初三特殊的平行四边形培优同步讲义
北师大版九年级(上)数学第一章特殊平行四边形讲义(二)(无答案)
第一章特殊平行四边形1.2矩形的性质和判定一.矩形的性质1.矩形的定义有一个角是直角的平行四边形叫做矩形.温馨提示①对于矩形的定义要注意两点a.是平行四边形.b.有一个角是直角;②定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形;③矩形的定义既是矩形的性质,也提供了矩形的种判定方法。
2. 矩形的性质(1)矩形具有平行四边形的所有性质 .(2)矩形的四个角都是直角.(3)矩形的对角线相等.(4)矩形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴. 矩形又是中心对称图形,对角线的交点为对称中心.菱形中相等的线段:AC=BD,OA = OC=OB = OD.菱形中相等的角:∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°.菱形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关矩形问题可转化为直角三角形或等腰三角形的问题来解决(转化思想).温馨提示:①矩形具有平行四边形的一切性质;②利用矩形的性质可以推出直角三角形斜边中线的性质,即:在直角三角形中,斜边上的中线等于斜边的一半;③“矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;④矩形的两条对角线分矩形为面积相等的四个等腰三角形。
【例1】已知四边形ABCD是矩形.(1)若AB=8cm,AD=6cm,则AC=______cm,OB=______cm.(2)若AC=10cm,BC=6cm,则矩形的周长=______cm.【例2】如图所示,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为_____________【例3】吧如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC .(1)求证OE=OF;(2)若BC=,求AB的长.【例4】如图,在矩形ABCD中,DE平分∠ADC,∠EDO=15°.(1)试比较线段AO与AE的大小,并证明你的结论;(2)连接OE,求∠AOE的大小.3.应用矩形性质求线段长【例5】已知矩形对角线的夹角为120°,对角线长为24cm,则矩形较短的边长为________.【例6】如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB= 60°,AB=4. 则矩形对角线的长为___________.【例7】如图,在矩形ABCD中,AE平分∠BAD,交BC于点E.ED=5,EC=3,求矩形的周长及对角线的长.【例8】如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为_______.4.利用矩形对角线性质进行推理证明【例9】如图,在矩形ABCD中,AE∥BD,且交CB的延长线于点E.求证:∠EAB=∠CAB.【例10】如图,在矩形中,对角线相交于点O,且∠CDF=∠BDC,∠DCF=∠ACD.求证:DF=CF .5.矩形性质、勾股定理及方程思想的综合【例11】如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE=______.【例12】如图,将一个边长分别为4,8的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长是__________【例13】如图,矩形纸片ABCD 中,AB 3 cm,BC 4 cm,现将A、C 重合,使纸片折叠压平,设折痕为EF.重叠部分△AEF 的面积为________.6.直角三角形斜边中线性质的应用【例14】如图四边形ABCD中,∠ABC=∠ADC=90°,E是AC中点,EF平分∠BED交BD 于点F. (1)猜想EF与BD具有怎样的关系?(2)证明你的猜想.【例15】如图,BD,CE是的两条高,M,N分别为BC,DE的中点.求证:(1)EM=DM;(2)MN⊥DE.二.矩形的判定7. 矩形的判定定理(1)有三个角是直角的四边形是矩形.(2)对角线相等的平行四边形是矩形。
北师大版九年级上册《特殊的平行四边形》综合复习讲义
(1)四边______;(2)四个角都是_______;(3)对角线______且互相______、______,并且每条对角线_______一组对角。
8、正方形的判定:(1)一组_______相等的矩形;(2)有一个角是_______的菱形。
9、平行四边形:S=2×(错误!未找到引用源。
×底×高)=底×高; 矩形:S=长×宽; 菱形:1212S l l =⋅(12l l 、是菱形对角线) 正方形:S=边长2 错题重现1.如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形; (2)填空:①当AM 的值为___ _时,四边形AMDN 是矩形; ②当AM 的值为__ _时,四边形AMDN 是菱形.2.如图,△ABC 是等腰直角三角形,∠BAC =90°,点P ,Q 分别是AB ,AC 上的动点,且满足BP =AQ ,点D 是BC 的中点.(1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,并说明理由.知识详解多边形与特殊的四边形考点一:多边形的有关概念(重点)例1:(1)一个多边形的内角和等于它的外角和,那么这个多边形是 边形;(2)一个多边形的每个外角都是300, 则这个多边形是 边形;(3)多边形边数增加一条,则它的内角和增加 度,外角和 。
考点二:平行四边形的性质和判定(重点)例2:在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A 、4cmB 、6cmC 、8cmD 、10cm 练习1:(2011浙江)如图,在 ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .H F EDCBA考点三:矩形、菱形的性质与判定(重点)例3:(2012宁夏)如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .练习2:(2011内蒙古)如图,已知矩形ABCD ,一条直线将该矩形 ABCD 分割成两个多边形,若这两个多边形的内角和分别为 M 和 N ,则 M + N 不可能是( )A 、3600B 、5400C 、7200D 、6300练习3:(2008湖北)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F .(1)求证:EO=FO ;(2)当点O 运动到何处时,四边形AECF 是矩形? 并证明例4:(2012山西)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A 、 B 、 C 、 D 、练习4:(2012临沂)如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF 是菱形.例3图例2图练习1图练习2图练习5:下列命题正确的是( )A 、对角线互相平分的四边形是菱形;B 、对角线互相平分且相等的四边形是菱形C 、对角线互相垂直且相等的四边形是菱形;D 、对角线互相垂直且平分的四边形是菱形练习6:(2011江苏)四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC 。
