正确的是( )EC=A.2OE=B.2C.AB垂直平分OC D.OC垂直平分AB9.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为( )A.1B.2C.3D.410.如图,在⊙O中,弦AB的长是半径OA C为»AB中点,AB、OC交于点P,则四边形OACB是()A.平行四边形B.矩形C.菱形D.正方形11.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A .(3,2)B .(2,3)C .(1,3)D .(3,1)12.我国古代数学名著《九章算术》中有一个经典的“圆材埋壁”问题: “今有圆材埋壁中,以锯锯之,深一寸,锯道长一尺,问径几何? "意思是: 如图,CD 是⊙O 的直径, 弦 AB ⊥CD 于P ,CP =1寸,AB =10寸,则直径CD 的长是 ( )寸A .20B .23C .26D .30二、填空题13.圆的半径为5cm ,圆心到弦AB 的距离为4cm ,则AB =_______cm .14.如图,OE ⊥AB 于E ,若⊙O 的半径为10,OE =6,则AB =_______.15.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =则AB 和CD 之间的距离为______.16.某隧道口横截面如图所示,上部分是圆弧形,下部分是矩形、已知隧道口最高点E与DC的距离EF为4米,且弧DC所在圆的半径为10米,则路面AB的宽度为_____米.17.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,AD=,则AB=________cm.Ð的度数为18.如图,在⊙O中,弦AB的长为4,圆心O到弦AB的距离为2,则AOC______.19.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是_________.20.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是______.21.在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径).如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点,请你说出小华此想法的依据是__.22.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.23.如图,某小区的一个圆形管道破裂,修理工人准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部的距离为20cm,则修理工人应准备的新管道的内直径是______cm.24.已知O e 的半径为2,弦BC =,A 是O e 上一点,且»»AB AC =,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题25.如图,在⊙O 中,直径AB =10,弦AC =8,连接BC .(1)尺规作图:作半径OD 交AC 于E ,使得点E 为AC 中点;(2)连接AD ,求三角形OAD 的面积.26.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长1尺(AB =1尺=10寸).问这块圆形木材的直径(AC )是多少?”如图所示,请根据所学的知识解答上述问题.27.已知:如图,在O e 中,AB AC 、为互相垂直的两条弦,,OD AB OE AC ^^,D 、E 为垂足.(1)若AB AC =,求证:四边形ADOE 为正方形.(2)若AB AC >,判断OD 与OE 的大小关系,并证明你的结论.28.如图,AB 为⊙O 的直径,弦CD AB ^于点F ,OE AC ^于点E ,若3OE =,OB=,求OF的长.5参考答案1.D【分析】连接OC ,由垂径定理可知,点E 为CD 的中点,且OE ⊥CD ,在Rt △OEC 中,根据勾股定理,即可得出OC ,从而得出直径.解:连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点E∴CE=12CD=8,∵OE=6.在Rt △OEC 中,由勾股定理得:OC 2=OE 2+EC 2,即OC 2=62+82解得:OC=10∴直径AB=2OC=20.故选D .【点拨】本题考查垂径定理,勾股定理.熟练掌握定理是解答关键.2.C【分析】连接OC ,求出∠COB =45°,根据垂径定理求出CD =2CE ,根据勾股定理求出CE 即可.解:连接OC ,则OC =12AB =12×12=6, ∵OA =OC ,∠CAB =22.5°,∴∠CAB =∠ACO =22.5°,∴∠COB=∠CAB+∠ACO=45°,∵AB⊥CD,AB为直径,∴CD=2CE,∠CEO=90°,∴∠OCE=∠COB=45°,∴OE=CE,∵CE2+OE2=OC2,∴2CE2=62,解得:CE,即CD=2CE,故选:C.【点拨】本题考查了等腰三角形的性质,勾股定理,三角形的外角性质,垂径定理等知识点,能求出CE=OE是解此题的关键.3.B【分析】连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,根据垂径定理得到AM=BM=8,再根据勾股定理得到82+(16-r)2=r2,解方程求出r=10,然后计算CD-CM即可.解:连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,∵AB⊥CD,∴AM=BM=12AB=8,在Rt△AOM中,82+(16-r)2=r2,解得r=10,∴MD=CD-CM=20-16=4.故选:B.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.B【分析】根据垂径定理即可判断.解:CD Q 是O e 的直径,弦AB CD ^于点E ,AE EB \=,»»AC BC =, »»AD BD=.故选:B .【点拨】本题主要考查垂径定理,掌握垂径定理是解题的关键.5.C【分析】根据垂径定理的内容和垂径定理的推论的内容进行判断.