《概率论与数理统计》浙江大学第四版课后习题答案

合集下载

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
2
{
2
}
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。 解 此题关键词: “与, ” “而” , “都”表示事件的“交” ; “至少”表示事件的“并” ; “不多 于”表示“交”和“并”的联合运算。 (1) ABC 。
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=

概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学

概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为: C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析

盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论答案浙江大学第四版

概率论答案浙江大学第四版

概率论答案浙江大学第四版【篇一:概率论与数理统计浙江大学第四版-课后习题答案(完全版)】p> 浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)o1n?100?s???,???,n表小班人数 n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)s={10,11,12,???,n,???}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。

(1)a发生,b与c不发生。

表示为: a或a- (ab+ac)或a- (b∪c)(2)a,b都发生,而c不发生。

表示为: ab或ab-abc或ab-c表示为:a+b+c (3)a,b,c中至少有一个发生(4)a,b,c都发生,表示为:abc表示为:ac或s- (a+b+c)或a?b?c (5)a,b,c都不发生,(6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时不发生相当于,,中至少有一个发生。

故表示为:??。

(7)a,b,c中不多于二个发生。

相当于:,,中至少有一个发生。

故表示为:??abc(8)a,b,c中至少有二个发生。

相当于:ab,bc,ac中至少有一个发生。

故表示为:ab+bc+ac6.[三] 设a,b是两事件且p (a)=0.6,p (b)=0.7. 问(1)在什么条件下p (ab)取到最大值,最大值是多少?(2)在什么条件下p (ab)取到最小值,最小值是多少?从而由加法定理得p (ab)=p (a)+p (b)-p (a∪b) (*)(1)从0≤p(ab)≤p(a)知,当ab=a,即a∩b时p(ab)取到最大值,最大值为p(ab)=p(a)=0.6,(2)从(*)式知,当a∪b=s时,p(ab)取最小值,最小值为p(ab)=0.6+0.7-1=0.3 。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是 6 个,
即样本空间 S={ 62 个基本事件}。事件 AB={两颗骰子点数之间和为 7,且有一颗为 1 点},
两颗骰子点数之和为 7 的可能结果为 6 个,即
A={(1,6),(2,5),(3,4),(6,1),(5,2),(4,3)}
解 利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C130 ,即样本空间
{ } S= C130 = 120个基本事件 。
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5
{ } 个号码中取出的,有 C52 种取法,故 A= C52 = 10个基本事件 ,所求概率为
其中由 P( AB) = P(BC) = 0, 而 ABC ⊂ AB 得 P( ABC) = 0 。
------------------------------------------------------------------------------6.在房间里有 10 个人,分别佩戴从 1 号到 10 号的纪念章,任选 3 人记录其纪念章的号码。 求 (1)最小号码为 5 的概率; (2)最大号码为 5 的概率。
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100

概率论与数理统计浙江大学第四版课后习题答案

概率论与数理统计浙江大学第四版课后习题答案
值?最大值是多少?(2)在什么条件下 P(AB)取到最小值?最小值是多少?
(1)A
.B
时,P(AB) =
0.6 为最大值,
因为 A、B一定相容,相交
所以 A和 B重合越大时 P(AB)越大
(2)A
∪B
=
S
时,P(AB)=0.3为最小值
6、若事件 A的概率为 0.7,是否能说在 10次实验中 A将发生 7次?为什么? 种种 Nhomakorabea解
解解法
法法一
一一组
组组成
成成一
一一个
个个偶
偶偶数
数数四
四四位
位位数
数数有
有有
首位奇: A
51 A51 A82 A51 A51 A82 +
A41 A41 A82 41.8.7 41
112 4
首位偶: A4 A4 A8

P(A) =
1

P(ABC) =
1,
2 444
111
∴P(AB) =P(A)P(B) =
, P(AC) =P(A)P(C) =
, P(BC) =P(B)P(C) =
444

P(A)P(B)P(C) =
1 ≠P(ABC)
8
20、某人忘记了电话号码的最后一个数字,因而他随意地拨号。求他拨号不超过三次而接通
(1)最小号码为 5,即从 6、7、8、9、10里选两个,所求概率为
C532
=
1C10 12
(2)号码全为偶数,即从 2,4,6,8,10里选三个,所求概率为
CC