中考导练讲义第20讲特殊的平行四边形
第20讲特殊的平行四边形【章节知识清单】EFGD的形状是)正方形:如图②,若EF P 为AD 边上任意一点,则PE+PF=AO. (变式:如图④,四边形ABCD 为矩形,则PE+PF 的求法利用面积法,需连接【章节典例解析】【例题1】(2017广东)如图,矩形纸片ABCD 中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为.【考点】PB :翻折变换(折叠问题);LB :矩形的性质.【分析】如图3中,连接AH .由题意可知在Rt △AEH 中,AE=AD=3,EH=EF ﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH .由题意可知在Rt △AEH 中,AE=AD=3,EH=EF ﹣HF=3﹣2=1, ∴AH===,故答案为.【例题2】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.【例题3】(2017广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD 为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.【例题4】(2017•宁德)在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.【考点】LO:四边形综合题.【分析】(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;(2)先根据垂直的作法即可画出图形,判断出△ADE≌△CBF,得出CF=1,再判断出△AOB∽△DEA,即可得出OB=,即可得出结论;(3)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4.【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.【例题5】(2017广西河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF 于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE 与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.【章节典例习题】1.(2017贵州安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm2.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()下列结论:①S△ABFA.①③B.②③C.①④D.②④3.(2017广西)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB ≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.54.(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.5.(2017广西百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.6.(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【章节典例习题】参考答案1.(2017贵州安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠EAC,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.2.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()下列结论:①S△ABFA.①③B.②③C.①④D.②④【考点】LE:正方形的性质.=S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推【分析】由△AFD≌△AFB,即可推出S△ABF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判出===,可得S△CDF断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.3.(2017广西)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB ≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN ∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S的最小值是1﹣=,故⑤正确;△OMN综上所述,正确结论的个数是5个,故选:D.4.(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.5.(2017广西百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.【考点】LB:矩形的性质;L7:平行四边形的判定与性质.【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.【解答】解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.6.(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.。
北师大版九年级上册《特殊的平行四边形》综合复习 讲义
教学内容特殊平行四边形的综合复习教学目标要求掌握特殊平行四边形的性质及判定,会应用教学重点特殊平行四边形的性质及判定教学难点性质及判定的应用教学准备讲义教学过程前课回顾正方形、平行四边形、矩形、菱形的性质可比较如下:平行四边形矩形菱形正方形对边平行且相等四条边都相等对角相等四个角都是直角对角线互相平分对角线互相垂直对角线相等每条对角线平分一组对角(凡是图形所具有的性质,在表中相应的空格中填上“√”,没有的性质不要填写)知识详解知识点一:菱形的性质1.如图,在菱形ABCD中,不一定成立的是()A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD2.菱形的一个内角为120°,边长为8,那么它较短的对角线长是()A.3 B.4 C.8 D.8 33.如图,菱形ABCD中,对角线AC,BD相交于点O,点H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4C.7 D.144.(2014·烟台)如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接OB.若∠DAC=28°,则∠OBC的度数为(C)A.28°B.52°C.62°D.72°5.(2014·上海)如图,已知AC,BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍6.(2014·白银)如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.7.如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.8.如图,在菱形ABCD中,点F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.