解:A 、平分弦(不是直径)的直径垂直于弦,原说法错误,不符合题意;B 、垂直于弦的直径平分弦,原说法错误,不符合题意;C 、弦的垂直平分线必经过圆心,原说法正确,符合题意;D 、AB 若也是直径,则原说法不符合题意;故选:C .【点拨】本题考查了垂径定理以及推论,解答时熟悉垂径定理的内容以及推论的内容是关键.6.C【分析】根据垂径定理判断即可;解:∵直径CD 垂直于弦AB 于点E ,则由垂径定理可得,AE BE =,»»AD BD=,»»AC BC=,故选项A ,B ,D 正确;OE DE =无法得出,故C 错误.故选C .【点拨】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.7.A【分析】根据垂径定理及其推论分别进行判断.解:A、平分弦(非直径)的半径垂直于弦,所以A为假命题;B、垂直平分弦的直线必经过圆心,所以B选项为真命题;C、垂直于弦的直径平分这条弦所对的弧,所以C选项为真命题;D、平分弧的直径垂直平分这条弧所对的弦,所以D选项为真命题.故选:A.【点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了垂径定理的性质.8.D【分析】由垂径定理和勾股定理分别对各个选项进行判断即可.解:连接OA,条件不足,不能求出OE和EC的长,故选项A、B不符合题意;∵OC⊥AB于点E,∴OC是线段AB的垂直平分线,故选项D正确,符合题意;选项C不符合题意,故选:D.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9.C【分析】根据垂径定理的推论,勾股定理即可求得OC的长解:OA OBQ点C是AB的中点,=Q ⊙O 的半径为5,弦AB =8,1,42OC AB AC BC AB \^===在Rt AOC △中3OC ==故选C【点拨】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.10.C【分析】根据弦AB 的长是半径OA C 为»AB 的中点,判定出四边形OACB 是平行四边形,再由AB OC ^,即可判定四边形OACB 是菱形.解:∵弦AB 的长是半径OA C 为»AB 的中点,OC 为半径,∴12AP AB AO AB OC ==^,,∴1122OP OA OC ===,∴12PC OC =,即OP PC =,∴四边形OACB 是平行四边形,又∵AB OC ^,∴四边形OACB 是菱形.【点拨】本题主要考查了勾股定理,菱形的判定,以及垂径定理的推论,读懂题意是解题的关键.11.A【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”作两条弦的垂直平分线,交点即为圆心.解:如图,作弦AB 、AC 的垂直平分线,∵点A 、B 、C 的坐标分别为(1,4),(5,4),(1,0),所以弦514AB =-=,弦404AC =-=,∴弦AB 的垂直平分线与x 轴相交于点(30),,弦AC 的垂直平分线与y 轴相交于点(0)2,,∴两条垂直平分线的交点1O即为三角形外接圆的圆心,且1O点的坐标是(3,2).故选:A.【点拨】本题考查了垂径定理,三角形的外接圆与圆心,熟知垂径定理是解题的关键.12.C【分析】连接OA构成直角三角形,先根据垂径定理,由DP垂直AB得到点P为AB的中点,由AB=6可求出AP的长,再设出圆的半径OA为x,表示出OP,根据勾股定理建立关于x 的方程,解方程直接可得2x的值,即为圆的直径.解:连接OA,∵AB⊥CD,且AB=10寸,∴AP=BP=5寸,设圆O的半径OA的长为x,则OC=OD=x,∵CP=1,∴OP=x-1,在直角三角形AOP中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴CD =26(寸).故选:C .【点拨】本题考查了垂径定理和勾股定理,正确作出辅助线构造直角三角形是关键.13.6【分析】根据题意,画出图形,利用垂径定理,可得2AB AC = ,然后利用勾股定理求出3AC cm =,即可求解.解:根据题意画出如下图形,半径5OA cm = ,OC AB ^ ,则4OC cm = ,∵半径5OA cm = ,OC AB ^ ,∴2AB AC = ,在Rt AOC △ 中,由勾股定理得:3A C cm === ,∴26A B A C cm == .故答案为:6 .【点拨】本意主要考查了垂径定理,勾股定理,利用垂径定理,得到2AB AC =是解题的关键.14.16【分析】连接OA ,由垂径定理可得2AB AE =,在Rt AOE D 中利用勾股定理即可求得AE 的长,进而求得AB .解:连接OA ,∵OE ⊥AB 于E ,∴2AB AE =,在Rt AOE D 中,10OA =,OE =6,∴8AE ==,∴216AB AE ==,故答案为:16【点拨】本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.15.±【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.解:作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,\==OEV中,在Rt OCFQ,C F4OC==\==OF当圆心O在AB与CD之间时,=+=EF OF OE当圆心O不在AB与CD之间时,=-=-EF OF OE即AB和CD之间的距离为故答案为:【点拨】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.16【分析】先根据勾股定理CF8=米,根据垂径定理求出DF=CF=8米,然后根据四边形ABCD为矩形,得出AB=DC=16米即可.解:∵EF=4米,OC=OE=10米,∴OF=OE-EF=6米,在Rt△OEC中,CF8=米,∵OF⊥DC,DC为弦,∴DF=CF=8米,∴DC=2×8=16米,∴四边形ABCD为矩形,∴AB=DC=16米,故答案为:16.【点拨】本题考查勾股定理,垂径定理,矩形性质,掌握勾股定理,垂径定理,矩形性质是解题关键.17.