新人教版八年级第15章分式测试题及答案

合集下载

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

新人教版八年级数学上册第15章《分式》单元试卷及答案解析

新人教版八年级数学上册第15章《分式》单元试卷及答案解析

新人教版八年级数学上册第15章《分式》单元试卷及答案解析一、选择题1、下列式子:-3x,,,,x-,a-2b,其中是分式的个数有()个。

A.2 B.3 C.4 D.52、将分式中x,y的值都扩大10倍,那么分式的值()A.扩大到原来的10倍B.缩小到原来的C.扩大到原来的100倍D.不变3、分式,,,中,最简分式有()个。

A.1 B.2 C.3 D.44、下列运算正确的是()A.B.C.D.5、计算,其结果为()A.2 B.3 C.x+2 D.2x+66、将数字2.03×10-3化为小数是()A.0.203 B.0.020 3 C.0.002 03 D.0.000 203 7、化简:的结果是()A.B.C.D.8、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x人,那么x满足方程()A.B.C.D.9、若2a=3b=4c,且abc≠0,则的值是()A.2 B.-2 C.3 D.-310、若分式方程无解,则m=()A.-1 B.-3 C.0 D.-2二、填空题11、当x=________时,分式无意义。

12、计算:=________。

13、化简:=__________。

14、如图,点A,B在数轴上,它们所表示的数分别是-4,,且点A到原点的距离是点B到原点距离的2倍,则x=________。

15、分式方程的解是x=0,则a=________。

16、观察规律并填空.;;;;…=_________(用含n的代数式表示,n是正整数,且n≥2)。

三、解答题17、计算:(1)(2x-3y2)-2÷(x-2y)3 (2)18、解分式方程:(1)(2)19、先将化简,然后请自选一个你喜欢的x值代入求值.20、对于代数式和,你能找到一个合适的x值,使它们的值相等吗?写出你的解题过程。

人教版八年级上册数学第十五章 分式含答案(附解析)

人教版八年级上册数学第十五章 分式含答案(附解析)

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、分式,,的最简公分母是()A.24B.24C.24D.242、甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天可完成,问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天,则可列方程为()A. B.10+8+x=30 C. D.3、当x=1时,下列分式中值为0的是()A. B. C. D.4、纳米是非常小的长度单位,已知1纳米= 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是()A.10 2个B.10 4个C.10 5个D.10 8个5、方程的增根为()A.1B.1和-1C.-1D.06、是下列哪个分式方程的解()A. B. C. D.7、如果a2+2a-1=0,那么代数式的值是()A.-3B.-1C.1D.38、下列各式中,正确的是()A. B. C. D.9、化简:的结果是( )A. B. C. D.10、计算的结果是()A.0B.1C.-1D.x11、若,则的值是()A. B. C. D.12、已知,则满足为整数的所有整数的和是( ).A.-1B.0C.1D.213、若分式有意义,则x的取值范围是()A.x>3B.x<3C.x≠-3D.x=314、化简的结果是()A.1B.C.D.-115、二次根式中x的取值范围是()A.x>3B.x≤3且x≠0C.x≤3D.x<3且x≠0二、填空题(共10题,共计30分)16、甲、乙两个工程队承包一项工程合作15天完成,若他们单独做,甲比乙少用3天,设甲单独做需x天完成,则所列方程式________.17、计算:________.18、使在实数范围内有意义,则实数x的取值范围是________.19、若分式的值为零,则x的值为________ .20、计算-2-4的结果是________.21、计算m÷n•= ;化简=________22、计算﹣的结果为________.23、方程﹣=3的解是________.24、化简x÷ 等于________。

(完整版)新人教版八年级第15章分式测试题及答案,推荐文档

(完整版)新人教版八年级第15章分式测试题及答案,推荐文档

18.
x2 解:原式= 4 y 2
y x
x3 4y2
y x2
-------------------------------------3 分
=
x2 y 4xy 2
x3 y 4x2 y2
-----------------------------------------5

= x x ---------------------------------------------------7 分
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 D C A B C A B D B C
二、填空题
11、___1___ 12、_ 2xy2 , a5b3 .
13. ___-1.2×10-9__
14、_x_5__ 15.x<-1
360 480
16.____x____14_0___x__.
第十五章《分式》测试题
命题人:小楼中学 刘 燕、赖金文
本试卷分选择题和非选择题两部分,共三大题 21 小题,满分 100 分,考试用时 40 分 钟.
第一部分 选择题(共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,满分 30 分.在每小题给出的四个选项中
只有一项是符合题目要求的.)
--------------------------------------10
a
8.下列各式中与分式
的值相等的是 (

ab
a
a
(A)
(B)
ab
ab
(C) a ba
a
(D)
ba
9.若 x 2 ,则分式 x 2 y 2 的值为(

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

人教版数学八年级上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.分式x-1x+1的值为0,则x=(B )A.-1B.1C.±1D.02.将分式方程1x =2x-2去分母后得到的整式方程,正确的是(A )A.x -2=2x B.x 2-2x =2x C.x -2=x D.x =2x -43.化简xy-2yx 2-4x+4的结果是(D )A.x x +2 B.x x -2C.y x +2 D.y x -24.已知a=2-2,b=(3-1)0,c=(-1)3,则a,b,c 的大小关系是(B )A.a >b >c B.b >a >c C.c >a >bD.b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为(B )A.41×10-6B.4.1×10-5C.0.41×10-4D.4.1×10-46.下列运算正确的是(D )A.a a -b -b b -a =1B.m a -n b =m -na -bC.b a -b +1a =1aD.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x+1)÷1x 2-1的结果是(B )A.(x +1)2B.(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x-1-2x+1=4x 2-1的解是(D )A.x =0B.x =-1C.x =±1D.无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是(D )A.7500x -75001.2x =15B.7500x -75001.2x =14C.7.5x -7.51.2x=15D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x-1+31-x =1的解是非负数,则m 的取值范围是(C )A.m >2B.m ≥2C.m ≥2且m ≠3D.m >2且m ≠3二、填空题(每小题3分,共18分)11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x-1x-3=1的根是x=__-2__.14.若(x-y-2)2+|xy+3|=0,则(3x x-y -2x x-y )÷1y 的值是__-32__.15.若a 2+5ab-b 2=0,则b a -a b 的值为__5__.16.已知x 2-3x-4=0,则代数式x x 2-x-4的值是__12__.三、解答题(共72分)17.(12分)计算:(1)4a 2b÷(b 2a )-2·a b 2;(2)(a a-2-4a 2-2a )÷a+2a;解:ab解:1(3)a 2-b 2a ÷(a-2a-b2a ).解:a +b a -b18.(6分)x2+xx2-2x+1÷(2x-1-1x).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x的整数值代入求值.解:(1)x2 x-1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x=2,将x=2代入得原式=4 19.(8分)解下列分式方程.(1)2x+3=1x-1;解:x=5,经检验x=5是分式方程的解(2)1x-2=1-x2-x-3.解:解得x=2.检验:x=2时,x-2=0,所以x=2不是原方程的解,∴原方程无解20.(7分)当x为何值时,分式3-x2-x的值比分式1x-2的值大3?解:解得x=1.经检验,x=1是方程3-x2-x-1x-2=3的解.即当x=1时,分式3-x2-x的值比分式1x-2的值大321.(7分)已知:[(x 2+y 2)-(x-y)2+2y(x-y)]÷4y=1,求4x 4x 2-y 2-12x+y的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x 4x 2-y 2-12x +y =12x -y =12(x -12y )=1222.(7分)已知关于x 的方程1x-2+k x+2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x)=1,解得:x=30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程(2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y×130≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程。