知识点二:菱形的判定1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()A.小明、小亮都正确B.小明正确,小亮错误C .小明错误,小亮正确D .小明、小亮都错误2.如图,下列条件之一能使▱ABCD 是菱形的是( )①AC ⊥BD ;②∠BAD =90°;③AB =BC ;④BD 平分∠ABC . A .①③ B .②③ C .③④ D .①③④,第2题图)3.用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( )A .一组邻边相等的四边形是菱形B .四边相等的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .每条对角线平分一组对角的平行四边形是菱形,第3题图)4.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形. 根据两人的作法可判断( )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均正确D .甲、乙均错误5.(2014·十堰)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC.从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____.(只填写序号)6.(2014·新疆)如图,已知△ABC ,按如下步骤作图:①分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交点P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ; ③过点C 作CF ∥AB 交PQ 于点F ,连接AF. (1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.7.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角形ABC与AFE按如图①所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°,四边形ABPF是什么样的特殊四边形?并说明理由.知识点三:正方形的性质1.如图,Rt△ABC中,∠C=90°,AC=BC=6,点E是斜边AB上任意一点,作EF⊥AC于点F,EG⊥BC于点G,则矩形CFEG的周长是____.2.(易错题)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若EF=4 cm,则CD=___cm.3.如图,点O是矩形ABCD的对角线AC的中点,点M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为____.,第3题图)4.(2014·青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3 2 C.4.5 D.55.(2014·凉山)顺次连接矩形各边中点所形成的四边形是___.6.如图所示,在△ABC中,BD,CE是高,点G,F分别是BC,DE的中点,则下列结论中:①GE=GD;②GF⊥DE;③GF平分∠DGE;④∠DGE=60°.其中正确的是____.(填写序号)7.(2014·邵阳)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.8.(2014·福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为() A.45°B.55°C.60°D.75°,第8题图),第9题图) 9.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连接BD并延长交EG于点T,交FG于点P,则GT=()A. 2 B.2 2 C.2 D.1,第10题图)10.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是____.11.(易错题)如图,已知正方形纸片ABCD,点M,N分别是AD,BC的中点,把BC边向上翻折,使点C 恰好落在MN上的P点处,BQ为折痕,则∠PBQ=____.12.(2014·济宁)如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE∶CF=___.13.(2014·资阳)如图,在边长为4的正方形ABCD中,点E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为____.14.(2014·鄂州)在平面内正方形ABCD和正方形CEFH如图放置,连接DE,BH两线交于点M.求证:(1)BH=DE;(2)BH⊥DE.15.(教材例4改编)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E.(1)四边形ADCE为____;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.随堂检测1.(易错题)如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为___度时,四边形ABFE为矩形.2.如图,点M是矩形ABCD的边AD的中点,点P为BC上一点,PE⊥MC于点E,PF⊥MB于点F,当AB,BC满足条件____时,四边形PEMF为矩形.3.如图,AB=AC,AD=AE,DE=BC且∠BAD=∠CAE,求证:四边形BCDE是矩形.4、(教材例4变式题)如图,△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.连接AE,AF.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.5.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是(B)A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2,第5题图),第6题图)6、如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,AH⊥BC于点H,连接EH,若DF=10 cm,则EH等于()A.8 cm B.10 cm C.16 cm D.24 cm7.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于()A.7 B.2 2C.2 3 D.108.如图,在矩形ABCD中,AB=2,BC=4,点A,B分别在y轴,x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标为____.9.矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若OE∶ED=1∶3,AE=3,则BD=___.10.如图,矩形ABCD中,AC,BD相交于点O,点E为矩形ABCD外一点,若AE⊥CE,求证:BE⊥DE.11.如图,四边形ABCD是菱形,点E,F,G,H分别是AD,AB,BC,CD的中点.(1)求证:四边形EFGH是矩形;(2)若菱形ABCD的面积是50,求四边形EFGH的面积.12.如图,点D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:CD=AN;(2)若∠AMD=2∠MCD,求证:四边形ADCN是矩形.13.