矿井涌水量
大井法矿井涌水量计算公式
大井法矿井涌水量计算公式一、大井的涌水概念及衡量标准1.涌水:指采矿过程中,由于施工、稳定设施地压或水压作用,煤层及其他岩层通过矿口涌出来的水流。
2.水压:指不考虑排水量因素影响,在煤层及其他岩层中所带来的涌水水压。
3.涌水量:指大井产生的涌水量。
二、大井法涌水量计算公式1. 低压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*地压(MPa)*岩节理渗透系数(m3/MPa)/小时2. 高压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*(地压-水压)(MPa)*岩节理渗透系数(m3/MPa)/小时三、大井法涌水量评价标准1.水力学特性:涌水量以小于0.5 m3/ h 为合理范围。
2.压力传递特性:建议将涌水量保持在1.5 ~ 2.5 m3/ h 之间,使得压力分布更均匀。
3.体积变化特性:涌水量的大小是可以调节的,可取得矿井等体积变化更为稳定的效果。
四、大井法涌水量计算实例在以下实例中,假设大井膛面积等于10 m2,地压为0.5 MPa,岩节理渗透系数等于20 m3/ MPa 就可以计算出低压下的涌水量:低压涌水量按照低压涌水量计算公式=(10 m2) × (0.5MPa) × (20m3/MPa)/小时=100 m3/h假设水压为0.2MPa,则高压涌水量按照高压涌水量公式=(10 m2)×(0.5MPa-0.2MPa)×(20m3/MPa)/小时=80 m3/h。
五、结论根据以上的公式和分析,可以得出大井法涌水量可以按照低压涌水量计算公式和高压涌水量计算公式,评价标准为涌水量以小于0.5 m3/h 为合理范围,建议大井法涌水量控制在1.5~2.5m3/h之间,可以达到稳定的效果。
矿井正常涌水量
矿井正常涌水量
矿井涌水乃矿井生产情况不可缺少的检测方式之一。
正常涌水量的检测是保证矿井安全运转的重要环节,具有重要的意义。
正常涌水量的定义就是在矿山经过有效抽采之后,实际得到的涌水量所占的比例。
可以从地质特征、历史开采记录及工作面ampltitude,以及大量的实际检测数据中总结得出。
正常涌水量的测定,其实只有把握其正常情况下的大体范围,才能保证矿井的安全运转。
哪些情况会影响正常涌水量?
首先,矿井全体工程设计条件会影响正常涌水量,必须根据实际情况来确定这些条件,尤其是矿山夹层稠度、产量及灰量等。
其次,开采制度也会影响正常涌水量,这就涉及到了采矿厚度、方阵剖面等,必须结合矿山的特点实施有效的采矿制度,才能达到最佳效果。
再次,矿山的水文地质条件状况也会影响正常涌水量;因为水文地质条件主要关系到井眼水料的垂向分布及采掘介质的水料特征,这些都会直接影响正常涌水量的规律及量。
最后,措施控制是改善正常涌水量的有效途径。
科学有效地执行抽放及围岩支护工作,就能极大提升正常涌水量。
综上所述,正常涌水量是保证矿井安全运转的关键因素,矿井工程设计、开采制度、水文地质条件状况等都会影响正常涌水量,而执行抽放及围岩支护工作,则可能改善正常涌水量。
因此,对矿山涌水量的科学监测及控制,是保证矿井安全高效运转的重要保障与前提。
矿井涌水量评价常用方法及公式
附 录 A(资料性附录)矿井涌水量评价常用方法及公式A.1 比拟法A.1.1 富水系数法aP Q K P = ...................................... (A.1)11p Q K P = ...................................... (A.2) 式中:Q ——新矿井预计涌水量,单位为立方米(m 3);K p ——富(含)水系数,单位为立方米每吨(m 3/t );P ——新矿井设计产量,单位为吨(t );Q 1——生产矿井年涌水量,单位为立方米(m 3);P 1——生产矿井年产煤量,单位为吨(t )。
a 式中的涌水量和产煤量均是同一一定时间内的。
A.1.2 矿井单位涌水量比拟法当矿井涌水量增长幅度与开采面积、水位降深呈直线比例的情况下:1Q q FS = ...................................... (A.3)1111Q q F S = ...................................... (A.4) 当矿井涌水量增长幅度与开采面积、水位降深不呈直线比例时:Q Q =(A.3) 式中:Q ——新矿井预计涌水量,单位为立方米每秒(m 3/s );q 1——生产矿井单位涌水量,单位为每秒(s -1);F ——新矿井设计开采面积,单位为平方米(m 2);S ——新矿井设计水位降深,单位为米(m );Q 1——生产矿井总涌水量,单位为立方米每秒(m 3/s );F 1——生产矿井开采面积,单位为平方米(m 2);S 1——生产矿井水位降深,单位为米(m );m 、n ——地下水流态系数,根据两年以上生产矿井涌水量采用最小二乘法或图解法求得。