第15章 分式 人教版八年级数学上册单元测试卷(含详解)

第15章 分式 人教版八年级数学上册单元测试卷(含详解)

第15章《分式》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.分式中,当时,下列结论正确的是()A.分式的值为零B.分式无意义C.若时,分式的值为零D.若时,分式的值为零2.能使等式成立的x的取值范围是( )A .B.C.D.3.分式的值为整数,则整数a的值为()A.1,2,4B.C.0,1,3D.4.若运算的结果为整式,则“□”中的式子可能是()A .B.C.D.5.解分式方程时,下列去分母变形正确的是()A .B.C.D.6.已知关于的分式方程的解是非负数,则的取值范围是()A .B.C.且D.且7.已知正整数,的最大公约数是3,最小公倍数是60,若,则().A.B.C.D.或8.在平面直角坐标系中,过点的直线交x轴、y轴于点,,则的最小值为()A.B.C.D.以上均不正确9.若关于x的不等式组恰有3个整数解,且关于y的分式方程的解是非负数,则符合条件的所有整数a的和是( )A.6B.10C.8D.210.如图,分别表示某一品牌燃油汽车和电动汽车所需费用y(单位:元)与行驶路程S (单位:千米)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的2倍少0.1元,设电动汽车每千米所需的费用为x元,则可列方程为( )A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.要使分式有意义,则x的取值范围是.12.若是方程的根,则代数式的值是.13.若,则.14.若关于x的方程无解,则a的值是15.定义:若两个分式A与B满足:,则称A与B这两个分式互为“美妙分式”.若分式与互为“美妙分式”,且a,b均为不等于0的实数,则分式.16.如图,在中,平分,于,若,,,则的面积为.17.人们把这个数叫做黄金分割数,著名数学家华罗庚的优选法中的0.618就应用了黄金分割数.设,,记,,……,,则的值为.18.元代的《四元玉鉴》是一部成就辉煌的数学名著.该著有一道“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽、每株椽钱三文足,无钱准与一株椽”.大意是:用6210文钱买一批椽.如果每株椽的运费是3文,那么少拿一株椽后,剩下椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210元能够买珠椽,则列出分式方程为.三、解答题(本大题共6小题,共58分)19.(8分)计算∶(1);(2)20.(8分)化简求值:先化简,再从,中选择一个合适的数代入并求值.21.(10分)解下列分式方程:(1);(2)22.(10分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?23.(10分)关于的方程:的解为;的解为或;的解为;的解为;…根据材料解决下列问题:(1)方程的解是___________;(2)猜想方程的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于的方程:.24.(12分)阅读材料:已知,为非负实数,,当且仅当“”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知,求代数式最小值.解:令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为6.根据以上材料解答下列问题:【灵活运用】(1)已知,则当______时,代数式到最小值,最小值为________.(2)已知,求代数式的最小值.【拓展运用】(3)某校要对操场的一个区域进行改造,利用一面足够长的墙体将该区域用围栏围成中间隔有两道围栏的矩形花圃,如图1所示,为了围成面积为的花圃,所用的围栏至少为多少米?(4)如图2,四边形的对角线,相交于点,和的面积分别是4和12,求四边形面积的最小值.参考答案:一、单选题1.D【分析】本题主要考查分式的有意义的条件、分数值为零的条件,解答本题的关键是熟练掌握分式的分子为0,分母不为0时,分式的值为零.根据分式有意义的条件和分式值为零的条件即可求得结果.【详解】当时,,即,解得:,当,时,分式的值为零故选:D.2.C【分析】本题考查了二根式有意义的条件,分式有意义的条件.熟练掌握二根式有意义的条件,分式有意义的条件是解题的关键.由题意知,,,求解作答即可.【详解】解:由题意知,,,解得,,故选:C.3.D【分析】根据分式的值为整数可知,a+1的值为-4,-2,-1,1,2,4,计算可得答案.【详解】解:∵分式的值为整数,∴a+1是4的因数,故a+1的值为-4,-2,-1,1,2,4,∴a的值为-5,-3,-2,0,1,3,故选:D.4.D【分析】本题考查分式的乘除法和整式,根据分式的乘除法的运算法则进行解题即可得到答案.【详解】解:,∵运算的结果为整式,∴中式子一定有的单项式,∴只有D项符合,故选:D.5.A【分析】本题考查了分式方程的解法,方程两边同乘以,化成整式方程,问题得解.【详解】解:,方程两边同乘以得.故选:A6.D【分析】本题考查分式方程的解,解一元一次不等式,根据解分式方程的方法可以求得的取值范围,即可求解.解答本题的关键是明确解分式方程的方法.【详解】解:,方程两边同乘以,得,移项及合并同类项,得,∵分式方程的解是非负数,,∴,解得,且,故选:D.7.D【分析】先由、是正整数,、的最大公约数是3,最小公倍数是60,得到、的值,然后代入求出代数式的值.【详解】解:、都是正整数,它们的最大公约数是3,所以设,、都是正整数,且由于、的最小公倍数是60,所以即由于、互质,、都是正整数,,或,.即:或当时,原式;当时原式故选:D8.B【分析】首先求出,所在直线的解析式为,然后将代入得到,然后代入变形为,利用换元法和完全平方公式得到,然后利用平方的非负性求解即可.【详解】设,所在直线的解析式为∴,解得∴∴将代入得整理得,即∴设∴原式∵∴∴的最小值为∴的最小值为.∴的最小值为.故选:B.9.A【分析】本题考查了不等式组的取值范围,分式方程的解,分式方程的非负整数与a的整数解容易混淆,仔细辩解是解决本题的关键.分别解不等式组的两个不等式,根据“该不等式组有且仅有3个整数解”,得到关于a的不等式组,解之,解分式方程,结合“该分式方程解是非负数”,得到a的值,即可得到答案.【详解】解:解不等式得:,解不等式得:,∵该不等式组有且仅有3个整数解,∴该不等式组的整数解为:2,3,4,则,解得:,解分式方程得:且,∵该分式方程有非负数解,且,则,1,2,3,符合条件的所有整数a的和是.故选:A.10.A【分析】本题考查了列分式方程、函数图象,读懂函数图象,正确获取信息是解题关键.先求出燃油汽车每千米所需的费用为元,再根据函数图象可得燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,据此列出方程即可得.【详解】解:由题意得:燃油汽车每千米所需的费用为元,由函数图象可知,燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,则可列方程为,故选:A.二、填空题11.x≠-3且【分析】根据,且计算即可,本题考查了分式有意义条件,熟练掌握是解题的关键.【详解】分式有意义.故,且,解得x≠-3,且故答案为:x≠-3且.12.【分析】本题考查代数式求值,涉及方程根的定义、整体代入法求代数式值、分式的混合运算等知识,根据题中所给代数式的结构特征,结合已知条件,恒等变形代值求解即可得到答案,熟练掌握分式混合运算法则化简求值是解决问题的关键.【详解】解:是方程的根,,即,,故答案为:.13.2【分析】本题主要考查了求代数式的值、分式的加减及解二元一次方程组,熟练掌握分式的加减法法则是解题的关键.由,从而有,进而构造二元一次方程组求得m,n的值代入原式即可得解.【详解】解:∵,,∴,∴,解得,∴,故答案为:2.14.1和2【分析】本题主要考查了分式方程无解的情况,分式方程无解有两种情况,第一分式方程本身无解,第二分式方程有增根,据此求解即可.【详解】解:去分母得:,移项,合并同类项得:,当,即时,此时方程无解;当,即时,,∵此时方程无解,方程有增根,∴,解得,经检验,是原方程的解;综上所述,或.故答案为:1和2.15.或【分析】本题考查了分式的加减法和实数的性质,绝对值的意义,熟练掌握分式加减法的法则,对新定义的理解是解题关键.根据分式与互为“美妙分式”,得到,求出①,②,分别把①②代入分式中求出结果即可.【详解】与互为“美妙分式”,,,或,或,、均为不等于的实数,①,②,把①代入,把②代入,综上:分式的值为或.故答案为:或.16.【分析】过点作于点,利用角平分线性质则有,然后根据面积公式即可求解.【详解】如图,过点作于点,∵是的角平分线,,∴,∴.故答案为:.17.【分析】本题考查分式的加减法和二次根式的运算.找出规律是解题的关键.利用分式的加减法则分别可求,,•••,,利用规律求解即可.【详解】解:∵,∴,,……,……∴.故答案为:.18.【分析】本题考查了从实际问题中抽象出分式方程,正确理解题意找出等量关系是解题关键.设6210元购买椽的数量为株,根据单价总价数量,求出一株椽的价钱为,再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可列出分式方程,得到答案.【详解】解:设6210元购买椽的数量为株,则一株椽的价钱为,由题意得:,故答案为:.三、解答题19.(1)解:原式;(2)原式.20.解:原式,,,,∵,∴,当时,原式;当时,原式.21.(1)解:去分母得:,去括号得:,移项得:,合并同类项得:,检验,当时,,∴是原方程的解;(2)解:去分母得:,去括号得:,移项得:,合并同类项得:,系数化为1得:检验,当时,,∴不是原方程的解;∴原方程无解.22.(1)设种原料每千克的价格为元,则种原料每千克的价格为元,根据题意得:,解得:.答:购入种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为元,则零售价为元,根据题意得:,解得:,经检验,是原方程的根,且符合实际.答:这种产品的批发价为50元.23.(1)解:由可得,∴该方程的解为:或;(2)方程的解为:或,检验:当时,左边右边,故是方程的解,当时,左边右边,故也是方程的解;(3)原方程可化为:,所以或,解得:或,经检验,或是原方程的解,故答案为:或.24.解:(1)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故答案为:,;(2)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴代数式的最小值为(3)设花圃的宽为米,则长为米,所用的围栏令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故:所用的围栏至少为米(4)作,如图所示:由题意得:∵∴四边形面积令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴四边形面积的最小值为。