如图所示,在正方形ABCD中,点E,F分别在BC,CD上移动,但点A到EF的距离AH始终保持与AB的长度相等,问在点E,F移动过程中:(1)∠EAF的大小是否发生变化?请说明理由;(2)△ECF的周长是否发生变化?请说明理由.14.在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BFC.BD=DF D.AC=BF,第14题图)15.如图,在△ABC中,∠A=90°,点D是BC边的中点,DE⊥AC于点E,DF⊥AB于点F,且BF=CE,求证:四边形AFDE是正方形.16.如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC交DE于点G,连接AF,CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.17.(2014·随州)已知:如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=___时,四边形MENF是正方形,并说明理由.。
北师大版九年级上册《特殊的平行四边形》单元复习讲义 (2)
教学目标掌握平行四边形、矩形、菱形、正方形的性质与判定并能准确应用重点性质与判定的掌握与总结以及条件的准确分析与数理难点应用知识点准确解题知识点的回顾:平行四边形、矩形、菱形、正方形的性质与判定分别是:四边形的内外角和、正多边形的内外角和、三角形的内外角分别有哪些相关的定义:规则四边形与函数有哪些动点题,常见的类型分别是哪些:例题展现:例一、1、下列命题中,真命题是A、对角线相等的四边形是等腰梯形B、对角线互相垂直且平分的四边形是正方形C、对角线互相垂直的四边形是菱形 D 、四个角相等的四边形是矩形2、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()S1S2A.16B.17C.18D.193、如图,在□ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= .4、已知一个多边形的内角和是1080°,这个多边形的边数是.5、如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.6、如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.7、如图,菱形ABCD中,60B∠=,4AB=,则以AC为边长的正方形ACEF的周长为A.14 B.15 C.16 D.178、如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)AOB DEOFS S∆=四边形中正确的有()A.4个B.3个C.2个D.1个9、如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.cm2D.cm2例二、证明题:1、已知四边形ABCD是平行四边形(如图9),把△ABD沿对角线BD翻折180°得到△AˊBD.(1)利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法);(2)设DAˊ与BC交于点E,求证:△BAˊE≌△DCE.2、如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.⑴求证:△BAD≌△AEC;⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.BACDFE60FAB CDOE3、已知:在□ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=错误!未找到引用源。
北师大版九年级上册《特殊的平行四边形》矩形、正方形复习讲义
ACBD教学内容 矩形、正方形复习 教学目标 掌握矩形、正方形的性质及判定教学重点 熟练运用矩形、正方形的性质解决相关问题 教学难点矩形、正方形的性质及判定的灵活应用前课回顾一、矩形1、定义:有一个角是直角的平行四边形叫做矩形。
2、性质:(1)矩形的四个角都是直角; (2)矩形的对角线平分且相等。
3、判定:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形; (3)有三个角是直角的四边形是矩形。
直角三角形斜边上的中线等于斜边的一半。
二、正方形1、定义:有一组邻边相等的矩形;有一个角是直角的菱形。
2、性质:(1)正方形的四条边都相等; (2)正方形的四个角都是直角。
(3)正方形的两条对角线垂直平分且相等(每一条对角线与边的夹角是45°) 3、判定:(1)邻边相等的矩形是正方形。
(2)有一个角是直角的菱形是正方形。
(3)对角线垂直平分且相等的四边形是正方形。
知识详解A BCDO例1:如图,矩形ABCD的对角线相交于点O,∠AOD=60º,AD=2,则AB的长为()A.2 B.4 C.2 3 D.43练习1:已知,如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.练习2:如图,在矩形ABCD中,AC、BD相交于点O,由矩形的性质2有:AO=BO=CO=DO=21AC=21BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.例2 :已知,如图所示,在矩形ABCD中,AC、BD是对角线,过顶点C作BD的平行线与AB的延长线相交于点E。
求证:△ACE是等腰三角形。
练习2:已知,如图2,矩形ABCD中,E是BC上一点,AEDF⊥于F,若BCAE=。
求证:CE=EF。
练习3:在矩形ABCD中,4,30,=︒=∠⊥DEADECEDE,求这个矩形的周长。
A BCDEA DCOBE例3:矩形ABCD中,AB=6,AD=8,将ΔADC沿AC翻折至ΔAEC,AE与BC相交于G,求GC的长。
北师大版九年级上册数学同步培优第一章特殊平行四边形 全章热门考点整合专训
解得OE-OF=9.6.∴OE+OF的值发生变化,OE,OF之
间的数量关系为OE-OF=9.6.
返回
11.如图,在△ABC中,AB=AC,点O在△ABC的内部, ∠BOC=90°,OB=OC,D,E,F,G分别是AB, OB,OC,AC的中点.
【答案】 B
返回
5.【2021·鞍山】如图,在▱ABCD中,G为BC边上一点, DG=DC,延长DG交AB的延长线于点E,过点A作 AF∥ED交CD的延长线于点F.求证:四边形AEDF是 菱形.
证明:∵四边形ABCD是平行四边形, ∴∠BAD=∠C,AD∥BC,AB∥CD. ∵AF∥ED,∴四边形AEDF是平行四边形. ∵AD∥BC,∴∠DGC=∠ADE. ∵DG=DC,∴∠DGC=∠C.∴∠BAD=∠ADE. ∴AE=DE.∴平行四边形AEDF是菱形.
返回
14.阅读
在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,
y2)为端点的线段的中点坐标为 运用
x1+2 x2,y1+2 y2.
(1)如图,矩形ONEF的对角线相交于点M,ON,OF分别
在x轴和y轴上,O为坐标原点,点E的坐标为(4,3), 则点M的坐标为_(_2_,__1_.5_)_;
返回
4.【2021·河池】如图,在边长为4的正方形ABCD中,点
E,F分别在CD,AC上,BF⊥EF,CE=1,则AF的
长是( ) A.2 2
B.32 2
C.43 2
D.54 2
【点方法】由于BF⊥EF,所以过F作AB的垂线交 AB于N,交CD于M,证明△MFE≌△NBF,设 ME=x,利用MN=4列方程,即可求解.