A.1.3 相关关系分析法a) 当生产矿井涌水量与两个影响因素存在直线关系时,采用下述三元直线相关数学表示式预算新井矿井涌水量(Q ):01122Q b b x b x =++ .................................. (A.4)式中:x 1 、x 2——影响矿井涌水量的二个因素变量;b 1 、b 2——称为Q 对x 1 、x 2的回归系数。
矿井(坑)涌水量计算
(D.6)
式中:
——新矿井(坑)预计涌水量,单位为立方米每年(m3/a);
、 ——影响矿井(坑)涌水量的二个因素变量;
、 ——对 、 的回归系数,在多元回归中, 对某一自变量的回归系数表示当其它自变量都固定时,该自变量变化一个单位时 平均改变的数值;
——生产矿井年产煤量,单位为吨每年(t/a)
矿井单位涌水量比拟法
当矿井(坑)涌水量增长幅度与开采面积、水位降低呈直线比例的情况下:
(D.3)
式中:
——生产矿井(坑)单位涌水量,单位为立方米每吨平方米(m3/tm2);
——生产矿井(坑)总涌水量,单位为立方米每 年(m3/a);
——生产矿井开采面积,单位为平方米(m2);
矿井充水含水层的收入项一般由下面几部分组成:
——大气降水渗入补给含水层的水量,单位为立方米每天(m3/d);
——从其它地区同一含水层中流入矿区含水层的水量,单位为立方米每天(m3/d);
——从矿区内其它含水层流入充水含水层的水量,单位为立方米每天(m3/d);
——水位降深,单位为米m);
——影响半径,单位为米(m);
——承压水含水层厚度,单位为米(m);
——动水位至底板隔水层水柱高度,单位为米(m);
A.4
水均衡法是在查明矿床开采条件的情况下,利用直接充水含水层的补给水量和支出水量之间的关系,根据水均衡原理,获得开采地段涌水量的方法。
在直接充水含水层的补给条件和补给量易于查清的情况下,均衡法往往可以获得满意的计算结果。
、 、 用最小二乘法确定。 用公式D.7确定。
(D.7)
式中:
《矿井涌水量预测研究》
《矿井涌水量预测研究》篇一一、引言矿井涌水量预测是矿山安全生产和环境保护的重要环节。
准确预测矿井涌水量,不仅有助于合理安排矿井排水,防止水灾事故的发生,而且对于矿井水资源的管理和利用具有重要意义。
本文旨在通过对矿井涌水量预测的研究,分析影响涌水量的主要因素,探讨预测方法及模型,为矿井安全生产和环境保护提供科学依据。
二、矿井涌水量的影响因素矿井涌水量受多种因素影响,主要包括地质因素、气象因素、采矿因素等。
地质因素如地下水位、含水层厚度、岩性等;气象因素如降雨量、气温等;采矿因素如采矿方法、开采深度等。
这些因素相互影响,共同决定矿井涌水量。
三、矿井涌水量预测方法及模型目前,矿井涌水量预测方法主要包括水文地质法、统计分析法、数值模拟法等。
其中,水文地质法主要依据地下水动力学原理,分析地下水的运动规律,从而预测矿井涌水量;统计分析法主要依据历史数据,建立统计模型,通过分析影响因素与涌水量的关系,预测未来涌水量;数值模拟法则是通过建立地下水流动的数学模型,模拟地下水的运动过程,从而预测矿井涌水量。
四、具体预测模型介绍1. 水文地质法模型:根据地下水动力学原理,建立水文地质模型。
通过分析地下水的补给、径流、排泄等过程,确定地下水位、含水层厚度等参数,从而预测矿井涌水量。
该方法需要考虑地质条件、水文地质条件等因素,适用于具有较为完整水文地质资料的矿井。
2. 统计分析法模型:根据历史数据,建立统计模型。
常用的统计模型包括线性回归模型、灰色预测模型等。
通过分析影响因素与涌水量的关系,建立数学表达式,从而预测未来涌水量。
该方法需要考虑影响因素的选取和数据的质量等因素。
3. 数值模拟法模型:通过建立地下水流动的数学模型,模拟地下水的运动过程。
常用的数值模拟软件包括FEFLOW、MODFLOW等。
该方法可以较为准确地反映地下水的运动规律,但需要较为复杂的建模过程和计算过程。
五、实例分析以某矿山为例,采用上述三种方法进行矿井涌水量预测。
矿井涌水量名词解释(一)
矿井涌水量名词解释(一)矿井涌水量名词解释1. 矿井涌水量•定义:矿井涌水量指矿井开采过程中,从地下水或其他来源进入矿井的水的总量。
•举例:当矿井开采过程中,每天进入矿井的地下水总量为500立方米,则该矿井的涌水量为500立方米/天。
2. 矿井涌水含量•定义:矿井涌水含量指在单位时间内矿井涌入的水的质量。
•举例:一个矿井在一小时内涌入的地下水总质量为1000千克,则该矿井的涌水含量为1000千克/小时。
3. 矿井涌水压力•定义:矿井涌水压力指地下水由于重力和地下水位差形成的压力。
•举例:某矿井涌水量较大,涌水压力为10兆帕,则该矿井所受的涌水压力较大。
4. 矿井涌水速度•定义:矿井涌水速度指涌入矿井的地下水在单位时间内通过矿井断面的速度。