2022学年人教版八年级数学上册第十五章《分式》试题卷三附答案解析

2022学年人教版八年级数学上册第十五章《分式》试题卷三附答案解析

2022学年八年级数学上册第十五章《分式》试题卷三(满分120分)一.选择题(共8小题,满分32分)1.下列各式中:﹣3x,,,,,分式的个数是()A.2B.3C.4D.52.无论a取何值,下列分式中,总有意义的是()A.B.C.D.3.把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大6倍C.缩小为原来的D.不变4.下列运算正确的是()A.B.C.D.5.化简的结果是()A.a+b B.a﹣b C.D.6.方程的解为()A.x=﹣1B.x=1C.x=0D.x=﹣37.照相机成像应用了一个重要原理,用公式表示,其中f表示照相机镜头的焦距,u 表示物体到镜头的距离,v表示胶片(像)到镜头的距离.用f,v表示物体到镜头的距离u,正确的是()A.B.C.D.8.为了改善生态环境,某社区计划在荒坡上种植600棵树,由于学生志愿者的加入,每日比原计划多种20%,结果提前1天完成任务.设原计划每天种树x棵,可列方程()A.=1B.=1C.=1D.=1二.填空题(共8小题,满分32分)9.如果分式的值为0,那么x的值为.10.已知x为整数,且分式的值为正整数,则x可取的值有.11.若,则的值是.12.计算:3xy2÷(﹣)3()2=.13.若关于x的分式方程=4有增根,则k=.14.关于x的分式方程无解,则m的值15.定义一种运算☆,规则为a☆b=+,根据这个规则,若x☆(x+1)=,则x=.16.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则a=.三.解答题(共7小题,满分56分)17.化简:(x﹣1﹣)÷.18.化简求值:,其中a=2022.19.解下列方程:(1)=;(2)﹣=8.20.关于x的分式方程.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.21.请仿照例子解题:+=恒成立,求M、N的值.解:∵+=∴=则=即=,故,解得:请你按照上面的方法解题:若+=恒成立,求M、N的值.22.现有甲、乙、丙三种糖混合而成的什锦糖50千克,其中各种糖的千克数和单价如表所示,且商店以糖的平均价作为什锦糖的单价.请问:甲种糖乙种糖丙种糖千克数102020单价(元/千克)252015(1)这50千克什锦糖的单价是多少?(2)若要是什锦糖的单价每千克提高2元,问需加入甲种什锦糖多少千克?23.某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的,下坡的平均速度是平路上跑步的平均速度的,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?参考答案一.选择题(共8小题,满分32分)1.解:分式的个数是,,共2个.故选:A.2.解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.3.解:由题意得:==,∴把分式中的x、y都扩大3倍,则分式的值扩大3倍,故选:A.4.解:A.==﹣,因此选项A不符合题意;B.==,因此选项B不符合题意;C.===﹣,因此选项C符合题意;D.是最简分式,不能约分,因此选项D不符合题意;故选:C.5.解:====a﹣b.故选:B.6.解:,x+5=6x,5x=5,x=1,经检验x=1是原方程的解,则方程的解为x=1.故选:B.7.解:∵=+,∴=﹣=,∴u=,故选:B.8.解:设原计划每天种x棵树,实际每天种树(1+20%)x棵树,由题意得:﹣=1.故选:D.二.填空题(共8小题,满分32分)9.解:如果分式的值为0,则,解得:x=1.故答案为:1.10.解:==2+,∵x为整数,且分式的值为正整数,∴=5或±1,∴x﹣1=1或5或﹣5,∴x=2或6或﹣4,∴满足条件的x可取的有2,6,﹣4.故答案为:2,6,﹣4.11.解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.12.解:原式=3xy2÷(﹣)•=﹣3xy2••=﹣x2,故答案为:﹣x2.13.解:去分母,得x﹣k=4(x﹣3),将增根x=3代入x﹣k=4(x﹣3),得3﹣k=0,解得k=3,故答案为:3.14.解:将方程化简为,m+2=x﹣3,可得m=x﹣5,当x=3时,m=x﹣5=3﹣5=﹣2,∴当m=﹣2时,方程无解.故答案为:﹣2.15.解:根据给定的定义,得x☆(x+1)=,∴=,去分母,得2(x+1)+2x=3(x+1),解得x=1,经检验,x=1是原方程的根,故答案为:1.16.解:解方程得,x=,∵分式方程有整数解,且x≠1,∴a﹣3=﹣4或﹣2或﹣1或1或2或4,且a≠7,∴a=﹣1或1或2或4或5,解方程组得,,∵方程组的解为正数,∴,解得a>4,综上,a=5.故答案为:5.三.解答题(共7小题,满分56分)17.解:原式=•=•=.18.解:原式=•=•=•=,当a=2022时,原式=.19.解:(1)=,9(m﹣1)=8m,解得:m=9,检验:当m=9时,m(m﹣1)≠0,∴m=9是原方程的根;(2)﹣=8,x﹣8+1=8(x﹣7),解得:x=7,检验:当x=7时,x﹣7=0,∴x=7是原方程的增根,∴原方程无解.20.解:去分母,得:2(x+1)+mx=3(x﹣2),(1﹣m)x=8,(1)当方程的增根为x=2时,(1﹣m)×2=8,所以m=﹣3;(2)若原分式方程有增根,则(x+1)(x﹣2)=0,∴x=2或x=﹣1,当x=2时,(1﹣m)×2=8,所以m=﹣3;当x=﹣1时,(1﹣m)×(﹣1)=8,所以m=9,所以m的值为﹣3或9时,方程有增根;(3)当方程无解时,即当1﹣m=0时,(1﹣m)x=8无解,所以m=1;当方程有增根时,原方程也无解,即m=﹣3或m=9时,方程无解所以,当m=﹣3或m=9或m=1时方程无解.21.解:∵+==,∴M(x﹣2)+N(x+2)=x+8,∴(M+N)x﹣2M+2N=x﹣8,∴,解得:.22.解:(1)这50千克什锦糖的单价==19(元);(2)设加入甲种糖x千克,则什锦糖的总量为:(10+x+20+20)千克,根据题意得:=19+2,解得:x=25,经检验:x=25是原方程的解,答:需加入甲种糖25千克.23.解:(1)设小伟在平路上跑步的平均速度是x米/分钟,则小伟在平路上步行的平均速度是x米/分钟,依题意得:+=50,解得:x=280,经检验,x=280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y米,则上坡路程是y米,下坡路程是y米,依题意得:+=9,解得:y=2100.答:这段坡路的总路程是2100米.。