返回
中考数学专题复习辅导讲义 特殊平行四边形
中考数学专题复习辅导讲义特殊平行四边形年级:辅导科目:数学课时数:3课题特殊平行四边形教学目的教学内容一、【中考要求】掌握矩形、菱形、正方形的概念和性质,了解平行四边形、矩形、菱形、正方形、梯形之间的关系,掌握矩形、菱形、正方形的性质,探索并掌握四边形是矩形、菱形、正方形的条件。
二、【三年中考】1.(台州)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a解析:在菱形ABCD中,AC⊥BD,又OE平分AB,∴AB=2OE=2a,∴菱形ABCD的周长为8a.答案:C2.(杭州)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°解析:过F作FN∥AB,交PE于点N,则FN⊥EP且FN平分EP,∴FE=FP,∴∠FEP=∠FPE,∴∠FPC=∠FEB=55°.答案:D3.(舟山)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6解析:设另一边长为a,由面积法可得:(m+3)2=m2+3·a,∴a=2m+3.答案:A4.(温州)如图,菱形ABCD中,∠A=60°,对角线BD=8,则菱形ABCD的周长等于________.解析:菱形ABCD中,AB=AD,又∠A=60°,∴△ABD是等边三角形,∴AB=BD=8,∴菱形ABCD的周长是32.答案:325.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是________;(只需填写序号)(2)证明.解:(解法一)(1)选__①__;(2)证明:∵ABCD是正方形,∴AB=CD,∠A=∠C=Rt∠.又∵AE=CF,∴△AEB≌△CFD.∴BE=DF.(解法二)(1)选__②__;(2)证明:∵ABCD是正方形,∴AD∥BC.又∵BE∥DF,∴四边形EBFD是平行四边形.∴BE=DF.(解法三)(1)选__③__;(2)证明:∵ABCD是平行四边形,∴AB=CD,∠A=∠C=Rt∠.又∵∠1=∠2,∴△AEB≌△CFD.∴BE=DF.6.(湖州)如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF.(2)请连结BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.证明:(1)∵CF∥BE,∴∠EBD=∠FCD.又∵∠BDE=∠CDF,BD=CD,∴△BDE≌△CDF.(2)四边形BECF是平行四边形.由△BDE≌△CDF,得ED=FD.∵BD=CD,∴四边形BECF是平行四边形.三、【考点知识梳理】(一)矩形的定义、性质和判定1.定义:有一个角是直角的平行四边形是矩形.2.性质:(1)矩形的四个角都是直角;(2)矩形的对角线互相平分且相等;(3)矩形既是轴对称图形,又是中心对称图形,它有两个对称轴;它的对称中心是对角线的交点.3.判定:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.(二)菱形的定义、性质和判定1.定义:有一组邻边相等的平行四边形是菱形.2.性质:(1)菱形的四条边都相等,对角线互相互相垂直,并且每条对角线平分一组对角;(2)菱形既是轴对称图形又是中心对称图形.3.判定:(1)有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.(三)正方形的定义、性质和判定1.定义:有一个角是直角的菱形是正方形或有一组邻边相等的矩形是正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.3.判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.温馨提示:1.矩形、菱形和正方形具有平行四边形的所有性质;2.平行四边形及特殊平行四边形的有关知识点较多,要想做到准确而不混淆就要从“边、角、对角线、对称性”这四个方面来研究它们的性质和判定,多用数形结合法,掌握它们的区别及联系,把握它们的特征是关键。
初中数学特殊平行四边形培优讲义(20200710022833)
题 1: 1. 如图,折叠矩形的一边 AD ,使 D 点落在 BC 边上点 F 处,已知 AB 8 , BC 10 ,则 EC 的长为 _________.
7. 顺次连结某四边形的各边中点 , 若得到一个菱形 , 则原四边形的 ( )
A 对角线互相平分 B
对角线相等 C 对角线互相垂直 D 对角线互相垂直平分
-3-
(1)求证: EF PQ ; (2)如果 AB a , EF b, 求四边形 EQFP 的面积 .
5. 如图:在正方形 ABCD 中, E 在 CD 上,且 AE EC BC , M 是 CD 中点. 求证: BAE 2 DAM .
2. 如图,在菱形 ABCD 中,分别延长 AB, AD 到 E, F ,使得 BE DF ,连接 EC, FC .
ABCD 的形状, 并使其面积为矩形
____________.
2. 如图,已知:矩形 ABCD 中, E, M , F , N 分别是 AB, BC ,CD , DA 边的中点.求证: 四边形 EMFN 是菱形。
5. 如图,正方形 ABCD 的边长为 8 , M 在 DC ,且 DM 则 DN MN 的最小值为 ___________ .
8. 如图:已知: P 、 Q 分别是正方形 ABCD 边 BC 、 CD 上的点,且 PAQ 45 .
4. 如图 , AC , BD 是矩形 ABCD 的对角线 , AH BD 于 H , CG BD 于 G , AE 为 BAD 的平分线 , 交 GC 的延长于点 E . 求证 : BD CE .