•举例:矿井断面为1平方米,涌水量为100立方米/小时,则该矿井的涌水速度为100立方米/小时。
5. 矿井涌水孔隙现象•定义:矿井涌水孔隙现象指由于矿井活动引起地下水孔隙系统的变化,进而影响矿井涌水量的现象。
•举例:矿井内采矿活动导致地下水孔隙的破坏,从而增加了矿井的涌水量。
6. 矿井涌水来源•定义:矿井涌水来源指涌入矿井的水来自何处,包括地下水、地表水等。
•举例:某矿井的涌水主要来自地下水,部分涌水也来自附近的河流。
7. 矿井涌水处理•定义:矿井涌水处理指对涌入矿井的水进行处理,以减少对矿井开采的影响。
•举例:针对某矿井涌水量较大的情况,采取了抽水排涌和加强地下水封堵等措施进行涌水处理。
以上是关于矿井涌水量的一些常见名词解释及举例。
在矿井开采中,准确理解这些名词并采取适当的措施进行涌水管理,对确保矿井的安全运营具有重要意义。
矿井涌水量观测方法
矿井涌水量观测方法矿井涌水量是矿山制定疏干排水设计的主要依据,是评价矿坑充水条件复杂程度的主要标志。
做好矿坑涌水量的预测工作,对保证矿工的人身安全及矿山的安全生产十分重要。
地下开采一般要求观测各开采水平涌水量及全矿最大涌水量,而正确观测矿坑涌水量,首先要选对正确的方法,再用相应的公式进行计算。
关键词:涌水量观测方法准确度1、量桶容积法当流量小于1 L/s时,常用此法。
容器一般用量桶或水桶,为了减少测量误差,计量容器的充水时间不应小于20 s流量计算公式: Q=V/t (L.s-) 式中V———容器的容积,L; t———充满容器的时间,s。
2、巷道容积法在矿井发生突水时,利用水流淹没倾斜巷道的过程中,经常不断地测量巷道与自由水面相交断面面积(F=ab),用单位时间内水位上涨高度(H)来计算水量,公式如下:Q=ab*H/t (m³.h-)式中 H———t时间内水位上涨高度,m;t———水位上涨高度为片时的时间,h;a———巷道内自由水面的平均度,m;b———巷道内自由水面长度,m。
当涌水较大,淹没巷道水沟时,可用此方法来测量巷道流水中水量3、水泵排量法观测过程:记录水泵的标牌排水量,计算水泵的运转效率,记录水泵运转时间,记录临时水仓的水位变化,计算临时水仓的水面面积。
计算公式:Q=KNW+SH/t式中Q-涌水量,m3/h(m3/min)K-水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0. 8,排混水时K=0. 9,旧水泵排混水时K=0. 7,双台旧水泵排水时K=0. 6N-增加的水泵台数,台W-水泵的铭牌排水量,m3/h (m3/min)S-水仓(或水窝)水平截面积,m2 H-水位上升的高度,mT-水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标测流法采用水面浮标的流水沟道地段及实测断面应符合下列要求: (1)沟道顺直,沟床地段规则完整,长度为3-5倍的沟宽。
矿井涌水量计算公式
矿井涌水量计算公式矿井涌水量的计算可是个相当重要的事儿呢!这就好比我们过日子得清楚每个月的开销有多少,矿井开采也得搞明白会有多少水涌进来,才能做好应对措施,保证生产安全。
要计算矿井涌水量,首先得搞清楚几个关键的概念。
比如说,“静储量”和“动储量”。
静储量就像是一个水库里原本就有的水,不怎么会变;而动储量呢,就像是河流里流动的水,一直在变化。
常见的矿井涌水量计算公式有好几种。
比如说“大井法”,这名字听起来有点怪,但其实就是把矿井想象成一个大井,然后通过一些复杂的计算来估算涌水量。
还有“水文地质比拟法”,简单说就是找一个跟要计算的矿井情况差不多的,已经有了涌水量数据的矿井来做参考,然后根据两者的差异进行调整。
我记得有一次去一个煤矿实地考察,那场面可真是让我印象深刻。
我们一群人穿着厚厚的工作服,戴着安全帽,深入到矿井里面。
当时,负责计算涌水量的工程师拿着本子和笔,一边查看各种仪器的数据,一边嘴里念念有词地计算着。
周围的矿工们也都一脸紧张地看着,因为涌水量的多少直接关系到他们的工作安全和进度。
矿井里潮湿闷热,灯光也不是特别亮,大家的脸上都挂着汗珠。
工程师告诉我们,哪怕一个小小的数据误差,都可能导致计算结果出现很大的偏差,所以每一个数字都得仔细核对。
在计算矿井涌水量的时候,还得考虑很多因素。
像是含水层的类型和厚度、地下水的水位和水压、矿井的开采深度和面积等等。
这就像是做菜,各种调料的比例都要恰到好处,才能做出美味的菜肴。
如果忽略了某个重要因素,那计算出来的涌水量可能就会差之千里。
而且,随着开采的进行,矿井的情况也会不断变化。
今天算出来的涌水量,可能过一段时间就不准确了。
所以,得经常进行监测和重新计算,就像我们要经常看看自己的钱包,看看是不是超支了一样。
另外,不同地区的矿井,地质条件差别很大。
有的地方含水层丰富,涌水量大得吓人;有的地方则相对较少。