新人教八年级上册第15章《第15章分式》单元测试含答案解析

新人教八年级上册第15章《第15章分式》单元测试含答案解析

新人教八年级上册第15章《第15章分式》一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠04.下列约分正确的是()A.B. =﹣1C. =D. =5.化简的结果是()A.B.a C.a﹣1 D.6.化简:的结果是()A.2 B.C.D.7.化简,可得()A.B.C.D.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 时,分式没有意义.10.化简: = .11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.12.已知x=2012,y=2013,则(x+y)•= .13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是千克.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.三、解答题(本大题共5小题,共36分)17.化简: +.18.已知x﹣3y=0,求•(x﹣y)的值.19.解方程:(1)+1=(2)=﹣2.20.已知:,试说明不论x为任何有意义的值,y值均不变.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?《第15章分式》参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,注意π不是字母,故不是分式.2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍【考点】分式的基本性质.【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选A.【点评】解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠0【考点】分式有意义的条件.【分析】分式有意义的条件是分母不为0,则x2+y2≠0.【解答】解:只要x和y不同时是0,分母x2+y2就一定不等于0.故选C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列约分正确的是()A.B. =﹣1C. =D. =【考点】约分.【分析】根据约分的步骤把分子与分母中约去公因式,分别对每一项进行判断即可.【解答】解:A、不能约分,故本选项错误;B、=1,故本选项错误;C、不能约分,故本选项错误;D、=,故本选项正确;故选D.【点评】此题考查了约分,关键是找出分子与分母的公因式,当分子、分母是多项式时,要把分子与分母分解因式,然后再约分,同时要注意一个分式约分的结果应为最简分式即分子和分母没有公因式.5.化简的结果是()A.B.a C.a﹣1 D.【考点】分式的乘除法.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解: =×=a.故选B.【点评】分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.6.化简:的结果是()A.2 B.C.D.【考点】分式的混合运算.【分析】先把括号中的第二个分式约分,再利用乘法分配律把(x﹣3)分别与括号中的式子相乘可使计算简便.【解答】解:=(﹣)•(x﹣3)=•(x﹣3)﹣•(x﹣3)=1﹣=.故选B.【点评】归纳提炼:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.7.化简,可得()A.B.C.D.【考点】分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ==.故选B.【点评】本题考查了分式的加减运算,题目比较容易.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.【解答】解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.【点评】列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 3 时,分式没有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件是分母等于0.【解答】解:若分式没有意义,则x﹣3=0,解得:x=3.故答案为3.【点评】本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.10.化简: = x+y .【考点】分式的加减法.【专题】计算题.【分析】同分母相减,分母不变,分子相减,要利用平方差公式化为最简分式.【解答】解: ==x+y.【点评】本题考查了分式的加减法法则.11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.12.已知x=2012,y=2013,则(x+y)•= ﹣1 .【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:原式=(x+y)•=,当x=2012,y=2013时,原式==﹣1.故答案为:﹣1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).【考点】分式的加减法.【专题】压轴题;规律型.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.【点评】本题主要是利用规律求值,能够理解本题中给出的规律是解答本题的关键.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .【考点】分式方程的应用.【专题】应用题.【分析】根据题意,得到甲、乙的工效都是.根据结果提前两天完成任务,知:整个过程中,甲做了(x﹣2)天,乙做了(x﹣4)天.再根据甲、乙做的工作量等于1,列方程求解.【解答】解:根据题意,得=1,解得x=6,经检验x=6是原分式方程的解.故答案是:6.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的公式有:工作总量=工作时间×工效.弄清此题中每个人的工作时间是解决此题的关键.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是24 千克.【考点】一元一次方程的应用.【专题】比例分配问题;压轴题.【分析】由题意可得现在A种饮料的重量为40千克,B种饮料的重量为60千克,可根据“混合后的两种饮料所含的果蔬浓度相同”来列等量关系.【解答】解:设原来A种饮料的浓度为a,原来B种饮料的浓度为b,从每种饮料中倒出的相同的重量是x千克.由题意,得=,化简得(5a﹣5b)x=120a﹣120b,即(a﹣b)x=24(a﹣b),∵a≠b,∴x=24.∴从每种饮料中倒出的相同的重量是24千克.故答案为:24.【点评】此题考查的知识点是一元一次方程的应用,当一些必须的量没有时,可设出相应的未知数,只把所求的量当成未知数求解.找到相应的等量关系是解决问题的关键.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程或.【考点】由实际问题抽象出分式方程.【分析】所求的是原计划的工效,工作总量是300,一定是根据工作时间来列的等量关系.本题的关键描述语是:“后来每天的工效比原计划增加20%”;等量关系为:结果共用30天完成这一任务.【解答】解:因为原计划每天铺设x(m)管道,所以后来的工作效率为(1+20%)x(m),根据题意,得=30.或故答案为:或.【点评】本题考查了由实际问题抽象出分式方程.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=按原计划的工效铺设120m的天数+后来的工效铺设的天数.三、解答题(本大题共5小题,共36分)17.化简: +.【考点】分式的混合运算.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式=+•=+==.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.已知x﹣3y=0,求•(x﹣y)的值.【考点】分式的化简求值.【专题】计算题.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解: =(2分)=;当x﹣3y=0时,x=3y;原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.19.(2015秋•邢台期末)解方程:(1)+1=(2)=﹣2.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,经检验是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,故原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知:,试说明不论x为任何有意义的值,y值均不变.【考点】分式的混合运算.【专题】证明题.【分析】先把分子分母分解因式再化简约分即可.【解答】证明:==x﹣x+3=3.故不论x为任何有意义的值,y值均不变.【点评】本题主要考查了分式的混合运算能力.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【专题】应用题.【分析】设原计划每天修水渠x米.根据“原计划工作用的时间﹣实际工作用的时间=20”这一等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.【点评】本题考查了分式方程的应用,此题中涉及的公式:工作时间=工作量÷工效.。