PF BD 于 F ,则 PE PF 等于(
7
A
5
12
13
B
C
5
5
中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
北师大新版初三第一章特殊平行四边形培优及答案详解附考点卡片
北师大新版初三第一章特殊平行四边形培优及答案详解附考点卡片 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN九年级第一章特殊平行四边形培优一.选择题(共17小题)1.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B.C.5 D.42.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直3.(2016•宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.84.(2016•鄂州)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD 边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.5.(2016•咸宁)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)6.(2016•遵义)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC7.(2015•徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD 的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.148.(2015•南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:D.1:9.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.(2016•营口)如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2D.411.(2016•宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC 的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.212.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q 分别在BD,AD上,则AP+PQ的最小值为()A.2B.C.2D.313.(2016•眉山)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD 交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个14.(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个15.(2016•攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分16.(2016•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.617.(2016•徐州)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6二.解答题(共13小题)18.(2016•通辽)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF 交正方形外角的平分线CF于F.求证:AE=EF.19.(2016•来宾)如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.20.(2016•乐山)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.21.(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.22.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.23.(2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.24.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.25.(2016•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.26.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.27.(2015•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.28.(2015•遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.29.(2013•泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.30.(2013•重庆)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.参考答案与试题解析一.选择题(共17小题)1.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.4【考点】菱形的性质.【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=是解此题的关键.2.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.3.(2016•宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B. C.6D.8【考点】菱形的性质;三角形中位线定理.【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.4.(2016•鄂州)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.【考点】菱形的性质;翻折变换(折叠问题).【专题】计算题.【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.5.(2016•咸宁)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,) D.(,)【考点】菱形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故选D.【点评】本题考查菱形的性质、轴对称﹣最短问题、坐标与图象的性质等知识,解题的关键是正确找到点P位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.6.(2016•遵义)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC【考点】菱形的判定;平行四边形的性质.【分析】根据菱形的定义和判定定理即可作出判断.【解答】解:A、根据菱形的定义可得,当AB=AD时▱ABCD是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=AC,∴▱ABCD是菱形.∴∠BAC=∠DAC.故命题正确.故选C.【点评】本题考查了菱形的判定定理,正确记忆定义和判定定理是关键.7.(2015•徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质.【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.(2015•南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:D.1:【考点】菱形的性质.【分析】首先设设AC,BD相较于点O,由菱形ABCD的周长为8cm,可求得AB=BC=2cm,又由高AE长为cm,利用勾股定理即可求得BE的长,继而可得AE是BC的垂直平分线,则可求得AC的长,继而求得BD的长,则可求得答案.【解答】解:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB==(cm),∴BD=2OB=2cm,∴AC:BD=1:.故选D.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的四条边都相等,对角线互相平分且垂直.9.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(2016•营口)如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC 的长为()A.2 B.3 C.2D.4【考点】矩形的性质.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB=4,再根据矩形的对角线互相平分解答.【解答】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=AC=2.故选A.【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.11.(2016•宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.12.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2B. C.2D.3【考点】矩形的性质;轴对称-最短路线问题.【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.13.