【分析】根据∠D =30°,直角三角形中30°角对应的直角边等于斜边的一半计算出AH ,再根据垂直于弦的直径平分弦得到AB =2AH 计算出AB .解:在Rt AHD V 中,∠D =30°∴2AD AH=∴AH =cm∵弦AB ⊥CD∴2==AB AH故答案为:【点拨】本题考查直角三角形和圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.18.45°【分析】先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得.解:由题意得:OC AB ^,4AB =,122AC AB \==,2OC =Q ,AC OC \=,Rt AOC \V 是等腰直角三角形,45AOC =\а,故答案为:45°.【点拨】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键.19.(3,1)【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点D即为圆心,且坐标是(3,1).故答案为:(3,1).【点拨】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.20.(1,0).【分析】直接利用垂径定理推论得出圆心位置,进而利用A点坐标得出原点位置即可得出答案.解:如图示,∵点A的坐标为(0,3),据此建立平面直角坐标系如下图所示,连接AB,AC,作AB,AC的中垂线,交点是点D则,该圆弧所在圆的圆心坐标是:(1,0).故答案是:(1,0).【点拨】本题主要考查了垂径定理以及坐标与图形的性质,正确得出圆心位置是解题关键.21.等腰三角形三线合一的性质【分析】连接OA、OB,则△OAB是等腰三角形,依据等腰三角形的性质判断.解:连接OA、OB,则△OAB是等腰三角形,当MN⊥AB时,一定有MB过AB的中点,依据三线合一的性质可得.故答案是:等腰三角形三线合一的性质.【点拨】本题考查了垂径定理,正确转化为等腰三角形的性质解决问题是关键.22.48【分析】根据点D是弦AC的中点,得到OD⊥AC,然后根据∠DOC=∠DOA即可求得答案:解:∵AB是⊙O的直径,∴OA=OC.∵∠A=42°,∴∠ACO=∠A=42°.∵D为AC的中点,∴OD⊥AC.∴∠DOC=90°﹣∠DCO=90°﹣42°=48°.故答案为:48.23.100【分析】由垂径定理和勾股定理计算即可.解:如图所示,作管道圆心O,管道顶部为A点,污水水面为BD,连接AO,AO与BD垂直相交于点C.设AO=OB=r则OC=r-20,BC=140 2BD=有222 OB OC BC=+222(20)40r r =-+化简得r =50故新管道直径为100cm .故答案为:100.【点拨】本题为垂径定理的实际应用题,主要是通过圆心距,圆的半径及弦长的一半构成直角三角形,并应用勾股定理,来解决问题.24.1或3【分析】根据垂径定理建立直角三角形,再运用勾股定理求得OD ,进而分两种情况讨论即可.解:如图,连接OB ,»»AB AC =Q ,\由垂径定理可知,OA BC ^,BD CD ==则在Rt OBD △中,1OD ==,211AD r OD \=-=-=或213AD r OD =+=+=,故答案为:1或3.【点拨】本题考查了垂径定理,勾股定理计算圆周上点到弦得距离,熟练掌握基本定理,准确分类讨论是解题关键.25.(1)见分析(2)10【分析】(1)过点O 作OD ⊥AC ,交AC 于点E ,交⊙O 于点D ;(2)由题意可得OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,继而可得118422AE AC ==´=,然后根据三角形的面积公式即可求得答案.(1)解:如图,点E 即为所求;(2)解:如图,连接AD ,∵⊙O 的直径是10,∴OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,∴118422AE AC ==´=,∴11541022OAD S OD AE =×=´´=V .【点拨】本题主要考查了垂径定理、三角形的面积公式,熟练掌握垂径定理是解题的关键.26.这块圆形木材的直径(AC )是26寸【分析】设O e 的半径为x 寸,根据题意可得AD BD =,在Rt AOD △中,OA x =,1OD x =-,勾股定理求解即可.解:设O e 的半径为x 寸,∵OE AB ^,10AB =寸,∴152AD BD AB ===寸,在Rt AOD △中,OA x =,1OD x =-,由勾股定理得()22215x x =-+,解得13x =.∴O e 的直径226AC x ==(寸).答:这块圆形木材的直径(AC )是26寸.【点拨】本题考查了垂径定理的应用,掌握垂径定理是解题的关键.27.(1)见分析(2)OD <OE【分析】(1)先根据垂径定理,由OD ⊥AB ,OE ⊥AC 得到AD =12AB ,AE =12AC ,且∠ADO =∠AEO =90°,加上∠DAE =90°,则可判断四边形ADOE 是矩形,由于AB =AC ,所以AD =AE ,于是可判断四边形ADOE 是正方形;(2)由(1)得四边形ADOE 是矩形,可得OE =AD =12AB ,OD =AE =12AC ,又AB >AC ,即可得出OE 和OD 的大小关系.(1)证明:∵OD ⊥AB ,OE ⊥AC ,AB ⊥AC ,∴四边形ADOE 为矩形,且OD 平分AB ,OE 平分AC ,∴BD =AD =12AB ,AE =EC =12AC ,∵AB =AC ,∴AD =AE ,∴四边形ADOE 为正方形.(2)解:OD <OE ,理由如下:由(1)得四边形ADOE 是矩形,∴OE =AD ,OD =AE ,∵AD =12AB ,AE =12AC ,∴OE =12AB ,OD =12AC ,又∵AB >AC ,∴OD <OE .【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧、也考查了正方形的判定.28.1.4【分析】根据垂径定理得到AE EC =,CF FD =,根据勾股定理求出AE .