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。

表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:中至少有一个发生。

故表示为:(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。

概率论与数理统计 课后习题详解(浙大第四版)。盛骤

概率论与数理统计  课后习题详解(浙大第四版)。盛骤
3

利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C10 ,即样本空间
3 S= C10 = 120个基本事件 。
{
}
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5 个号码中取出的,有 C5 种取法,故 A= C5 = 10个基本事件 ,所求概率为
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=
2 2
{
}
5! C 10 1 P ( A) = = 2!3! = = 10! 120 12 C 3!7!
2 5 3 10
(2)令事件 B={最大号码为 5},最大号码为 5,其余两个号码是从 1,2,3,4 的 4 个号码 中取出的,有 C4 种取法,即 B= C4 个基本事件 ,! 2 C4 6 1 P ( B ) = 3 = 2!2! = = C10 10! 120 20 3!7!

概率论与数理统计 浙大 第四版 课后答案(盛骤 谢式千 潘承毅 著) 高等教育出版社

概率论与数理统计 浙大 第四版  课后答案(盛骤 谢式千 潘承毅 著) 高等教育出版社

k = (n +1) p时, M = 1 ,此时 P{X = k} = P{X = k −1}
k > (n +1) p时, M < 1
所以当
k
=
⎧(n +1)p −1, (n + 1) p,若(n +1) p为整数
⎨ ⎩
(n
+
1)p,若(n
+
1)p为非整数
(2)对于泊松分布 P(λ) ,由
P(k;λ) P(k −1;λ)
0
1
P{0 ≤ X ≤ 2} = F(2) − F(0) = 1− 0 = 1
⎧0 解法二: f (x) = F '(X ) = ⎪⎨2Ax
⎪⎩ 0
x<0 0≤ x <1 x ≥1
∫ ∫ 由
1=
+∞
1
f (x)dx = 2Axdx =A

A = 1 其它同解法一
−∞
0
⎧x 17、已知随机变量 X 的概率密度为: f (x) = ⎪⎨2 − x
k=0 k!
∑ 查表得 +∞ e−3 3k = 0.000292 < 1 − 0.999 = 0.001 k =11 k!
所以在月初进货时要进此种商品 10 件,才能保证此商品当月不脱销的概率 为 0.999。 10、每年袭击某地的台风次数近似服从参数为 4 的泊松分布。求一年中该地区受 台风袭击次数为 3~5 的概率。 解:设 X 表示每年袭击某地的台风次数
=
λ k
…,
k
=
2,3...
可知
当 k < λ 时, P(k − 1; λ) < P(k; λ)

概率论与数理统计浙大四版习题精选答案(完全真实)

概率论与数理统计浙大四版习题精选答案(完全真实)

概率论与数理统计习题答案 精选版浙大第四版说明:剩余习题在学习辅导与习题选解第一章 概率论的基本概念1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

《概率论与数理统计》浙江大学第四版课后习题答案概率论第四版

《概率论与数理统计》浙江大学第四版课后习题答案概率论第四版

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S ={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A ﻩ或A- (A B+AC )或A- (B ∪C ) (2)A ,B都发生,而C不发生。

表示为:C AB ﻩ或AB -ABC 或AB-C(3)A,B,C 中至少有一个发生ﻩﻩ表示为:A+B+C (4)A ,B ,C 都发生,ﻩ表示为:A BC(5)A,B ,C 都不发生,ﻩﻩ表示为:C B A 或S- (A+B+C)或C B A ⋃⋃ (6)A ,B,C中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A,B,C中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计浙大第四版答案

概率论与数理统计浙大第四版答案

概率论与数理统计浙大第四版答案【篇一:概率论与数理统计答案第四版第2章(浙大)】死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。