(2016•眉山)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD 交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个【考点】矩形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【分析】①利用线段垂直平分线的性质的逆定理可得结论;②在△EOB和△CMB中,对应直角边不相等;③可证明∠CDE=∠DFE;④可通过面积转化进行解答.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,但BO≠BM,故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE=S△COF,∵S△COF=2S△CMF,∴S△AOE:S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE:S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.14.(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定.【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.【点评】本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.15.(2016•攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.16.(2016•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.17.(2016•徐州)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【考点】正方形的性质.【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2),解得x=3,或x=6,故选D.【点评】本题考查了正方形的性质,图形的面积的计算,准确分识别图形是解题的关键.二.解答题(共13小题)18.(2016•通辽)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF 交正方形外角的平分线CF于F.求证:AE=EF.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.【解答】证明:取AB的中点H,连接EH;∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF.【点评】此题考查了正方形的性质和全等三角形的判定与性质,解题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF.19.(2016•来宾)如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出S EGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.【解答】(1)证明:∵EP⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,,∴△ABE≌△EGF(AAS);(2)解:∵△ABE≌△EGF,AB=2,∴AB=EG=2,S△ABE=S△EGF,∵S△ABE=2S△ECF,∴S EGF=2S△ECF,∴EC=CG=1,∵四边形ABCD是正方形,∵BC=AB=2,∴BE=2﹣1=1.【点评】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,三角形的面积,熟练掌握判定与性质是解本题的关键.20.(2016•乐山)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】欲证明CE=DF,只要证明△CEB≌△DFC即可.【解答】证明:∵ABCD是正方形,∴AB=BC=CD,∠EBC=∠FCD=90°,又∵E、F分别是AB、BC的中点,∴BE=CF,在△CEB和△DFC中,,∴△CEB≌△DFC,∴CE=DF.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握正方形的性质以及全等三角形的判定和性质,属于基础题,中考常考题型.21.(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.22.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【考点】矩形的判定;菱形的性质.【专题】证明题.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.23.(2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【考点】矩形的判定与性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.在△PHC和△CFP中,,∴△PHC≌△CFP(ASA).(2)∵四边形ABCD为矩形,∴∠D=∠B=90°.又∵EF∥AB∥CD,GH∥AD∥BC,∴四边形PEDH和四边形PFBG都是矩形.∵EF∥AB,∴∠CPF=∠CAB.在Rt△AGP中,∠AGP=90°,PG=AG•tan∠CAB.在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.【点评】本题考查了矩形的判定及性质、全等三角形的判定及性质以及平行线的性质,解题的关键是:(1)通过平行找出相等的角;(2)利用矩形的判定定理来证明四边形为矩形.本题属于中档题,难度不大,解决该题型题目时,根据结合矩形的性质及全等三角形的判定定理来解决问题是关键.24.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.【考点】矩形的性质;全等三角形的判定与性质;勾股定理.【专题】证明题.【分析】(1)根据矩形的性质和已知条件可证明△AEF≌△DCE,可证得AE=DC;(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的长.【解答】(1)证明:在矩形ABCD中,∠A=∠D=90°,∴∠1+∠2=90°,∵EF⊥EC,∴∠FEC=90°,∴∠2+∠3=90°,∴∠1=∠3,在△AEF和△DCE中,,∴△AEF≌△DCE(AAS),∴AE=DC;(2)解:由(1)得AE=DC,∴AE=DC=,在矩形ABCD中,AB=CD=,在R△ABE中,AB2+AE2=BE2,即()2+()2=BE2,∴BE=2.【点评】本题主要考查矩形的性质和全等三角形的判定和性质,在(1)中证得三角形全等是解题的关键,在(2)中注意勾股定理的应用.25.(2016•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【考点】菱形的性质;全等三角形的判定;平行四边形的性质.【专题】计算题;证明题;压轴题.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.26.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【考点】菱形的性质;全等三角形的判定.【专题】证明题.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.27.(2015•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.。
北师大版九年级上册数学同步培优第一章特殊平行四边形 正方形的判定
又∵∠AEC+∠AME=90°,∠AME=∠BMC, ∴∠ABG+∠BMC=90°.∴CE⊥BG. ∴四边形CGEB是垂美四边形. 由(2)得CG2+BE2=CB2+GE2. ∵AC=4,AB=5,∴BC=3,CG=4 2 ,BE=5 2 . ∴GE2=CG2+BE2-CB2=73.∴GE= 73 .
在△BEA和△DFA中,∠BEA=∠DFA,∠B=∠D,
AE=AF,∴△BEA≌△DFA(AAS),
∴AB=AD,∴矩形ABCD是正方形.
返回
9.【教材P27复习题T8拓展】【2021·兴安盟】如图,AD是 △ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是 E,F,连接EF,EF与AD相交于点H.
(2)已知BH=7,BC=13,求DH的长.
解:∵四边形AFHE和四边形ABCD都是正方形,
∴AE=EH=FH,AB=BC=13.
设AE=x,则BE=x+7.
在Rt△AEB中,AB2=AE2+BE2,即132=x2+(x+7)2,
整理,得(x+12)(x-5)=0. ∴x+12=0或x-5=0.
解得x=5(x=-12舍去),
解:△ABC满足∠BAC=90°时,四边形AEDF是正方形. 理由:∵∠AED=∠AFD=∠BAC=90°, ∴四边形AEDF是矩形. 又∵EF⊥AD,∴矩形AEDF是正方形.
返回
提优分类练
10.【2021·扬州】如图,在△ABC中,∠BAC的平分线交BC 于点D,DE∥AB,DF∥AC.
(1)试判断四边形AFDE的形状,并说明理由;
【点方法】由正方形的性质可得四边形
BEDF为平行四边形,且BD⊥EF,可证
得四边形BEDF为菱形,再根据勾股定理
计算DE的长,可得结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义
体系搭建
一、知识梳理
二、知识概念
(一)菱形
1、定义:有一组邻边相等的平行四边形叫做菱形.
2、菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
3、菱形的面积计算
②先判定四边形是菱形,再判定这个菱形有一个角为直角.
③还可以先判定四边形是平行四边形,再用1或2进行判定.