设OF x =,再次根据勾股定理得到等式2222AC AF OC OF -=-,代入求值即可解答.解:连接OC ,∵AB CD ^,OE AC ^,∴AE EC =,CF FD =,∵3OE =,5OB =,∴5OB OC OA ===,∴在Rt OAE △中,4AE ===,∴4AE EC ==,∴8AC =,设OF x =,∵在Rt CAF V 中,222CF AC AF =-,在Rt OFC V 中,222CF OC OF =-,∴2222AC AF OC OF -=-,∴()2222855x x -+=-,解得: 1.4x =,即 1.4OF =.【点拨】本题考查了垂径定理、勾股定理知识,关键在于合理运用垂径定理和勾股定理求出边的长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的对称性测试题1(含答案)27.1.2圆的对称性1农安县合隆中学徐亚惠一.选择题(共8小题) 1.在同圆或等圆中,下列说法错误的是() A.相等弦所对的弧相等 B.相等弦所对的圆心角相等 C.相等圆心角所对的弧相等 D.相等圆心角所对的弦相等 2.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是() A.6 B.5 C.4 D.3 3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且A B⊥CD,垂足为M,则AC的长为()A. cm B. cm C. cm或 cm D. cm或 cm 4.如图,⊙O的直径CD 垂直弦AB于点E,且CE=2,DE=8,则AB的长为() A.2 B.4 C.6 D.8 5.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是() A.AE=BE B. = C.OE=DE D.∠DBC=90° 6.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() A.4 B. C. D.7.已知⊙O的面积为2π,则其内接正三角形的面积为() A.3 B.3 C. D. 8.如图,半径为3的⊙O内有一点A,OA= ,点P在⊙O上,当∠OPA最大时,PA的长等于() A. B. C.3 D.2 二.填空题(共6小题) 9.如图,已知直线AB与⊙O相交于A、B 两点,∠OAB=30°,半径OA=2,那么弦AB= _________ . 10.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .11.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC 的最小值为_________ . 12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22°30′,则⊙O 的半径为_________ cm.13.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N 是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ . 14.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为_________ .三.解答题(共7小题) 15.如图,AB是⊙O的弦,点C、D在弦AB上,且AD=BC,联结OC、OD.求证:△OCD是等腰三角形.16.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.18.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.20.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.21.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ 的距离;(2)线段EF的长.27.1.2圆的对称性1 参考答案与试题解析一.选择题(共8小题) 1.在同圆或等圆中,下列说法错误的是()A.相等弦所对的弧相等 B.相等弦所对的圆心角相等 C.相等圆心角所对的弧相等 D.相等圆心角所对的弦相等考点:圆心角、弧、弦的关系.分析:利用在同圆和等圆中,相等的弦所对的圆心角相等,相等的圆心角所对的弧相等,所对的弦也相等,判断出B、C、D三选项都正确;而同圆或等圆中,同一条弦对应两条弧,其中一条是优弧,一条是劣弧,所以可判断出A选项错误.解答:解:A、相等弦所对的弧不一定相等,故本选项错误; B、相等弦所对的圆心角相等,故本选项正确; C、相等圆心角所对的弧相等,故本选项正确; D、相等圆心角所对的弦相等,故本选项正确.故选A.点评:此题考查了圆心角、弧、弦的关系定理的推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.注意:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本推论中的“弧”是指同为优弧或劣弧.2.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是() A. 6 B.5 C.4 D. 3考点:垂径定理;勾股定理.分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB 于C,∵OC过O,∴AC=BC= AB=12,在Rt△AOC中,由勾股定理得:OC= =5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为() A. cm B. cm C. cm或 cm D. cm 或 cm考点:垂径定理;勾股定理.专题:分类讨论.