所以在计算的时候,不能生搬硬套公式,得结合实际情况灵活运用。
矿井涌水量评价常用方法及公式
附 录 A(资料性附录)矿井涌水量评价常用方法及公式A.1 比拟法A.1.1 富水系数法aP Q K P = ...................................... (A.1)11p Q K P = ...................................... (A.2) 式中:Q ——新矿井预计涌水量,单位为立方米(m 3);K p ——富(含)水系数,单位为立方米每吨(m 3/t );P ——新矿井设计产量,单位为吨(t );Q 1——生产矿井年涌水量,单位为立方米(m 3);P 1——生产矿井年产煤量,单位为吨(t )。
a 式中的涌水量和产煤量均是同一一定时间内的。
A.1.2 矿井单位涌水量比拟法当矿井涌水量增长幅度与开采面积、水位降深呈直线比例的情况下:1Q q FS = ...................................... (A.3)1111Q q F S = ...................................... (A.4) 当矿井涌水量增长幅度与开采面积、水位降深不呈直线比例时:Q Q =(A.3) 式中:Q ——新矿井预计涌水量,单位为立方米每秒(m 3/s );q 1——生产矿井单位涌水量,单位为每秒(s -1);F ——新矿井设计开采面积,单位为平方米(m 2);S ——新矿井设计水位降深,单位为米(m );Q 1——生产矿井总涌水量,单位为立方米每秒(m 3/s );F 1——生产矿井开采面积,单位为平方米(m 2);S 1——生产矿井水位降深,单位为米(m );m 、n ——地下水流态系数,根据两年以上生产矿井涌水量采用最小二乘法或图解法求得。
A.1.3 相关关系分析法a) 当生产矿井涌水量与两个影响因素存在直线关系时,采用下述三元直线相关数学表示式预算新井矿井涌水量(Q ):01122Q b b x b x =++ .................................. (A.4)式中:x 1 、x 2——影响矿井涌水量的二个因素变量;b 1 、b 2——称为Q 对x 1 、x 2的回归系数。
矿井涌水量资料
表 3 不同水源对矿井充水影响台帐
涌水量
m3/h
%
老空水
m3/h
%
断层水
m3/h
%
各类型水所占百分数
底板水
顶板水
m3/h
%
m3/h
%
钻孔水
m3/h
%
其它水
m3/h
%
备注 m3/h
整理课件
10
矿井充水性图:
某矿23采区充水性图
1-断层;2-突水点;3-经常性涌水地点及所测流量;4-疏干顶板含水层的放水钻孔;5-巷道;6-水仓及其容积;7-
涌水量计算公式为: Q0.01h42 h
式中 Q—过堰流量,L/s; h—过堰水深,cm。
整理课件
17
梯形堰
梯形堰 :适用于涌水量较大情况(0.01~0.3m3/s)
涌水量计算公式为: Q0.018B6hh
式中 Q—过堰流量,L/s; h—过堰水深,cm。 B—堰底宽度,cm。
整理课件
18
矩形堰
•
Q 0.8F L
•
t
•
•
式中 Q—涌水量,m3/min;
•
F—排水沟过水断面平均值,m2;
•
L—上、下游断面间的距离,m;
•
t—浮标从上游断面流到下游断面所需的时间,min。
整理课件
15
(堰
整理课件
16
三角堰
三角堰:适用于涌水量较小(<0.01m3/s)的情况
出水 出水口 水压 出水量 水质 形式 标高(m) (MPa) (m3/min) 分析
出水 原因
水源 分析
对生产的影响
备注
整理课件
6
矿井涌水量分类
矿井涌水量是指在矿井开采过程中,地下水通过裂隙、孔洞等途径进入矿井的数量。
涌水量的多少直接影响矿井的安全生产和矿工的工作环境。
根据涌水量的大小,可以将矿井涌水分为四个分类:微量涌水、小量涌水、中量涌水和大量涌水。
下面将对每个分类进行详细介绍。
一、微量涌水微量涌水是指矿井中涌入的地下水量较少,通常不会对矿井的正常生产造成明显影响。
微量涌水主要表现为墙壁潮湿或有细小的水珠滴落,不需要进行特殊处理。
但是,对于深部矿井来说,微量涌水也需要及时监测和控制,以避免逐渐增加和发展成其他类型的涌水。
二、小量涌水小量涌水是指涌入矿井的地下水量适中,可能对矿井的正常生产带来一定的影响。
小量涌水主要表现为墙壁有水滴流下,矿井底部可能有积水。
对于小量涌水,需要采取一些措施进行处理,主要包括设置抽水泵进行排水、修复裂隙和堵漏以减少涌水量。
三、中量涌水中量涌水是指涌入矿井的地下水量较大,严重影响矿井的正常生产。
中量涌水表现为墙壁有水流或喷水,矿井底部有明显积水,甚至可能导致矿井淹没。
对于中量涌水,需要采取紧急措施进行处理,包括增加排水设备、修复矿井支护结构、封堵漏点等。