2022年新人教版初中八年级数学上册第15章《分式》学习质量检测卷(附参考答案)

2022年新人教版初中八年级数学上册第15章《分式》学习质量检测卷(附参考答案)

2022年新人教版初中八年级数学上册 第15章《分式》学习质量检测卷时间:90分钟 满分:100分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•宾阳县期中)我国自主研发的北斗三号新信号22纳米工艺射频基带一体化导航定位芯片已实现规模化应用.已知22纳米=0.000000022米,数据0.000000022用科学记数法表示为( ) A .2.2×108B .2.2×10﹣8C .0.22×10﹣7D .22×10﹣9 2.(3分)(2022秋•安乡县期中)在式子1x−2,3xy π,−2ab 2c 3,2xy 中,分式的个数是( ) A .1个B .2个C .3个D .4个3.(3分)(2022•恩施市模拟)已知关于x 的分式方程1−mx−1−2=21−x 的解是非负数,则m 的取值范围是( ) A .m ≤5且m ≠﹣3 B .m ≥5且m ≠﹣3 C .m ≤5且m≠3D .m ≥5且m ≠34.(3分)(2021•黑龙江模拟)若关于x 的分式方程xx−3=1+mx−29−x 2无解,则m的值为( ) A .﹣3或−163 B .−163或−23 C .﹣3或−163或−23D .﹣3或−235.(3分)(2021•和平区二模)计算3x+1−3xx+1的结果为( ) A .3B .﹣3C .3−3xx+1D .3x−3x+16.(3分)(2021春•吴兴区期末)现有一列数:a 1,a 2,a 3,a 4,…,a n ﹣1,a n(n 为正整数),规定a 1=2,a 2﹣a 1=4,a 3﹣a 2=6,…,a n ﹣a n ﹣1=2n (n ≥2),若1a 2+1a 3+1a 4⋯1a n=97198,则n 的值为( )A .97B .98C .99D .1007.(3分)(2021•北碚区校级模拟)若数m 使关于x 的不等式组{2−x 3≤2+xx <m3有解且至多有3个整数解,且使关于x 的分式方程mx−2x−1+31−x =2有整数解,则满足条件的所有整数m 的个数是( ) A .5B .4C .3D .28.(3分)(2021•澧县模拟)若数a 使关于x 的不等式组{x−52+1≤x+135x −2a >2x +a至少有五个整数解,关于y 的分式方程a−3y−1−21−y=2有非负整数解,则满足条件的所有整数a 之和是( ) A .15B .14C .8D .79.(3分)(2020秋•云阳县期末)若关于x 的不等式组{x −3(x −2)>−2a+x 2<x 有解,关于y 的分式方程ay−14−y +3y−4=−2有整数解,则符合条件的所有整数a 的和为( ) A .0B .1C .2D .510.(3分)(2020•汉阳区校级自主招生)已知abc =1,a +b +c =2,a 2+b 2+c 2=3,则1ab+c−1+1bc+a−1+1ca+b−1的值为( ) A .﹣1B .−12C .2D .−2311.(3分)(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( ) A .1316小时B .1312小时C .1416小时D .1412小时12.(3分)(2022秋•沙坪坝区校级期中)若整数a 使关于y 的不等式组{2y−53≤y−13a−y+3≥0至少有3个整数解,且使得关于x的分式方程3x(x−1)−a1−x=2x的解为正数,则所有符合条件的整数a的和为()A.﹣6B.﹣9C.﹣11D.﹣14二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•张店区校级月考)关于x的分式方程mx−3−23−x=1无解,则m的值14.(3分)(2022秋•旌阳区校级月考)若a+b=√5,则a4+a2b2+b4a2+ab+b2+3ab=.15.(3分)(2022秋•岳阳楼区月考)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际每天施工多少平方米?设原计划平均每天施工x平方米,则可列出方程为.16.(3分)(2022春•封丘县期中)受疫情的影响,“84”消毒液需求量猛增,某商场用4000元购进一批“84”消毒液后,供不应求,商场又用6750元购进第二批这种消毒液,所购的瓶数是第一批瓶数的 1.5倍,但每瓶单价贵了1元;则该商场第一批购进“84”消毒液每瓶的单价为元17.(3分)(2022春•济阳区期末)若x+1y =1,y+1z=1,则xyz=.18.(3分)(2022春•双流区期末)若关于x的分式方程上1x =x+2kx(x−1)−6x−1有正根,则k的取值范围为.三、解答题(共7小题,满分66分)19.(9分)(2022秋•门头沟区校级期中)先化简,再求值(1+y2x2−y2)⋅x−yx,其中xy=3.20.(9分)(2022秋•港南区期中)(1)计算:(﹣1)2020﹣(﹣3)+(7﹣π)0+(−12)﹣1;(2)解方程:xx−1−2=2x−1.21.(9分)(2022秋•文登区期中)先化简(x+2x2−2x −x−1x2−4x+4)÷x+2x3−4x,然后从2,0,﹣1三个数中选一个你喜欢的数代入求值.22.(9分)(2022秋•淅川县期中)阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=2,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x−1x =3,求x2+1x2的值.23.(9分)(2022秋•青州市期中)如图,小琪的作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x+3. (1)求被墨水污染的部分;(2)该题化简的结果1x+3能等于17吗?为什么?24.(10分)(2022秋•北碚区校级期中)为了尽快建一条全长11000米的道路,安排甲乙两队合作完成任务,最终乙队所修的道路比甲队所修的道路的两倍少1000米.(1)甲乙两队各修道路多少米?(2)实际修建过程中,乙队每天比甲队多20米,最终乙队完成任务时间是甲队完成任务时间的54倍,乙队每天修建道路多少米?25.(11分)(2022秋•朝阳区校级期中)先阅读下列解法,再解答后面的问题. 已知3x−4(x−1)(x−2)=Ax−1+Bx−2,求A 、B 的值.解法一:将等号右边通分,再去分母,得:3x ﹣4=A (x ﹣2)+B (x ﹣1), 即:3x ﹣4=(A +B ) x ﹣(2A +B ), 由多项式相等的意义可知, ∴{A +B =32A +B =4. 解得{A =1B =2.解法二:在已知等式中取x =0,有﹣A +B−2=−2,整理得2A +B =4; 取x =3,有A2+B =52,整理得A +2B =5. 解{2A +B =4A +2B =5, 得:{A =1B =2.(1)已知2(x−1)(x+1)=Ax−1+Bx+1,用上面的解法一或解法二求A 、B 的值.(2)①计算:[2(x−1)(x+1)+2(x+1)(x+3)+2(x+3)(x+5)+⋯+2(x+9)(x+11)](x +11);②直接写出使①中式子的值为正整数的所有整数x 的值之和.参考答案一、选择题(共12小题,满分36分,每小题3分)1.B ; 2.B ; 3.C ; 4.C ; 5.C ; 6.B ; 7.C ; 8.D ; 9.B ; 10.D ; 11.C ; 12.C ;二、填空题(共6小题,满分18分,每小题3分) 13.﹣2 14.5 15.33000x−330001.2x=1116.8 17.﹣118.k >−12且k ≠52;三、解答题(共7小题,满分66分) 19.解:原式=(x 2−y 2x 2−y 2+y 2x 2−y 2)•x−y x=x 2(x+y)(x−y)•x−y x=xx+y , ∵x y =3, ∴x =3y ,∴原式=3y3y+y =34. 20.解:(1)原式=1+3+1﹣2 =3;(2)去分母得:x ﹣2(x ﹣1)=2, 解得:x =0,检验:当x =0时,x ﹣1≠0, ∴原分式方程的解为x =0. 21.解:(x+2x 2−2x −x−1x 2−4x+4)÷x+2x 3−4x =[x+2x(x−2)−x−1(x−2)2]•x(x+2)(x−2)x+2=(x+2)(x−2)−x(x−1)x(x−2)2•x (x ﹣2)=x 2−4−x 2+xx−2=x−4x−2,∵x=2或0时,原分式无意义,∴x=﹣1,当x=﹣1时,原式=−1−4−1−2=53.22.解:(1)∵ab=2,∴(2a3b2﹣3a2b+4a)•(﹣2b)=﹣4a3b3+6a2b2﹣8ab=﹣4•(ab)3+6•(ab)2﹣8ab=﹣4×23+6×22﹣8×2=﹣4×8+6×4﹣8×2=﹣32+24﹣16=﹣24;(2)∵x−1x=3,∴x2+1x2=(x−1x)2+2=32+2=9+2=11.23.解:(1)设被墨水污染的部分是A,由题意得:x−4x2−9÷Ax−3=1x+3,x−4 (x+3)(x−3)⋅x−3A=1x+3,x−4A=1,解得:A=x﹣4;故被墨水污染的部分为x﹣4;(2)解:不能,理由如下:若1x+3=17,则x =4,由分式,x−4x 2−9÷x−4x−3=x−4x 2−9•x−3x−4, 当x =4时,原分式无意义, 所以不能.24.解:(1)设甲队修道路x 米,则乙队修道路(2x ﹣1000)米, 由题意得:x +2x ﹣1000=11000, 解得:x =4000, 则2x ﹣1000=7000,答:甲队修道路4000米,乙队修道路7000米;(2)乙队每天修建道路y 米,则甲队每天修建道路(x ﹣20)米, 由题意得:7000x =4000x−20×54,解得:x =70,经检验,x =70是原方程的解,且符合题意, 答:乙队每天修建道路70米.25.解:(1)等号右边通分、再去分母,得:2=A (x +1)+B (x ﹣1), 即2=(A +B )x +(A ﹣B ), ∴{A +B =0A −B =2, 解得:{A =1B =−1;(2)①原式=(1x−1−1x+1+1x+1−1x+3+1x+3−1x+5+⋯+1x+9−1x+11)(x +11) =(1x−1−1x+11)(x +11) =12(x−1)(x+11)•(x +11) =12x−1;②∵式子的值为正整数, ∴x ﹣1=1、2、3、4、6、12, 则x =2、3、4、5、7、13, ∴2+3+4+5+7+13=34.。