考点一:菱形的性质与判定
例1、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于
()
A.B.C.5D.4
例2、如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;
③△BDF≌△CGB;④S△ABD=AB2
其中正确的结论有()
A.1个B.2个C.3个D.4个
例3、如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交
BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
考点二:矩形的性质与判定
例1、矩形具有而菱形不具有的性质是()
A.对角线相等B.两组对边分别平行
C.对角线互相平分D.两组对角分别相等
例2、矩形ABCD中,AB=2,AD=1,点M在边CD上,若AM平
分∠DMB,则DM的长是()
A.B.
C.D.
例3、如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.
考点三:正方形的性质与判定
例1、正方形具有而菱形不一定具有的性质是()
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等
例2、如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与
CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分
(阴影部分)的面积为()
A.﹣4+4B.4+4
C.8﹣4D.+1
例3、已知:如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,
并且AF=BP=CQ=DE.
求证:(1)EF=FP=PQ=QE;
(2)四边形EFPQ是正方形.
考点四:线段和最短问题
例1、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为
(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的
坐标为()
A.(3,1)B.(3,)
C.(3,)D.(3,2)
例2、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),
OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点
P的坐标为()
A.(0,0)B.(1,)C.(,)D.(,)考点五:折叠问题
例1、如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上
的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4
C.5D.6
例2、如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;
(2)若AB=2,AD=4,求AE的长.
实战演练
➢课堂狙击
1、下列性质中,菱形对角线不具有的是()
A.对角线互相垂直B.对角线所在直线是对称轴
C.对角线相等D.对角线互相平分
2、如图,菱形ABCD的周长为8cm,高AE的长为cm,则对角线BD的
长为()
A.2cm B.3cm C.cm D.2cm
3、如图,在菱形ABCD中,下列结论中错误的是()
A.∠1=∠2B.AC⊥BD
C.AB=AD D.AC═BD
4、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,
若∠B=70°,则∠EDC的大小为()
A.10°B.15°
C.20°D.30°
5、如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下
面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;
④S△AOE=S△COE,其中正确结论有()
A.1个B.2个C.3个D.4个
6、如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB、OC,点E在线段BC上(点E不与点B、C重合),过点E作EM⊥OB于M,EN⊥OC 于N,则EM+EN的值为()
A.6B.1.5
C.D.
7、如图,P是边长为1的正方形ABCD的对角线BD上的一点,点E是AB的中点,则PA+PE的最小值是()
A.B.
C.D.
8、如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.
9、如图,正方形ABCD和正方形CEFG中,点D在DG上,BC=1,CE=3,H是AF的中点,求CH的长.
➢课后反击
1、在平面中,下列命题为真命题的是()
A.四边相等的四边形是正方形B.对角线相等的四边形是菱形
C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形
2、已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,则此菱形的面积为()
A.48cm2 B.24cm2C.18cm2D.12cm2
3、如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中
点,菱形ABCD的周长为36,则OH的长等于()
A.4.5B.5C.6D.9
4、已知菱形ABCD在平面直角坐标系中的位置如图所示,∠DAO=30°,
点D的坐标为(0,2),动点P从点A出发,沿A→B→C→D→A→B→…
的路线,以每秒1个单位长度的速度在菱形ABCD的边上移动,当移动
到第2016秒时,点P的坐标为()
A.(﹣2,0)B.(0,﹣2)
C.(2,0)D.(0,2)
5、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()
A.B.C.D.
6、如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1 O1的对角线交BD于点O2,同样以AB、AO2为两邻边作平行四边形
ABC2O2,…,依此类推,则平行四边形ABC2016O2016的面积为()
A.B.C.D.
7、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.
直击中考
1、【2016•广安】下列说法:
①三角形的三条高一定都在三角形内;②有一个角是直角的四边形是矩形;
③有一组邻边相等的平行四边形是菱形;④两边及一角对应相等的两个三角形全等;
⑤一组对边平行,另一组对边相等的四边形是平行四边形;其中正确的个数有()
A.1个B.2个C.3个D.4个
2、【2016•广东】如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为
边正方形EFGH的周长为()
A.B.2
C.+1D.2+1
3、【2016•遵义】如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()
A.AB=AD B.AC⊥BD
C.AC=BD D.∠BAC=∠DAC
4、【2009•深圳】如图,在矩形ABCD中,DE⊥AC于E,
∠EDC:∠EDA=1:3,且AC=10,则DE的长度是()
A.3B.5C.D.
5、【2006•淮安】如图,正方形ABCD的边长为2,点E在AB边上.四边形
EFGB也为正方形,设△AFC的面积为S,则()
A.S=2B.S=2.4 C.S=4D.S与BE长度有关
6、【2015•遵义】在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面积.
重点回顾
1、菱形、矩形、正方形的性质与判定;
2、最短问题与翻折问题的解决。
名师点拨
本单元内容较多,准确理解性质及判定定理多加练习是解决本单元问题的关键,同时注意总结最短问题及翻折问题的解题思路。
学霸经验
➢本节课我学到
➢我需要努力的地方是。