四、大量涌水大量涌水是指涌入矿井的地下水量非常大,会导致严重的灾害事故发生,对矿井的正常生产造成严重威胁。
大量涌水表现为墙壁有大量水流或喷水,矿井底部严重积水,矿井可能完全淹没。
对于大量涌水,需要立即采取紧急措施,包括紧急疏散人员、停止开采、紧急排水等,必要时还需进行地面援救和井下救援。
在矿井涌水处理过程中,需要根据实际情况灵活采取不同的措施,并且及时监测涌水量的变化,以确保人员的安全和矿井的正常生产。
此外,在矿井设计和开采过程中,也应该充分考虑涌水问题,采取相应的防治措施,以减少涌水的发生。
对于涌水问题,科学合理的管理措施和技术手段是确保矿井安全和高效生产的关键。
矿井涌水量观测方法
矿井涌水量观测方法矿井涌水量观测方法是矿山工程中的重要部分。
它主要用于测量地下矿井中的流体(一般为水)涌入量,以确保矿井工作的安全和稳定。
涌水量的观测能够帮助矿井管理者掌握井下水流情况,及时采取必要的措施,保证矿井的正常运行。
在矿井涌水量观测中,常用的方法有以下几种:1.安装流量计。
流量计是一种直接测量液体或气体流量的设备。
它可以根据单位时间内通过设备的体积计算流量。
对于矿井涌水量的观测,可以在矿井井口或其他合适位置安装流量计,通过测量涌水的体积来计算涌水量。
2.安装涌水管道。
涌水管道是一种用于引导和收集涌水的管道系统。
在矿井中,可以设置涌水管道将涌水引导到集水池或其他容器中。
通过对引导涌水的管道直径、长度等参数进行监测,可以估算出涌水量的大小。
3.利用水位计测量涌水量。
水位计是一种用于测量液体水位或液位变化的设备。
井下的涌水一般会形成水位,通过在合适位置安装水位计,可以实时监测涌水水位的高低,并通过高度的变化来估算涌水量的大小。
4.利用泰勒管原理进行涌水观测。
泰勒管原理是一种利用涌水的挟带能力来测量涌水量的方法。
泰勒管是一种特殊的管道,当液体流入管道时,会产生拉手现象,从而顶起液面。
通过测量被顶起的液面高度,可以计算出涌水量的大小。
除了上述方法外,还可以利用现代技术,如超声波测量、压力传感器等进行矿井涌水量的观测。
这些技术可以提供更为准确和可靠的数据,在矿井管理决策中起到更重要的作用。
总之,矿井涌水量的观测方法有多种,可以根据实际需要和条件选择合适的方法。
在进行观测时,需要注意安全、准确和可靠,确保矿井工作的安全和稳定。
同时,还要加强对涌水量观测数据的分析和利用,为矿井管理决策提供科学依据。
煤矿井下涌水量计算的几种观测方法
煤矿井下涌水量计算的几种观测方法1、水桶法水桶法指的是,将涌出的水导入一定容积的量水桶(圆形或方形),用秒表测流满该量水桶所需的时间,然后按下式计算涌水量:Q= V/t式中Q——涌水量,m3/h(m3/min)V——量水桶的体积,m3t——水流满量水桶的时间,h(min)2、水位标定法水位标定法指的是利用水泵将水窝(或水仓)中的水位降低,然后停泵,测量回升到原来位置所需要的时间,然后按下式计算涌水量:Q=FH/t式中Q——涌水量,m3/h(m3/min)F——水窝(或水仓)的断面积,m2H——水位回升的高度,mt——水流满凉水桶的时间,h(min)3、水泵能力法水位能力法指的是维持水位不变时增加水泵的排水能力,按下式计算涌水量:Q=KNW+SH/t式中Q——涌水量,m3/h(m3/min)K——水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0.8,排混水时K=0.9,旧水泵排混水时K=0.7,双台旧水泵排水时K=0.6)N——增加的水泵台数,台W——水泵的铭牌排水量,m3/h(m3/min)S——水仓(或水窝)水平截面积,m2H——水位上升的高度,mT——水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标法浮标法指的是利用木屑或纸屑作为浮标,测量水沟中水的流速,根据水沟断面计算涌水量。
按下式计算涌水量:Q=KVF式中Q——涌水量,m3/h(m3/min)F——断面面积,m2V=L/tt——从断面1到断面2的水流时间,h(min)L——从断面1到断面2的水距离,mK——断面系数,与水沟粗糙度、风流方向和大小有关:在一般情况下,水沟水深大于1.0吗,当水沟粗糙时,K=0.75—0.85;在水沟水沟平滑时,K=0.80—0.90。
此计算方法可用于巷道排水沟中水的测量;当涌水较大,淹没巷道水沟时,也可用来测量巷道流水中水量。
5、堰测法堰测法指的是在井下排水沟中设置测水堰板,使水流通过一定形状的堰口水流高度,然后计算涌水量。
矿坑涌水量计算
矿坑涌水量计算矿坑涌水量计算矿坑涌水是煤矿地下深采过程中经常遇到的问题,对于矿井的安全生产以及煤矿的经济效益都有着重要的影响。
因此,对矿坑涌水量的计算是煤矿工人不可或缺的技能之一。
在这篇文章中,我们将会介绍如何计算矿坑涌水量以及计算过程需要注意的问题。