分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM= AB= ×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM= ==3cm,∴CM=OC+OM=5+3=8cm,∴AC= = =4 cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5�3=2cm,在Rt△AMC中,AC= = =2 cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为() A. 2 B.4 C.6 D. 8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.5.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是() A. AE=BE B. = C.OE=DE D.∠DB C=90°考点:垂径定理;圆周角定理.专题:几何图形问题.分析:由于CD⊥AB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90°.解答:解:∵CD⊥AB,∴AE=BE, = ,∵CD是⊙O的直径,∴∠DBC=90°,不能得出OE=DE.故选:C.点评:本题考查了垂径定理.解题的关键是熟练掌握垂径定理的内容.6.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() A. 4 B. C. D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE= AB=2 ,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD= PE= ,所以a=3+ .解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE= AB= ×4 =2 ,在Rt△PBE中,PB=3,∴PE= ,∴PD= PE= ,∴a=3+ .故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.7.已知⊙O的面积为2π,则其内接正三角形的面积为() A. 3 B.3 C. D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC 于D,∵⊙O的面积为2π ∴⊙O的半径为∵△ABC为正三角形,∴∠BOC= =120°,∠BOD= ∠BOC=60°,OB= ,∴BD=OB•sin∠BOD= = ,∴BC=2BD= ,∴OD=OB•cos∠BOD= •cos60°= ,∴△BOC的面积= •BC•OD= × × = ,∴△ABC的面积=3S△BOC=3× =.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.8.如图,半径为3的⊙O内有一点A,OA= ,点P在⊙O上,当∠OPA 最大时,PA的长等于() A. B. C.3 D. 2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA 的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA 取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA= ,OP=3,∴PA= = .故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.二.填空题(共6小题) 9.如图,已知直线AB与⊙O相交于A、B 两点,∠OAB=30°,半径OA=2,那么弦AB= 2 .考点:垂径定理;含30度角的直角三角形;勾股定理.分析:过O作OC⊥AB于C,根据垂直和垂径定理求出AB=2AC,∠OCA=90°,根据含30度角的直角三角形性质求出OC=1,根据勾股定理求出AC,即可得出答案.解答:解:过O作OC⊥AB于C,则AB=2AC,∠OCA=90°,∵OA=2,∠OAB=30°,∴OC=1,由勾股定理得:AC= = ,∴AB=2AC=2 ,故答案为:2 .点评:本题考查了垂径定理,含30度角的直角三角形性质,勾股定理的应用,解此题的关键是正确作出辅助线后求出AC的长和得出AB=2AC,注意:垂直于弦的直径平分这条弦.10.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD= CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O 的直径,弦CD⊥AB,CD=8,∴PD= CD=4,∴OP= = =3,∴AP=OA+OP=5+3=8,∴S△ACD= CD•AP= ×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC 的最小值为.考点:垂径定理;轴对称的性质.分析: A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH 垂直于AB于H.根据垂径定理,得到BE= AB=4,CF= CD=3,∴OE= = =3, OF= = =4,∴CH=OE +OF=3+4=7, BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7 ,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE= AB= ,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE= AB= ×2 = ,△BOE 为等腰直角三角形,∴OB= BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.13.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是 4 .考点:垂径定理;圆周角定理.专题:计算题.分析:过点O 作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB= OA=2 ,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB 面积的最大值=S四边形DAEB=S△DAB+S△EAB= AB•CD+ AB•CE= AB(CD+CE)= AB•DE= ×2 ×4=4 .