若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。

解:设x为公司的赔付金额,x=0,5,20p(x=0)=1-0.0002-0.0010=0.9988 p(x=5)=0.00102.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以x表示取出的三只中的最大号码,写出随机变量的分布律.3解:方法一: 考虑到5个球取3个一共有c5 =10种取法,数量不多可以枚举来解此题。

设样本空间为ss={123,124,125,134,135,145,234,235,245,345 }易得,p{x=3}=10p{x=4}=10p{x=5}=10;136方法二:x的取值为3,4,5当x=3时,1与2必然存在,p{x=3}=c22c5=;10c23c51当x=4时,1,2,3中必然存在2个, p{x=4}= =;103当x=5时,1,2,3,4中必然存在2个, p{x=5}=c24c5=;106(2)将一颗骰子抛掷两次,以x表示两次中得到的小的点数,试求x 的分布律. 解:p{x=1}= p (第一次为1点)+p(第二次为1点)- p (两次都为一点)= +?6611136=;361114141715151966661313136=36566661212136=3631111113.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样.以x表示取出的次品的只数.(1)求x的分布律. 解:p{x=0}= c133515c322p{x=1}= p{x=2}=1c213 c212c1535;1352c113c2c15;(2)画出分布律的图形.4、进行独立重复试验,设每次试验的成功率为p,失败概率为q=1-p(0p1)(1)将试验进行到出现一次成功为止,以x表示所需的试验次数,求x的分布律。

概率论与数理统计浙大四版习题答案(完全真实)

概率论与数理统计浙大四版习题答案(完全真实)

概率论与数理统计习题答案精选版浙大第四版说明:剩余习题在学习辅导与习题选解第一章概率论的基本概念1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2. 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为:A或A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。

表示为:AB或AB-ABC或AB-C表示为:A+B+C (3)A,B,C中至少有一个发生(4)A,B,C都发生,表示为:ABC表示为:或S-(A+B+C)或(5)A,B,C都不发生,(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于,中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:A,,C中至少有一个发生。

故表示为:或ABC(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6. 在房间里有10人。

分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。

(1)求最小的号码为5的概率。

记“三人纪念章的最小号码为5”为事件A∵10人中任选3人为一组:选法有种,且每种选法等可能。

又事件A相当于:有一人号码为5,其余2人号码大于5。

这种组合的种数有∴(2)求最大的号码为5的概率。

概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学

概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学

第一章 概率论的基本概念2、设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故 表示为:AB +BC +AC 3、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P , 81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 16、据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=,P (B |A )=P {母亲得病|孩子得病}=,P (C |AB )=P {父亲得病|母亲及孩子得病}=。

求母亲及孩子得病但父亲未得病的概率。

解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.17、已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生 表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故 表示为:AB +BC +AC6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B ) (*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

7.[四] 设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 8.[五] 在一标准英语字典中具有55个由二个不相同的字母新组成的单词,若从26个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少?记A 表“能排成上述单词”∵ 从26个任选两个来排列,排法有226A 种。

每种排法等可能。

字典中的二个不同字母组成的单词:55个 ∴1301155)(226==A A P 9. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。

(设后面4个数中的每一个数都是等可能性地取自0,1,2……9)记A 表“后四个数全不同”∵ 后四个数的排法有104种,每种排法等可能。

后四个数全不同的排法有410A∴504.010)(4410==A A P10.[六] 在房间里有10人。

分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。

(1)求最小的号码为5的概率。

记“三人纪念章的最小号码为5”为事件A∵ 10人中任选3人为一组:选法有⎪⎭⎫ ⎝⎛310种,且每种选法等可能。

又事件A 相当于:有一人号码为5,其余2人号码大于5。

这种组合的种数有⎪⎭⎫ ⎝⎛⨯251 ∴121310251)(=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⨯=A P(2)求最大的号码为5的概率。