1、涌水量计算的方法为了计算矿坑涌水量,我们需要了解几个参数:矿井的水文地质情况、涌水管道的特性和涌水流量曲线。
具体来说,我们需要测定以下参数:1.涌出水口地下水位 (H)2.涌出水口流量 (Q)3.涌出水口的空气容积 (V)涌水量 = 涌出水口流量 Q(m/s)× 涌出水口空气容积V(m³) × 涌出水口地下水位 H(m)因此,计算涌水量的方法就是通过测量这三个参数,再将其带入上式计算。
通常我们会采用标准流量计、液位计以及液位高低差计算仪器等设备来测量这些数据。
2、其中的数值要点在上面,我们提到需要怎样计算涌水量。
实际测量过程中,应注意以下数值要点。
1.涌出水口地下水位(H)涌出水口地下水位是指矿坑里涌水的水位高度,通常它会随着时间而变化。
在实际操作中,我们需要在多个时间点测量该水位,然后取平均数作为涌出水口地下水位。
2.涌出水口流量(Q)涌出水口流量可以利用标准流量计进行测量。
为了比较精准地测量涌出水口流量,我们需要注意以下两点。
(1) 测量范围流量计的参数范围需要考虑到涌出水口的流量范围以及实际流量与流速差别(如小流量,应选取全开阀范围测量,确保数据精度)。
(2) 测量误差在实际测量中,我们需要注意流速、温度和压力等参数对流量计实际测量结果的影响。
并且,我们还需要对流量计进行定期校正,以确保其准确度和稳定性。
3.涌出水口的空气容积(V)涌出水口的空气容积是指涌出水口上,不被水淹没的管道内的气体容积。
测量方法是在下水井内利用液位计测量涌出水口到下井站的距离,并将其乘以涌出水口直径的平方除2再乘以3.14即为涌出水口的空气容积。
矿井涌水量容积法计算公式
矿井涌水量容积法计算公式
矿井涌水是煤矿生产中常见的问题之一,特别是在深部煤矿开采中,涌水问题
更加突出。
因此,对矿井涌水量的准确计算和预测,对煤矿生产具有重要意义。
矿井涌水量的计算方法有很多种,其中容积法是一种常用的方法之一。
矿井涌水量容积法是通过测量矿井涌水的容积来计算涌水量的方法。
其计算公
式为:
涌水量 = 断面积×涌水速度。
其中,断面积是指矿井横截面的面积,通常用平方米(m^2)来表示;涌水速
度是指单位时间内涌水的体积,通常用立方米/小时(m^3/h)来表示。
在实际应用中,矿井涌水量的计算通常是根据矿井的实际情况来确定的。
首先
需要测量矿井的断面积,可以通过测量矿井的宽度和高度来计算得出;然后需要测量涌水速度,可以通过安装流量计或者测量涌水的时间和涌水量来计算得出。
通过容积法计算矿井涌水量的优点是简单易行,不需要复杂的仪器设备,只需
要测量矿井的断面积和涌水速度即可计算得出。
但是,容积法也存在一定的局限性,比如只适用于矿井涌水量较小的情况,对于涌水量较大的矿井,容积法可能会有一定的误差。
除了容积法之外,还有一些其他的方法可以用来计算矿井涌水量,比如压力法、泵入法、水位法等。
每种方法都有其适用的场合和局限性,需要根据实际情况选择合适的方法来进行计算。
在煤矿生产中,准确预测和计算矿井涌水量对保障矿井安全和提高生产效率具
有重要意义。
因此,矿井涌水量的计算方法和技术一直是煤矿工作者关注的焦点之一。
随着科学技术的不断发展,相信在未来会有更多更精确的方法和技术用于矿井涌水量的计算和预测,为煤矿生产提供更加可靠的技术支持。
涌水量单位
涌水量单位
矿井绝对涌水量是单位时间内流入矿井的水量单位是立方米/小时;
相对涌水量是矿井每采一吨煤的涌水量,单位是立方米/吨。
矿井涌水量:
流入矿井巷道内的地表水、裂隙水、老窑水、岩溶水等的总量。
矿井涌水量的大小常用每小时或每分钟的流量表示。
矿井涌水量是煤矿开发的一个重要技术条件。
地质勘探工作区应查明水文地质条件和预计开采矿井的涌水量,以便在建井和生产时采取相应的流、排、堵、防等措施。
单位涌水量:
抽水试验时井孔内水位每下降一米时的涌水量。
它是对比含水层出水能力大小的重要指标。
单位涌水量的单位为L/(s·m)。
矿井涌水量
如何用矿井涌水量评价水文地质条件?
答:(1)矿井涌水量年平均<180m3/h(西北地区0-100 m3/h),最大涌水量<300m3/h,属于水文地质条件简单;
(2)矿井涌水量年平均180-<600m3/h(西北地区100-150 m3/h),最大涌水量<1200m3/h (西北地区120-300 m3/h),属于水文地质条件中等;
(3)矿井涌水量年平均600-2100m3/h(西北地区150-1200 m3/h),最大涌水量1200-3000m3/h(西北地区300-3000 m3/h),属于水文地质条件复杂;
(4)矿井涌水量年平均1200-3000m3/h,最大涌水量>3000m3/h,属于水文地质条件极复杂。
什么叫矿井正常涌水量和最大涌水量?
答:矿井正常涌水量是指矿井开采期间,单位时间内流入矿井的水量。
矿井最大涌水量是指矿井开采期间,正常情况下矿井涌水量的高峰值。
主要与人为条件和降雨量有关。
矿井下巷道遇断层时的征兆?