解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB= OA=2 ,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB 的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M 点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S 四边形DAEB=S△DAB+S△EAB= AB•CD+ AB•CE= AB(CD+CE)= AB•DE= ×2 ×4=4 .故答案为:4 .点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.14.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8 .考点:垂径定理;勾股定理;三角形中位线定理.专题:计算题.分析:连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=CD.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.解答:解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r�1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r �1,BD=3,∴r2=32+(r�1)2.解得:r=5.∴O D=4.∵AO=BO,BD=CD,∴OD= AC.∴AC=8.点评:本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.三.解答题(共7小题) 15.如图,AB是⊙O的弦,点C、D在弦AB上,且AD=BC,联结OC、OD.求证:△OCD是等腰三角形.考点:垂径定理;等腰三角形的判定.专题:证明题.分析:过O作OE⊥AB于E,根据垂径定理求出AE=BE,求出CE=DE,根据线段垂直平分线性质求出OD=OC,即可得出答案.解答:证明:过O作OE⊥AB于E,则AE=BE,∵AD=BC,∴AD�DC=BC�DC,∴AC=DE,∴CE=DE,∵OE⊥CD,∴OC=OD,即△OCD是等腰三角形.点评:本题考查了垂径定理,等腰三角形的判定,线段垂直平分线性质的应用,解此题的关键是正确作出辅助线后求出CE=DE.16.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.考点:垂径定理;勾股定理.专题:几何综合题.分析:(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE�CE即可得出结论.解答:(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE�DE=AE�CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE= = =2 ,AE= = =8,∴AC=AE�CE=8�2 .点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x�4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M= ∠BOD,∠M=∠D,∴∠D= ∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;18.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE= AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE= AB= ×8=4cm,∵⊙O 的直径为10cm,∴OB= ×10=5cm,∴OE= = =3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴ = ,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°�∠BOC=135°,∴劣弧AC的长为: = .点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.2 0.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.考点:垂径定理;等边三角形的判定与性质.分析:(1)先根据CD为⊙O的直径,CD⊥AB得出 = ,故可得出∠C= ∠AOD,由对顶角相等得出∠AOD=∠COE,故可得出∠C= ∠COE,再根据AO⊥BC可知∠AEC=90°,故∠C=30°,再由直角三角形的性质可得出BF的长,进而得出结论;(2)在Rt△OCE中根据∠C=30°即可得出OC的长.解答:解:(1)∵CD为⊙O的直径,CD⊥AB,∴ = ,AF=BF,∴∠C= ∠AOD,∵∠AOD=∠COE,∴∠C= ∠COE,∵AO⊥BC,∴∠AEC=90°,∴∠C=30°,∵BC=2 ,∴BF= BC= ,∴AB=2BF=2 ;(2)∵AO⊥BC,BC=2 ,∴CE=BE= BC= ,∵∠C=30°,∴OC= = =2,即⊙O的半径是2.点评:本题考查的是垂径定理,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.21.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ 的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH= AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH= = =3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.。