记“三人中最大的号码为5”为事件B ,同上10人中任选3人,选法有⎪⎭⎫ ⎝⎛310种,且每种选法等可能,又事件B 相当于:有一人号码为5,其余2人号码小于5,选法有⎪⎭⎫ ⎝⎛⨯241种201310241)(=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⨯=B P 11.[七] 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。

在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?记所求事件为A 。

在17桶中任取9桶的取法有917C 种,且每种取法等可能。

取得4白3黑2红的取法有2334410C C C ⨯⨯故2431252)(6172334410=⨯⨯=C C C C A P 12.[八] 在1500个产品中有400个次品,1100个正品,任意取200个。

(1)求恰有90个次品的概率。

记“恰有90个次品”为事件A∵ 在1500个产品中任取200个,取法有⎪⎭⎫ ⎝⎛2001500种,每种取法等可能。

200个产品恰有90个次品,取法有⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛110110090400种 ∴⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=2001500110110090400)(A P(2)至少有2个次品的概率。

记:A 表“至少有2个次品”B 0表“不含有次品”,B 1表“只含有一个次品”,同上,200个产品不含次品,取法有⎪⎭⎫ ⎝⎛2001100种,200个产品含一个次品,取法有⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛199********种 ∵10B B A +=且B 0,B 1互不相容。

∴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-=+-=-=200150019911001400200150020011001)]()([1)(1)(10B P B P A P A P13.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对”∵ 从10只中任取4只,取法有⎪⎭⎫ ⎝⎛410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。

取法有4245⨯⎪⎭⎫ ⎝⎛ 21132181)(1)(2182)(410445=-=-==⋅=∴A P A P C C A P15.[十一] 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少?记A i 表“杯中球的最大个数为i 个” i=1,2,3, 三只球放入四只杯中,放法有43种,每种放法等可能对A 1:必须三球放入三杯中,每杯只放一球。

放法4×3×2种。

(选排列:好比3个球在4个位置做排列)1664234)(31=⨯⨯=A P 对A 2:必须三球放入两杯,一杯装一球,一杯装两球。

放法有3423⨯⨯C 种。

(从3个球中选2个球,选法有23C ,再将此两个球放入一个杯中,选法有4种,最后将剩余的1球放入其余的一个杯中,选法有3种。

169434)(3232=⨯⨯=C A P 对A 3:必须三球都放入一杯中。

放法有4种。

(只需从4个杯中选1个杯子,放入此3个球,选法有4种)16144)(33==A P 16.[十二] 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?记A 表“10个部件中有一个部件强度太弱”。

法一:用古典概率作:把随机试验E 看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。

但10组钉铆完10个部件要分先后次序)对E :铆法有323344347350C C C C ⨯⨯⨯ 种,每种装法等可能对A :三个次钉必须铆在一个部件上。

这种铆法有〔32334434733C C C C ⨯⨯〕×10种00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P 法二:用古典概率作把试验E 看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。

(铆钉要计先后次序)对E :铆法有350A 种,每种铆法等可能对A :三支次钉必须铆在“1,2,3”位置上或“4,5,6”位置上,…或“28,29,30”位置上。

这种铆法有27473327473327473327473310A A A A A A A A ⨯⨯=+++⨯+⨯ 种00051.01960110)(3050274733==⨯⨯=A A A A P 17.[十三] 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ⋃===求。

解一:BA AB B B A AS A B P B P A P A P ⋃=⋃===-==-=)(,6.0)(1)(,7.0)(1)(注意φ=))((B A AB . 故有P (AB )=P (A )-P (A B )=0.7-0.5=0.2。

再由加法定理,P (A ∪B )= P (A )+ P (B )-P (A B )=0.7+0.6-0.5=0.8于是25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A B P25.05.06.07.051)()()()()()()|(51)|()()(72)|(757.05.0)|()|(0705)|()()(:=-+=-+=⋃⋃⋃===⇒==∴⋅=−−→−=B A P B P A P BA P B A P B B BA P B A B P A B P A P AB P A B P A B P A B P A B P A P B A P 定义 故 解二由已知18.[十四] )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。

相关文档
最新文档