答:A、断层附近煤岩层塑性变形现象,包括:煤岩层的产状发生变化、煤层厚度发生变化、出现牵引褶曲等。
B、断层附近的脆性断裂现象,包括:顶底板中裂隙增多(一般在10-20m范围);常伴生一系列小断层;如岩层裂隙构通含水层,则出现淋水增加、甚至发生涌水。
C、遇断层前后,瓦斯涌出量往往明显变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节、矿井涌水量预测方法
预测失误原因 预测特点 1、水文地质比拟法 预测步骤
2、 Q-S曲线外推法 3、回归分析法
4、解析法 5、水均衡法
预测失误的原因分析
1977~1978年,地质矿产部曾对55个重点岩溶充水矿山 进行了水文地质回访调查,矿井涌水量预测值与开采后的实 际涌水量的对比表明: 10%的矿区--误差小于30% 80%的矿区--误差大于50% 个别矿区----误差达数10倍、100倍 例1:叶庄铁矿预测值为417.4m3/d,实际值为预测值的256.3倍。 例2:泗顶铅锌矿
矿井涌水量
第一节、 矿井水观测 第二节、 矿井涌水量的测定 第三节、 矿井涌水量预测方法
中 国 矿 业 大 学:郑 丽 萍 Email:zhlp1978@
2013年10月16日
矿井涌水量是指矿山建设和生产过程中单位时间 内流入矿井(包括各种巷道和开采系统)的水量。
意义:它是对煤田进行技术经济评价、合理开发的重要指标, 也是设计和生产部门制订采掘方案,确定排水能力和防治措施 的重要依据。在煤勘和矿建生产中具有重大意义。
Q aS
Ⅰ直线型
S 0 a bQ
1 lg Q lg a lg S b
Ⅱ抛物线型
Ⅲ幂曲线型 Ⅳ对数曲线型
取单对数
Q a b lg S
曲度法 在曲线上取两点, 由下式求出曲度值n: ( Q 1, S 1 )
lg S 2 lg S1 n lg Q2 lg Q1
(Q2,S2)
表3
位置
3
不同水源对矿井充水影响台帐
各类型水所占百分数 断层水 底板水 % m /h
3
涌水量 m /h %
3
老空水 m /h %
3
顶板水 % m /h
3
钻孔水 % m /h
3
其它水 % m /h
3
备注 % m /h
3
m /h
155 东翼 155 西翼 55 东翼 55 西翼 全矿井
矿井充水性图:
2、水文地质模型概化不当,选用的水文地质参数不妥, 缺乏代表性;
叶庄矿: 单孔抽水试验二次降深得 K=0.215m/d ← 三次降深抽水试验得 K=11.67m/d,增长44倍;
3、数学模型选择不当。
求解参数的关键环节!
数学模型-水文地质模型-水文地质勘探资料
矿井涌水量预测步骤
-3
第一步:建立水文地质(概化)模型
b
Q a b lg S
最小二乘法:当精度要求较高时采用
①直线型 ②抛物线型
QS a S
2
S a
0
b Q N
b
N S0 S0 Q N Q 2 Q
2
③幂曲线型
lg Q b lgS lg a N
1 N lg Q lg S lg Q lgS 2 2 b N lg S lg S
矿井地面 水文地质 观测
井下 水文地质 观测
矿井 涌水量的 观测
降水量
地表水
地下水
巷道 充水性 观测
观测要求
观测资料 的整理
含水层
岩层裂隙 发育调查
断裂构造
出水点
出水征兆
涌水量 统计
编制矿井 充水性图
编制涌水量与 有关因素的 关系曲线图
表1
出水 时间 出水 地点 出水 层位 出水 形式 出水口 标高(m) 水压 (MPa)
(2)水文地质条件比拟法:
2、 Q-S曲线外推法
(1)建立Q–S曲线方程 可归纳为四种数学模型:
Ⅰ直线型
Q
Q aS
Ⅱ抛物线型
Ⅴ Ⅰ Ⅳ
S aQ bQ2
Q aS
1 b
Ⅲ幂曲线型
S
Ⅱ
Ⅲ
Ⅳ对数曲线型
Q a b lg S
Ⅰ 直线型:承压井流(或厚度很大、 降深相对较小的潜水井流)
-60.00 597 -70.00 -80.00 -90.00 -100.00
H(m )
t(d) 872 1214 1303 1396 1500 1570
观测值 计算值
1、水文地质比拟法
• (1)富水系数法
K p -----富水系数,指同一时期(通常为一年)矿井的涌水量Q
与开采量P0之比。
0
Q0 Q KP P P P0 Q, P — — — 新设计矿井涌水量、开采量 Q0,P0 — —老矿井涌水量、开采量
出水点记录卡片
出水量 (m /min)
3
水质 分析
出水 原因
水源 分析
对生产的影响
备注
矿井涌水量观测:
1、涌水量观测站点的布置:
固定站点:长期突水点、水文地质复杂的开采区、 排水井的下游、疏干石门水沟的出口、大巷水沟 入水仓处。 临时站点:一般出水点、采掘工作面的探放 水钻孔、井筒新揭露的含水层