2022学年人教版八年级数学上册第十五章《分式》试题卷一附答案解析

2022学年人教版八年级数学上册第十五章《分式》试题卷一附答案解析

2022学年八年级数学上册第十五章《分式》试题卷一一.选择题1.如果将分式22x y x y++中x ,y 都扩大到原来的2倍,则分式的值( )A .扩大到原来的2倍B .不变C .扩大到原来的4倍D .缩小到原来的14. 2.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 的个数有( ) A .1个B .2个C .3个D .4个3.若2410x x --=,则2423(71x x x =-+ )A .311B .1-C .13D .35-4.若分式243(1)(2)x x x x -+--的值为0,则( )A .1x =或3x =B .3x =C .1x =D .1x ≠且2x ≠5.如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④6.一件工作,甲单独完成需要a 天,乙单独完成需要b 天,如果甲、乙二人合作那么完成此工作需要的天数是( ) A .a b + B .11a b+ C .1a b + D .aba b+ 7.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )A .aa b+ B .ba b+ C .ha b+ D .ha h+ 8.绿化队原来用浸灌方式浇绿地,x 天用水m 吨,现在改用喷灌方式,可使这些水多用4天,那么现在比原来每天节约用水的吨数为( ) A .4x mB .4xmx + C .4mxD .4(4)mx x +9.有一类分数,每个分数的分子与分母的和是100,如果分子减k ,分母加k ,得到的新的分数约分后等于37(其中k 是正整数),那么该类分数中分数值最小的是( ) A .4258B .4357C .3169D .297110.已知ABC ∆的三边长分别为a ,b ,c ,且a a b cb c b c a++=+-,则ABC ∆一定是( ) A .等边三角形B .腰长为a 的等腰三角形C .底边长为a 的等腰三角形D .等腰直角三角形11.化简11(1)x ---的结果是( ) A .1x x- B .1x x - C .1x - D .1x -12.下列计算①0(1)1-=-;②21(2)4--=-;③22122a a-=;④用科学记数法表示50.0000108 1.0810--=⨯;⑤201120102010(2)(2)2-+-=-.其中正确的个数是( ) A .3个 B .2个 C .1个D .0个二.填空题13.若21(1)(2)12x A Bx x x x +=-+++++恒成立,则A B += . 14.已知1abc =,则111a b cab a bc b ac c ++++++++的值是 . 15.观察下列各等式:1112323=-⨯,1111()35235=-⨯,⋯根据你发现的规律,计算:11111447710(32)(31)n n +++⋯+=⨯⨯⨯-+ (n 为正整数). 16.已知5552a -=、3333b -=、2226c -=,比较a 、b 、c 的大小关系,用“<”号连接为 .17.将代数式125axy -化成不含有分母的形式是 .三.解答题18.定义:任意两个数a ,b ,按规则ac a b b=-+得到一个新数c ,称所得的新数c 为数a 、b 的“传承数”.(1)若1a =-,2b =,求a ,b 的“传承数” c ;(2)若1a =,2b x =,且13x x+=,求a ,b 的“传承数” c ; (3)若21a n =+,1b n =-,且a ,b 的“传承数” c 的值为一个整数,则整数n 的值是多少? 19.对于任意三个实数a ,b ,c ,用|min a ,b ,|c 表示这三个实数中最小数,例如:|2min -,0,1|2=-,则:(1)填空,0|(2019)min -,21()2--,= ,如果|3min ,5x -,36|3x +=,则x 的取值范围为 ;(2)化简:13(2)22x x x x -÷++--并在(1)中x 的取值范围内选取一个合适的整数代入求值.20.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:86222223333+==+=.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:1(1)221111x x x x x -+-==-+++; 再如:2211(1)(1)1111111x x x x x x x x x -++-+===++----. 解决下列问题:(1)分式2x是 分式(填“真分式”或“假分式” ); (2)假分式12x x -+可化为带分式 的形式; (3)如果分式211x x -+的值为整数,那么x 的整数值为 .参考答案与试题解析一.选择题1.如果将分式22x y x y++中x ,y 都扩大到原来的2倍,则分式的值( )A .扩大到原来的2倍B .不变C .扩大到原来的4倍D .缩小到原来的14. 【解答】解:用2x 和2y 代替式子中的x 和y 得:2222(2)(2)2222x y x y x y x y++=++, 则分式的值扩大为原来的2倍.故选:A .2.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 的个数有( ) A .1个 B .2个 C .3个 D .4个【解答】解:原式2(1)2(1)(1)1x x x x -==+-+, 1x ∴+为1±,2±时,21x +的值为整数, 210x -≠, 1x ∴≠±,x ∴为2-,0,3-,个数有3个. 故选:C .3.若2410x x --=,则2423(71x x x =-+ ) A .311B .1-C .13D .35-【解答】解:2410x x --=,0x ≠,140x x ∴--=,即14x x -=,221216x x ∴-+=,即22118x x +=,∴242223333171187117x x x x x ===-+--+,故选:A .4.若分式243(1)(2)x x x x -+--的值为0,则( )A .1x =或3x =B .3x =C .1x =D .1x ≠且2x ≠【解答】解:分式243(1)(2)x x x x -+--的值为0,2430x x ∴-+=且(1)(2)0x x --≠, 3x ∴=, 故选:B .5.如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【解答】解2222(2)1(2)111441(2)111x x xx x x x x x x ++-=-=-=+++++++ 又x 为正整数,∴1121xx <+ 故表示22(2)1441x x x x +-+++的值的点落在② 故选:B .6.一件工作,甲单独完成需要a 天,乙单独完成需要b 天,如果甲、乙二人合作那么完成此工作需要的天数是( )A .a b +B .11a b+ C .1a b+ D .aba b+ 【解答】解:111()a b ÷+1a bab+=÷ aba b=+. 故选:D .7.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )A .a a b +B .b a b +C .ha b+ D .ha h+ 【解答】解:设规则瓶体部分的底面积为s 平方厘米. 倒立放置时,空余部分的体积为bs 立方厘米, 正立放置时,有墨水部分的体积是as 立方厘米,因此墨水的体积约占玻璃瓶容积的as aas bs a b=++. 故选:A .8.