2、涌水量观测要求: 按时间: 一般每旬观测一次 初揭露的涌水量未稳定之前,每天测量一次 突然涌水,每隔1-2h观测一次 按突水点: 回采工作面通过重要含水结构时,每天或每班测定一 次 疏干钻孔或老窑防水钻孔,每隔3-5天测定一次 竖井每延伸10m、斜井每延伸20m测量一次
Q
Ⅱ 抛物线型:潜水、承压-无压井流 (三维流、紊流影响的承压井流)
Ⅴ Ⅰ Ⅳ
Ⅲ 幂曲线型:从某一降深值起,涌 水量Q随阵深S的增大而增加很少
Ⅳ 对数型:补给衰竭或水流受阻,随 S增大Q增量很小,曲线趋向S轴 Ⅴ 可能有误或特殊现象发生
S
Ⅱ
Ⅲ
原来被阻塞的裂隙、岩溶通道被突然疏通
(2)判别实际的Q–S曲线的类型
曲度判定
1 试验资料有错误 1 直线型 n ( 幂曲线型 1,2) 2 抛物线型 2 对数曲线型
(3)确定方程中的待定参数a和b
图解法: 一般情况下,利用各类型的直线方程图线 ,可由求出参数a和b。 结果:a为截距,b为直线的斜率 1 注意:Ⅲ幂曲线型中,b为斜率的倒数 lg Q lg a lg S
3、观测资料的整理:
表2
涌水量 (m3/h) 月份 1 巷道 名称 155 水平回风巷 东 翼 55 水平大巷 55 水平石门 155 水平回风巷 西翼 55 水平大巷 55 水平石门 主井井筒 副井井筒 井底车场 斜井井筒 全矿汇总 2 3 4
涌水量随时间和空间变化特征台帐
5
6
7
8
9
10
11
12
•
• • •
(三)堰测法
1.三角堰 2.梯形堰 3.矩形堰
三角堰
三角堰:适用于涌水量较小(<0.01m3/s)的情况 涌水量计算公式为:
Q 0.014h
2
h
式中 Q—过堰流量,L/s; h—过堰水深,cm。
梯形堰
梯形堰 :适用于涌水量较大情况(0.01~0.3m3/s)
涌水量计算公式为:
江西榨一煤矿
4、疏干工程的排水量 在规定的疏干时间内,将水位降到某一规定标 高时所需的疏干排水强度。 难以预测! 5、矿井突水量 矿井采掘过程中在某些因素的作用下,含水 层(体)中的地下水突破隔水层而突然进入开采 系统的水量,突水量常常是正常涌水量的数倍 甚至数十倍。
人为
第一节、 矿井水观测
矿井水 观测
(四) 流速仪法
(适用于涌水量较大的情况)
HR型流速仪
XY-1型多功能流速、流量监测仪
(五)水仓水位法
涌水量即可用下式计算:
H1 H 2 Q F t
式 中Q—涌水量,m3/min;
H1—停泵时水仓水位,m;
H2—停泵时间t时水仓水位,m; F—水仓底面积,m2。 水仓内测定水位示意图 t—水仓水位从H1上升到H2所需的时间, min。
实际涌水量 预测方案一 预测方案二
6048 m3/d
80524.8 m3/d
误差1231%
95299.2 m3/d
误差1475%
预测失误的原因分析
1、水文地质条件的复杂性认识不足,对水文地质条件未 予查清;
叶庄矿:三个方面补给边界←一个补给方向 杨二矿:半封闭型地下水系统←开放型大水矿区 红岩矿:水源底板茅口组灰岩←顶板长兴组灰岩
Q-S曲线法的优点:
⑴避开了各种水文地质参数; ⑵计算简单易行; ⑶适用:水文地质条件复杂,边界条件复杂而难以 建立解析公式的矿区。
如:广东某金属矿区,曾用Q-S曲线法预测+50m水平 的涌水量为14450m3/d,与巷道放水外推的数值 (14000m3/d)接近,而用解析法预测的结果(12608m3/ d)则偏小12%。
确定依据
矿床水文地质条件类型 矿床水文地质条件复杂程度 矿床开发经济技术条件 矿山疏干排水设计 矿井生产能力 防治水措施
主要工作
1、矿井正常涌水量:矿井开采系统在某一标高时,正常状态
保持相对稳定的总涌水量。 2、矿井最大涌水量:矿井开采系统在正常开采时雨季期间的 最大涌水量。 3、开拓井巷涌水量 井筒(立井、斜井)和巷道(平硐、平巷、斜巷、石门)在开拓 过程中的涌水量。
(1)概化已知状态下矿区水文地质条件; (2)给出未来开采井巷的内部边界条件; (3)预测未来开采条件下的外部边界。
以条件复杂的大水矿井为例,大致分三个阶段:
第一阶段(初勘阶段),通过初勘资料,对矿床水文地质 条件概化,提出水文地质模型的“雏型”,它可作为大型抽 (放)水试验设计的依据; 第二阶段(详勘阶段),根据勘探工程提供的各种信息, 特别是大型抽(放)水试验资料,完成对水文地质模型“雏型” 的调整,建立水文地质模型的“校正型”; 第三阶段,在水文地质模型“校正型”的基础上,根据 开采方案(即疏干工程的内边界条件)预测未来开采条件下外 边界的变化规律,建立水文地质模型的“预测型”。