绿化队原来用浸灌方式浇绿地,x 天用水m 吨,现在改用喷灌方式,可使这些水多用4天,那么现在比原来每天节约用水的吨数为( ) A .4x mB .4xmx + C .4mxD .4(4)mx x +【解答】解:(4)44(4)(4)(4)m m m x mx mx x x x x x x x +-=-=++++(吨). 故选:D .9.有一类分数,每个分数的分子与分母的和是100,如果分子减k ,分母加k ,得到的新的分数约分后等于37(其中k 是正整数),那么该类分数中分数值最小的是( ) A .4258B .4357C .3169D .2971【解答】解:由题可得,该分数可表示为37a ka k+-, 分子与分母的和是100, 37100a k a k ∴++-=, 10a ∴=,∴得到的新的分数为3070, 又当k 最小时,分数的值最小,∴当正整数1k =时,分数的值为3169, 故选:C .10.已知ABC ∆的三边长分别为a ,b ,c ,且a a b cb c b c a++=+-,则ABC ∆一定是( ) A .等边三角形B .腰长为a 的等腰三角形C .底边长为a 的等腰三角形D .等腰直角三角形【解答】解:将a ab cb c b c a++=+-化简 11()b ca b c b c a +⨯+=+- b c b ca bcbc a++⨯=+- 1a bcbc a=+- 20ab ac a bc +--=2()()0ab a ac bc -+-= ()()0b a c a --=可解得a b =或a c =由已知a ,b ,c 分别是ABC ∆的三边长,所以ABC ∆是腰长为a 的等腰三角形. 故选:B .11.化简11(1)x ---的结果是( ) A .1x x- B .1x x - C .1x - D .1x -【解答】解:原式11(1)x-=-11()x x--=1xx=-. 故选:A . 12.下列计算①0(1)1-=-;②21(2)4--=-;③22122a a-=;④用科学记数法表示50.0000108 1.0810--=⨯;⑤201120102010(2)(2)2-+-=-.其中正确的个数是( ) A .3个B .2个C .1个D .0个【解答】解:①0(1)11-=≠-,错误; ②22111(2)(2)44--==≠--,错误; ③2222122a a a-=≠,错误; ④550.0000108 1.0810 1.0810---=-⨯≠⨯,错误;⑤20112010201020102010(2)(2)(2)(21)(2)2-+-=-⨯-+=--=-,正确; 只有⑤正确;故选:C . 二.填空题13.若21(1)(2)12x A Bx x x x +=-+++++恒成立,则A B += 4 . 【解答】解:右边(2)(1)()2(1)(2)(1)(2)A xB x B A x A Bx x x x -+++--+==++++ ∴221B A B A -=⎧⎨-=⎩解1A =,3B =,4A B +=, 故答案为4.14.已知1abc =,则111a b cab a bc b ac c ++++++++的值是 1 . 【解答】解:由1abc =,则111a b c ab a bc b ac c ++++++++11a b cab a bc b ac c abc =++++++++ 111a ab ab a abc ab a a ab=++++++++ 1111a ab ab a ab a a ab =++++++++11a ab ab a ++=++1=. 故答案为1.15.观察下列各等式:1112323=-⨯,1111()35235=-⨯,⋯根据你发现的规律,计算:11111447710(32)(31)n n +++⋯+=⨯⨯⨯-+31nn + (n 为正整数). 【解答】解:1112323=-⨯,1111()35235=-⨯, 所以111(1)1434=-⨯,1111()47347=-⨯,⋯,1111()(32)(31)33231n n n n =--+-+, ∴原式11111111(1)(1)3447323133131nn n n n =-+-+⋯+-=-=-+++. 16.已知5552a -=、3333b -=、2226c -=,比较a 、b 、c 的大小关系,用“<”号连接为 c a b << .【解答】解:5555111111112(2)32a -===,3333111111113(3)27b -===2222111111116(6)36c -===, c a b ∴<<.故答案为:c a b <<.17.将代数式125axy-化成不含有分母的形式是 125ax y -- .【解答】解:原式125ax y --=, 故答案为:125ax y -- 三.解答题18.定义:任意两个数a ,b ,按规则ac a b b=-+得到一个新数c ,称所得的新数c 为数a 、b 的“传承数”.(1)若1a =-,2b =,求a ,b 的“传承数” c ;(2)若1a =,2b x =,且13x x+=,求a ,b 的“传承数” c ; (3)若21a n =+,1b n =-,且a ,b 的“传承数” c 的值为一个整数,则整数n 的值是多少? 【解答】解:(1)1a =-,2b =∴15(1)222a c ab b -=-+=--+=; (2)1a =,2b x = ∴222222111123()3336a c a b x x x b x x x =-+=-+=++-=+-=-=;(3)21a n =+,1b n =-∴2122333(21)12221111a n n c a b n n n n n b n n n n +-+=-+=-++-=--=+--=-----, c 为整数,n 为整数,1n ∴-为3-,1-,1,或3, n ∴为2-,0,2,或4. 19.对于任意三个实数a ,b ,c ,用|min a ,b ,|c 表示这三个实数中最小数,例如:|2min -,0,1|2=-,则:(1)填空,0|(2019)min -,21()2--,= |3min ,5x -,36|3x +=,则x 的取值范围为 ;(2)化简:13(2)22x x x x -÷++--并在(1)中x 的取值范围内选取一个合适的整数代入求值.【解答】解:(1)0(2019)1-=,21()42--=,0|(2019)min ∴-,21()2--,=|3min ,5x -,36|3x +=,∴53363x x -⎧⎨+⎩,得12x -,故答案为:12x -; (2)13(2)22x x x x -÷++-- 1(2)(2)322x x x x x -+-+=÷--212243x x x x --=--+1(1)(1)x x x -=+-11x =+, 12x -,且1x ≠-,1,2,∴当0x =时,原式1101==+. 20.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:86222223333+==+=.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:1(1)221111x x x x x -+-==-+++; 再如:2211(1)(1)1111111x x x x x x x x x -++-+===++----. 解决下列问题:(1)分式2x是 真 分式(填“真分式”或“假分式” ); (2)假分式12x x -+可化为带分式 的形式; (3)如果分式211x x -+的值为整数,那么x 的整数值为 . 【解答】解:(1)分式2x 是真分式;(2)12331222x x x x x -+-==-+++; (3)212(1)332111x x x x x -+-==-+++为整数, 则x 的可能整数值为 0,2-,2,4-.故答案为:(1)真;(2)312x -+;(3)0,2-,2,4-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
b
a a ÷⋅第十五章《分式》测试题
命题人:小楼中学 刘 燕、赖金文
本试卷分选择题和非选择题两部分,共三大题21小题,满分100分,考试用时40分钟.
第一部分 选择题(共30分)
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只
有一项是符合题目要求的.) 1.下列式子中是分式的是 ( )
(A )
212y (B )
7
a b
+ (C )8x π (D ) x 9 2.使分式3
2
x x +-有意义,则x 的取值范围是( )
(A )2x = (B )3x =- (C )2x ≠ (D ) 3x ≠-
3..将分式
xy
x y
-中的x y 、都扩大2倍,分式的值( ) (A )扩大2倍 (B )扩大4倍 C )缩小2倍 (D )不变
4. 计算 的结果正确的是 ( )
(A )2a (B )2
2a b
(C )22
a b (D ) 以上都不对
5.下列各式正确的是 ( )
(A )11++=
++b a x b x a (B )22x y x y = (C )()0≠=a ma na
m n (D )a
m a n m n --= 6.分式方程
2
1
1=+x x 的解是 ( ) (A )1x = (B )1x =- (C )2x = (D ) 2x =-
7.若分式)
1)(2(4
2+--x x x 的值为零,则x 的值是 ( )
(A )2或-2 (B )-2 (C )2 (D )4 8.下列各式中与分式
b
a a
--的值相等的是 ( ) (A )
b a a -- (B )b a a +- (C )a
b a
-- (D )a b a -
43
222⎪
⎭⎫
⎝⎛-÷⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛x y x y y x 9.若2=y
x
,则分式xy y x 22-的值为( )
(A )
xy 1 (B )2
3
(C )1 (D )-1 10.在一段坡路,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段路上、下坡的平均速度是每小时( ) (A )2
21v v +千米 (B )1212v v
v v +千米 (C )21212v v v v +千米 (D )无法确定
第二部分 非选择题(共70分)
二、填空题(本大题共6小题,每小题3分,满分18分.)
11.当=x ___ __时,分式1
3
-x 无意义.
12.分式
x y 和2
12xy
的最简公分母是 ___ __ ; 2113
()()a a b --= ____ _. 13.用科学记数法表示0.0000000012-= ____ __.
14.计算 得 _____ ____.
15.若分式
2
31
2++x x 的值为负数,则x 的取值范围是____ _____.
16.甲做360个零件与乙做480个零件所用时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可列方程 .
三、解答题(本大题共5小题,满分52分.解答应写出文字说明、证明过程或演算步骤.)
17.(本小题满分9分)此题改编于八年级上册第146页习题15.2第3题(1).
计算:
2221
1b
a b b a ÷⋅
18.(本小题满分9分)此题改编于八年级上册第142页练习第2题(1).
计算:y
x y x x y y x 2
232
42÷-⋅⎪⎪⎭
⎫ ⎝⎛
19.(本小题满分10分)此题改编于八年级上册第151页例2. 解方程:
21133
x x
x x -=
++
20.(本小题满分12分)此题改编于八年级上册第140页例1(1). 先化简,再求值:
x
y y y x x -+
-2
2
其中1x =
+1y =-
21.(本小题满分12分)此题来源于八年级上册第159页复习题15第10题.
一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的平均行驶速度.
5
x 2
2xy 35b a -第十五章《分式》测试题参考答案与评分细则
一、选择题
二、填空题
11、___1___ 12、_ , . 13. ___-1.2×10-9__
14、____
15.x<-1 16.______________.
17.解:原式=
221
2
b a b
b a ⋅⋅---------------------------------------------3分 =2
2
4b b a -----------------------------------------------------6分 =4
a ---------------------------------------------------------9分
18. 解:原式=2
232244x
y
y x x y y x ⋅-⋅-------------------------------------3分
=2232
244y
x y
x xy y x ------------------------------------------5分 =
y
x y x 44----------------------------------------------------7分 =0------------------------------------------------------------9分
x x -=140480
360
19. 解:方程两边乘()13+x ,得
()x x x 2133=+-------------------------------------------------------3分
解得 2
3-=x ---------------------------------------------------------7分
检验:当2
3-=x 时,()13+x ≠0----------------------------------------9分
所以,原分式方程的解为2
3-=x --------------------------------------10分
20.解:原式=y
x y y x x ---2
2--------------------------------------------4分 =
()()y
x y x y x --+---------------------------------------------6分
=y x +--------------------------------------------------------8分
当321,321-=+=y x 时,
原式=1+23+1-23--------------------------------10分
=2-------------------------------------------------12分
21. 解:设前一小时的平均行驶速度为x 千米/时.40分钟=32
小时.----1

依题意的得:x
x x 180
325.11801=
+-+
,------------------------------------------6分 解得 60=x ------------------------------------------9分 经检验,60=x 是分式方程的解.------------------------------------------11分 答:前一小时的平均行驶速度是60千米/时.--------------------------12分。

相关文档
最新文档